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Abstract. This article’s subject matter is the study of the asymptotic analy-
sis of the optimal control problem (OCP) constrained by the stationary Stokes

equations in a periodically perforated domain. We subject the interior region
of it with distributive controls. The Stokes operator considered involves the

oscillating coefficients for the state equations. We characterize the optimal

control and, upon employing the method of periodic unfolding, establish the
convergence of the solutions of the considered OCP to the solutions of the limit

OCP governed by stationary Stokes equations over a non-perforated domain.

The convergence of the cost functional is also established.

1. Introduction

In this article, we consider the optimal control problem (OCP) governed by
generalized stationary Stokes equations in a periodically perforated domain O∗ε
(refer Section 2, for detailed configuration of the domain). The size of holes in
the perforated domain is of the same order as that of the period, and the holes
are allowed to intersect the boundary of the domain. The control is applied in
the interior region of the domain, and we wish to study the asymptotic analysis
(homogenization) of an interior OCP subject to the constrained stationary Stokes
equations with oscillating coefficients.

One can find several works in the literature regarding the homogenization of
Stokes equations over a perforated domain. Using the multiple-scale expansion
method, the authors in [18] studied the homogenization of Stokes equations in a
porous medium with the Dirichlet boundary condition on the boundary of the holes.
They obtained the Darcy’s law as the limit law in the homogenized medium. In
[11], the authors considered the Stokes system in a periodically perforated domain
with non-homogeneous slip boundary conditions depending upon some parameter
γ. Upon employing the Tartar’s method of oscillating test functions they obtained
under homogenization, the limit laws, viz., Darcy’s law (for γ < 1), Brinkmann’s
law (for γ = 1), and Stokes’s type law (for γ > 1). In [34], the author studied
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a similar problem using the method of periodic unfolding in perforated domains
by [12]. Further, the type of behavior as seen in [11] was already observed in [14]
by the authors while studying the homogeneous Fourier boundary conditions for
the two-dimensional Stokes equation. Likewise, in [3, 1], the author examined the
Stokes equation in a perforated domain with holes of size much smaller than the
small positive parameter ε, wherein they considered the boundary conditions on
the holes to be of the Dirichlet type in [1] and the slip type in [3]. The domain
geometry, more specifically, the size of the holes, determines the kind of limit law
in these works. Also, the author in [8] employed the Γ− convergence techniques to
obtain comparable results.

A few works concern the homogenization of the OCPs governed by the elliptic
systems over the periodically perforated domains with different kinds of boundary
conditions on the boundary of holes (of the size of the same order as that of the
period). In this regard, with the use of different techiniques, viz., H0− conver-
gence in [23], two-scale convergence in [28], and unfolding methods in [9, 26], the
homogenized OCPs were thus obtained over the non-perforated domains. Further,
the homogenization of OCPs subject to the boundary value problems concerning
the steady Stokes equations mainly comprise the boundary conditions of the type:
Dirichlet, Navier slip-friction, Neumann, Mixed, etc. The authors in [27] studied
the homogenization of the OCPs subject to the Stokes equations with Dirichlet
boundary conditions on the boundary of holes, where the size of the holes is of the
same order as that of the period. Here, the authors could obtain the homogenized
system, pertaining only to the case when the set of admissible controls was un-
constrained. For more literature concerning the homogenization of optimal control
problems in perforated domains, the reader is referred to [15, 32, 17, 16] and the
references therein. Also, over another type of oscillating domain, one can refer to
the recent work [29] for the case of mixed boundary value problem for the Stokes
system, wherein the authors homogenized the stationary Stokes system subject to
the mixed boundary condition comprising of the Neumann boundary condition on
the highly oscillating boundary and the homogeneous Dirichlet boundary condi-
tion on the base part of the domain’s boundary. Very recently, the authors in [20]
studied the asymptotic analysis of the Stokes system with mixed boundary con-
ditions of similar type on the thin oscillating domain. Furthermore, pertaining to
the Navier-Stokes equations, the existence of the solutions to the mixed boundary
value problem has been established by the authors in [5] for 2D bounded domain.
For more literature related to the Stokes system with mixed boundary conditions,
one may refer to [19, 31, 25] and the references therein.

This article introduces an interior OCP subject to the generalized stationary
Stokes equations in a periodically perforated domain O∗ε . We employ mixed bound-
ary data on the boundary of the perforated domain, i.e., on the boundary of holes
that do not intersect the outer boundary, the homogeneous Neumann boundary
condition is prescribed, while on the rest part of the boundary, the homogeneous
Dirichlet boundary condition is prescribed. The underlying objective of this arti-
cle is to study the homogenization of this OCP. More specifically, we consider the
minimization of the L2−cost functional (3.1), which is subject to the constrained
generalized stationary Stokes equations (3.2).

The Stokes equations are generalized in the sense that we consider a second-order
elliptic linear differential operator in divergence form with oscillating coefficients,



EJDE-2023/80 OPTIMAL CONTROL PROBLEM FOR STOKES SYSTEMS 3

i.e., −div(Aε∇), first studied for the fixed domain in [6, Chapter 1], instead of
the classical Laplacian operator, which later on was studied by various authors for
different types of ε−dependent varying domains. For instance, we studied in [21]
the generalized stationary Stokes equation for the two-dimensional oscillating do-
main. Here, the action of the scalar operator −div(Aε∇) is defined in a ”diagonal”
manner on any vector u = (u1, . . . , un), with components u1, . . . , un in the H1

Sobolev space. That is, for 1 ≤ i ≤ n, we have (−div(Aε∇u))i = −div(Aε∇ui).
The main difficulty observed during the homogenization was identifying the limit
pressure terms appearing in the state and the adjoint systems, which we overcame
by introducing suitable corrector functions that solved some cell problems. We
thus obtained the limit OCP associated with the stationary Stokes equation in a
non-perforated domain.

The layout of this article is as follows: In the next section, we introduce the
periodically perforated domain O∗ε along with the notations that will be useful in
the sequel. Section 3 is devoted to a detailed description of the considered OCP
and the derivation of the optimality condition, followed by the characterization of
the optimal control. In Section 4, we derive a priori estimates of the solutions
to the considered OCP and its corresponding adjoint problem. In Section 5, we
recall the definition of the method of periodic unfolding in perforated domains (see,
[13, 10]) and a few of its properties. Section 6, refers to the limit (homogenized)
OCP. Finally, we derive the main convergence results in Section 7 followed by some
important remarks.

2. Domain description and notation

2.1. Domain description. Let {b1, . . . , bn} be a basis of Rn (n ≥ 2), and W be
the associated reference cell defined as

W =
{
w ∈ Rn : w =

n∑
i=1

wibi, (w1, . . . , wn) ∈ (0, 1)n
}
.

Let us denote O, W , and W ∗ = W\Y by an open bounded subset of Rn, a compact
subset of W , and the perforated reference cell, respectively. It is assumed that
the boundary of Y is Lipschitz continuous and has a finite number of connected
components. Also, let ε > 0 be a sequence that converges to zero and set

T =
{
ζ ∈ Rn : ζ =

n∑
i=1

zibi, (z1, . . . , zn) ∈ Zn
}
, Zε =

{
ζ ∈ T : ε(ζ +W ) ⊂ O

}
.

We take into account the perforated domain O∗ε (see Figure 1) given by O∗ε = O\Yε,
where Yε = ∪ζ∈T ε(ζ + Y ).

Now, let us denote Ôε as the interior of the largest union of ε(ζ +W ) cells such
that ε(ζ + W ) ⊂ O, while Λε ⊂ O as containing the parts from ε(ζ + W ) cells

intersecting the boundary ∂O. More precisely, we write Λε = O\Ôε, where

Ôε = interior{∪ζ∈Zε
ε(ζ +W )}.

The associated perforated domains are defined as

Ô∗ε = Ôε\Yε, Λ̂∗ε = O∗ε\Ô∗ε .
Also, we denote the boundary of the perforated domain O∗ε as

∂O∗ε = Γε1 ∪ Γε0, where Γε1 = ∂Ôε ∩ ∂Yε and Γε0 = ∂O∗ε\Γε1,



4 S. GARG, B. C. SARDAR EJDE-2023/80

Figure 1. Perforated domain O∗ε and the reference cell W .

which means that Γε1 denotes the boundary of set of holes contained in Ôε. In Figure

1, Ô∗ε and Λ̂∗ε respectively represent the dark perforated part and the remaining part
of the perforated domain O∗ε . While, Γε1 and Γε0 respectively represent the boundary

of holes contained in Ô∗ε and the boundary of holes contained in Λ̂∗ε along with the
outer boundary ∂O. In the following, we introduce a few notations that we shall
use throughout this article.

2.2. Notation.

• Aε(x) = A(x/ε) a.e. in O, for all ε > 0.
• vε = (vε1, . . . , vεn), for any bold symbol vector function vε.
• v = (v1, . . . , vn), for any bold symbol vector function v.
• τ > 0 is a given regularization parameter.
• ηε denotes the outward normal unit vector to Γε1.
• η denotes the outward normal unit vector to ∂O.
• R : S denotes the element-wise product followed by summation between any

matrices R and S.
• v ·w denotes the standard dot product between any vector functions v and
w.
• M t denotes the transpose of any matrix M .

• ψ̃ is the zero extension of any function ψ outside O∗ε to the whole of O.

• ψ̃ = (ψ̃1, · · · , ψ̃n), for any vector function ψ.
• |F | is the Lebesgue measure of the measurable set F .
• The symbol C represents a generic constant that is positive and independent

of ε.
• Θ = |W∗|

|W | , the proportion of the perforated reference cell W ∗ in the refer-

ence cell W .
• MW∗(φ) is the mean value of φ on the perforated reference cell W ∗.
• MW∗(φ) = (MW∗(φ1), · · · ,MW∗(φn)), for vector function φ.
• {D → R}, the set of all real valued functions defined on domain D.
• D(Ω), is the space of infinitely many times differentiable functions with

compact support in Ω, for any open set Ω ∈ Rn.
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3. Problem description and optimality condition

Let us consider the following OCP associated with Stokes system

inf
θε∈(L2(O∗

ε ))n

{
Jε(θε) =

1

2

∫
O∗

ε

|uε(θε)− ud|2 +
τ

2

∫
O∗

ε

|θε|2
}
, (3.1)

subject to
− div(Aε∇uε) +∇pε = θε in O∗ε ,

div(uε) = 0 in O∗ε ,
ηε ·Aε∇uε − pεηε = 0 on Γε1,

uε = 0 on Γε0,

(3.2)

where the target state ud = (ud1 , . . . , udn) is defined on the space (L2(O))n,
and θε is a control function defined on the space (L2(O∗ε))n. Here, the matrix
Aε(x) = A(xε ), where A(x) = (aij(x))1≤i,j≤n defined on the space (L∞(O))n×n

is assumed to obey the uniform ellipticity condition: there exist real constants
m1, m2 > 0 such that m1‖λ‖2 ≤

∑n
i,j=1 aij(x)λiλj ≤ m2‖λ‖2 for all λ ∈ Rn,

which is endowed with an Eucledian norm denoted by ‖ · ‖. Also, we understand
the action of scalar boundary operator ηε ·Aε∇ on the vector uε|Γε

1
in a ”diagonal”

manner: (ηε · Aε∇uε)i = ηε · Aε∇uεi, for 1 ≤ i ≤ n. We introduce the func-
tion space (H1

Γε
0
(O∗ε))n := {φ ∈ (H1(O∗ε))n : φ|Γε

0
= 0}. This is a Banach space

endowed with the norm

‖φ‖(H1
Γε

0
(O∗

ε ))n := ‖∇φ‖(L2(O∗
ε ))n×n , ∀φ ∈ (H1

Γε
0
(O∗ε))n.

Definition 3.1. We say a pair (uε, pε) ∈ (H1
Γε

0
(O∗ε))n ×L2(O∗ε) is a weak solution

to (3.2) if, for all φ ∈ (H1
Γε

0
(O∗ε))n,∫

O∗
ε

Aε∇uε : ∇φ dx−
∫
O∗

ε

pε div(φ) dx =

∫
O∗

ε

θε · φ dx, (3.3)

and, for all w ∈ L2(O∗ε), ∫
O∗

ε

div(uε) w dx = 0. (3.4)

The existence of a unique weak solution (uε(θε), pε) ∈ (H1
Γε

0
(O∗ε))n × L2(O∗ε) of

the system (3.2) follows analogous to [7, Theorem 4.7.1]. Also, for each ε > 0, there
exists a unique solution to the problem (3.1) that can be proved along the same
lines as in [24, Chapter 2, Theorem 1.2]. We call the optimal solution to (3.1) by
the triplet (uε, pε,θε), with uε, pε, and θε as optimal state, pressure, and control,
respectively.
Optimality Condition: The optimality condition is given by J ′ε(θ) · (θ−θε) ≥ 0,
for all θ ∈ (L2(O∗ε))n (see, [24, Chapter 2, Page 48]). One can obtain the further
simplification of this condition as

∫
O∗

ε
(vε+τθε) ·(θ−θε) ≥ 0, for all θ ∈ (L2(O∗ε))n

(see, [24, Chapter 2]), where the pair (vε, qε) is the solution to the following adjoint
problem:

−div(Atε∇vε) +∇qε = uε − ud in O∗ε ,
div(vε) = 0 in O∗ε ,

ηε ·Atε∇vε − qεηε = 0 on Γε1,

vε = 0 on Γε0.

(3.5)
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We call vε and qε, the adjoint state and pressure, respectively. The existence of
unique weak solution (vε, qε) to (3.5) can now be proved in a way similar to that
of system (3.2).

The following theorem characterizes the optimal control, the proof of which
follows analogous to standard procedure laid in [24, Chapter 2, Theorem 1.4].

Theorem 3.2. Let (uε, pε,θε) be the optimal solution of the problem (3.1) and
(vε, qε) solves (3.5), then the optimal control is characterized by

θε = −1

τ
vε a.e. in O∗ε . (3.6)

Conversely, suppose that a triplet (ǔε, p̌ε, θ̌ε) ∈ (H1
Γε

0
(O∗ε))n ×L2(O∗ε)× (L2(O∗ε))n

and a pair (v̌ε, q̌ε) ∈ (H1
Γε

0
(O∗ε))n × L2(O∗ε) solves the system

−div(Aε∇ǔε) +∇p̌ε = −1

τ
v̌ε in O∗ε ,

−div(Atε∇v̌ε) +∇q̌ε = ǔε − ud in O∗ε ,
div(ǔε) = 0, div(v̌ε) = 0 in O∗ε ,
ηε ·Aε∇ǔε − p̌εηε = 0 on Γε1,

ηε ·Atε∇v̌ε − q̌εηε = 0 on Γε1,

v̌ε = 0, ǔε = 0 on Γε0.

Then the triplet (ǔε, p̌ε,− 1
τ v̌ε) is the optimal solution of (3.1).

4. A priori estimates

This section concerns the derivation of estimates for the optimal solution to
the problem (3.1) and the associated solution to the adjoint problem (3.5). These
estimates are uniform and independent of the parameter ε. Towards attaining this
aim, we first evoke the following two lemmas.

Lemma 4.1 ([4, Lemma A.4]). There exists a constant C ∈ R+, independent of ε,
such that

‖v‖L2(O∗
ε )n ≤ C‖∇v‖(L2(O∗

ε ))n×n , ∀v ∈ (H1
Γε

0
(O∗ε))n.

Lemma 4.2 ([14, Lemma 5.1]). For each ε > 0 and qε ∈ L2(O∗ε), there exists
gε ∈ (H1

Γε
0
(O∗ε))n and a constant C ∈ R+, independent of ε, such that

div(gε) = qε and ‖∇gε‖(L2(O∗
ε ))n×n ≤ C(O) ‖qε‖L2(O∗

ε ). (4.1)

Theorem 4.3. For each ε > 0, let (uε, pε,θε) be the optimal solution of the problem
(3.1) and (vε, qε) solves the corresponding adjoint problem (3.5). Then, one has
θε ∈ (H1

Γε
0
(O∗ε))n and there exists a constant C ∈ R+, independent of ε such that

‖θ̄ε‖(L2(O∗
ε ))n ≤ C, (4.2)

‖ūε‖(H1
Γε

0
(O∗

ε ))n ≤ C, (4.3)

‖v̄ε‖(H1
Γε

0
(O∗

ε ))n ≤ C, (4.4)

‖p̄ε‖L2(O∗
ε ) ≤ C, (4.5)

‖q̄ε‖L2(O∗
ε ) ≤ C. (4.6)
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Proof. Let uε(0) denote the solution to (3.2) corresponding to θε = 0. In view of
Lemma 4.1, one can show that ‖uε(0)‖(L2(O∗

ε ))n ≤ 0, i.e., uε(0) = 0 in (L2(O∗ε))n.

Using this and the optimality of solution (uε, pε,θε) to problem (3.1), we have

‖uε(θ)− ud‖2(L2(O∗
ε ))n + τ‖θε‖2(L2(O∗

ε ))n ≤ ‖uε(0)− ud‖2(L2(O∗
ε ))n ≤ C,

which gives estimate (4.2). Now, let us take uε as a test function in (3.3). Con-
sidering (4.2) and the uniform ellipticity condition of matrix Aε, one obtains upon
applying the Cauchy-Schwarz inequality along with the Lemma 4.1, the inequality

m1‖∇uε‖2(L2(O∗
ε ))n×n ≤

∫
O∗

ε

Aε∇uε : ∇uε dx ≤ C ‖θε‖(L2(O∗
ε ))n‖∇uε‖(L2(O∗

ε ))n×n ,

from which estimate (4.3) follows.
Owing to Lemma 4.2, for given pε ∈ L2(O∗ε), there exists gε ∈ (H1

Γε
0
(O∗ε))n

satisfying div(gε) = pε. Corresponding to θε, taking v = gε in (3.3), we obtain

‖pε‖2L2(O∗
ε ) =

∫
O∗

ε

Aε∇uε : ∇gε dx−
∫
O∗

ε

θε · gε dx. (4.7)

In view of (4.1), (4.2) and (4.3), and the uniform ellipticity condition of the matrix
Aε, one obtains from (4.7) upon employing the Cauchy-Schwarz inequality and
Lemma 4.1, the inequality

‖pε‖2L2(O∗
ε ) ≤ (m2‖∇uε‖(L2(O∗

ε ))n×n + C‖θε‖(L2(O∗
ε ))n)‖∇gε‖(L2(O∗

ε ))n×n ,

which gives the estimate (4.5). Likewise, one can easily obtain the estimates (4.4)
and (4.6) following the above discussion. Finally, from (3.6), we obtain that θε ∈
(H1

Γε
0
(O∗ε))n. �

5. The method of periodic unfolding for perforated domains

We evoke the definition of the periodic unfolding operator and few of its prop-
erties as stated in [13, 10]. Given x ∈ Rn, we denote the greatest integer and the
fractional parts of x respectively by [x]W and {x}W . That is, [x]W =

∑n
j=1 kjbj be

the unique integer combination of periods and {x}W = x− [x]W . In particular, we
have for ε > 0,

x = ε
([x
ε

]
W

+
{x
ε

}
W

), ∀x ∈ Rn.

Definition 5.1. The unfolding operator T ∗ε : {O∗ε → R} → {O ×W ∗ → R} is
defined as

T ∗ε (u)(x, y) =

{
u(ε

[
x1

ε

]
W

+ εy) a.e. for (x, y) ∈ Ôε ×W ∗,
0 a.e. for (x, y) ∈ Λ̂∗ε ×W ∗.

Also, for any domain D ⊇ O∗ε and vector u = (u1, · · · , un) ∈ ({D → R})n, we
define its unfolding by

T ∗ε (u) := (T ∗ε (u1), . . . , T ∗ε (un)).

Proposition 5.2. The unfolding operator has the following properties:

(1) T ∗ε is linear and continuous from L2(O∗ε) to L2(O ×W ∗).
(2) Let u, v ∈ L2(O∗ε). Then T ∗ε (uv) = T ∗ε (u)T ∗ε (v).
(3) Let u ∈ L2(O). Then T ∗ε (u)→ u strongly in L2(O ×W ∗).
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(4) Let u ∈ L1(O∗ε). Then∫
Ô∗

ε

u(x) dx =

∫
O∗

ε

u(x) dx−
∫

Λ̂∗
ε

u(x) dx =
1

|W ∗|

∫
O×W∗

T ∗ε (u)(x, y) dx dy.

(5) For each ε > 0, let {uε} ∈ L2(O) and uε → u strongly in L2(O). Then
T ∗ε (uε)→ u strongly in L2(O ×W ∗).

(6) Let v ∈ L2(W ∗) be a W -periodic function and vε(x) = v(xε ). Then

T ∗ε (vε)(x, y) =

{
v(y) a.e. for (x, y) ∈ Ôε ×W ∗,
0 a.e. for (x, y) ∈ Λε ×W ∗.

(7) Let fε ∈ L2(O∗ε) be uniformly bounded. Then there exists f ∈ L2(O ×W ∗)
such that T ∗ε (fε) ⇀ f weakly in L2(O ×W ∗), and

f̃ε ⇀
1

|W |

∫
W∗

f(·, y) dy weakly in L2(O).

Proposition 5.3. Let O ⊂ Rn be bounded with Lipschitz boundary. Let fε ∈
H1(O∗ε) be such that fε = 0 on ∂O ∩ ∂O∗ε and satisfy,

‖∇fε‖(L2(O∗
ε ))n ≤ C.

Then there exists f ∈ H1
0 (O) and f̂ ∈ L2(O;H1

per(W
∗)) with MW∗(f̂) = 0, such

that up to a subsequence,

T ∗ε (∇fε) ⇀ ∇f +∇y f̂ weakly in (L2(O ×W ∗))n,
T ∗ε (fε)→ f strongly in L2(O;H1(W ∗)).

6. Limit optimal control problem

This section presents the limit (homogenized) system corresponding to problem
(3.1), which we considered in the beginning.

Let us consider the function space

(H1
0 (O))n := {ϕ ∈ (H1(O))n : ϕ|∂O = 0},

which is a Hilbert space for the norm

‖ϕ‖(H1
0 (O))n := ‖∇ϕ‖(L2(O))n×n ∀ϕ ∈ (H1

0 (O))n.

We now consider the limit OCP associated with the Stokes system

inf
θ∈(L2(O))n

{
J(θ) =

Θ

2

∫
O
|u− ud|2 dx+

τΘ

2

∫
O
|θ|2 dx

}
, (6.1)

subject to

−
n∑

j,α,β=1

∂

∂xα

(
bαβij

∂uj
∂xβ

)
+∇p = θ in O,

div(u) = 0 in O,
u = 0 on ∂O,

(6.2)

where the tensor B = (bαβij ) = (bαβij )1≤i,j,α,β≤n is constant, elliptic, and for 1 ≤
i, j, α, β ≤ n, is given by

bαβij = aαβij −
1

|W ∗|

∫
W∗

A(y)∇y(P β
j − χ

β
j ) : ∇yχαi dy,
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with aαβij = 1
|W∗|

∫
W∗ A(y)∇y(P β

j − χ
β
j ) : ∇yPαi dy as the entries of the constant

tensor A0, P β
j = P β

j (y) = (0, . . . , yj , . . . , 0) with yj at the β-th position, and for

1 ≤ j, β ≤ n, the correctors (χβj ,Π
β
j ) ∈ (H1(W ∗))n×L2(W ∗) solves the cell problem

−divy
(
A(y)∇y(P β

j − χ
β
j )
)

+∇yΠβ
j = 0 in W ∗,

η ·A(y)∇y(P β
j − χ

β
j )−Πβ

j η = 0 on ∂W ∗\∂W,

divy(P β
j − χ

β
j ) = 0 in W ∗,

(χβj ,Π
β
j )W ∗-periodic,

MW∗(χβj ) = 0.

(6.3)

The existence of this unique pair (u, p) ∈ (H1
0 (O))n×L2(O) can be found in [6,

Chapter 1]. Further, the problem (6.1) is a standard one and there exists a unique
weak solution to it, one can follow the arguments introduced in [24, Chapter 2,
Theorem 1.2]. We call the triplet (u, p,θ) ∈ (H1

0 (O))n × L2(O) × (L2(O))n, the
optimal solution to (6.1), with u, p, and θ as the optimal state, pressure, and
control, respectively.

Now, we introduce the limit adjoint system associated with (6.2): Find a pair
(v, q) ∈ (H1

0 (O))n × L2(O) which solves the system

−
n∑

j,α,β=1

∂

∂xα

(
bβαji

∂vj
∂xβ

)
+∇q = u− ud in O,

div(v) = 0 in O,
(6.4)

where the tensor Bt = (bβαji ) = (bβαji )1≤i,j,α,β≤n is constant, elliptic, and for 1 ≤
i, j, α, β ≤ n, is given by

bβαji = aβαji −
1

|W ∗|

∫
W∗

At(y)∇y(P β
j −H

β
j ) : ∇yHα

i dy,

with aβαji = 1
|W∗|

∫
W∗ A

t(y)∇y(P β
j −H

β
j ) : ∇yP α

i dy as the entries of the constant

tensor At0. Also, for 1 ≤ j, β ≤ n, the correctors (Hβ
j , Z

β
j ) ∈ (H1(W ∗))n×L2(W ∗)

solves the cell problem

−divy(At(y)∇y(P β
j −H

β
j )) +∇yZβj = 0 in W ∗,

η ·At(y)∇y(P β
j −H

β
j )− Zβj η = 0 on ∂W ∗\∂W,

divy(P β
j −H

β
j ) = 0 in W ∗,

(Hβ
j , Z

β
j )W ∗-periodic,

MW∗(Hβ
j ) = 0.

(6.5)

In the following, we state a result similar to Theorem 3.2 that characterizes the
optimal control θ in terms of the adjoint state v and the proof of which follows
analogous to the standard procedure laid in [24, Chapter 2, Theorem 1.4].

Theorem 6.1. Let (u, p,θ) be the optimal solution to (6.1) and (v, q) be the cor-
responding adjoint solution to (6.4), then the optimal control is characterized by

θ = −1

τ
v a.e. in O. (6.6)
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Conversely, suppose that a triplet (ǔ, p̌, θ̌) ∈ (H1
0 (O))n×L2(O)× (L2(O))n and a

pair (v̌, q̌) ∈ (H1
0 (O))n × L2(O), respectively, satisfy the following systems:

−
n∑

j,α,β=1

∂

∂xα

(
bαβij

∂ǔj
∂xβ

)
+∇p̌ = −1

τ
v̌ in O,

div(ǔ) = 0 in O,
and

−
n∑

j,α,β=1

∂

∂xα

(
bβαji

∂v̌j
∂xβ

)
+∇q̌ = ǔ− ud in O,

div(v̌) = 0 in O.

Then the triplet (ǔ, p̌,− 1
τ v̌) is the optimal solution to (6.1).

7. Convergence results

We present here the key findings on the convergence analysis of the optimal
solutions to the problem (3.1) and its corresponding adjoint system (3.5) by using
the method of periodic unfolding for perforated domains described in Section 5.

Theorem 7.1. For given ε > 0, let the triplets (uε, pε,θε) and (u, p,θ), respec-
tively, be the optimal solutions of the problems (3.1) and (6.1). Then

T ∗ε (Aε)→ A strongly in (L2(O ×W ∗))n×n, (7.1a)

θ̃ε ⇀ Θθ weakly in (L2(O))n, (7.1b)

ũε ⇀ Θu weakly in (H1
0 (O))n, (7.1c)

ṽε ⇀ Θv weakly in (H1
0 (O))n, (7.1d)

p̃ε ⇀
Θ

n
A0∇u : I + Θp weakly in L2(O), (7.1e)

q̃ε ⇀
Θ

n
At0∇v : I + Θq weakly in L2(O), (7.1f)

where A0 is a tensor as defined in Section 6, I is the n× n identity matrix, θ is
characterized through (6.6) and the pairs (vε, qε) and (v, q) solve respectively the
systems (3.5) and (6.4). Moreover,

lim
ε→0

Jε(θε) = J(θ). (7.2)

Proof. First, upon using Proposition 5.2(6) on the entries of the matrix Aε, we
obtain (7.1a) under the passage of limit ε → 0. Similarly, one can prove the con-
vergence for the matrix Atε under unfolding. Next, in view of Theorem 4.3 and the
fact that the triplet (uε, pε,θε) is an optimal solution to problem (3.1), one gets
uniform estimates for the sequences {θε}, {uε}, {pε}, {vε}, and {qε} in the spaces
(L2(O∗ε))n, (H1

Γε
0
(O∗ε))n, L2(O∗ε), (H1

Γε
0
(O∗ε))n, and L2(O∗ε), respectively.

Using the uniform estimate of the sequence {θε} in the space (L2(O∗ε))n and Propo-
sition 5.2(1), we have the sequence {T ∗ε (θε)} to be uniformly bounded in the space
(L2(O ×W ∗))n. Thus, by weak compactness, there exists a subsequence not rela-

belled and a function θ̂ in (L2(O ×W ∗))n, such that

T ∗ε (θε) ⇀ θ̂ weakly in (L2(O ×W ∗))n. (7.3)
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Now, using Proposition 5.2(7) in (7.3) gives

θ̃ε ⇀
1

|W |

∫
W∗
θ̂(x, y) dy = Θθ0 weakly in (L2(O))n, (7.4)

where, θ0 =MW∗(θ̂). Employing Proposition 5.2(1), we have the uniform bound-
edness of the sequences {T ε(uε)}, {T ε(∇uε)}, and {T ε(pε)} in the respective spaces
(L2(O;H1(W ∗)))n, (L2(O ×W ∗))n×n, and L2(O ×W ∗). Further, upon employ-
ing Proposition 5.3 and Proposition 5.2(7), there exist subsequences not relabelled
and functions û with MW∗(û) = 0, u0, and p̂ in spaces (L2(O;H1

per(W
∗)))n,

(H1
0 (O))n, and L2(O ×W ∗), respectively, such that

T ∗ε (uε)→ u0 strongly in (L2(O;H1(W ∗)))n, (7.5a)

T ∗ε (∇uε) ⇀ ∇u0 +∇yû weakly in (L2(O ×W ∗))n×n, (7.5b)

ũε ⇀ Θu0 weakly in (H1
0 (O))n, (7.5c)

T ∗ε (pε) ⇀ p̂ weakly in L2(O ×W ∗), (7.5d)

p̃ε ⇀ ΘMW∗(p̂) weakly in L2(O). (7.5e)

Likewise, for the associated adjoint counterparts, viz., vε, and qε , one obtains that
there exist subsequences not relabelled and functions v̂ withMW∗(v̂) = 0, v0, and
q̂ in spaces (L2(O;H1

per(W
∗)))n, (H1

0 (O))n, and L2(O ×W ∗), respectively, such
that

T ∗ε (vε)→ v0 strongly in (L2(O;H1(W ∗)))n, (7.6a)

T ∗ε (∇vε) ⇀ ∇v0 +∇yv̂ weakly in (L2(O ×W ∗))n×n, (7.6b)

ṽε ⇀ Θv0 weakly in (H1
0 (O))n, (7.6c)

T ∗ε (qε) ⇀ q̂ weakly in L2(O ×W ∗), (7.6d)

q̃ε ⇀ ΘMW∗(q̂) weakly in L2(O). (7.6e)

The identification of the limit functions û, v̂, p̂, q̂,MW∗(p̂) andMW∗(q̂) is carried
out in subsequent steps.
Step 1: (Claim): For all ϕ ∈ (H1

0 (O))n, ψ ∈ (L2(O;H1
per(W

∗)))n, and w ∈
L2(O), we claim that the ordered quadruplet (u0, û, p̂,θ0) belongs to (H1

0 (O))n ×
(L2(O;H1

per(W
∗)))n×L2(O×W ∗)× (L2(O))n is a unique solution to the following

limit system:

1

|W |

∫
O×W∗

A(y)(∇u0 +∇yû(x, y)) : (∇ϕ+∇yψ)dx dy

− 1

|W |

∫
O×W∗

p̂(x, y) · (div(ϕ) + divy(ψ))dx dy

= Θ

∫
O
θ0 ·ϕ dx,∫

O
div(u0)w dx = 0,

(7.7)
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and the ordered triplet (v0, v̂, q̂) ∈ (H1
0 (O))n× (L2(O;H1

per(W
∗)))n×L2(O×W ∗)

is a unique solution to the limit adjoint system

1

|W |

∫
O×W∗

At(y)(∇v0 +∇yv̂(x, y)) : (∇ϕ+∇yψ)dx dy

− 1

|W |

∫
O×W∗

q̂(x, y)(div(ϕ) + divy(ψ))dx dy

= Θ

∫
O

(u0 − ud) ·ϕ dx,∫
O

div(v0)w dx = 0.

(7.8)

Proof of the Claim: Towards the proof of (7.7), let us consider a test function
ϕ ∈ (D(O))n in (3.3) and use properties (1), (2), and (4) of Proposition 5.2 to
obtain

1

|W |

∫
O×W∗

T ∗ε (Aε)T
∗
ε (∇uε) : T ∗ε (∇ϕ) dx dy +

∫
Λ̂∗

ε

Aε∇uε : ∇ϕ dx

−
∫

Λ̂∗
ε

pε div(ϕ) dx− 1

|W |

∫
O×W∗

T ∗ε (pε)T
∗
ε (div(ϕ)) dx dy

=
1

|W |

∫
O×W∗

T ∗ε (θε) · T ∗ε (φε) dx dy +

∫
Λ̂∗

ε

θε ·ϕ dx.

(7.9)

Using Proposition 5.2(3), the fact that limε→0 |Λ̂∗ε| = 0, and convergences (7.3),
(7.1a), (7.5b), (7.5d), we have under the passage of limit as ε→ 0 in (7.9),

1

|W |

∫
O×W∗

A(y)(∇u0 +∇yû(x, y)) : ∇ϕ dx dy

− 1

|W |

∫
O×W∗

p̂(x, y) div(ϕ) dx dy

= Θ

∫
O
θ0 ·ϕ dx,

(7.10)

which remains valid for every ϕ ∈ (H1
0 (O))n, by density.

Now, consider the function φε(x) = εφ(x)ξ(xε ), where φ ∈ D(O) and ξ ∈
(H1

per(W
∗))n. Employing properties (2), (3), and (6) of Proposition 5.2, one can

easily obtain

T ∗ε (φε)(x, y)→ 0 strongly in (L2(O ×W ∗))n, (7.11a)

T ∗ε (∇φε)(x, y)→ φ(x)∇yξ(y) strongly in (L2(O ×W ∗))n×n. (7.11b)

Let us use the test function φε in (3.3) and employ properties (1), (2), and (4) of
Proposition 5.2 to obtain

1

|W |

∫
O×W∗

T ∗ε (Aε)T
∗
ε (∇uε) : T ∗ε (∇φε) dx dy +

∫
Λ̂∗

ε

Aε∇uε : ∇φε dx

−
∫

Λ̂∗
ε

pε div(φε) dx−
1

|W |

∫
O×W∗

T ∗ε (pε)T
∗
ε (div(φε)) dx dy

=
1

|W |

∫
O×W∗

T ∗ε (θε) · T ∗ε (φε) dx dy +

∫
Λ̂∗

ε

θε · φε dx.

(7.12)
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In above equality, the absolute value of each integral over Λ̂∗ε is bounded above

with a bound of order ε|Λ̂∗ε| or |Λ̂∗ε|. This with the fact that limε→0 |Λ̂∗ε| = 0, and
convergences (7.3), (7.1a), (7.5b), (7.5d), and (7.11), gives under the passage of
limit ε→ 0,

1

|W |

∫
O×W∗

A(y)(∇u0 +∇yû(x, y)) : ∇yψ dx dy

− 1

|W |

∫
O×W∗

p̂(x, y) divy(ψ) dx dy = 0,

(7.13)

which remains valid for every φ ξ = ψ ∈ (L2(O;H1
per(W

∗)))n, by density. Further,

for all w ∈ L2(O), we have ∫
O∗

ε

div(uε)w dx = 0. (7.14)

Now, upon applying unfolding on (7.14) and using properties (1), (2), and (3) of
Proposition 5.2 along with convergence (7.5b), we obtain under the passage of limit
ε→ 0

1

|W |

∫
O×W∗

(div(u0) + divy(û))w dxdy = 0,

which eventually gives upon using the fact that û is W ∗-periodic, for all w ∈ L2(O),∫
O

div(u0)w dx = 0. (7.15)

Finally, upon adding (7.10) with (7.13) and considering (7.15), we establish (7.7).
Likewise, one can easily establish (7.8). This settles the proof of the claim.

Step 2: First, we are going to identify the limit functions û, v̂, p̂, and q̂. Next,
using these identifications, we will identify MW∗(p̂) and MW∗(q̂).
Identification of û, v̂, p̂, q̂: Taking successively ϕ ≡ 0 and ψ ≡ 0 in (7.7), yields

− divy(A(y)∇yû(x, y)) +∇yp̂(x, y) = divy(A(y))∇u0(x) in O ×W ∗,

− divx

(∫
W∗

A(y)(∇u0(x) +∇yû(x, y))dy
)

+∇
(∫

W∗
p̂(x, y)dy

)
= |W ∗|θ0 in O,

div(u0) = 0 in O,
û(x, ·) is W ∗-periodic.

(7.16)

In the first line of (7.16), we have the y-independence of ∇u0(x) and the linearity
of operators, viz., divergence and gradient, which suggests û(x, y) and p̂(x, y) to be
of the following form (see, for e.g., [22, Page 15]):

û(x, y) = −
n∑

j,β=1

χβj (y)
∂u0j

∂xβ
+ u1(x),

p̂(x, y) =

n∑
j,β=1

Πβ
j (y)

∂u0j

∂xβ
+ p0(x).

(7.17)

where the ordered pair (u1, p0) ∈ (H1(O))n×L2(O), and for 1 ≤ j, β ≤ n, the pair

(χβj ,Π
β
j ) satisfy the cell problem (6.3). Likewise we obtain for the corresponding
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adjoint weak formulation (7.8),

−divy(A(y)∇yv̂(x, y)) +∇y q̂(x, y) = divy(A(y))∇v0(x) in O ×W ∗,

− divx

(∫
W∗

A(y)(∇v0(x) +∇yv̂(x, y))dy
)

+∇
(∫

W∗
q̂(x, y)dy

)
= |W ∗| (u0 − ud) in O,

div(v0) = 0 in O,
v̂(x, ·) is W ∗-periodic,

(7.18)

and

v̂(x, y) = −
n∑

j,β=1

Hβ
j (y)

∂v0j

∂xβ
+ v1(x),

q̂(x, y) =
n∑

j,β=1

Zβj (y)
∂v0j

∂xβ
+ q0(x),

(7.19)

where the ordered pair (v1, q0) ∈ (H1(O))n×L2(O), and for 1 ≤ j, β ≤ n, the pair

(Hβ
j , Z

β
j ) satisfy the cell problem (6.5).

Identification of MW∗(p̂) and MW∗(q̂): Choosing y = (y1, . . . , yn) as a test
function in the weak formulation of (6.3), we obtain

n∑
i,l,k,α=1

∫
W∗

alk
∂

∂yk
(P β

j − χ
β
j ) · ∂P

α
i

∂yl

∂yi
∂yα

dy = n

∫
W∗

Πβ
j dy. (7.20)

In view of (7.5e), (7.17), and (7.20), we observe that

MW∗(p̂) =
1

n|W ∗|

n∑
i,j,l,k,α,β=1

∫
W∗

alk
∂

∂yk

(
P β
j − χ

β
j

)
· ∂P

α
i

∂yl

∂yi
∂yα

∂u0j

∂xβ
dy + p0,

which upon using the definition of aαβij , gives

MW∗(p̂) =
1

n

n∑
i,j,α,β=1

aαβij
∂u0j

∂xβ

∂yi
∂yα

+ p0. (7.21)

Also, we re-write equation (7.21) to obtain the identification of MW∗(p̂) as

MW∗(p̂) =
1

n
A0∇u0 : I + p0. (7.22)

Likewise, one can obtain the identification of MW∗(q̂) as

MW∗(q̂) =
1

n
At0∇v0 : I + q0. (7.23)

Thus, from (7.5e) and (7.22); (7.6e) and (7.23), we have the following weak conver-
gences:

p̃ε ⇀
Θ

n
A0∇u0 : I + Θp0 weakly in L2(O), (7.24a)

q̃ε ⇀
Θ

n
At0∇v0 : I + Θq0 weakly in L2(O). (7.24b)

Step 3: (Claim): The pairs (u0, p0) and (v0, q0) solve the systems (6.2) and (6.4),
respectively.
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Proof of the Claim: We now prove that the pair (u0, p0) solves the system (6.2). The
proof that the pair (v0, q0) solves the system (6.4) follows analogously. Substituting
the values of û(x, y) and p̂(x, y) from expression (7.17) into equation (7.10), we
obtain

1

|W |

n∑
l,k=1

∫
O×W∗

alk

(∂u0

∂xk
−

n∑
j,β=1

∂χβj
∂yk

∂u0j

∂xβ

) ∂ϕ
∂xl

dx dy

− 1

|W |

n∑
j,β=1

∫
O×W∗

Πβ
j

∂u0j

∂xβ
div(ϕ) dx dy −Θ

∫
O
p0 div(ϕ) dx

= Θ

∫
O
θ0 ·ϕ dx.

(7.25)

Considering P β
j = (0, . . . , yj , . . . , 0) with yj at the β−th position, we can express

the terms ∂u0

∂xk
, ∂ϕ∂xl

, and div(ϕ) as

∂u0

∂xk
=

n∑
j,β=1

∂P β
j

∂yk

∂u0j

∂xβ
,

∂ϕ

∂xl
=

n∑
i,α=1

∂P α
i

∂yl

∂ϕi
∂xα

,

div(ϕ) =

n∑
i,α=1

divy(P α
i )
∂ϕi
∂xα

.

Substituting these expressions in (7.25), we obtain
n∑

i,j,α,β=1

∫
O

( 1

|W ∗|

n∑
l,k=1

∫
W∗

alk
∂

∂yk
(P β

j − χ
β
j )
∂P α

i

∂yl
dy
)∂u0j

∂xβ

∂ϕi
∂xα

dx

−
n∑

i,j,α,β=1

∫
O

( 1

|W ∗|

∫
W∗

Πβ
j divy(P α

i ) dy
)∂u0j

∂xβ

∂ϕi
∂xα

dx−
∫
O
p0 div(ϕ) dx

=

∫
O
θ0 ·ϕ dx.

(7.26)

Now, choosing the test function χαi in the weak formulation of (6.3), upon using
the fact that divy(χαi ) = divy(P α

i ) = δiα, where δ denotes the Kronecker delta
function, we obtain∫

W∗
A(y)∇y(P β

j − χ
β
j ) : ∇yχαi dy =

∫
W∗

Πβ
j δiα dy. (7.27)

Further, substituting (7.27) in (7.26), we obtain
n∑

i,j,α,β=1

∫
O

( 1

|W ∗|

n∑
l,k=1

∫
W∗

alk
∂

∂yk
(P β

j − χ
β
j )

∂

∂yl
(P α

i − χαi ) dy
)∂u0j

∂xβ

∂ϕi
∂xα

dx

−
∫
O
p0 div(ϕ) dx

=

∫
O
θ0 ·ϕ dx.

Also, we can write this equality as
n∑

i,j,α,β=1

∫
O
bαβij

∂u0j

∂xβ

∂ϕi
∂xα

dx−
∫
O
p0 div(ϕ) dx =

∫
O
θ0 ·ϕ dx, (7.28)
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which holds true for all ϕ ∈ (H1
0 (O))n. Also, from equation (7.15), we have∫

O div(u0)w dx = 0, for every w ∈ L2(O). This together with equation (7.28)

implies that, for θ = θ0, the pair (u0, p0) ∈ (H1
0 (O))n × L2(O) satisfies the varia-

tional formulation of the system (6.2).
Therefore, we obtain the optimality system for the minimization problem (6.1).

Also, in view of Theorem 6.1, we conclude that the triplet (u0, p0,θ0) is indeed
an optimal solution to the problem (6.1). Finally, upon considering the optimal
solution’s uniqueness, we establish that the subsequent pair of triplets are equal:

(u, p,θ) = (u0, p0,θ0). (7.29)

Hence, upon comparing (7.5c), (7.6c), (7.24a), (7.24b), and (7.4) with (7.29), we
obtain convergences (7.1c), (7.1d), (7.1e), (7.1f), and (7.1b), respectively.

Step 4: Now, we will furnish the proof of the energy convergence for the L2-cost
functional. Choosing the test function (uε − ud) in the weak formulation of system
(3.5), we obtain under unfolding upon passing ε→ 0,

lim
ε→0

∫
O∗

ε

|uε − ud|2 dx

=
1

|W |
lim
ε→0

∫
O×W∗

T ∗ε (Atε)T
∗
ε (∇vε) : T ∗ε (∇(uε − ud)) dx dy

+
1

|W |
lim
ε→0

∫
O×W∗

T ∗ε (qε) T
∗
ε (div(ud)) dx dy,

which gives in view of (7.29), Proposition 5.2(3) and convergences (7.6a), (7.5b),
and (7.6d)

lim
ε→0

∫
O∗

ε

|uε − ud|2 dx

=
1

|W |

∫
O×W∗

At(y)(∇v +∇yv̂(x, y)) : ∇y(u− ud) dx dy

+
1

|W |

∫
O×W∗

q̂(x, y) div(ud) dx dy.

(7.30)

Also, using (7.19) in (7.30) along with (7.29), we have upon simplification that

lim
ε→0

∫
O∗

ε

|uε − ud|2 dx

= Θ
( n∑
i,j,α,β=1

∫
O
bβαji

∂vi
∂xα

∂(u− ud)j
∂xβ

dx−
∫
O
q div(u− ud) dx

)
.

(7.31)

Now, using the test function (u− ud) in the weak formulation of system (6.4), we
obtain the following upon comparing with the right-hand side of equation (7.31),

lim
ε→0

∫
O∗

ε

|uε − ud|2 dx = Θ

∫
O
|u− ud|2 dx. (7.32)



EJDE-2023/80 OPTIMAL CONTROL PROBLEM FOR STOKES SYSTEMS 17

Furthermore, in view of (3.6), (7.6a), and (7.29), we obtain under unfolding upon
the passage of limit ε→ 0,

lim
ε→0

τ

2

∫
O∗

ε

|θε|2 dx = lim
ε→0

1

2|W |

∫
O×W∗

|T ∗ε (θε)|2 dx dy

= lim
ε→0

1

2τ |W |

∫
O×W∗

|T ∗ε (vε)|2 dx dy

=
1

2τ |W |

∫
O×W∗

|v|2 dx dy.

(7.33)

Also, since v is independent of y and comparing the right-hand side of (7.33) with
(6.6), we obtain

lim
ε→0

τ

2

∫
O∗

ε

|θε|2 dx =
Θτ

2

∫
O
|θ|2 dx. (7.34)

Thus, from equations (7.32) and (7.34), we obtain (7.2). This completes the proof
of Theorem 7.1. �

Remark 7.2. We observe that in our case, where the size of holes is of the same
order as that of the period, i.e., when the size of the holes is large (limε→0 σε = 0),
with Neumann data on the part of the boundary ∂O∗ε , the homogenized problem
is an interior OCP governed by stationary Stokes System. Where, we define (upon
following the convention of Allaire [2]) σε as the ratio between the actual size of
the holes and the critical size, with bε denoting the size (say, diameter) of holes:

σε =

{
ε| log( bεε )|1/2 for n = 2,(
εn

bn−2
ε

)1/2
for n ≥ 3.

(7.35)

Regarding the OCP governed by Stokes equations with homogeneous Dirichlet
boundary condition on the boundary of the perforated domain, the authors in
[32] studied the cases when the size of the holes is critical and smaller. Concerning
the case of smaller size holes, i.e., when limε→0 σε = +∞, they obtained under
homogenization the OCP governed by Stokes law, while in the case of critical size
holes, i.e., when limε→0 σε = r, where r > 0 is finite, they obtained under homog-
enization the OCP governed by Brinkman-type law, leading to the appearance of
‘strange term’ in the limit state equation (see, [32, Theorem 2.2, Page 164-165]).
The situation concerning the case of larger size holes, i.e., when limε→0 σε = 0, was
left open by the authors in [32] which is then settled by the authors in [27], wherein
they employed two-scale convergence method to obtain under homogenization the
OCP governed by Darcy’s law (see, [27, Theorem 2.8., Page 7]).

One can notice that in our setting, due to Neumann data on the part of the
boundary ∂O∗ε , we obtained under homogenization the OCP governed by Stokes
system, unlike Darcy law which the authors obtained in [27] due to Dirichlet data on
the boundary of the perforated domain. The homogenization of the OCP (3.1) with
Neumann data for the cases where the size of holes is smaller (limε→0 σε = +∞)
and critical (limε→0 σε = r, where r > 0 is finite), are left open to be explored. It
would be interesting to see the type of laws the limit OCP would obey in each case
mentioned above.

Remark 7.3. For the time-dependent (evolution) Stokes and incompressible Navier-
Stokes type equations over periodically perforated domains with holes of large size,
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one can find, for example, in the works of [30, 33] that the homogenous/non-
homogeneous Dirichlet boundary data is prescribed on the boundary of perforated
domain and under homogenization the Darcy-type Law is obtained. However, in
the case of Neumann Data on the boundary of perforated domain, it remains a
question of one’s interest that owing to the vector value spaces involved of the
form (L2(0, T ;V ))n and (L2(0, T ;V ′))n, where, V := {u ∈ (H1(O∗ε))n : div(u) =
0 in O∗ε} and V ′ being the topological dual of V , how one devises an approach to
deal with the difficulties that may arise in establishing the homogenization results.

8. Conclusions

We have addressed the limiting behavior of an interior OCP corresponding to
Stokes equations in an nD (n ≥ 2) periodically perforated domain O∗ε via the tech-
nique of periodic unfolding in perforated domains (see, [13, 10]). We employed the
Neumann boundary condition on the part of the boundary of the perforated domain.
Firstly, we characterized the unique minimizer of the problem (3.1) in terms of the
adjoint state. Secondly, we deduced the a priori optimal bounds for control, state,
pressure, and their corresponding adjoint state and pressure functions. Thereafter,
the limiting analysis for the considered OCP is carried out upon employing the
periodic unfolding method in perforated domains. We observed the convergence
between the optimal solution to the problem (3.1) posed on the perforated domain
O∗ε and the optimal solution to that of the limit problem (6.1) governed by station-
ary Stokes equation posed on a non-perforated domain O. Finally, we established
the convergence of energy corresponding to L2−cost functional.
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