Electron. J. Differential Equations, Vol. 2023 (2023), No. 78, pp. 1-12.

Solutions for the Navier-Stokes equations with critical and subcritical fractional dissipation in Lei-Lin and Lei-Lin-Gevrey spaces

Wilberclay G. Melo, Nata F. Rocha, Natielle dos Santos Costa

Abstract:
In this article, we prove the existence of a unique global solution for the critical case of the generalized Navier-Stokes equations in Lei-Lin and Lei-Lin-Gevrey spaces, by assuming that the initial data is small enough. Moreover, we obtain a unique local solution for the subcritical case of this system, for any initial data, in these same spaces. It is important to point out that our main result is obtained by discussing some properties of the solutions for the heat equation with fractional dissipation.

Submitted April 18, 2023. Published November 10, 2023.
Math Subject Classifications: 35A01, 35Q35, 42B37.
Key Words: Navier-Stokes equations; global and local solutions; Lei-Lin-Gevrey spaces.
DOI: 10.58997/ejde.2023.78

Show me the PDF file (337 KB), TEX file for this article.

Wilberclay G. Melo
Departamento de Matemática
Universidade Federal de Sergipe
São Cristóvão, SE 49100-000, Brazil
email: wilberclay@academico.ufs.br
Natã F. Rocha
Campus Clóvis Moura
Universidade Estadual do Piauí
Teresina, PI 64078-213, Brazil
email: natafirmino@ccm.uespi.br
Natielle dos Santos Costa
Departamento de Matemática
Universidade Federal de Sergipe
São Cristóvão, SE 49100-000, Brazil
email: natielle.scosta@academico.ufs.br

Return to the EJDE web page