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STABILITY OF GROUND STATES OF NONLINEAR
SCHRODINGER. SYSTEMS

LILIANA CELY

ABSTRACT. In this article, we study existence and stability of ground states
for a system of two coupled nonlinear Schréodinger equations with logarith-
mic nonlinearity. Moreover, global well-posedness is verified for the Cauchy
problem in H!(R) x H!(R) and in an appropriate Orlicz space.

1. INTRODUCTION
We consider the coupled system of logarithmic nonlinear Schrodinger equations
10w + 3§u + ulog |u|2 + u\u|p71|v|erl =0
100 + 02v + vlog [v]? + v|v[P~ ulPTt =0 (1.1)
u(z,0) = uo(z) v(x,0) =vo(x),

where u = u(z,t) and v = v(x,t) are complex-valued functions of (z,t) € R x R,
and 1 <p<2.

The motivation for studying coupled NLS equations mainly comes from their
applications in various physical fields; for example, in quantum optics, quantum
mechanics, nuclear physics, fluid dynamics, plasma physics and Bose-Einstein con-
densation (for the principal references see [26] [25]). Such systems (1.1]) appear in
the study of interactions between short and long dispersive waves (see [I} 14, [14]).
Moreover, numerical studies describing the dynamics of gaussons collisions of
were reported in [23]. For local well-posedness in the energy space, existence and
stability of standing waves for coupled nonlinear Schrédinger system with power-
type nonlinearities, the reader is referred to [2] [IT], 12 15, 20, 21 Bl ©, [7, 22| B3], [4]
and references therein.

System has the conserved quantities

E(u,v)

2
1 Cwl2log lv]? — —Z—ulPT Pt de (1.2
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and
Quv) = 5 [ (P + o) do. (13)

That is, when applied to sufficiently regular solutions (u(z,t),v(z,t)) of [[.I] the
energy functional E and the mass () are independent of ¢.

Notice that the function z ~ |z|?Log|z|? has a singularity at the origin, and
hence the energy functional E(u,v) fails to be differentiable on H'(R) x H!(R).
Thus, to overcome the singularity of the logarithm at the origin, we need to define
an energy space where the functional E is well-defined. Indeed, we define the energy
space B := W(R) x W(R),

W(R) = {u € H'(R) : |ul*log |u|* € L*(R)},
endowed with a Luxemburg type norm. In Section [2] we show that the energy

functional E is of class C' on B. Now we state our first result concerning the global
well-posedness of the Cauchy problem ([L.1]). The proof is contained in Section

Theorem 1.1. Assume that 1 < p. For every (ug,vo) € B the Cauchy problem
is locally well posed in B, i.e. there exist T > 0 and a unique solution (u,v) €
C([0,TY, B) such that (u(z,0),v(z,0)) = (uo,vo). For each Ty € (0,T) the mapping
(ug,v0) € B (u,v) € C([0,Tp], B) is continuous. In addition, the mass associated
with , as well as energy are conserved in time, namely, for all [0,T)

lu(z, )2 + lv(z, |72 = lluollZz + llvollze,  E(u(z,t),v(w,t)) = E(uo, vo).

From a mathematical and physical point of view, an important type of solutions
for the system (|1.1)) are the so-called standing waves. In this article we are interested
in the existence and stability of standing waves of (|1.1]); namely solutions to (1.1
of the form

(f(z,1),9(x,1)) = ("' ¢(x), e“"p(x)), 6.w €R and (¢,¢) € B,

where (¢, ¢) has to satisfy the system of ordinary differential equations
—0;0 +0¢ = ¢log|o|* + ¢|g"~ |
—03p +wp = plog [o]” + plePHg[P .

The most common approach to construct orbitally stable standing waves to (|1.1))
is to consider the variational problem

J(,¢) = inf {E(u,v)  (u,v) € B,/R lu|? = 7 and /R|v|2 - g}. (1.5)

A minimizer of problem (|1.5)) is called a ground state solution of (1.4). The corre-
sponding set of (non-trivial) minimizers for J(n, () is defined by

G(n,¢) = inf{(¢,¢) € B: E(¢,0) = J(1,0). [|¢] 7 = n and [|¢[| 22 = ¢}
From the logarithmic Sobolev inequality, it is not difficult to show that problem
(1.5) is well-defined; that is J(n,{) > —oo (see Lemma below). Moreover, by
using the concentrated compactness principle [I8], the existence of ground states
will be obtained as a consequence of the stronger statement that any minimizing
sequence for the problem J(n,¢) is, up to translation, precompact in B. More
precisely, we have the following result.

(1.4)

Theorem 1.2. Letn > 0, ( > 0 and 1 < p < 2. Then the following assertions
hold.
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(1) If {(fn,gn)} is a minimizing sequence of J(n,(), then there exists a se-
quence {yn} of real numbers such that {(fn(:- + yn), gn(- + yn))} contains
a convergent subsequence in B. Which means that {(fn,gn)} is relativity
compact in B up to translations. Hence, the set G(n, () is non-empty, since
there exists a minimizer for problem .
(i) If (f,g) € G(n,(), then there exist 0 and w € R such that f(z) = ¥ ¢(z)
and g(x) = e“p(z), where ¢, p € C*(R) and ¢(z), p(z) > 0 for all z € R.
(iii) The set of minimizers G(n, () forms a true two-parameter family; that is,
the two sets G(n1,(1) and G(n2,(2) are disjoint if (n1,¢1) # (02, (2).

To prove Theorem we will use variational methods and the concentration
compactness method of P.L. Lions [I8]. Similar techniques have been used previ-
ously by Albert and Bhattarai [2] (see also[21] [7]) to prove the existence and orbital
stability of standing wave solutions to NLS-KdV systems.

It is standard that the minimizers of the variational problem are solutions
to the stationary problem . The following is our orbital stability result, which
is a direct consequence of the precompactness of the minimizing sequences of 1.'
(see Theorem [1.2)). This result shows that if the initial data of a solution of
is near G(n, ¢), then the solution will remain near G(n, ¢) for every time t > O.

Corollary 1.3. Let n,{ > 0. Then the set G(n,() of minimizers for J(n,() is B-
stable in the following sense. Given ¢ > 0 there exist § > 0 such that, if (fo,g0) € B
satisfies

) ) <9
it o) = (2.0l

(
then the solution (f(x,t),g(x,t)) of the Cauchy problem with initial data
(f(x,0),9(x,0)) = (fo(x ) olx)) satisfies

1(f(8),9(5 1) = (: D)l <€

(s ¢)€9(n 9]
for all t € [0, +00).

To the best of our knowledge, this is the first work concerning the existence and
stability of ground states for the system in the L2-subcritical case (1 < p < 2).
We mention here that the well-posedness of the Cauchy problem , existence
and stability/ instability of standing waves is open problem in the L2-critical case
(p = 2) and L?-supercritical case (p > 2).

This article is organized as follovvs In Section [2] we address the well- posednebs
of Cauchy problem for system ([1.1)) and we give the proof of Theorem [1.1} Section
is devoted to study existence and stability of standing waves (Theorem n and
Corollary . Throughout this paper, the letter C' will denote positive constants.

2. EXISTENCE RESULTS

This section is devoted to establish the local well-posedness of system (1.1f). First
we need to introduce some notation. For every x € [0, +00), we define the functions
®(x), U(x) € CH[0,+00)) N C?((0,+00)) as follows,

—z%log(x?), if0<az<e
32 +4e3x —e7 0, ifx>e73 (2.1)
U(z) = F(x) + ®(x),

d(x) =
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where F(x) = z?Logz?. Notice that ® is a nonnegative convex and increasing
function on [0, +00). Next we define the Orlicz space L®(R) associated to ® as the
completion of the C§°(R)-functions under the Luxemburg norm

1flle®) = inf{k >0: /R@(k*1|f(a:)|)dm <1}
It is well-known that (see [8, Section 2]),
L*(R) = {f € Lioc(R) : @(Jul) € L'(R)}.

From [§, Lemma 2.1] we see that (L®(R), || - || L#(r)) is a reflexive Banach space. In
addition, we can prove the following properties.
Lemma 2.1. Let {f,,} be a sequence in L®(R*), we have the following.

(i) If“fm_f||L‘1’(R) — 0 asn — 400, then ||®(] fn|)— (\f|)||L1(R) asn — +0o0.
(ii) Let f € L2(R). If fu(z) — f(x) a.e. x € R and if

Tim / (1fn(@))dz = / B(|f(2)))da

then || fomo — fllLe@) — 0 as n — +o0.
(iii) For each f € L*(R), we have

min]| £l o ey, [1£170 gy} < /R@(If(x)l)dx < max{|[fllce @, IflI @} (2:2)

Also, notice that there exists a constant C' > 0 such that (see [8, Eq. (2.6), p
1131))

/ [T(1£1) = U(lghlda < C(L+ 11 @ + lallzn@)Ilf = gllzz), (2:3)

for all f,g € H'(R). Finally, we define the reflexive Banach space
W(R) = H'(R) N L*(R)

equipped with the usual norm || f|lw®) = || fllz1(®) + [| fllL* ), for any f € W(R).
Combining (2.2)) and ([2.3)), it is not hard to show that (see [8, Proposition 2.2])

W(R) = {u € H'(R) : |ul*log |u|* € L*(R)}.

It is important to note that the energy functional (1.2)) is Fréchet differentiable on
B =W(R) x W(R). Moreover, the Fréchet derivative is

oy [~O2F — Flog |f — fIfP gl
U9 = | g~ glog gl — glale~117" 24
for (f,g) € B. The proof of is similar to that of [8, Proposition 2.7] and we
omit here.

Now we sketch the basic points of the standard theory of Log NLS (see [9
Chapter 9] and [§]) ensuring the local well-posedness of the Cauchy Problem for
in the energy space B. First, we regularize the logarithmic nonlinearity near
the origin. Let z € C and n € N. Bearing in mind 7 we consider the functions

a(z if |z 1. . 12l <
Cn(Z)Z{ =), Flef 2 5 and ﬁn(z):{b( ); .f||§ ;

nza(Ll),if 2| < 1 2b(n), if|z| >n,

where
z

a(z) = E O(|z]), b(z) = LQ U(|z|) forze€C, z#0.
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We introduce the family of regularized nonlinearities in the form g,(z) = B, (2) —
(n(2) for every z € C. Notice that we have the point-wise limit g,,(z) — 2 log|z|?
as n goes to +oo. Let (ug,vp) € B (in particular ug, vo € H'(R)). For every n € N,
we consider the initial value problem

i0pu™ + O%u" + g (u™) +u™[u" P o P =0

100" + 020" + g (V™) F U " P W P = 0 (2.5)

u™(z,0) = ug(x) v"(z,0) = vo(x).

Lemma 2.2. Assume that 1 < p < 2. Then the initial value problem (2.5) is
well posed in H'(R) x H*(R), i.e., there exists a unique global solution (u,v) €
C(R, HY(R) x H'(R)) such that (u(0),v(0)) = (ug,vo). In addition, conservation
of energy and of L?-norm holds: for allt € R,

[ (®)11Z2 + 0" @172 = luolZz + llvollg2,  En(u”(t),0"(t) = En(uo, vo)

where

1 2
Falu,v) =5 /R {102uf? + 0,0] — Go(w) — Gu(v)

_p+1

[ulPHoP* 1} da,
and
||
Gn(z) = / gn(s) ds.
0

Proof. First, since g, is globally Lipschitz continuous C — C, the proof of the local
wellposedness in H!(R) x H!(R) for 1 < p < 2 is a contraction argument based on
Strichartz estimates; see Remark [9, 3.3.12] and [13] Theorem 1] for more details.

We need only show that the maximal solution of is global. The proof
relies on the following Gagliardo-Nirenberg inequality [I3} Section 3]: there exists
a constant C' > 0 such that

a7 + ol 7502 + luoll7in < CUIVullZa + [Voll22)P2(lullze + lollz2)7 2

(2.6)
Indeed, by the local theory, we just need to control the H*(R) x H'(R)-norm for
every t € R. It is clear that [ Gn(u)dz < Clu|3.. From (2.6), in view of the
conservation of charge and energy, we see

n ,n 1 n n n n
Ep(u”,0") 2 S(IVu"[Zz + Vo l[7e) = Cllu" 72 + 0" [172)
= C(IVu™ |22 + [IVo™ [ 2272 (Ju™ |72 + lo"I72)7 5.
Thus, we have
n n 1 n n L n n -z
(IVu™Zz + IVo™liZ2) [5 = CUNVE 72 + 1V 1722) 2 7 (" lfZe + [l [72)7 2]
< Ba(u o) + O30 + 07 3)

Since p < 2, by mass and energy conservation, we see easily that the H'(R)x H*(R)-
norm of the solution (u"(t),v™(¢)) is bounded. The continuity argument implies
that all solutions of (2.5)) are global, which completes the proof. O

To show the uniqueness of the Cauchy problem (|1.1)), we will use Lemma
below.



6 L. CELY EJDE-2023/76

Lemma 2.3. (i) Let u, v, z, w € C be such that |ul|, |v|, |z|, lw| < K, where K is
a positive constant. Then there exists C' > 0 such that

JululP~HoP* — 2P [P < C(lz — ul + Jw — o).
(ii) For every z1, z2 € C we have
| Tm((21 log [21]* — 22 log [ 22]*) (71 — 22))| < 4l21 — 22|

Proof. Statement (ii) follows immediately from [9, Lemma 9.3.5]. Next we prove
(1). A simple calculation shows that

[l l] (ululP = o = 2]2P~HuwlP*)
= ule|(Jul? o] — [2P[w]P*) + [u(lz] = [ul) + |ul(u = 2)]]2[lw]"*.

On the other hand, since p > 1 and |ul, |v|, |z, |lw| < K, it is not hard to show
that there exists a constant C' > 0 such that

[[ulP[o]P* = [2[P [w]P*big] < C(Ju— 2| + v — w]). (2.8)
Therefore, combining (2.7)) and (2.8]) we infer that
JuluPH olP = 2]z PTHwPH < ulP ol = [z PlwlP T 4 2w — 22T w]PH

< Cju— 2|+ v —wl),

2.7)

and this completes the proof. [

Proof of Theorem[I.1]. Our approach is inspired by Cazenave’s approach for the
single logarithmic Schrodinger equation in [9, Theorems 9.3.4, 3.3.5, 3.3.9].

Step 1. First, we regularize the logarithmic nonlinearity near the origin. Let z € C
and n € N. Bearing in mind (2.1]), we consider the functions

Cal2) = {a(z%l if |2] > i; and  Bo(z) = {b(z), if |2] < n;

nza(:), if 2] < 2h(n), if |z| > n,

n

where
z z
a(z) = W‘I’(‘ZD, b(z) = W\P(IZD for € C, z #0.
We introduce the family of regularized nonlinearities in the form g,(z) = 8,(z) —
(n(2) for every z € C. Notice that we have the point-wise limit g, (z) — zlog |2|?
as n — +00.
Further, we consider J,, = (I — 2A)~!. Observe that J, satisfies the following
properties
[ Tnllea—1m1) <my o [ Inllecex) <1 (2.9)
where X coincides with one of the spaces H'(R), H~*(R) and L?(R). Moreover,
Jou — win X for all u € X;
if sup [|[u"|x < oo, then Jou™ —u™ — 0in X as n — oo. ’

We define
glm(uz ’U) = Jngl(Jnu7 Jn'U)v g2,n(u; U) = JnQQ(Jnuy Jnv)7

where
g1 (u,v) = u|u|p*1|v|p+1, g2(u,v) = v\v|p*1|u|p+1.
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Let (ug,vo) € B (in particular ug, vo € H'(R)). For every n € N, we consider
the initial value problem

0" + 03" + gn(u") + g1n(u™,0") = 0
100" + O™ + gn (V") + gon (U, 0") = 0
u"(x,0) = ug(z), v™(x,0) =vo(z).

(2.11)

Since gy, g1.n, g2.n are locally L2-Lipschitz continuous, by [9, Theorem 3.3.1], we
infer that there exists a unique global solution (u™,v™) € C(R, H!(R) x H*(R)) of

(2.11)), for every n € N, such that
[u (@122 + 10" (O)I72 = lluolZ + llvollz,  En(w"(t),0"(t)) = En(uo,v0) (2.12)

where
1
E,(u,v) = 5/ {10,u" > + 10,0 |? pdx + G (u”,0"),
R
1 - —_
Gn(u",0") = §/R{Hn(|U"D+Hn(|U"D—:n(|un|)—5n(|v”|) (2.13)
2
— ——— | Jpu™ P T P d,
a0
and
1 =l 1 [l#l

Hn(z):§ ; Cn(s)ds, En(z):§ ; Bn(s)ds. (2.14)

Step 2. We set
On = sup{T > 0: [[(u"(£),v" ()| g1 xmr < 2M on (=7, 7)}
It is easily seen that
llgi (u,v) — gj(w, 2)l[L2x L2 < C(M)|[(u,v) = (w, 2)[[L2xr2, G=1,2,  (2.15)
for all (u,v), (w,z) € H'(R) x H*(R) such that ||(u,v)||g1xmr + ||[(w, 2)|| g1 x5 <
M

By (2.9), 91,n,92,n satisfy (2.15) with C(M) independent on n. Hence, from

(2.11)), we obtain
sup [1(Oeu™, Opv™ )| Loo ((—0,,0,), 5 (R)x H-1(R)) < C(M). (2.16)
ne

Using [9, Lemma 3.6] and (2.16)), we conclude that
| (u™(t), v™(£)) — (uo,v0)||L2xr2 < C(M)[t|*?  for all t € (—6,,6,) (2.17)
Applying , the conservation of energy and charge, and that
G, = (9n + 91.n:gn + g2,0);
we obtain

(™ (£), 0™ ()31 semr < (w0, v0) |72 12 + [[(ug, v0) 172
+ 2|Gp (u"(t),v"(t)) — Gn(uo, vo)

< (o, v0) 31 s + CADILM2, € (—0n,6).

We define T'(M) by
C(M)T(M)'/? = 2M2.
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Then
||(u", Un)”Loo((,T’T)’Hl) <2M for T = min{T(M), Hn}
Hence T (M) < 6,,. Therefore
[[(w", 0" Loo ((—(ar) T (0ry) Hr By < 2D, (2.18)
H(&'tu”, 8tv”)||Loo((,T(M)’T(M))’H71XHA) < C(M) (219)

Step 3. From ([2.18)), (2.19) and [9, Proposition 1.3.14], we conclude that there
exist (u(t),v(t)) in

L®(=T(M), T(M)),H" x H") nWh>((=T (M), T(M)), H ' x H™1),
and a subsequence, which we still denote by (u™,v™), such that
(u™(t),0"(t)) — w(t) in H'(R),
n—oo
for all t € [-T(M),T(M)],
Now since E,(ug,vg) = E(ug,vp) as n goes to +oo and II,, > 0, it follows that
[u™ ()7 + [0 OllF < C + [Enu™ ()| + [En (0™ ()] 21
+ Cllu" (o™ (1) 1554

In addition, a simple calculation shows that there exists a constant C' such that
(see [9, p. 296])

(2.20)

— n - n 1 n n
Zn (@ Dl + [1En (™ O)llzr < 2" Ol + [0 O170)
+C(lu" )72 + " @ONZ2).
Thus, combining (2.6]), (2.20), and (2.21) we infer that (u”,v™) is bounded in
L>®(R, HY(R) x H'(R)). In particular, we easily verify that (see [9, Step 2 in
Theorem 9.3.4])
u[u" PP and o™ 0" [P [u P! are bounded in L®°(R, H~1(R)), (2.22)
gn(u™) and g, (v™) are bounded in L (R, H'(y)) for every k € R, (2.23)

where Qp, = {z € R: |z| < k}. Tt follows from (2.11)), (2.22) and (2.23) that 8tu”‘ﬂk
and 6tv"|ﬂk are bounded in L>®(R, H~!(Q4)). By the Sobolev’s embedding and
Arzela-Ascoli compactness criterion there exist (u,v) € L (R, H'(R) x H(R)) and
a subsequence, which we still denote by (v, v™), such that (see [9, Lemma 9.3.6])
(1) (u"q,,v"q,) € WEH(R, H=Y(Q)) x WE(R, H=1()) for all k € R.
(i) (u™(t),v™(t)) — (u,v) in HY(R) x H'(R) as n — +oo for every t € R.
(iil) (u"(x,t),v™(z,t)) — (u(z,t),v(z,t)) as n — +o0, for almost every x € R
and for every t € R.

(2.21)

Now, since g, (z) — zlog|z|? as n goes to +oo and by properties (i)-(iii) above, it
is not hard to see that the limiting function (u,v) € L>(R, W (R) x W(R)) and it
is a weak solution to the equation such that (u(0),v(0)) = (ug,vo). Moreover,
by weak lower semicontinuity, Fatou’s lemma and arguing in the same manner as
in [9, Step 3 in Theorem 9.3.4]) it is easy to see that |[u™(¢)[|3, + [[v"()[|3. =
ol + lopl12 and

E(u(t),v(t)) < E(ug,vo) for every t € R.
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Next we show uniqueness of the weak solution (u,v) € L>®(R,W(R) x W(R))
to the equation (L.I). Assume the existence of two solutions (u,v) and (z,w) of
with the same initial data (ug,vo) in the class L>®(R, W (R) x W(R)). We
will prove that (u,v) = (z,w). It suffices to show that u — z and v — w satisfy
lu— 2|32 = |lv—w|3. = 0 for every t € [0,T], where T is a fixed positive number.
Indeed, on taking the difference of the two equations

i0s(u — 2) + 0%(u — 2) + ulog [u|* — zlog|z|* + ulu[P " u|PT! — z|2P~Hw[PT =0
i0: (v — w) + 92(v — w) + vlog|v|? — wlog |w|?* + v|v[P ™ u[P T — wlw|P~H 2P =0

and multiplying this equation by (i(u — z),i(v — w)) we infer that

1
— Sl 23 + o —w]3a)
:Im/(ulog\u|2 leog|z|2)(ﬂ72)dx+lm/(fulog|v|27w10g|w|2)(§fﬁ)
R R
4+ Im / (uluf P+ — 2|2 ) (@ — 2)da
R

+ Im/(v|’u|p*1|u|erl — w|wP7 2P (T — w)d.
R
Then from Lemma we see that there exists a constant C > 0 such that

lu(t) = 2(®)]|72 + llo(t) — w(t)||Z2 < C/O {Ilu(t) = 2(®)lI72 + llo(t) — w(t)[|72} dt.

Therefore, uniqueness of solution follows by Gronwall’s inequality. Finally, the
conservation of energy, and the continuity of the solution (u,v) € C(R,W(R) x
W (R)) follow from the same kind of arguments as in [9, Step 4 of Theorem 9.3.3].
This completes of proof. ([

3. EXISTENCE AND STABILITY OF STANDING WAVES

In this section, we study the existence of minimizers of problem (1.5)) and the
orbital stability of G(n,¢). Thus, the aim is to prove Theorem [I.2] and Corollary
1.3] First, we need some preliminary lemmas.

Lemma 3.1. Letn,( > 0. Every minimizing sequence for J(n, () is bounded in B.
Moreover, J(n,() > —oo.

Proof. Let {(un,v,)} be a minimizing sequence for J(, ), then we find that [|u,,[|3.
and ||v, |32 are bounded. Now, from the Gagliardo-Nirenberg inequality (see (2.6))
we obtain that

pt2
Hunvnlli—ﬁl < C(HUTLH%Q + anH%Q)pQ (Ha:vunH%? + HazvnH%?)p/Q' (3.1)
Moreover, by logarithmic Sobolev inequality with a? = 7/2 we have

1
/}Rlunl2 log [up|*dz < il\azun\\iz + (log lunl|72 = (1 +log /7/2))|[un 7
(3.2)

1
< §H8xunHiz +nlogn + Chn,
and

1
/ |vn|? log v, |2dz < §||8zvn\|%2 + Clog ¢ + CC. (3.3)
R
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Combining (3.1]), (3.2), and (3.3]) we have
2E (tn, vn) + nlogn + Clog ¢ + C(n + ) + C(||0aunlF2 + |0zvall72)""?
1
> §(||amun”i2 + Haxvn”%2)

Since E(un,vy) is bounded and 1 < p < 2, it follows that (u,,v,) is bounded in

H' x H'. Moreover, by (2.1)), (2.3), and (3.1)) we have
/}R{‘I’(Wn(ﬂ?)\) + ©(|vn(2)]) b

< 25up Buy, v,) + / {U(Jun (@)]) + U (J0n (@) ) + ——Jun [P+ o, [P < C.

p+1
Thus, by Lemma we have that ||UnH12/V(R) and anH%V(R) are bounded, hence
|2ty 005 s bounded. Finally, if (u,v) € B, [[ul}2 =, and [[o3: = ¢, by E1),
(3.2), and (3.3), it follows that E(u,v) is bounded below, hence J(n,{) > —oo.
This completes the proof. O

For each minimizing sequence {(f,,gn)} of J(n, (), we define

y+r
v = lim lim sup/ (|fn|2+|gn|2)dl’~

700 N300 R y—r

Notice that v satisfies 0 < v < n+(. It follows from the concentration compactness
principle due to Lions [I8] that there are three mutually exclusive cases:

(i) (Vanishing) v = 0. This means that

y+r
lim sup/ (| ful? + gn|?) dz =0, for every r > 0.

N0 yeR Jy—r

(ii) (Dichotomy) 0 <~y <n+¢, or
(ii) (Compactness) v = n + ¢. That is, given € > 0 there exist r. > 0 and a
sequence {y,} in R such that, for all n, we have

Yn+Te
/ (ful? + lgn?) de = 74 ¢ — c.
Y

n—Te
Let us study each case separately. First, we rule out the vanishing case (case (i)).
The following lemma can be proved by almost the same way as for [7, Lemma 3.2].
We omit the proof.

Lemma 3.2. Let {(fn,gn)} be a minimizing sequence for J(n,¢). If p > 2, then
there are positive constants M = M(p,n) and C = C(p,C) such that || ful7, > M
and ||gnl|}, > C for all n.

The following classical lemma is needed to rule out the case of vanishing. For a
proof, see [16, Lemma 3.9].

Lemma 3.3. Let {f,} be a bounded sequence in HY(R). If p > 2 and
n—oo yelR —_r

y+r
lim sup/ | fn(2)]? dz =0 (3.4)
y

for some r > 0, then lim,, o || fn|lzr = 0.

The following lemma states that v = 0 does not occur.
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Lemma 3.4. If {(fn, gn)} is a minimizing sequence for J(n,(), then v > 0.
Proof. If v = 0 then there are exist r > 0 and a subsequence {(fy,, gn, )} such that

y+r
lim sup / (fn 2 + g ) d = 0.
n— o0 ye]R y—r

Since the sequences {f,,} and {g,} are bounded in H'(R) by Lemma then, by
Lemma [3.3] we infer that lim, e || fr, ||zr = 0 and limy, o [|gn, [l r = 0 for p > 2,
which contradicts Lemma O

We now establish the following sequence of lemmas to rule out the dichotomy
case.

Lemma 3.5. If {(fn,9n)} is a minimizing sequence for J(n,(), then there exist
positive constants k and § such that, for n large enough,

(1) H(‘)IanQLQ >k, ifn>0and ¢ >0.

(2) 102gnll72 =0, if n >0 and ¢ > 0.

Proof. Suppose (1) is false. Then there exists a subsequence {f,} such that
limy, o0 |0z fry |22 = 0. Since (f,) is bounded in H'(R) by Lemma then
from Gagliardo-Nirenberg inequality we have that

1 llge < ClOwfurllizll faullze — 0 if n— oo,

and this contradicts Lemma[3.2] Arguing as in the proof of (1), we obtain (2). This
completes the proof. O

The proof of the following lemma can be found in [7, Lemma 3.6].
Lemma 3.6. Let n > 0. Denote E1(f) = E(f,0) and consider Ji(n) given by
Ji(n) = inf {E1(f) : f € W(R)teatand| f||7. = n}. (3.5)

Let {fn} be a sequence in W (R) such that lim,,_,os || fu]|2: = n and lim,,_,o0 E1(f) =
J1(n), then there exists a real number 0, a subsequence { fn, } of {fn} and a sequence
{yr} in R such that {e" f,, (- +yx)} converges strongly to ¢, (z) in W(R), where

1.1/4 2
¢, () = (=) / n'2e=* /2 reR. (3.6)

7r
In particular, |9, ||2L2 =n and Ji(n) = E1(s,).

Recall that given a measurable function A : [0, 00) — R, h* denotes the symmetric-
decreasing rearrangement of h,

W@ =[x, @

where x* denotes the characteristic function of a ball of volume m({z : |h(z)| >

{Inl>t}
t}) centered at the origin. Here, m is the Lebesgue measure. The following lemma

shows that when f and g are replaced by |f*| and |¢g*| we have that E(|f*|,|g*|)
decreases.

Lemma 3.7. If (f,g) € B, then (|f|*,]9]*) € B and

E(f1%:191") < E(I£],19]) < E(f, 9)-
The proof of Lemma [3.7] can be found in [7, Lemma 3.7].
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Lemma 3.8. Let n,{ > 0 given, then there exist a minimizing sequence {(fn,gn)}
for J(n,¢) such that the functions f, and g, belong to H'(R), are even, non-
increasing and non-negative for each n and x > 0, and satisfy the condition | f, |2, =

1, lgnll7 = ¢
The previous result can be proved in almost the same way as [7, Lemma 3.8].

We omit it here. The following lemma states the strict sub-additivity of J(n, ().
For a proof see [2, Lemma 2.10].

Lemma 3.9. Suppose that u,v : R — [0,00) are even, C* functions with compact
support in R, which are non-increasing on {x : x > 0}. Let a1 and as be numbers
such that u(x + a1) and v(x + a2) have disjoint supports, and define

w(z) =u(z + a1) + v(z + az).

Let w* : R — R be the symmetric decreasing rearrangement of w. Then the distri-
butional derivative (w*) of w* is in L? and satisfies

3 .
Y11 < Jle’[ = 5 min{ /|2, ][]}
The following two lemmas are central to show that dichotomy cannot occur.

Lemma 3.10. For each minimizing sequence {(fn,gn)} of J(n,(), there exists a
(Mlv M2) € [Oa 77] X [Oa C] such that Y=n + C and

J(pa, p2) + J(n = pa, ¢ = p2) < J(n, C). (3.7)
Proof. Let ¢ € C§°[—2,2] be such that ¢ is identically 1 on [—1,1], and let ¢ €
C*°(R) be such that ¢? +1? = 1 on R. Define ¢, (z) = ¢(£) and ¢,.(x) = (%), for
r > 0. From the definition of + it follows that for given ¢ > 0 and for all sufficiently
large r we obtain that

y+r y+2r
Y —c< lim sup / (fal? + 1gal?) dz < Tim sup / (fal? + lga]?) dz < .
n—=00 yeR Jy_p n=0 yeR Jy—2r

We may assume that 1/r < ¢, thus we may choose a positive integer N large enough
so that for all n > N we have

y+r y+2r
y—e<owp [ R + g e <sup [ 1P+ lgaP)de <y e
yeR Jy—r ye y—2r

Hence, for all n > N, we can find y,, such that
Yn+27

yn+7“
/ (| ful? + |gn|?)dz > v — € and / (1 Ful?® + lgnP)dz < v+ €. (3.8)
y y

n—T n—27T

We define
(hn(x)a ln(x)) = (¢r(x — yn) fr(2), or(T — Yn)gn())
(En(x)ﬂin(x)) = (¢r($ - yn)fn(x)ﬂ lbr(ff - yn)gn(x))

It follows from Lemma that (hn), (L), (ha), and (I,) are bounded sequences
in L?(R). Then, passing to a subsequence if necessary, we have |h,||3. — w1,

[1al22 = i, hall2s = 0 — g1, and [[1u]122 = ¢ — pz as n — oo, where (u1, p2) €
[0,7] x [0,¢]. Also,

1 + gz = lim /(Ihnl2 + [ln]*)dz = lim /¢3(\nt2 + |gn|?)d.
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Thus by (3.8) we have |(u1 + p2) — 7| < €. Moreover, for all n, we infer that

E(hp,ln) + E(hp,ln) < E(fn,gn) + Ce. (3.9)
Indeed, first notice that
(1) Haﬂc(erL‘” = %”azQSHLW <C¢

(ii) Since ¢, is identically 1 on |z — y,| < r and ¢, vanishes on |z — y,| > 2r,
then |¢,|? log |¢,|? vanishes on both |z — y,| < r and |x — y,| > 2r. Next

by (3.8) we see that
/ (fal? + [gal?) |60 log |6, [2dz < 2¢~ / (ful? + lgal?)dz < Cc;
R

TSlI_yn|§2T
(iii) Also, again using (3.8) and (2.6)), we have inferred that
/ (&7 = G2 ful PHH | g7 H ) e < C/ (1fal® + lgn[*)dz < Ce.
R r<|z—yn|<2r

And so, to prove ({3.9)), we write

2E(hn,ln) = / ¢i(|arfn|2 + |8m9n|2 - |fn|210g |fn|2 - |gn|210g |gn|2
R

- i|fn|p+1|gn|p+1)d‘r + / 2¢Ta:r¢r (Refnaimfn + Regnaizrgn)dl'
p+1 R

+ / (fal? + 1902) (Bo60)? — 6412 log |6 [2) da
R

2 2 2(p+1 1 1
+ — @20y £ 1L g 1P gy
1 L (@ = BT gl )

< [ (10 +10.90 = 1fal? 1081 192 og]
R
2
= |l gl ) dar 4 Cee

p+1
In the same way, we obtain

2E(ﬁml~n) < /R"/Jg(‘azfnﬁ + |8z9n‘2 - ‘fn|2 log ‘fn|2 - |gn|2 10g|gn|2

2
- ]m|fn|p+1|gn|p+l)dx + Ce.

Then (3.9) follows by combining the two estimates and using ¢2 + 2 = 1. Now we
assume that uq, po, 7 — u1 and ¢ — uo are all positive. We define

0 - VY 5:\/?2 LoV VO
[hnllzz’ a2’ Rz Tl 2

Then «y,, B vn, and ¥, tend to 1 as n — oo and

HanhnHQL? = M1, Hﬁnlnl‘%2 = M2, ||Vn%n‘|%2 =n— Ui, ||19nl~n|| = ¢ — po2.
Thus o
liminf { E(hn, ln) + E(hn, 1)} > J (1, p2) + J (0 — p, ¢ = pa)-

n— oo
On the other hand, if g1 = 0 and po > 0, then ||hy||z2 — 0 and from Gagliardo-
Nirenberg inequality we infer that
+1

p-1
rallfhes < Clozhall 3 Ihnll 2 — 0.
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Thus [, [he|P Tl [PTde — 0. By 2.3), [ ¥(|ha|)dz — 0. Since ® > 0 we have

lim E(hn,l,) = li_>m /(|8Ihn|2 + 10uln|? + @(|hn|) — |1n|? log |1, |*)dz
n oo R

n— oo
> Hminf(|0,l,|* — |1n|? log |1n|?)
n—oo
2 J<0v M2)7
and similar estimates hold if po, 7 — py or ¢ — po are zero. Thus, in all cases we
have that the limit inferior as n — oo of the left-hand side of (3.9)) is greater than

or equal to J(u1,u2) + J(n — p1,¢ — p2). We now take the limit inferior of the
left-hand side and the limit of the right-hand side of (3.9) as n — oo to obtain

J(p1s p2) + J(n = p1, ¢ — p2) < J(n,¢) + Cé,
hence J(p1, p2) + J(n — p1, ¢ — p2) < J(n, ), since € is arbitrary. O
Lemma 3.11. For any 01, 1,12, Ca > 0 such that (n1,¢1), (2, C2) # (0,0), we have
J(m + CGym + G2) < J(m, G) + J(m2, C2)-

Proof Let ( f,gk), g,&k)) be the minimizing sequences of J(n, (k) given by Lemma
with k = 1,2. Then, for each n, we can choose z,, such that both f,(ll) and
hn(a:) = fff)(x + x,) as gn ) and I (z) = gf(z )(m + x,,) are disjointly supported.
We define ~

= (frlz +h,)" and v, = (grlz + ha)*
Then [[up[7: = m + 12 and [[vn[|72 = G + (2, 50

J(m + G,m + G2) < E(up, vn). (3.10)
Now, from Lemma [3.9] we have
/((%u% + 0,02 )dx

. (3.11)

< /{(aff,i”)2 + (Oehn)? + (8292 + (Ophn)?}da — T,
R
where
3 ~
T = 7 (min{[10. f, W72, 102172} + min{[|0:g57 |72, [0ahnl72}). (3.12)

Furthermore, from [I7, Theorem 3.4] and the properties of rearrangements (see

Lemma , we have
/ [t [P o [P d > / [FO P gD P da + / [ [P o [P
R

/R i log [t PP = / £ P log | £ Pdx + / o 2 log [ |2de

[t 10g oo = [ 190 P10l e + [ (B log R o,
R R
hence, combining this with (3.10) and (3.11)), we have

J(Ul + 72, Cl + CQ) S E(unavn) S E(fr(bl)agy(ll)) + E(hnaﬁn) - Tn

for every n, and taking the limit superior on the right-hand side, we obtain

Jm +n2,6 4+ &) < J(m,G) + I, () — linfgingn- (3.13)
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Since (1 + (2 > 0, then either (; and (5 are both positive, or (; = 0 and {3 > 0 or
¢1 > 0 and o = 0. As noted in [2, Lemma 2.12], it is sufficient to consider three
cases:

(1) Suppose that ¢; > 0 and (o > 0. By Lemma there exist k1 and ko

such that ||8Ig£1)||2L2 > k1 and ||8Iﬁn||2L2 > ko, for all sufficiently large n. Let

k = min{ky, K2}, then, it follows from (3.12) and (3.13) that T,, > 3k/4 for all
sufficiently large n, and

J(m +n2,C 4+ C) < I, G) + T (2, () — Zfi < J(n,C) + J(n2, C2).

(2) Suppose that {; =0, (2 > 0 and 12 > 0. Since 71 +¢3 > 0, 5, > 0, then 1y > 0.
By Lemma there exist §; and &5 such that ||8xf,(Ll) 2. > 61 and ||0,hy |32 > 62,

for all sufficiently large n. Let 6 = min{dy,d2}, then, again from (3.12)) and (3.13]),
we obtain that T;, > 36/4 for all sufficiently large n, and

J(m +m2, G+ C) < J(m, Gu) + J(n2, G2) — 25 < J(m, )+ J(n2,C2)-

(3) Suppose that ¢; = 0, 3 > 0 and 7, = 0. By Lemma [3.6) we have

. 1
T0m,0) = nt {3 [ (1l + ol — ol og ) - w € WER), [ = > 0},
R
where the minimum is achieved at ¢, (z) = (%)1/4(771)1/26_712. Also,

1
J(0,¢5) = inf {3 /R(Iawvl + [v]* = |v|*log[v[*)dz : v € W(R), [[v]|7> = G2 > 0},

22

where the minimum is achieved at ¢, (7) = (%)1/4(C2)1/26_T. Therefore,

J(m +n2, G+ G) < Elp,  ¢.,) +Qe,,, ¢,)

1
=5 [ (100, P+ o, 1 = lo,, Plogle, ) da

1
5 [ (0l = e, Plos e, ) do

2
—+1 “+1
—ﬁ i Py P |<P42|p dx
2
- +1 +1
= J(m1,0) + J(0,(2) — P A 0, P e, [P da

< J(m,0) + J(0, ().
The proof is complete. O

We are now ready to prove that dichotomy of minimizing sequences does not
occur.

Lemma 3.12. Letnp > 0 and { > 0. Then for any minimizing sequence {(fn,gn)}
of J(n, ), we have v = 1+ .

Proof. Suppose by way of contradiction that v € (0,14 (). Let 11, (2 be definite as
in Lemma 3.10} and let 7o =n—mn; and (2 =( — (2. Then o+ =n+(—v>0



16 L. CELY EJDE-2023/76

and 71 +¢ =7 >0. Since ny + 12 =n > 0and (1 + (2 = ¢ > 0, in view of Lemma
3.11} we have

J(Ul + 7727C1 + CQ) < J(nla Cl) + J(ﬁz» C2)7
but this contradicts (3.7). O

Thus, we eliminated the cases v = 0 and 0 < v < n+(, it follows that v = n+(.
Then we can prove that, up to translation, any minimizing sequence is precompact
in B and problem (1.5)) has at least one minimizer.

Lemma 3.13. Letnp > 0 and ¢ > 0. Then, for any minimizing sequence {(fn,gn)}
of J(n,(), there exists a sequence of real numbers (y,) such that, by passing to
subsequence if necessary, {fn(- + Yn), gn(- + yn)} converges strongly in B to some

minimizer (f,g) of J(n,().

Proof. By Lions’ concentration compactness lemma [I8| [19], since v = n + ¢ we
have that, for every k € N, there exists A\, such that

Ak
| U@t )P+ lanlo+ ) o> 0+ (=

for all sufficiently large n. Hence, in view of the embedding H\} .(R) — L (R),
it follows that some further subsequence of {f,(- + yn), gn(- + yn)} converges in
L?[—\g, A\g]-norm to a limit (f,g) € L?[— Ak, A\x] X L?[— Ak, A\x]. Moreover,

A 2 2 1
| s v igPydn > e -
Ak

Then we apply Cantor’s diagonalization process, and we obtain that { f,,(-4+yn), gn(-+
yn)} converges in L?(R)-norm to a limit (f, g) € L*(R) x L?(R) and

AOﬂ”+M5dx:n+c

Thus, (fn(- +Yn), gn(- +yn)) — (f,g) weakly in B, since B is reflexive. Now, since
the sequences {f, (- + yn)} and {g,(- + yn)} are bounded in H'(R), from (2.3) we
have

i [ W(fuGe+ ) do = [ w(lf@)) (3.14)
R R

T [ Wgne +y)l)do = [ w(lg(o)]) da. (315)
R R

Also we have

Oy 2d d
A|f|x+A@WDm

(3.16)
<timint{ [ 10cfu(o+u )P dot [ 9o+l daf.
[ 1ori o+ [ @(lgh o -

n— oo

§hminf{/R\3xgn(x+yn)|2dx+/R<I>(|gn(x+yn)|)dz},
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because the functional h — [, ®(|h|)dz, ®(|h|) = ¥(|h])—|h|*log|h|?, is convex and
continuous on W(R), thus weakly l.s.c on W(R). Then, by (3.14), (3.15), (3.16),

and (3.17]), we have

E(f,9) <liminf E(fn, gn) = J (1, ),

hence E(f,g) = J(n,¢) and (f,g) € G(n, (). Therefore,
gg{/ﬂ&nu+%m%wa%m+%m%+@mux+%m
R
+ @(|ga(@ + yo) )z }
=AO%H”H%M%+¢WD+%MM%

Hence and in view of [10, Lemma 2.4.4] we have

Jim /|8l.fn(x+yn)|2dx:/|8wf|2dx,
R R

n—roo

n—roo

lim /|8xgn(m+yn)|2da:=/|8xg|2dx,
R R

lim wmu+%mm:/@wwL
R R

n—oo
lim wm@+%mm:/¢MWm
n—oo fp R

Hence and in view of Lemma we have f, — f and g, — ¢ in L®(R). Thus,
by definition of the B-norm, we infer that {f,(- + yn), gn(- + yn)} converges in the
norm of B. That is, (f,g.) — (f,g) strongly in B as n — cc. O

Based on the above lemmas we are ready for the following proof.

Proof of Theorem[I-3 (i) is an immediate consequence of Lemma
(ii) By the Lagrange multiplier principle, if (f,g) € G(v,u), there exist real
numbers p and ¥ such that

E'(f,g) = pf +9g,

where the prime denotes the Fréchet derivative. Since

—82f — flog|f12 — fIfPP gl
El ) = Y - )
(F:9)= | _52g _ glog|gl? — glg/P=| I+

the equations
—0of +pf = flog|f* + fIfIP~ g
~02g — Vg = gloglgl* + glg|P | FIP*!

hold at least in the sense of distributions. By a standard bootstrap argument, we
see that f and g are in C%(R) (see [9, Chapter 8]). Thus, we may write

f(x) = ?@g(x),  g(z) = “Dp(a),

where 6,w, ¢, € C?(R) and ¢, > 0. It remains to prove that both § and w
are constants. By Lemma (¢, ) is a minimizer for J(n, (), then (¢, ) satisfies

(3.18)
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(3.18). On the other hand, multiplying the first equation by f and the second by g
in (3.18

.18)) and integrating by parts over R we have

1
p= =1 [0 = P10l = 1177 g o
1
0= | (00l ~ ol 10g| F* ~ |f17*"]gl"*")da-
R

Hence, and E(f,g) = E(¢, ), it follows that

/R(|3x¢|2 — |92 log |@|? — |¢[PT|g|PT)da

(3.19)
= [0 = P10l 1 = 1717+ g
Then computing the second derivative of f we have
02f = ¢ (po — |6 10g |9I — o[ g7+ 520
— (0:0)%¢ + 2i0,00,6 + 19020,
and by the first equality in we infer that
2f = pe® — || log 4[> — €| plPH gl (3.21)
Thus by and we have
(020)%¢ + 2i0,00,¢ + ipd20 = 0, for all z € R. (3.22)
Similarly, we obtain that
(02w)2p + 2i0,w0ypp + id?w = 0, for all z € R. (3.23)

Thus since §,w € C?(R), then, taking the real part of and , we have
0.0(x) = 0 and O,w(x) = 0, Hence # and w are constant, say 6 = 0y and w = wy,
thus f(z) = e%¢(x) and g(x) = e“op(x) for all x € R. Finally, defining 7(s) =
ps — slog 5%, we have

92¢ = pp — plog ¢* — ¢" " |g[PT! < 7(¢) on R.

Notice that 7 is positive, continues, non-decreasing near zero, 7(0) = 0 and 7(e2) =
0. Thus in view of [24, Theorem 1] we have ¢ = 0 or ¢ > 0. But || f[|2, =75 > 0,
then ¢ > 0. Similarly, we obtain that ¢ > 0 for all z € R.

(iil) Tt is trivial from the definition of true two-parameter family. This completes
of proof. O

Proof of Corollary[I.3 Let us suppose that G(n, ¢) is not B-stable. For each k € N
there exist initial data (fox, gox) and (tx) C [0, +00) such that for some e > 0 and
all k we have

int (o . 904) — (2,6l : (96) € G} <

and

inf{[|(fi(tr), g (t)) — (0, 0)lI5 : (0,9) € G(n, ()} > e, (3.24)
where (fx(t), gk (t)) denotes the solution of with initial data (fo.x,go,x). Since

fok & v and go k A ¢ in B and Q(p, ) = n+ ¢, we have
kﬁ_{ilo Q(fo.ks90.k) =n+¢ and kh_{go E(foxs90.k) = J(1,0). (3.25)
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Since F and @ are independent of ¢, by (3.25)) we have
Jggo Q(fk(tk), gx(tr)) =n+¢ and klijgo E(fr(t), gx(tk)) = J(n, ).

Hence, {(fx(tr), gr(tx))} is a minimizing sequence for J(n, () and by Theorem [1.2]
up to a subsequence, there exist a sequence {y;} in R and functions (v,v) € G(n, ()
such that

i [+ e ti), gk -+ ) — () =0
Since (v(- — yx), ¥ (- —yx)) € G, we have

inf{||(fx(tx), gr(tr)) — (@, 0) : (0, 0) € G, s} <€

for all sufficiently large k, which is a contradiction with (3.24). This completes the
proof. O
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