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EXISTENCE OF GLOBAL SOLUTIONS FOR CROSS-DIFFUSION
MODELS IN A FRACTIONAL SETTING

JHEAN E. PEREZ-LOPEZ, DIEGO A. RUEDA-GOMEZ, ELDER J. VILLAMIZAR-ROA

ABSTRACT. This article is devoted to the analysis of a fractional chemotaxis
model in RN with a time fractional variation in the Caputo sense and a frac-
tional spatial diffusion. This model encompasses the fractional Keller-Segel
system [9] which describes the movement of living organisms towards higher
concentration regions of chemical attractants, and a fractional Lotka-Volterra
competition model [16] describing the competition interspecies in which one of
the competing species avoids encounters with rivals by means of chemorepul-
sion. We prove product estimates in Besov-Morrey spaces and derive global
estimates for mild solutions of the fractional heat equation. We use these re-
sults to prove the existence and uniqueness of global mild solutions for the
differential system in a framework of Besov-Morrey spaces.

1. INTRODUCTION

We consider a generic fractional chemotaxis model describing the evolution of
two species subject to attraction and repulsion phenomena. This model includes
the fractional Keller-Segel system which describes the movement of living organisms
towards higher concentration regions of chemical attractants [9], and a fractional
Lotka-Volterra competition model describing the competition interspecies to avoid
encounters with rivals by means of chemorepulsion mechanism [I6]. This model is
composed of three coupled parabolic equations describing the interaction between
the densities of competing species and the concentration of a chemical substance,
which reads as follows

°Dn + dn(=A)"%n = xV - (nG(v)) + a1n? — bynm,

DM + dp (A2 m = aym? — bynm, (L1)
DY + dy(—A)?%0 = agm + bsn — v, .

n(x,0) =no(z), m(z,0)=mo(x), v(z,0)=m1vo(x),

where the unknowns are n = n(x,t) and m = m(z,t), for v € RY and t € (0, 00),
which denote the densities of competing species, while v = v(x,t) denotes the
chemical signal. In (l.1), d,,d,,, and d, are positive parameters representing the
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diffusion coefficients, aj,as € R denote growth coefficients (aj,as > 0) or self-
competition (a1, as < 0), as, b1, b2, b3 and ~ are positive parameters related to the
population dynamics and the strength of competition, and x denotes the chemotaxis
coefficient. In ¢D¢ denotes the time fractional derivative operator of order
a € (0,1) in the Caputo sense. We recall that for f € C([0,T]; X), 0 < T < oo,
such that Itlfaf € WhHY(0,T; X), the Caputo fractional derivative of order « of f
is defined by

D7 (0 = {110 = 100} = 5 [ ¢ =71 - roar),

where I f denotes the Riemann-Liouville fractional integral of order « of f, defined
by

Iff(t):ﬁ/o (t — 1) f(r)dr, t€]0,T).

In addition, in (T.I)), (—A)%/2, 6 € (0,2], denotes the fractional Laplacian operator
of order /2 defined by (—A)"/2f(x) = F-1(|€[* (€))(x), where f(€) = F(/)(€)
and F~1(f)(€) denote the Fourier transform and the inverse Fourier transform of
f, respectively. Finally, G(v) is also a nonlocal term defined by

G(v)(z) = V((—A)_el/zv) (x), z€RY,
for 6, € [0, N), which can be alternatively represented by G(v) = K(x)*v, K(x) ~

X
ZIN—67
| ‘If we take x < 0, a1 =0 and m = 0 in 7 we obtain the fractional version
of the classical Keller-Segel system describing the movement of living organisms
n towards higher concentration regions of chemical attractants v (cf. [I]). On
the other hand, if we consider x > 0 and b3 = 0 in , we obtain a fractional
Lotka-Volterra competition model describing the competition interspecies n and m
in which one of the competing species avoids encounters with rivals by means of
chemorepulsion mechanism caused by the chemical signal v. In addition, taking
a=160=2and §, =0 in we formally obtain, as particular cases, the
classical Keller-Segel system (cf. [9]) and the non-fractional Lotka-Volterra model
(cf. [16]).

The fractional population model is justified by the nonlocal behavior of the
dynamics of the organisms. In fact, in several situations found in nature, organisms
develop alternative search strategies, particularly when chemoattractants, food, or
other targets are sparse or rare. Then, as pointed out in [5], [10], a good description
of the trajectories of the population of organisms can be performed by using the
so called Lévy flights in place of Brownian motion. We recall that Lévy flights
have been considered in numerous biological contexts, including immune cells, ecol-
ogy and human populations (see [6] and references for a deeper discussion). This
consideration motivates the substitution of the classical diffusion in system
by a fractional diffusion. On the other hand, regarding the flux by chemotaxis
(both attractive and repulsive), it is also relevant to consider the case where the
attraction-repulsion source is replaced by a less singular interaction kernel. This
last consideration has been pointed out in the analysis of the propagation of chaos
for some aggregation-diffusion models [I5]. Finally, taking into account that the
behavior of most biological systems has memory properties, which are neglected
when an integer-order time derivative is assumed, it is justified to consider a time
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variation in a fractional framework, which introduces a nonlocal delay in time for
the moving population [7].

The aim of this article is to analyze the existence and uniqueness of global
solutions for the space-time fractional system in the framework of critical
Besov-Morrey spaces. To show the existence of global solutions of system
we first prove some product estimates in Besov-Morrey spaces and derive global
estimates for the solutions of the linear fractional heat equation, which are key
to apply the iterative contraction method. To the best of our knowledge, the
complete fractional model has not been analyzed in the literature. Some
global existence results and long time behavior of solutions for the particular case
of assuming # =2, 61 =0, x <0, a; =0, m =0, and « € (0, 1), with small
initial data in a different class of Besov-Morrey initial data, were obtained in [IJ.
Recently, some global existence results of the fractional chemotaxis-Navier-Stokes
system with consumption, in the framework of Morrey spaces were obtained in [13].
The plan of this paper is as follows. In Section 2, we give preliminaries and state
our main results. In Section 3, we prove some necessary lemmas and estimates in
order to handle the system in our setting, and finally, in Section 4, we prove our
existence and uniqueness result.

2. FUNCTIONAL SETTING AND MAIN RESULTS

In this section we recall some preliminary results related to Morrey and homo-
geneous Besov-Morrey spaces. Furthermore, we establish some essential linear and
nonlinear estimates in our framework, including the continuity of the paraproduct
and the Bony decomposition. For more details of Morrey spaces and homogeneous
Besov-Morrey spaces the reader can see [8, 1], [T4] [I7]. Throughout this article, we
denote by S and S’ the Schwartz class and the set of tempered distributions over
RY, respectively. As usual, F and F~! denote the Fourier transform and its in-
verse, respectively. We also denote by D(Q2) the set of C*°-functions with compact
support defined in Q C RV,

Definition 2.1. Let 1 < p < oo and 0 < A < N. The Morrey space Mpy,\(RN) is
defined by the set

Mpa®Y) = {f € LI (RY) : |flm, := sup sup B2 fllo(p(ao,r)) < 0},
:C()E]RN R>0

where B(zg, R) denotes the open ball in RY with center z¢ and radius R.

Note that M, o = LP and M = L*. Also, L? C L) M,y for all
0< A< Nand1l<I<p< oo with % = #, where L(>) denotes the weak-LP
space. In addition, Holder and Young inequalities hold true in Morrey spaces. That

is, if L= L4 L2 M 422 and 0 <A\ < N,i=1,2,3, then
£ 9l Mpgng < Mgy, 191 M0, -
and
I1f*gllmyn < Wfllzrllgllag, s for 0 <A< N and 1 <p < oo. (2.1)

Next, we recall the Bernstein inequality in M, x-spaces. Let C = C(0, Rq, R2) =
{x € RN : Ry < || € Ry} and B = B(0;R) = {x € RY : |z| < R}, for
0 < R; < Ry and R > 0. From now on, we denote supp f the support of f.
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Lemma 2.2 ([I8, Lemma 2.1]). Let k be a nonnegative integer, 1 < p < oo and
0<A<N.

(1) If f € My A(RY) and supp Ff C 7B(0; R) for some 7 > 0 and R > 0, then

Sup, 0% Fllamtyn < CFFLTR I fll A (2.2)

for some positive constant C depending only on p,\, R and N.
(ii) If f € My A(RYN) and supp Ff C 7C for some T > 0, then

CTH T flla i < s 10° Fllagyn < CHFTM( Flln (2:3)

for some positive constant C depending only on p, \, R, Ry and N.

Definition 2.3. Let C be the annulus {¢ € RY : 3/4 < |¢| < 8/3}. Consider the
radial functions ¢; € D(B(0,4/3)) and ¢2 € D(C) valued in the interval [0,1] and
such that

$1(E) + Y ha(277¢) = 1,V6 e RY, (2.4)
j=0

> 62(279€) = 1,V6 e RV \ {0} (2.5)

JEL

For each j € Z, the homogeneous dyadic block Aj and the homogeneous low-
frequency cut-off operators S; are defined as

Ajf(z) = F He227OF(f)€),  Sif(x) = F He1(27OF(f)(€)).

We also denote ¢;(€) = ¢2(2-01E) + ¢o(277€) + ¢2(2-0+1¢) and C; = Cj—1 U
C; UCjt1, where j € Z and C; = 27C. Note that ¢; = 1 in C;.

Definition 2.4. Let S; = {f € &' : lim; , o, S;f = 0}. For s a real number,
1<p,g< o0 and0 <A< N, the homogeneous Besov-Morrey space N;y/\q is the
Banach space of all distributions f in S, such that

[RAIPNS

<= 127214 Fllvgg s llesz) < oo
Eeﬁnition 2.5. For s e R, 1 < p,q,r < oo and 0 < A < N, the Banach space
Lr([0,00); N} ) is defined as the set of all tempered distributions f over RY x

,00) with lim,;_, 5. f=01in L" ,00); L™ and such that
0 ith lim; S;f=0in L"([0 L>® (RN d such th
A2 (o.copnvs 5 ) = 1275014 £l L (0,000, 1) [l < 00 (2.6)

The following lemma corresponds to a Bernstein-type inequality in Morrey spaces.
We omit its proof here because it is similar to the proof of Lemma 2.6 in [12]. In fact,
it is sufficient to note that for f € &’ with supp f C 27C we have F(f) = ¢;(£)F(f),
this is, f = 29"($0)(27+) * f, and the function 2/"($)(27+) and heat kernel g(z,277)
have a similar behavior.

Lemma 2.6 (Bernstein-type inequality). If 1 <p <r < oo and 0 < X\ < N, then

N-X_ N

. _N-x
1£latn < C2T 7 f Ly

for all f € M, x such that supp f C 21C.
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To establish the main existence result, we start by recalling the mild formulation

of (1.1)) in the fractional setting. System (|1.1)) is formally equivalent to the following
integral formulation (from now on, without loss of generality we assume d,,, d,, dy, =

1):
n(t) = Eo(—t*(—=A)%?)ng

+x /Ot(t — 1) Ea (=t = 1) (=A)*)V - (nG(v))(7) dr
+ /Otoe ) B (= (t = 1) (—A))(arn? — binm)(7) dr,
m(t) = Eo(—t*(=A)*"*)mq (2.7)
[T B¢ A a2 — b))
v(t) = Ea(—t*((—=A)%% = 3))vo
+ /Ot(t — 1) B a(—(t — T)*((—=A)%2 — 3))(azm + ban)(7) dr.
Here {Ea(-)} >0 and {Ea.o(-)}i50 denote the Mittag-Leffler families defined by
Eo(—t(—A)%?) = /OOC Mo (7)Up(7t%) dr,
Eal—t*(-8) +0) = [ Molr)Unalree) o
Faa(—t7(=A)"2) = /0 "t Ma(r) U () dr,

Eo.o(—t*((=A)2 4 a)) = /Ooo atMy(1)Ug,q(Tt%) dr,

where Uy (t) and Up o(t) are the fractional heat semigroup and the fractional damped

heat semigroup, defined as mf = ¢~ tl¢l’ fand Upo(t)f = e*Uy(t)f, respectively.
The function M, : C — C is the Mainardi function defined by

Ma(2) =) oF A el T )’

n=0

which verifies that M, (7) > 0 for all 7 > 0 and

*° r 1
/ T" My (T)dr = Tor+1) )
0 I'l+ar)
for -1 < r < o0.

To analyze the initial value problem , and motivated by the intrinsic scaling
of , we impose the condition #; = 2 — 6 and consider the following time-
dependent functional spaces. For 1 < p < N — ), % < Kk and s* = NT_’\, we define
the Banach spaces X7 and X5 by

— s*—0 — s*—0(1—-L)
A = LOO([O, OO);NP7,\,OO) n L“([O, OO);NP,Apo o )a (2 8)

Xo = L>([0,00); N5\ o),
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endowed with the corresponding norms

|zl = ”mHZ;([O,oo);N;;fe + [zl -

K o 8(1 ) I
L~(]o, )/\/ (2.9)

el = el o o, .
With this notation, we establish the notion of solution that we use.

Definition 2.7. Let 1 < p < N — A, s* = NTf)‘, and [ng,mo,vg] € N;/\_:g
Ns/\ o X J\/psf)\’oo. A mild solution for (1.1]) is a triple [n,m,v] € X1 X X} X Xs,

satlsfylng the integral system (2.7]).

Next, we state our main existence result.

Theorem 2.8. Let 0 < A < N, 7<n<oo 1<6,1<p<y (_1), *:NT_’\,

[no, Mo, vo] € N;J\, X NS X J\/'s)\ - Then, there exists 6 > 0 such that if
””OHN;’*QO’; + Hmo”x\/;fgi +lvollars, <9,

then problem (1.1) has a unique mild solution [n,m,v] in the class

(CRYNTL N &) x (CRYNGL) N12) x CRY A o).

PyA,00

Remark 2.9. (1) If in we consider xy < 0, a; = 0 and m = 0, we obtain the
fractional Keller-Segel system. Thus, Theorem provides the existence of global
solution for the fractional Keller-Segel system in the class (C(R™; N; ;(i) Ny) x
C(R*; N, ) for small initial data [ng, vo] in N;;{i X N2 oo

(2) If in we consider x > 0 and b3 = 0, we obtain a fractional Lotka-Volterra
competition model describing the competition interspecies n and m under a regime
of chemorepulsion mechanism caused by the chemical signal v. Thus, Theorem [2:§]
provides the existence of global solution for the fractional Lotka-Volterra system
(under small initial data) in the class (C(RT; N - yna) x (CRY Ny _9)
X)) x CRT NG ).

3. LINEAR AND NONLINEAR ESTIMATES

The aim of this section is to derive estimates to be used in proving the existence
of mild solutions. First we establish estimates for fractional heat semigroups, in
Morrey spaces, acting on distributions whose Fourier transforms have support in
an annulus.

Lemma 3.1. There exist positive constants C1 and Ca such that for any 1 < p <
00, 0 <A< N, a€R, 0<86, and any positive real numbers t, 7, if supp F f C 7C,
then

o @ a6
| Ea(=t*((=2)"% + a)) fll ay.n < Cz/o Mo(s)e™ e ds| flla,,, (3.1)
and if supp Ff C 7C , then

1Ba,a(=t*((=2)"% + a)) fll m, » < C’z/ s Mo (5)e" e O ™ ds| | aa, -
0
(3.2)
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Proof. The proof follows the ideas in [2] Lemma 2.4] but adjusted to the context
of Morrey spaces. Let ¢ € D(RM \ {0}) be a function such that ¢ = 1 near the
annulus C. Then,

Eo(—t*((=2)"* +a))f

o s)eastt -1 Te—st"lﬁls s
[ M) 7 (s(e/me 1 R () ©)) d (3.3)

= [ Ml (o550« 1) ds,
0

where g(z,t) = F~1(¢(¢/7)e"t"1€1"). The hypotheses on ¢ imply that

lg(-t)||r < Coe™ G i > 0. (3.4)
Thus, by applying the Young inequality (2.1 in (3.3)), and using (3.4)), we obtain

oo
st —Cystr?
[ Ea(—t*((=2)"" + ) fll amy.» < 02/ Mo (s)e™" e T ds|| f || ay
0

which proves (3.1). A similar argument proves (3.2]). O

The next lemma provides some inclusions involving Besov-Morrey spaces (see
[T, [14]).

Lemma 3.2. Suppose that 1 < r < o0, s8,81,82 € R, 1 < p,p1,p2 < o0, and
0<A<N.
(1) If1 <¢ <go < o0, then

L7([0,00): Nynar) € L7([0,00)i M 00)-
(ii) If p1 < p2 and sg — Np;A =5 — Np—l)\7 then

Lr([0,00); Nl s o) © L7([0,00)s N7 5 )-

Proof. Part (i) follows from the definition of the norm (2.6) and the fact that
17 C 1% if ¢; < go. To prove part (ii), from Lemma we have

Nox

P1

. ; _N-a)
125 lan,, < €2 A fllaa,

Taking the L™-norm, multiplying by 2752 and taking the [9-norm we obtain the
result. ]

Next we recall estimates for multiplier operators with polynomial growth in the
context Besov-Morrey spaces (see [IT], [14]).

Lemma 3.3. Letm € R, 1 < p < 00,0 <A< N, and P(§) € CIVATLRN\ {0}).
Suppose that there exists A > 0 such that

o+ P .
|T€k(§)| < Al )

for all k € (NU{O})N with |k| < [N/2]+1 and |¢] # 0. Then, for every g such that
supp F(g) C 2/C we have that

IF~HPEF (@), < CA2™ gl -

The following lemma is a consequence of the one above.
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Lemma 3.4. Let m,s € R, 1 <p<oo, 0 <A< N,1<¢q,r <00 and P§) €
CIN/2IFHRN \ {0}). Suppose that there exists A > 0 such that

okp

il m—|k|

for all k € (NU{0})N with |k| < [N/2] + 1 and [£| # 0. Then the multiplier
operator P(D) defined by P(D)g = F~'(P(£)F(9)(€)) is bounded from N3, , to

s—m

e Moreover,

||P(D)9||[7([0700);N;;7Z) < CAHQH[7([()’Oo);/\/;A BE

Lemma 3.5. If f be a distribution in S}, s < 0,1 < p,g <00, 0 <A< N and
1 <r < oo, then f belongs to the Besov-Morrey space E;([O, 00); Ny y.g) if and only
if

(277155 fllLr ([0,00):M, 1) )sez € L2
Moreover,

Chllf]

where the positive constants C1 and Ca depend only on N, s.

T (00N, ) < N8 Flzroseym, )iller < CollFll o sopns , )

Proof. This proof is inspired in the proof of [2, Proposition 2.33] adapted to the

context of L7 ([0, 00); 5 x.q) Spaces. After taking the norm L" ([0, 00); My, ») in the
localization operator, we obtain

218 fllzr to.00r ) < 2 (195 £ 12 0000mpn) + 18541 F L2 0000000

= 27118, fll (0,000 ) + 27 2901851 £l L (10,000, 1)
which implies the left-hand side inequality. On the other hand, we have
2°118; £l Lr(o.oe)myn) <277 > 1A FllLr0.00)imy )

J'<j—1

= D 297 A fllr(o,00)Mypn),

J'<i—1

and thus, using that s < 0 and applying the Young inequality in the framework of
["-spaces, we conclude the result. O

The lemma below contains a criterion for the limit of a series to belong to a
class of homogeneous Besov-Morrey space. Its proof follows the ideas in [2, Lemma
2.23].

Lemma 3.6. Let C' be an annulus, s € R, 0 < A< N, and 1 < p,q,7 < 0o such
that s < N/p, or s = N/p with g = 1. Let (f;)jez be a sequence of smooth functions
such that

supp Ff; C 2°C" and  [|(27°] f; |l e ((0,00)m, 1) )jezll 00 < 0.

Then Y ,cq f; converges in S’ to some f in EVT([O,OO);N;,)W); moreover, there
exists a constant C = C(s) > 0 such that

102 ooy, y S CHEP sl 00000, sz e
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Proof. Considering the annulus C in Definition 2.3} there exists ko € N such that
29°C N 29C’ = ( provided that |j" — j| > ko. Therefore, Aj/ f; = 0 for |j’ — j| > ko,
and

1A Fllrooormty =1 D0 AiFill rooeynt, 2
[3'=7l<ko

<C Y illerose)imy -
[/ —3jl<ko

Hence, we obtain that

20 Aj Fllrooyimyn) SC D 2 Il (0.00)Mp )

|~ il <ko
<C D> 2l o.My
|3~ il <ko

Taking the ¢9-norm and using the Young inequality for discrete convolutions, we
conclude the proof. O

The next lemma is similar to the previous one but now with distributions sup-
ported in balls. Therefore we omit its proof.

Lemma 3.7. Let B be a ball, s >0, 0 <A< N, and 1 < p,q,r < 0o be such that
s < N/p, ors = N/p with q=1. If (f;)jez be a sequence of smooth functions such
that

supp Ff; C2'B and  [|(27°]| £l L ((0,00)Mm, 1) )iezlles < 00,

then Zjez f; converges in 8" to some f in ﬁ([(), oo);./\/;f,A’q). Moreover, there
exists a constant C = C(s) > 0 such that

11

The paraproduct of v by u denoted by Tyv is the bilinear operator

Tuv = Z Sj_luAjv.
JEZ

F (.00 5 ) S CIE I illro.00m, 2)sezllen-

The remainder of u and v, denoted by R(u,v), is the bilinear operator

R(u,v) := Z Al .

li—jl<t

Formally, using the operators T,,v and R(u,v), we can express the product uv by
means of the Bony decomposition uv = Ty,v + T,u + R(u,v).

In the next two lemmas we provide continuity properties for the paraproduct
and remainder term on Besov-Morrey spaces, which can be seen as extensions from
the corresponding ones in Besov spaces found in [2, Theorems 2.47 and 2.52].

Lemma 3.8. Let s,0 c Rwitho >0,0< A< N, andletl <p,q,q1,q2,7,71,72 <
ih L= L 4 1 1_ 14, 1
oowzthafql—l—q2 andrfrl—i—m.
(i) Ifs< %, ors = % with ¢ = 1, then, there exists a positive constant C' > 0
such that

a2 (o.00ynvy, ) = CINE (0,002 1P 72 0,000 -
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(ii) Ifs—o < %, ors—o = % with ¢ = 1, then, there exists a positive constant
C > 0 such that

||Tuv|\fr([o,oo)w;;j’q) < COlul iﬁ([o,oo);/\f;j’ml)||v| L72 ([0,00)iN3 1 00)"

Proof. From Definition [2.3 the support of F(S;_1uA;v) is contained in 27 (C + B).
In addition, there is an integer ko such that A (S;_jul,;v) = 0 provided that
J' > j + ko. Thus, it is sufficient to estimate [|.S;_1uA;v||Lr([0,00);M,.)- From the

definition of the operators S’j, it holds
181t po < Cllupos. (3.5)

Thus, using Lemma [3.6] and the Holder inequality in L”, we conclude that T,v €
L7([0,00); N} 5 o)» and the inequality in the part (i) of the lemma. On the other
hand, from Lemma [3.5] it follows that

. c
1S5 -1ull s (p0,00)22¢) < — €jar 27 Ilull Lo (0,00)8 )0 (3.6)

for all j € Z and z < 0, where (¢j 4, )jez has norm 1 in ¢9(Z). Again, Lemma
and the Holder inequality in L"-spaces imply that T,v € L"([0,00); 57\2);
moreover, by using (3.6) we obtain the inequality in the part (i7) of the lemma. O

Lemma 3.9 ([]). Let 0 < A\, A1, A2 < N, 51,52 € R and p,p1,p2, ¢, q1,¢2, 7,71, 72 €
p 1 1,1 A _Mgd L_ 1,1 I_ 1,1
[1, 00] satisfying s1+s2 >0, 5 = -4 -, 5 = 2b422, o= 4= and ;= -+

If s14+ 52 < %, or s1+ §9 = % with ¢ = 1, then there exists a constant C > 0 such
that

172w, v)|

< Cllu|

i’*l([o,oox/v;;m,ql)””'ﬁ([o,oowvsz )’

ﬁ([O,oo);N;};:Q) P2:A2,92
Proof. From Definition we have the support of ]-"(Z‘quAj_l,uAjv) is con-
tained in 27 B. Moreover, there is an integer Ny such that Aj/ (Z‘quAj,,,uAjU) =
0 for all j/ > j + Ny. Applying Holder’s inequality we have

97 (sl+52)HAjR(u’ U)HLT([O,oo);Mp,n

< 27 (ste) > 1A —ouljvl| L (0,00)Mm, 2)
lv|<1,5>3"—No

S 023 (s1+s2) Z (”Aj*VUHL”"l([O,oo);Mpl,Al)
[v[<1,5>35"—No

x [|A0]

Lr2 ([O,OO);MP2,>\2)>

<c ¥ (2*(j*j')(51+52)2(j*1/)51
lv|<1,j>j"—No

X ||Aj—uu||m([o,oo>;Mm,h)2j82||Ajv||m([o,oo);Mw,M)) '

Note that s; + s > 0. From Lemma R(u,v) € ﬁ([Omo);N:;}\-;w), Applying
the discrete Holder and Young inequalities, we conclude the proof of the lemma. O
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4. EXISTENCE RESULTS

First we derive global estimates for mild solutions of the fractional heat equa-
tion and then obtain a solution to (2.7) using an iterative scheme. Let us rewrite

equations (2.7)) in the form
n(z,t) = Eo(—t*(=A)?)ng

+ / (b= 1) B~ (t — 1) (—AY/2)(fy + fo + f5)(r) dr,
m(z,t) = Ea(—t“(—A)9/2)mo

* /Ot@ = 1) Baa(—(t = 1) (=A)2)(fa + f5)(7) dr, -y
0(@,t) = Ba(—t"((~A)"/2 = 7))o
[ = B (A ) ot ),
where
fi =xV-(nGW)), fo=an? f3=—binm, 42)

fo=asm? fs=—bomn, fo=azm, fr=bsn.
Proposition 4.1. Let s e R, 0< 0,1 <p,g< o0, 1 <k <r<oo, é <r < oo,
—~ o1
a>0,and 0 <A< N. Ifvg € NS, , and f(z,1) € L”([Qoo);/\/;’)\e;l ‘“’”)), then

v(a,t) = Eo(—t*((=A)""? — a))vo

T / (t = 1) B o (—(t — 1) ((—A)72 — ) f(z, 7) dr
0
satisfies

o, 8)] < C(Iolln

ta T s o).

— b
L7 ([0,00):N, A&7 Ny ag
for some C > 0.

Proof. Applying Aj to the fractional heat equation *Dfv + (—=A)%/?v = —av + f
with initial data v(0) = vy, we obtain

CD?A]"U —+ (—A)9/2Aj’l) = —aAjv —+ Ajf7 Aj”l}|t:0 = Ajl]o. (43)
The solution to this equation is given by
Ajv = Ea(—t*((—=2)"* = a))Ajuv

¢ . 4.4
+/O (t—7)* " Eqo(—(t — T)a((—A)9/2 —a))A,fdr, t>0. (4
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Since the Fourier transform of Ajv() and Aj f are supported in the annulus 27C,
using Lemma [3.1] and the Young inequality in L", we have

||E (_ta(_A)H/Q — a,)A U0||L70 oo)(Mp N

o o ab .
< CQH/ M —ast —Clst 2 J||Ajvo||Mp1AdS||Lr(0,oo)

<Co [ M)l A lag 0 s

anb R
< Cg/ M / _Clst 2 J) ||Aj'UOH./\/lp,Ad5

<024 / 5™ Mo (5)dsl| A w0 am,
0

_85
<02 ar

Ajv()”/\/lp,m

and

I / (t = 1) B (—(t — T)(~A)%/2 — a))/

[0 o) (Mp,x)

[e'e] t
1 —as(t—7)% —Cys(t—71)*2% || A
< e, / SMa(s)] / (£ — m)2Temast=7) =Cust=TI2 A £ |0 oo

%) 9] i x N L/RT
< Cg/ sMa(s)</ e~ Crst? 2T la=D)x ) HAijLﬁJ Oo)(/vlp,x)ds
0 0 '

') a—1

1 (a=1)
<C sMy(s) (5297) an = ds||A f||L[0 oy Mp.2)
0

<C [ sM,(s)satamgmar—0i(1- )d8||AijLf0 oy (M)

_0i _gi(1—y) [T _ a1
< co-E-0i1 )/0 5T Mo ()ds A, Fllg _ (ayn

< 02 = 0S| A, £l

[0, oc) My )

(4.6)

where k* is such that 1+ 1/r = 1/k* + 1/k. Thus, from (4.5))-(4.6) we obtain
o 0o (1 L

IA; vllLg, (M) < 0(2 Tar || Ajvollm, , +277272 361 M)||A Fllzg, ¢ M)),

(4.7)
Therefore, multiplying both sides of ([4.7) by 27 a7 29 and taking the /?-summation,
we obtain

V| — SLSC(’UNS +f s —L)a
I ”L*([O,OO);NPK’C;T) lvoll PA | ||L“([O o), f;l ar))
where C' > 0 is a constant. The proof is complete. ([l
Lemma 4.2. If0§A<N,1§p<oo,é<f<a§oo,1<9 p<6(2 >1‘ ,cmd
fi=1,...,7 are defined as in , then the following estimates hold
0 Wil g s, S Ol ol
) 152l g2 g 20, < Clnl
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(i) s+ Foll s, S Clollas Il
(#0) Wil g oo, S Cllml,
O) ot il e oo, < Cllmll + ).

Proof. We start by analyzing (1) From Lemma we obtain
18;(IG ()]l - = <C||n[G(v)]‘||~

LR ([0,00):N) )~ INER (j0,00) N 70500y J=h2s
Now, from the Bony decomposition we have
[G(v)ljn = Tigw),n + TalG0)]; + R(G(v)];,n), j=1,2,3.

Taking into account that s* = %, using Lemmas and H we estimate

||Tn[G(’U)]J||Ev )Ns * 41— 9<1*ﬁ))
< CH’I’L” % (0,00) N 9(1—ﬁ))”[ (v )]j||f,\03([0700);/\[;*)::;+1)
< Cllnll .

(oo 2020 P E= 0.0y, )

1
< Clnllallvllx,, (by the condition k > —)
a

and
ez g ey er-20-20)
N s
< OGOl 7= 10,00 A0~ v, lln HLN([O N0 2,
= Ol oo, ) W g cepon o0,

< C|n|lx llvllx,s  (by the condition 6 > 1).
Moreover, from Lemmas [3.9] and [3:2] we obtain

IRAGE s e oei-oi-,
<l gy, [0 Ar———
<C

Hn”ﬁ([o NSV —0(1——) HU”Loo (10,0003 o)
< Cllnflx, ||v]l x, -

Therefore,
[l 1 ”L~ (00 ) < Cllnflx, l|v]] 2, (4.8)
Now we obtain the estimate for fs. From Lemmas [3.8] m and [3.2] we have
” n ”LN([O )pri 9(17ﬁ)) < CH”” TR ([0,00) N 9(1 ||n||Loo ([0,00):N —9)
< C|n|l

T (fosce)inty )>H"||f;<[o,oo>w:,’17:;>
< Clinlla, Inllx, -
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On the other hand, from Lemmas [3.9) and [3.2] and using the condition s* — 6 —
6(1 - L) > 0, we obtain

||R(7’l, n)”li\'/‘([O,oo):/\/s*_B_e(l_ﬁ)

¥ p,A,00 )

= Ol 22 o oy e 1Pl =0, conms o2

= C”””z“n([o,oo);NS*“’“‘ﬁ))||n|‘i;<[°v°°>;f\f£,*{i>

p,X\,00

< Cllnlla, 1]l x, -

Here we have used that p < % to guarantee that s* — 6 — (1 — -=) > 0.
Note that the conditions for x and 6 imply that 1 — 6(2 — ---) < 0 and therefore
s*—0+1—-6(1— i) < %. In conclusion, there exists a positive constant C' such

that
o 1. < Ollnfla, [|nfl ;- (4.9)

ak )

\|f2||i;([0,oo),N

Y Vp,A, 00
The proof of (iii) and (iv) for f3, f4, and f5 follows similarly. Finally, for fs and
f7, we have

1fe + ol wmoa- 2o, < Ol + [lmlx,)- (4.10)

0,00);N,, w7

A, 00

O

4.1. Proof of Theorem Motivated by [3], we consider the following iterative
scheme whose limit will give the global mild solution for the system (L.1)) in the
sense of Definition 2.7t

nV = B, (=t*(=A)*)ng, mY = E,(—t*(=A)"?)my,
o) = By (1 ((~A)72 ~ ),

t
nD = p() 4 x/ (t = 7)1 By o(—(t — ) (=AY V - (PG ™)) () dr
0
t
+ / (t = 1) B (=t — 1) (=A)2) (a1 n®On® — b n®m®)) (1) dr,
0

t
40 = 4 [ () (=t - 1) (-8)"7)
0

x (agm®™m® — bymEn®) (1) dr,
t
oD =@y [ ) (= (= 1) (-A)72 — )
0
x (azsm*FTY 4 panF+D) (1) dr.

Applying Proposition and Lemma to the above equality, we obtain the
following estimates:

IS+, < C(lImollyz - + Il [0, + 10F1F, + In® L, m D, ),
Im 2, < € (mollyee-o + Im @1, + 1052, [m @, )

o, < O (loollycr, _ + I+, + L, ).
(4.11)
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For small initial data, the sequence [n(®), m(¥) v(®)] is uniformly bounded in the
space X := X} X X1 X Xy with the norm

”[n(k)vm(k)vv(k)]”X = ||n(k)||Xl + Hm(k)”?ﬁ + ||v(k)HX2‘

In fact, from (4.11) we obtain

[, mEFED yEFD) = | ® D |y + [ |, + [0 *TD |,
< O (Ao +4[n™,m® +™])13),

where Ay = ||n0HN3*79 + ||m0||Ns*7e + Hvo||Ns and C is a positive constant.

(4.12)

Let 6 > 0 be small enough such that if ||n0HNe* o + ||m0||Ns‘*—9 + ||v0HNe <94,
then 1 — 16A49C? > 0, and consider the smallest root R of ZLC'R2 R+ C’Ao =0;

that is,
1—+/1—-164,C?
R= o 6407 (4.13)
Thus, if
||[n(k),m(k),v(k)]||x <R, (4.14)
then
”[ (k+1) k+1) (k+1)]||X < R, (415)

which implies that [n(k),m(k),v(k l, k€ N, is uniformly bounded in X. Next, we
bound the difference vector

[n+D — p®) D) (8) (kD) ()]

Noting that
nk+D) _ (k)

[ 7 B 8T - (OG)) r)ar
0

- /t(t — 1) Eaa(=(t = 7)*(=8))V - (n* DG E ) () dr
0

t (4.16)
+/ (t = 1) B (=t — 1) (=A)/2)(a1n®n® — b n®m®)) (1) dr
0
¢
= [ =0 Baa- - 1) (-2
0
X (aln(k_l)n(k_l) — bln(k_l)m(k_l))(r) dr,
by using Proposition [{.1] and Lemma [£.2] we obtain
||n(k+1) _ n(k)”)(1
< C(Hn(k*l)ﬂxl [o*= — B[, + [[n* — 0By, [[0®) o,
+ InE D InE=D = By 4 [InFD — 0|y (0P|, (4.17)

+ D g Y = 0Ol 4 D — m(’“)Hxllln(’“)Hxl)
< CRH[n(k_l) — B =) (k) (k=) U(k)]Hx-
Similarly we have

||m(k+1) ||X < C’R||[ — ) =)y (R) (k=) v(k)]Hx. (4.18)
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On the other hand,
Jo® D — v @z, < € (I = n® g, + [mE+D =By, ). (419)

From estimates (4.17)) and (4.19) we obtain

[+ — p(B) (o) iy (R) g (k1) g (0]

< ACR||[n* =D — n®) =1 () (=1) (R (4.20)

Thus, choosing R as in such that R < i (reducing 4, if necessary), we
see that [n(®) m®) ()] is a Cauchy sequence in X. The limit [n,m,v] is a mild
solution in X for system . The proof of uniqueness follows by using arguments
similar to those in the proof of inequality , and therefore we omit the details.
This proves Theorem 2.8
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