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EXISTENCE OF GLOBAL SOLUTIONS FOR CROSS-DIFFUSION

MODELS IN A FRACTIONAL SETTING

JHEAN E. PÉREZ-LÓPEZ, DIEGO A. RUEDA-GÓMEZ, ÉLDER J. VILLAMIZAR-ROA

Abstract. This article is devoted to the analysis of a fractional chemotaxis

model in RN with a time fractional variation in the Caputo sense and a frac-

tional spatial diffusion. This model encompasses the fractional Keller-Segel
system [9] which describes the movement of living organisms towards higher

concentration regions of chemical attractants, and a fractional Lotka-Volterra

competition model [16] describing the competition interspecies in which one of
the competing species avoids encounters with rivals by means of chemorepul-

sion. We prove product estimates in Besov-Morrey spaces and derive global
estimates for mild solutions of the fractional heat equation. We use these re-

sults to prove the existence and uniqueness of global mild solutions for the

differential system in a framework of Besov-Morrey spaces.

1. Introduction

We consider a generic fractional chemotaxis model describing the evolution of
two species subject to attraction and repulsion phenomena. This model includes
the fractional Keller-Segel system which describes the movement of living organisms
towards higher concentration regions of chemical attractants [9], and a fractional
Lotka-Volterra competition model describing the competition interspecies to avoid
encounters with rivals by means of chemorepulsion mechanism [16]. This model is
composed of three coupled parabolic equations describing the interaction between
the densities of competing species and the concentration of a chemical substance,
which reads as follows

cDα
t n+ dn(−∆)θ/2n = χ∇ · (nG(v)) + a1n

2 − b1nm,
cDα

t m+ dm(−∆)θ/2m = a2m
2 − b2nm,

cDα
t v + dv(−∆)θ/2v = a3m+ b3n− γv,

n(x, 0) = n0(x), m(x, 0) = m0(x), v(x, 0) = v0(x),

(1.1)

where the unknowns are n = n(x, t) and m = m(x, t), for x ∈ RN and t ∈ (0,∞),
which denote the densities of competing species, while v = v(x, t) denotes the
chemical signal. In (1.1), dn, dm, and dv are positive parameters representing the
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diffusion coefficients, a1, a2 ∈ R denote growth coefficients (a1, a2 > 0) or self-
competition (a1, a2 < 0), a3, b1, b2, b3 and γ are positive parameters related to the
population dynamics and the strength of competition, and χ denotes the chemotaxis
coefficient. In (1.1) cDα

t denotes the time fractional derivative operator of order
α ∈ (0, 1) in the Caputo sense. We recall that for f ∈ C([0, T ];X), 0 < T ≤ ∞,
such that I1−α

t f ∈ W 1,1(0, T ;X), the Caputo fractional derivative of order α of f
is defined by

cDα
t f(t) :=

d

dt

{
I1−α
t [f(t)− f(0)]

}
=

d

dt

{∫ t

0

(t− τ)−α[f(τ)− f(0)] dτ
}
,

where Iαt f denotes the Riemann-Liouville fractional integral of order α of f , defined
by

Iαt f(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ) dτ, t ∈ [0, T ].

In addition, in (1.1), (−∆)θ/2, θ ∈ (0, 2], denotes the fractional Laplacian operator

of order θ/2 defined by (−∆)θ/2f(x) = F−1(|ξ|θf̂(ξ))(x), where f̂(ξ) = F(f)(ξ)
and F−1(f)(ξ) denote the Fourier transform and the inverse Fourier transform of
f , respectively. Finally, G(v) is also a nonlocal term defined by

G(v)(x) = ∇
(
(−∆)−θ1/2v

)
(x), x ∈ RN ,

for θ1 ∈ [0, N), which can be alternatively represented by G(v) = K(x)∗ v, K(x) ∼
x

|x|N−θ1 .

If we take χ < 0, a1 = 0 and m = 0 in (1.1), we obtain the fractional version
of the classical Keller-Segel system describing the movement of living organisms
n towards higher concentration regions of chemical attractants v (cf. [1]). On
the other hand, if we consider χ > 0 and b3 = 0 in (1.1), we obtain a fractional
Lotka-Volterra competition model describing the competition interspecies n and m
in which one of the competing species avoids encounters with rivals by means of
chemorepulsion mechanism caused by the chemical signal v. In addition, taking
α = 1, θ = 2 and θ1 = 0 in (1.1) we formally obtain, as particular cases, the
classical Keller-Segel system (cf. [9]) and the non-fractional Lotka-Volterra model
(cf. [16]).

The fractional population model (1.1) is justified by the nonlocal behavior of the
dynamics of the organisms. In fact, in several situations found in nature, organisms
develop alternative search strategies, particularly when chemoattractants, food, or
other targets are sparse or rare. Then, as pointed out in [5, 10], a good description
of the trajectories of the population of organisms can be performed by using the
so called Lévy flights in place of Brownian motion. We recall that Lévy flights
have been considered in numerous biological contexts, including immune cells, ecol-
ogy and human populations (see [6] and references for a deeper discussion). This
consideration motivates the substitution of the classical diffusion in system (1.1)
by a fractional diffusion. On the other hand, regarding the flux by chemotaxis
(both attractive and repulsive), it is also relevant to consider the case where the
attraction-repulsion source is replaced by a less singular interaction kernel. This
last consideration has been pointed out in the analysis of the propagation of chaos
for some aggregation-diffusion models [15]. Finally, taking into account that the
behavior of most biological systems has memory properties, which are neglected
when an integer-order time derivative is assumed, it is justified to consider a time
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variation in a fractional framework, which introduces a nonlocal delay in time for
the moving population [7].

The aim of this article is to analyze the existence and uniqueness of global
solutions for the space-time fractional system (1.1) in the framework of critical
Besov-Morrey spaces. To show the existence of global solutions of system (1.1)
we first prove some product estimates in Besov-Morrey spaces and derive global
estimates for the solutions of the linear fractional heat equation, which are key
to apply the iterative contraction method. To the best of our knowledge, the
complete fractional model (1.1) has not been analyzed in the literature. Some
global existence results and long time behavior of solutions for the particular case
of (1.1) assuming θ = 2, θ1 = 0, χ < 0, a1 = 0, m = 0, and α ∈ (0, 1), with small
initial data in a different class of Besov-Morrey initial data, were obtained in [1].
Recently, some global existence results of the fractional chemotaxis-Navier-Stokes
system with consumption, in the framework of Morrey spaces were obtained in [13].
The plan of this paper is as follows. In Section 2, we give preliminaries and state
our main results. In Section 3, we prove some necessary lemmas and estimates in
order to handle the system in our setting, and finally, in Section 4, we prove our
existence and uniqueness result.

2. Functional setting and main results

In this section we recall some preliminary results related to Morrey and homo-
geneous Besov-Morrey spaces. Furthermore, we establish some essential linear and
nonlinear estimates in our framework, including the continuity of the paraproduct
and the Bony decomposition. For more details of Morrey spaces and homogeneous
Besov-Morrey spaces the reader can see [8, 11, 14, 17]. Throughout this article, we
denote by S and S ′ the Schwartz class and the set of tempered distributions over
RN , respectively. As usual, F and F−1 denote the Fourier transform and its in-
verse, respectively. We also denote by D(Ω) the set of C∞-functions with compact
support defined in Ω ⊆ RN .

Definition 2.1. Let 1 ≤ p ≤ ∞ and 0 ≤ λ < N . The Morrey space Mp,λ(RN ) is
defined by the set

Mp,λ(RN ) = {f ∈ Lploc(R
N ) : ‖f‖Mp,λ

:= sup
x0∈RN

sup
R>0

R−λ/p‖f‖Lp(B(x0,R)) <∞},

where B(x0, R) denotes the open ball in RN with center x0 and radius R.

Note that Mp,0 = Lp and M∞,λ = L∞. Also, Lp ⊂ L(p,∞) ⊂ Ml,λ for all

0 < λ < N and 1 ≤ l ≤ p ≤ ∞ with N
p = N−λ

l , where L(p,∞) denotes the weak-Lp

space. In addition, Hölder and Young inequalities hold true in Morrey spaces. That
is, if 1

p3
= 1

p1
+ 1

p2
, λ3

p3
= λ1

p1
+ λ2

p2
, and 0 ≤ λi < N , i = 1, 2, 3, then

‖fg‖Mp3,λ3
≤ ‖f‖Mp1,λ1

‖g‖Mp2,λ2
,

and

‖f ∗ g‖Mp,λ
≤ ‖f‖L1‖g‖Mp,λ

, for 0 ≤ λ < N and 1 ≤ p ≤ ∞. (2.1)

Next, we recall the Bernstein inequality inMp,λ-spaces. Let C = C(0, R1, R2) =
{x ∈ RN : R1 ≤ |x| ≤ R2} and B = B(0;R) = {x ∈ RN : |x| ≤ R}, for
0 < R1 < R2 and R > 0. From now on, we denote supp f the support of f .
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Lemma 2.2 ([18, Lemma 2.1]). Let k be a nonnegative integer, 1 ≤ p ≤ ∞ and
0 ≤ λ < N .

(i) If f ∈Mp,λ(RN ) and suppFf ⊂ τB(0;R) for some τ > 0 and R > 0, then

sup
|α|=k

‖∂αf‖Mp,λ
≤ Ck+1τk‖f‖Mp,λ

, (2.2)

for some positive constant C depending only on p, λ,R and N .
(ii) If f ∈Mp,λ(RN ) and suppFf ⊂ τC for some τ > 0, then

C−k−1τk‖f‖Mp,λ
≤ sup
|α|=k

‖∂αf‖Mp,λ
≤ Ck+1τk‖f‖Mp,λ

, (2.3)

for some positive constant C depending only on p, λ,R1, R2 and N .

Definition 2.3. Let C be the annulus {ξ ∈ RN : 3/4 ≤ |ξ| ≤ 8/3}. Consider the
radial functions φ1 ∈ D(B(0, 4/3)) and φ2 ∈ D(C) valued in the interval [0, 1] and
such that

φ1(ξ) +
∑
j≥0

φ2(2−jξ) = 1,∀ξ ∈ RN , (2.4)

∑
j∈Z

φ2(2−jξ) = 1,∀ξ ∈ RN \ {0} . (2.5)

For each j ∈ Z, the homogeneous dyadic block ∆̇j and the homogeneous low-

frequency cut-off operators Ṡj are defined as

∆̇jf(x) = F−1(φ2(2−jξ)F(f)(ξ)), Ṡjf(x) = F−1(φ1(2−jξ)F(f)(ξ)).

We also denote ϕ̃j(ξ) = φ2(2−(j−1)ξ) + φ2(2−jξ) + φ2(2−(j+1)ξ) and C̃j = Cj−1 ∪
Cj ∪ Cj+1, where j ∈ Z and Cj = 2jC. Note that ϕ̃j = 1 in Cj .

Definition 2.4. Let S ′h = {f ∈ S ′ : limj→−∞ Ṡjf = 0}. For s a real number,
1 ≤ p, q ≤ ∞ and 0 ≤ λ < N , the homogeneous Besov-Morrey space N s

p,λ,q is the

Banach space of all distributions f in S ′h such that

‖f‖N sp,λ,q := ‖2js‖∆̇jf‖Mp,λ
‖`q(Z) <∞.

Definition 2.5. For s ∈ R, 1 ≤ p, q, r ≤ ∞ and 0 ≤ λ < N , the Banach space

L̃r([0,∞);N s
p,λ,q) is defined as the set of all tempered distributions f over RN ×

(0,∞) with limj→−∞ Ṡjf = 0 in Lr([0,∞);L∞(RN )) and such that

‖f‖
L̃r([0,∞);N sp,λ,q)

:= ‖2js‖∆̇jf‖Lr([0,∞);Mp,λ)‖`q <∞. (2.6)

The following lemma corresponds to a Bernstein-type inequality in Morrey spaces.
We omit its proof here because it is similar to the proof of Lemma 2.6 in [12]. In fact,

it is sufficient to note that for f ∈ S ′ with supp f̂ ⊂ 2jC we have F(f) = ϕ̃j(ξ)F(f),
this is, f = 2jn(ϕ̃0)̌(2j ·)∗f , and the function 2jn(ϕ̃0)̌(2j ·) and heat kernel g(x, 2−j)
have a similar behavior.

Lemma 2.6 (Bernstein-type inequality). If 1 ≤ p ≤ r ≤ ∞ and 0 ≤ λ < N , then

‖f‖Mr,λ
≤ C2j(

N−λ
p −

N−λ
r )‖f‖Mp,λ

,

for all f ∈Mp,λ such that supp f̂ ⊂ 2jC.
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To establish the main existence result, we start by recalling the mild formulation
of (1.1) in the fractional setting. System (1.1) is formally equivalent to the following
integral formulation (from now on, without loss of generality we assume dn, dm, dv =
1):

n(t) = Eα(−tα(−∆)θ/2)n0

+ χ

∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α(−∆)θ/2)∇ · (nG(v))(τ) dτ

+

∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α(−∆)θ/2)(a1n
2 − b1nm)(τ) dτ,

m(t) = Eα(−tα(−∆)θ/2)m0

+

∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α(−∆)θ/2)(a2m
2 − b2mn)(τ) dτ,

v(t) =Eα(−tα((−∆)θ/2 − γ))v0

+

∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α((−∆)θ/2 − γ))(a3m+ b3n)(τ) dτ.

(2.7)

Here {Eα(·)}t≥0 and {Eα,α(·)}t≥0 denote the Mittag-Leffler families defined by

Eα(−tα(−∆)θ/2) =

∫ ∞
0

Mα(τ)Uθ(τt
α) dτ,

Eα(−tα((−∆)θ/2 + a)) =

∫ ∞
0

Mα(τ)Uθ,a(τtα) dτ,

Eα,α(−tα(−∆)θ/2) =

∫ ∞
0

ατMα(τ)Uθ(τt
α) dτ,

Eα,α(−tα((−∆)θ/2 + a)) =

∫ ∞
0

ατMα(τ)Uθ,a(τtα) dτ,

where Uθ(t) and Uθ,a(t) are the fractional heat semigroup and the fractional damped

heat semigroup, defined as Ûθ(t)f = e−t|ξ|
θ

f̂ and Uθ,a(t)f = eatUθ(t)f , respectively.
The function Mα : C→ C is the Mainardi function defined by

Mα(z) =

∞∑
n=0

zn

n!Γ(1− α(1 + n))
,

which verifies that Mα(τ) ≥ 0 for all τ ≥ 0 and∫ ∞
0

τ rMα(τ) dτ =
Γ(r + 1)

Γ(1 + αr)
,

for −1 < r <∞.
To analyze the initial value problem (2.7), and motivated by the intrinsic scaling

of (1.1), we impose the condition θ1 = 2 − θ and consider the following time-
dependent functional spaces. For 1 ≤ p < N − λ, 1

α < κ and s∗ = N−λ
p , we define

the Banach spaces X1 and X2 by

X1 = L̃∞([0,∞);N s∗−θ
p,λ,∞) ∩ L̃κ([0,∞);N s∗−θ(1− 1

ακ )

p,λ,∞ ),

X2 = L̃∞([0,∞);N s∗

p,λ,∞),
(2.8)
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endowed with the corresponding norms

‖x‖X1
= ‖x‖

L̃∞([0,∞);N s∗−θp,λ,∞)
+ ‖x‖

L̃κ([0,∞);N
s∗−θ(1− 1

ακ
)

p,λ,∞ )
,

‖x‖X2
= ‖x‖

L̃∞([0,∞);N s∗p,λ,∞)
.

(2.9)

With this notation, we establish the notion of solution that we use.

Definition 2.7. Let 1 ≤ p < N − λ, s∗ = N−λ
p , and [n0,m0, v0] ∈ N s∗−θ

p,λ,∞ ×
N s∗−θ
p,λ,∞ × N s∗

p,λ,∞. A mild solution for (1.1) is a triple [n,m, v] ∈ X1 × X1 × X2,

satisfying the integral system (2.7).

Next, we state our main existence result.

Theorem 2.8. Let 0 ≤ λ < N , 1
α < κ ≤ ∞, 1 < θ, 1 ≤ p < N−λ

θ(2− 1
ακ )

, s∗ = N−λ
p ,

[n0,m0, v0] ∈ N s∗−θ
p,λ,∞ ×N

s∗−θ
p,λ,∞ ×N s∗

p,λ,∞. Then, there exists δ > 0 such that if

‖n0‖N s∗−θp,λ,∞
+ ‖m0‖N s∗−θp,λ,∞

+ ‖v0‖N s∗p,λ,∞ < δ,

then problem (1.1) has a unique mild solution [n,m, v] in the class(
C(R+;N s∗−θ

p,λ,∞) ∩ X1

)
×
(
C(R+;N s∗−θ

p,λ,∞) ∩ X1

)
× C(R+;N s∗

p,λ,∞).

Remark 2.9. (1) If in (1.1) we consider χ < 0, a1 = 0 and m = 0, we obtain the
fractional Keller-Segel system. Thus, Theorem 2.8 provides the existence of global

solution for the fractional Keller-Segel system in the class
(
C(R+;N s∗−θ

p,λ,∞)∩X1

)
×

C(R+;N s∗

p,λ,∞) for small initial data [n0, v0] in N s∗−θ
p,λ,∞ ×N s∗

p,λ,∞.

(2) If in (1.1) we consider χ > 0 and b3 = 0, we obtain a fractional Lotka-Volterra
competition model describing the competition interspecies n and m under a regime
of chemorepulsion mechanism caused by the chemical signal v. Thus, Theorem 2.8
provides the existence of global solution for the fractional Lotka-Volterra system

(under small initial data) in the class
(
C(R+;N s∗−θ

p,λ,∞) ∩ X1

)
×
(
C(R+;N s∗−θ

p,λ,∞) ∩
X1

)
× C(R+;N s∗

p,λ,∞).

3. Linear and nonlinear estimates

The aim of this section is to derive estimates to be used in proving the existence
of mild solutions. First we establish estimates for fractional heat semigroups, in
Morrey spaces, acting on distributions whose Fourier transforms have support in
an annulus.

Lemma 3.1. There exist positive constants C1 and C2 such that for any 1 ≤ p ≤
∞, 0 ≤ λ < N , a ∈ R, 0 < θ, and any positive real numbers t, τ , if suppFf ⊂ τC,
then

‖Eα(−tα((−∆)θ/2 + a))f‖Mp,λ
≤ C2

∫ ∞
0

Mα(s)east
α

e−C1st
ατθds‖f‖Mp,λ

, (3.1)

and if suppFf ⊂ τC , then

‖Eα,α(−tα((−∆)θ/2 + a))f‖Mp,λ
≤ C2

∫ ∞
0

sMα(s)east
α

e−C1st
ατθds‖f‖Mp,λ

.

(3.2)
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Proof. The proof follows the ideas in [2, Lemma 2.4] but adjusted to the context
of Morrey spaces. Let φ ∈ D(RN \ {0}) be a function such that φ = 1 near the
annulus C. Then,

Eα(−tα((−∆)θ/2 + a))f

=

∫ ∞
0

Mα(s)east
α

F−1
(
φ(ξ/τ)e−st

α|ξ|θF(f)(ξ)
)
ds

=

∫ ∞
0

Mα(s)east
α
(
g(·, s 1

α t) ∗ f
)
ds,

(3.3)

where g(x, t) = F−1(φ(ξ/τ)e−t
α|ξ|θ ). The hypotheses on φ imply that

‖g(·, t)‖L1 ≤ C2e
−C1t

ατθ , ∀t > 0. (3.4)

Thus, by applying the Young inequality (2.1) in (3.3), and using (3.4), we obtain

‖Eα(−tα((−∆)θ/2 + a))f‖Mp,λ
≤ C2

∫ ∞
0

Mα(s)east
α

e−C1st
ατθds‖f‖Mp,λ

,

which proves (3.1). A similar argument proves (3.2). �

The next lemma provides some inclusions involving Besov-Morrey spaces (see
[11, 14]).

Lemma 3.2. Suppose that 1 ≤ r ≤ ∞, s, s1, s2 ∈ R, 1 ≤ p, p1, p2 ≤ ∞, and
0 ≤ λ < N .

(i) If 1 ≤ q1 ≤ q2 ≤ ∞, then

L̃r([0,∞);N s
p,λ,q1) ⊂ L̃r([0,∞);N s

p,λ,q2).

(ii) If p1 ≤ p2 and s2 − N−λ
p2

= s1 − N−λ
p1

, then

L̃r([0,∞);N s1
p1,λ,q

) ⊂ L̃r([0,∞);N s2
p2,λ,q

).

Proof. Part (i) follows from the definition of the norm (2.6) and the fact that
lq1 ⊂ lq2 if q1 ≤ q2. To prove part (ii), from Lemma 2.6 we have

‖∆̇jf‖Mp2,λ
≤ C2

j
(
N−λ
p1
−N−λp2

)
‖∆̇jf‖Mp1,λ

.

Taking the Lr-norm, multiplying by 2js2 and taking the lq-norm we obtain the
result. �

Next we recall estimates for multiplier operators with polynomial growth in the
context Besov-Morrey spaces (see [11, 14]).

Lemma 3.3. Let m ∈ R, 1 ≤ p <∞, 0 ≤ λ < N , and P (ξ) ∈ C [N/2]+1(RN \ {0}).
Suppose that there exists A > 0 such that

|∂
kP

∂ξk
(ξ)| ≤ A|ξ|m−|k|,

for all k ∈ (N∪{0})N with |k| ≤ [N/2] + 1 and |ξ| 6= 0. Then, for every g such that
suppF(g) ⊂ 2jC we have that

‖F−1(P (ξ)F(g))‖Mp,λ
≤ CA2mj‖g‖Mp,λ

.

The following lemma is a consequence of the one above.
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Lemma 3.4. Let m, s ∈ R, 1 ≤ p < ∞, 0 ≤ λ < N , 1 ≤ q, r ≤ ∞ and P (ξ) ∈
C [N/2]+1(RN \ {0}). Suppose that there exists A > 0 such that

|∂
kP

∂ξk
(ξ)| ≤ A|ξ|m−|k|,

for all k ∈ (N ∪ {0})N with |k| ≤ [N/2] + 1 and |ξ| 6= 0. Then the multiplier
operator P (D) defined by P (D)g = F−1(P (ξ)F(g)(ξ)) is bounded from N s

p,λ,q to

N s−m
p,λ,q . Moreover,

‖P (D)g‖
L̃r([0,∞);N s−mp,λ,q)

≤ CA‖g‖
L̃r([0,∞);N sp,λ,q)

.

Lemma 3.5. If f be a distribution in S ′h, s < 0, 1 ≤ p, q ≤ ∞, 0 ≤ λ < N and

1 ≤ r ≤ ∞, then f belongs to the Besov-Morrey space L̃r([0,∞);N s
p,λ,q) if and only

if

(2js‖Ṡjf‖Lr([0,∞);Mp,λ))j∈Z ∈ `q.
Moreover,

C1‖f‖L̃r([0,∞);N sp,λ,q)
≤ ‖(2js‖Ṡjf‖Lr([0,∞);Mp,λ))j‖`r ≤ C2‖f‖L̃r([0,∞);N sp,λ,q)

,

where the positive constants C1 and C2 depend only on N, s.

Proof. This proof is inspired in the proof of [2, Proposition 2.33] adapted to the

context of L̃r([0,∞);N s
p,λ,q) spaces. After taking the norm Lr([0,∞);Mp,λ) in the

localization operator, we obtain

2js‖∆̇jf‖Lr([0,∞);Mp,λ) ≤ 2js
(
‖Ṡjf‖Lr([0,∞);Mp,λ) + ‖Ṡj+1f‖Lr([0,∞);Mp,λ)

)
= 2js‖Ṡjf‖Lr([0,∞);Mp,λ) + 2−s2(j+1)s‖Ṡj+1f‖Lr([0,∞);Mp,λ),

which implies the left-hand side inequality. On the other hand, we have

2js‖Ṡjf‖Lr([0,∞);Mp,λ) ≤ 2js
∑

j′≤j−1

‖∆̇j′f‖Lr([0,∞);Mp,λ)

=
∑

j′≤j−1

2(j−j′)s2j
′s‖∆̇j′f‖Lr([0,∞);Mp,λ),

and thus, using that s < 0 and applying the Young inequality in the framework of
lr-spaces, we conclude the result. �

The lemma below contains a criterion for the limit of a series to belong to a
class of homogeneous Besov-Morrey space. Its proof follows the ideas in [2, Lemma
2.23].

Lemma 3.6. Let C′ be an annulus, s ∈ R, 0 ≤ λ < N , and 1 ≤ p, q, r ≤ ∞ such
that s < N/p, or s = N/p with q = 1. Let (fj)j∈Z be a sequence of smooth functions
such that

suppFfj ⊂ 2jC′ and ‖(2js‖fj‖Lr([0,∞);Mp,λ))j∈Z‖`q <∞.

Then
∑
j∈Z fj converges in S ′ to some f in L̃r([0,∞);N s

p,λ,q); moreover, there

exists a constant C = C(s) > 0 such that

‖f‖
L̃r([0,∞);N sp,λ,q)

≤ C‖(2js‖fj‖Lr([0,∞);Mp,λ))j∈Z‖`q .
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Proof. Considering the annulus C in Definition 2.3, there exists k0 ∈ N such that
2j
′C ∩ 2jC′ = ∅ provided that |j′ − j| ≥ k0. Therefore, ∆̇j′fj = 0 for |j′ − j| ≥ k0,

and

‖∆̇j′f‖Lr([0,∞);Mp,λ) =
∥∥ ∑
|j′−j|<k0

∆̇j′fj
∥∥
Lr([0,∞);Mp,λ)

≤ C
∑

|j′−j|<k0

‖fj‖Lr([0,∞);Mp,λ).

Hence, we obtain that

2j
′s‖∆̇j′f‖Lr([0,∞);Mp,λ) ≤ C

∑
|j′−j|≤k0

2j
′s‖fj‖Lr([0,∞);Mp,λ)

≤ C
∑

|j′−j|≤k0

2js‖fj‖Lr([0,∞);Mp,λ).

Taking the `q-norm and using the Young inequality for discrete convolutions, we
conclude the proof. �

The next lemma is similar to the previous one but now with distributions sup-
ported in balls. Therefore we omit its proof.

Lemma 3.7. Let B be a ball, s > 0, 0 ≤ λ < N , and 1 ≤ p, q, r ≤ ∞ be such that
s < N/p, or s = N/p with q = 1. If (fj)j∈Z be a sequence of smooth functions such
that

suppFfj ⊂ 2jB and ‖(2js‖fj‖Lr([0,∞);Mp,λ))j∈Z‖`q <∞,

then
∑
j∈Z fj converges in S ′ to some f in L̃r([0,∞);N s

p,λ,q). Moreover, there

exists a constant C = C(s) > 0 such that

‖f‖
L̃r([0,∞);N sp,λ,q)

≤ C‖(2js‖fj‖Lr([0,∞);Mp,λ))j∈Z‖`q .

The paraproduct of v by u denoted by Tuv is the bilinear operator

Tuv :=
∑
j∈Z

Ṡj−1u∆̇jv.

The remainder of u and v, denoted by R(u, v), is the bilinear operator

R(u, v) :=
∑
|i−j|≤1

∆̇iu∆̇jv.

Formally, using the operators Tuv and R(u, v), we can express the product uv by
means of the Bony decomposition uv = Tuv + Tvu+R(u, v).

In the next two lemmas we provide continuity properties for the paraproduct
and remainder term on Besov-Morrey spaces, which can be seen as extensions from
the corresponding ones in Besov spaces found in [2, Theorems 2.47 and 2.52].

Lemma 3.8. Let s, σ ∈ R with σ > 0, 0 ≤ λ < N , and let 1 ≤ p, q, q1, q2, r, r1, r2 ≤
∞ with 1

q = 1
q1

+ 1
q2

and 1
r = 1

r1
+ 1

r2
.

(i) If s < N
p , or s = N

p with q = 1, then, there exists a positive constant C > 0

such that

‖Tuv‖L̃r([0,∞);N sp,λ,q)
≤ C‖u‖

L̃r1 ([0,∞);L∞)
‖v‖

L̃r2 ([0,∞);N sp,λ,q)
.
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(ii) If s−σ < N
p , or s−σ = N

p with q = 1, then, there exists a positive constant

C > 0 such that

‖Tuv‖L̃r([0,∞);N s−σp,λ,q)
≤ C‖u‖

L̃r1 ([0,∞);N−σ∞,λ,q1 )
‖v‖

L̃r2 ([0,∞);N sp,λ,q2 )
.

Proof. From Definition 2.3, the support of F(Ṡj−1u∆̇jv) is contained in 2j(C+B).

In addition, there is an integer k0 such that ∆̇j′(Ṡj−1u∆̇jv) = 0 provided that

j′ > j + k0. Thus, it is sufficient to estimate ‖Ṡj−1u∆̇jv‖Lr([0,∞);Mp,λ). From the

definition of the operators Ṡj , it holds

‖Ṡj−1u‖L∞ ≤ C‖u‖L∞ . (3.5)

Thus, using Lemma 3.6 and the Hölder inequality in Lr, we conclude that Tuv ∈
L̃r([0,∞);N s

p,λ,q), and the inequality in the part (i) of the lemma. On the other
hand, from Lemma 3.5 it follows that

‖Ṡj−1u‖Lr1 ([0,∞);L∞) ≤
C

−z
cjq12−jz‖u‖Lr1 ([0,∞);N z∞,λ,q1 ), (3.6)

for all j ∈ Z and z < 0, where (cj,q1)j∈Z has norm 1 in `q1(Z). Again, Lemma

3.6 and the Hölder inequality in Lr-spaces imply that Tuv ∈ L̃r([0,∞);N s−σ
p,λ,q);

moreover, by using (3.6) we obtain the inequality in the part (ii) of the lemma. �

Lemma 3.9 ([4]). Let 0 ≤ λ, λ1, λ2 < N , s1, s2 ∈ R and p, p1, p2, q, q1, q2, r, r1, r2 ∈
[1,∞] satisfying s1+s2 > 0, 1

p = 1
p1

+ 1
p2

, λp = λ1

p1
+ λ2

p2
, 1
q = 1

q1
+ 1
q2

, and 1
r = 1

r1
+ 1
r2

.

If s1 + s2 <
N
p , or s1 + s2 = N

p with q = 1, then there exists a constant C > 0 such

that

‖R(u, v)‖
L̃r([0,∞);N s1+s2

p,λ,q )
≤ C‖u‖

L̃r1 ([0,∞);N s1p1,λ1,q1 )
‖v‖

L̃r2 ([0,∞);N s2p2,λ2,q2 )
.

Proof. From Definition 2.3, we have the support of F
(∑
|ν|≤1∆̇j−νu∆̇jv

)
is con-

tained in 2jB. Moreover, there is an integerN0 such that ∆̇j′

(∑
|ν|≤1∆̇j−νu∆̇jv

)
=

0 for all j′ > j +N0. Applying Hölder’s inequality we have

2j
′(s1+s2)‖∆̇jR(u, v)‖Lr([0,∞);Mp,λ)

≤ C2j
′(s1+s2)

∑
|ν|≤1, j≥j′−N0

‖∆̇j−νu∆̇jv‖Lr([0,∞);Mp,λ)

≤ C2j
′(s1+s2)

∑
|ν|≤1, j≥j′−N0

(
‖∆̇j−νu‖Lr1 ([0,∞);Mp1,λ1

)

× ‖∆̇jv‖Lr2 ([0,∞);Mp2,λ2
)

)
≤ C

∑
|ν|≤1, j≥j′−N0

(
2−(j−j′)(s1+s2)2(j−ν)s1

× ‖∆̇j−νu‖Lr1 ([0,∞);Mp1,λ1
)2
js2‖∆̇jv‖Lr2 ([0,∞);Mp2,λ2

)

)
.

Note that s1 + s2 > 0. From Lemma 3.7, R(u, v) ∈ L̃r([0,∞);N s1+s2
p,λ,q ). Applying

the discrete Hölder and Young inequalities, we conclude the proof of the lemma. �
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4. Existence results

First we derive global estimates for mild solutions of the fractional heat equa-
tion and then obtain a solution to (2.7) using an iterative scheme. Let us rewrite
equations (2.7) in the form

n(x, t) = Eα(−tα(−∆)θ/2)n0

+

∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α(−∆)θ/2)(f1 + f2 + f3)(τ) dτ,

m(x, t) = Eα(−tα(−∆)θ/2)m0

+

∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α(−∆)θ/2)(f4 + f5)(τ) dτ,

v(x, t) = Eα(−tα((−∆)θ/2 − γ))v0

+

∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α((−∆)θ/2 − γ))(f6 + f7)(τ) dτ,

(4.1)

where

f1 = χ∇ · (nG(v)), f2 = a1n
2, f3 = −b1nm,

f4 = a2m
2, f5 = −b2mn, f6 = a3m, f7 = b3n.

(4.2)

Proposition 4.1. Let s ∈ R, 0 < θ,1 ≤ p, q ≤ ∞, 1 ≤ κ ≤ r ≤ ∞, 1
α < r ≤ ∞,

a ≥ 0, and 0 ≤ λ < N . If v0 ∈ N s
p,λ,q and f(x, t) ∈ L̃κ([0,∞);N s−θ(1− 1

ακ )

p,λ,q ), then

v(x, t) = Eα(−tα((−∆)θ/2 − a))v0

+

∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α((−∆)θ/2 − a))f(x, τ) dτ

satisfies

‖v(x, t)‖
L̃r([0,∞);N

s+ θ
αr

p,λ,q )
≤ C

(
‖v0‖N sp,λ,q + ‖f‖

L̃κ([0,∞);N
s−θ(1− 1

ακ
)

p,λ,q )

)
,

for some C > 0.

Proof. Applying ∆̇j to the fractional heat equation cDα
t v + (−∆)θ/2v = −av + f

with initial data v(0) = v0, we obtain

cDα
t ∆̇jv + (−∆)θ/2∆̇jv = −a∆̇jv + ∆̇jf, ∆̇jv|t=0 = ∆̇jv0. (4.3)

The solution to this equation is given by

∆̇jv = Eα(−tα((−∆)θ/2 − a))∆̇jv0

+

∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α((−∆)θ/2 − a))∆̇jf dτ, t > 0.
(4.4)
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Since the Fourier transform of ∆̇jv0 and ∆̇jf are supported in the annulus 2jC,
using Lemma 3.1 and the Young inequality in Lr, we have

‖Eα(−tα(−∆)θ/2 − a)∆̇jv0‖Lr
[0,∞)

(Mp,λ)

≤ C2‖
∫ ∞

0

Mα(s)e−ast
α

e−C1st
α2θj‖∆̇jv0‖Mp,λ

ds‖Lr(0,∞)

≤ C2

∫ ∞
0

Mα(s)‖e−C1st
α2θj‖∆̇jv0‖Mp,λ

‖Lr(0,∞)ds

≤ C2

∫ ∞
0

Mα(s)
(∫ ∞

0

e−C1st
α2θj

)1/r

‖∆̇jv0‖Mp,λ
ds

≤ C22−
θj
αr

∫ ∞
0

s−
1
αrMα(s)ds‖∆̇jv0‖Mp,λ

≤ C2−
θj
αr ‖∆̇jv0‖Mp,λ

,

(4.5)

and∥∥∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α((−∆)θ/2 − a))∆̇jf dτ
∥∥
Lr

[0,∞)
(Mp,λ)

≤ C2

∫ ∞
0

sMα(s)‖
∫ t

0

(t− τ)α−1e−as(t−τ)αe−C1s(t−τ)α2θj‖∆̇jf‖Mp,λ
dτ‖Lr(0,∞)ds

≤ C2

∫ ∞
0

sMα(s)
(∫ ∞

0

e−C1st
α2θjκ∗t(α−1)κ∗

)1/κ∗

‖∆̇jf‖Lκ
[0,∞)

(Mp,λ)ds

≤ C
∫ ∞

0

sMα(s)
(
s2θj

)− 1
ακ∗−

(α−1)
α ds‖∆̇jf‖Lκ

[0,∞)
(Mp,λ)

≤ C
∫ ∞

0

sMα(s)s−
1
αr−1+ 1

ακ 2−
θj
αr−θj(1− 1

ακ )ds‖∆̇jf‖Lκ
[0,∞)

(Mp,λ)

≤ C2−
θj
αr−θj(1− 1

ακ )
∫ ∞

0

s−
1
αr+ 1

ακMα(s)ds‖∆̇jf‖Lκ
[0,∞)

(Mp,λ)

≤ C2−
θj
αr−θj(1− 1

ακ )‖∆̇jf‖Lκ
[0,∞)

(Mp,λ),

(4.6)
where κ∗ is such that 1 + 1/r = 1/κ∗ + 1/κ. Thus, from (4.5)-(4.6) we obtain

‖∆̇jv‖Lr
[0,∞)

(Mp,λ) ≤ C
(

2−j
θ
αr ‖∆̇jv0‖Mp,λ

+ 2−j
θ
αr 2−jθ(1− 1

ακ )‖∆̇jf‖Lκ
[0,∞)

(Mp,λ)

)
.

(4.7)

Therefore, multiplying both sides of (4.7) by 2j
θ
αr 2js and taking the `q-summation,

we obtain

‖v‖
L̃r([0,∞);N

s+ θ
αr

p,λ,q )
≤ C

(
‖v0‖N sp,λ,q + ‖f‖

L̃κ([0,∞);N
s−θ(1− 1

ακ
)

p,λ,q )

)
,

where C > 0 is a constant. The proof is complete. �

Lemma 4.2. If 0 ≤ λ < N , 1 ≤ p < ∞, 1
α < κ ≤ ∞, 1 < θ, p < N−λ

θ(2− 1
ακ )

, and

fj = 1, . . . , 7 are defined as in (4.2), then the following estimates hold

(i) ‖f1‖
L̃κ([0,∞);N

s∗−θ(2− 1
ακ

)

p,λ,∞ )
≤ C‖n‖X1

‖v‖X2
,

(ii) ‖f2‖
L̃κ([0,∞);N

s∗−θ(2− 1
ακ

)

p,λ,∞ )
≤ C‖n‖2X1

,
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(iii) ‖f3 + f5‖
L̃κ([0,∞);N

s∗−θ(2− 1
ακ

)

p,λ,∞ )
≤ C‖n‖X1

‖m‖X1
,

(iv) ‖f4‖
L̃κ([0,∞);N

s∗−θ(2− 1
ακ

)

p,λ,∞ )
≤ C‖m‖2X1

,

(v) ‖f6 + f7‖
L̃κ([0,∞);N

s∗−θ(1− 1
ακ

)

p,λ,∞ )
≤ C(‖m‖X1

+ ‖n‖X1
).

Proof. We start by analyzing (i). From Lemma 3.4 we obtain

‖∂j([G(v)]jn)‖
L̃κ([0,∞);N

s∗−θ(2− 1
ακ

)

p,λ,∞ )
≤ C‖n[G(v)]j‖

L̃κ([0,∞);N
s∗+1−θ(2− 1

ακ
)

p,λ,∞ )
, j = 1, 2, 3.

Now, from the Bony decomposition we have

[G(v)]jn = T[G(v)]jn+ Tn[G(v)]j +R([G(v)]j , n), j = 1, 2, 3.

Taking into account that s∗ = N−λ
p , using Lemmas 3.8, 3.2 and 3.4, we estimate

‖Tn[G(v)]j‖
L̃κ([0,∞);N

s∗−θ+1−θ(1− 1
ακ

)

p,λ,∞ )

≤ C‖n‖
L̃κ([0,∞);N

−θ(1− 1
ακ

)

∞,λ,∞ )
‖[G(v)]j‖L̃∞([0,∞);N s∗−θ+1

p,λ,∞ )

≤ C‖n‖
L̃κ([0,∞);N

s∗−θ(1− 1
ακ

)

p,λ,∞ )
‖v‖

L̃∞([0,∞);N s∗p,λ,∞)

≤ C‖n‖X1‖v‖X2 , (by the condition κ >
1

α
)

and

‖T[G(v)]jn‖
L̃κ([0,∞);N

s∗−θ+1−θ(1− 1
ακ

)

p,λ,∞ )

≤ C‖[G(v)]j‖L̃∞([0,∞);N−(θ−1)
∞,λ,∞ )

‖n‖
L̃κ([0,∞);N

s∗−θ(1− 1
ακ

)

p,λ,∞ )

≤ C‖[G(v)]j‖L̃∞([0,∞);N s
∗−(θ−1)
p,λ,∞ )

‖n‖
L̃κ([0,∞);N

s∗−θ(1− 1
ακ

)

p,λ,∞ )

≤ C‖v‖
L̃∞([0,∞);N s∗p,λ,∞)

‖n‖
L̃κ([0,∞);N

s∗−θ(1− 1
ακ

)

p,λ,∞ )

≤ C‖n‖X1
‖v‖X2

, (by the condition θ > 1).

Moreover, from Lemmas 3.9 and 3.2 we obtain

‖R([G(v)]j , n)‖
L̃κ([0,∞);N

s∗−θ+1−θ(1− 1
ακ

)

p,λ,∞ )

≤ C‖n‖
L̃κ([0,∞);N

−θ(1− 1
ακ

)

∞,λ,∞ )
‖[G(v)]j‖L̃∞([0,∞);N s

∗−θ+1)
p,λ,∞ )

≤ C‖n‖
L̃κ([0,∞);N

s∗−θ(1− 1
ακ

)

p,λ,∞ )
‖v‖

L̃∞([0,∞);N s∗p,λ,∞)

≤ C‖n‖X1‖v‖X2 .

Therefore,

‖f1‖
L̃κ([0,∞);N

s∗−θ(2− 1
ακ

)

p,λ,∞ )
≤ C‖n‖X1‖v‖X2 . (4.8)

Now we obtain the estimate for f2. From Lemmas 3.8 and 3.2 we have

‖Tnn‖
L̃κ([0,∞);N

s∗−θ−θ(1− 1
ακ

)

p,λ,∞ )
≤ C‖n‖

L̃κ([0,∞);N
−θ(1− 1

ακ
)

∞,λ,∞ )
‖n‖

L̃∞([0,∞);N s∗−θp,λ,∞)

≤ C‖n‖
L̃κ([0,∞);N

s∗−θ(1− 1
ακ

)

p,λ,∞ )
‖n‖

L̃∞([0,∞);N s∗−θp,λ,∞)

≤ C‖n‖X1
‖n‖X1

.
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On the other hand, from Lemmas 3.9 and 3.2, and using the condition s∗ − θ −
θ(1− 1

ακ ) > 0, we obtain

‖R(n, n)‖
L̃κ([0,∞);N

s∗−θ−θ(1− 1
ακ

)

p,λ,∞ )
≤ C‖n‖

L̃κ([0,∞);N
−θ(1− 1

ακ
)

∞,λ,∞ )
‖n‖

L̃∞([0,∞);N s∗−θp,λ,∞)

≤ C‖n‖
L̃κ([0,∞);N

s∗−θ(1− 1
ακ

)

p,λ,∞ )
‖n‖

L̃∞([0,∞);N s∗−θp,λ,∞)

≤ C‖n‖X1
‖n‖X1

.

Here we have used that p < N−λ
θ(2− 1

ακ )
to guarantee that s∗ − θ − θ(1 − 1

ακ ) > 0.

Note that the conditions for κ and θ imply that 1 − θ(2 − 1
ακ ) < 0 and therefore

s∗ − θ + 1− θ(1− 1
ακ ) < N

p . In conclusion, there exists a positive constant C such

that

‖f2‖
L̃κ([0,∞);N

s∗−θ(2− 1
ακ

)

p,λ,∞ )
≤ C‖n‖X1‖n‖X1 . (4.9)

The proof of (iii) and (iv) for f3, f4, and f5 follows similarly. Finally, for f6 and
f7, we have

‖f6 + f7‖
L̃κ([0,∞);N

s∗−θ(1− 1
ακ

)

p,λ,∞ )
≤ C(‖n‖X1

+ ‖m‖X1
). (4.10)

�

4.1. Proof of Theorem 2.8. Motivated by [3], we consider the following iterative
scheme whose limit will give the global mild solution for the system (1.1) in the
sense of Definition 2.7:

n(1) = Eα(−tα(−∆)θ/2)n0, m(1) = Eα(−tα(−∆)θ/2)m0,

v(1) = Eα(−tα((−∆)θ/2 − γ))v0,

n(k+1) = n(1) + χ

∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α(−∆)θ/2)∇ · (n(k)G(v(k)))(τ) dτ

+

∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α(−∆)θ/2)(a1n
(k)n(k) − b1n(k)m(k))(τ) dτ,

m(k+1) = m(1) +

∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α(−∆)θ/2)

× (a2m
(k)m(k) − b1m(k)n(k))(τ) dτ,

v(k+1) = v(1) +

∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α((−∆)θ/2 − γ))

× (a3m
(k+1) + b3n

(k+1))(τ) dτ.

Applying Proposition 4.1 and Lemma 4.2 to the above equality, we obtain the
following estimates:

‖n(k+1)‖X1
≤ C

(
‖n0‖N s∗−θp,λ,∞

+ ‖n(k)‖X1
‖v(k)‖X2

+ ‖n(k)‖2X1
+ ‖n(k)‖X1

‖m(k)‖X1

)
,

‖m(k+1)‖X1
≤ C

(
‖m0‖N s∗−θp,λ,∞

+ ‖m(k)‖2X1
+ ‖n(k)‖X1

‖m(k)‖X1

)
,

‖v(k+1)‖X2
≤ C

(
‖v0‖N s∗p,λ,∞ + ‖n(k+1)‖X1

+ ‖m(k+1)‖X1

)
.

(4.11)
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For small initial data, the sequence [n(k),m(k), v(k)] is uniformly bounded in the
space X := X1 ×X1 ×X2 with the norm

‖[n(k),m(k), v(k)]‖X = ‖n(k)‖X1
+ ‖m(k)‖X1

+ ‖v(k)‖X2
.

In fact, from (4.11) we obtain

‖[n(k+1),m(k+1), v(k+1)]‖X = ‖n(k+1)‖X1
+ ‖m(k+1)‖X1

+ ‖v(k+1)‖X2

≤ C
(
A0 + 4‖[n(k),m(k), v(k)]‖2X

)
,

(4.12)

where A0 = ‖n0‖N s∗−θp,λ,∞
+ ‖m0‖N s∗−θp,λ,∞

+ ‖v0‖N s∗p,λ,∞ and C is a positive constant.

Let δ > 0 be small enough such that if ‖n0‖N s∗−θp,λ,∞
+ ‖m0‖N s∗−θp,λ,∞

+ ‖v0‖N s∗p,λ,∞ < δ,

then 1 − 16A0C
2 > 0, and consider the smallest root R of 4CR2 − R + CA0 = 0;

that is,

R =
1−
√

1− 16A0C2

8C
. (4.13)

Thus, if

‖[n(k),m(k), v(k)]‖X ≤ R, (4.14)

then

‖[n(k+1),m(k+1), v(k+1)]‖X ≤ R, (4.15)

which implies that [n(k),m(k), v(k)], k ∈ N, is uniformly bounded in X . Next, we
bound the difference vector[

n(k+1) − n(k),m(k+1) −m(k), v(k+1) − v(k)
]
.

Noting that

n(k+1) − n(k)

= χ

∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α(−∆)θ/2)∇ · (n(k)G(v(k)))(τ) dτ

−
∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α(−∆)θ/2)∇ · (n(k−1)G(v(k−1)))(τ) dτ

+

∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α(−∆)θ/2)(a1n
(k)n(k) − b1n(k)m(k))(τ) dτ

−
∫ t

0

(t− τ)α−1Eα,α(−(t− τ)α(−∆)θ/2)

×
(
a1n

(k−1)n(k−1) − b1n(k−1)m(k−1)
)
(τ) dτ,

(4.16)

by using Proposition 4.1 and Lemma 4.2, we obtain

‖n(k+1) − n(k)‖X1

≤ C
(
‖n(k−1)‖X1‖v(k−1) − v(k)‖X2 + ‖n(k−1) − n(k)‖X1‖v(k)‖X2

+ ‖n(k−1)‖X1‖n(k−1) − n(k)‖X1 + ‖n(k−1) − n(k)‖X1‖n(k)‖X1

+ ‖m(k−1)‖X1
‖n(k−1) − n(k)‖X1

+ ‖m(k−1) −m(k)‖X1
‖n(k)‖X1

)
≤ CR‖[n(k−1) − n(k),m(k−1) −m(k), v(k−1) − v(k)]‖X .

(4.17)

Similarly we have

‖m(k+1) −m(k)‖X1
≤ CR‖[n(k−1) − n(k),m(k−1) −m(k), v(k−1) − v(k)]‖X . (4.18)
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On the other hand,

‖v(k+1) − v(k)‖X2
≤ C

(
‖n(k+1) − n(k)‖X1

+ ‖m(k+1) −m(k)‖X1

)
. (4.19)

From estimates (4.17) and (4.19) we obtain

‖[n(k+1) − n(k),m(k+1) −m(k), v(k+1) − v(k)]‖X
≤ 4CR‖[n(k−1) − n(k),m(k−1) −m(k), v(k−1) − v(k)]‖X .

(4.20)

Thus, choosing R as in (4.13) such that R < 1
4C (reducing δ, if necessary), we

see that [n(k),m(k), v(k)] is a Cauchy sequence in X . The limit [n,m, v] is a mild
solution in X for system (4.1). The proof of uniqueness follows by using arguments
similar to those in the proof of inequality (4.20), and therefore we omit the details.
This proves Theorem 2.8.
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Colombia
Email address: jelepere@uis.edu.co

Diego A. Rueda-Gómez
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Élder J. Villamizar-Roa

Universidad Industrial de Santander, Escuela de Matemáticas, A.A. 678, Bucaramanga,
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