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GLOBAL ANALYSIS ON A CONTINUOUS PLANAR PIECEWISE

LINEAR DIFFERENTIAL SYSTEM WITH THREE ZONES

MAN JIA, YOUFENG SU, HEBAI CHEN

Abstract. This article concerns the global dynamics of a continuous planar

piecewise linear differential system with three zones. We give global phase
portraits in the Poincaré disc and classify bifurcation diagrams under certain

parametric conditions, when the dynamics of central linear zone is anti-saddle.

Rich dynamical behaviors are demonstrated, from which we observe homoclinic
loops appearing in three linear zones and limit cycles occurring in three linear

zones which surround a node or node-focus.

1. Introduction

In several scientific fields, piecewise linear differential systems have attracted a
lot of attention from a rather diverse group of scientists such as physicists and math-
ematicians [1, 11, 12, 17, 25, 26, 30, 33]. This is because, in addition to academic-
theoretical significance [2, 4, 13, 14, 16, 18, 23, 31, 32, 36, 37], the study of piecewise
linear differential systems has practical applications [5, 6, 15, 19, 20, 28, 34, 35].
Piecewise linear differential systems can model a large number of nonlinear prob-
lems arising in physics and engineering such as design of electric circuits [1, 3], some
memristor oscillators [4, 5, 8, 9, 15, 23, 26, 27, 34] and FitzHugh-Nagumo system
[30, 31, 35]. Although piecewise linear differential systems may be considered as
some of the most tractable nonlinear ordinary differential equations, they display
various rich and interesting dynamical behaviours, with all the dynamics of gen-
eral smooth nonlinear systems (such as limit cycles, homoclinic loops, heteroclinic
loops, strangle attractors and so on), and with special dynamical behaviors (such
as jump bifurcation, grazing bifurcation, sliding bifurcation, singular continuous
systems and so on) [15, 17].

In this article, we are interested in continuous planar piecewise linear (CPWL)
differential systems. A CPWL differential system with three zones separated by
two parallel lines is of the Liénard form:

dx

dt
= F (x)− y, dy

dt
= g(x)− α, (1.1)
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where

F (x) =


tr(x− 1) + tc, if x > 1,

tcx, if − 1 ≤ x ≤ 1,

tl(x+ 1)− tc, if x < −1,

g(x) =


dr(x− 1) + dc, if x > 1,

dcx, if − 1 ≤ x ≤ 1,

dl(x+ 1)− dc, if x < −1,

with three open linear zones in the plane R2:

Sl := {(x, y) ∈ R2 : x < −1},
Sc := {(x, y) ∈ R2 : −1 < x < 1},
Sr := {(x, y) ∈ R2 : x > 1}

by two straight lines Γl := {(x, y) ∈ R2 : x = −1} and Γr := {(x, y) ∈ R2 : x =
1}. Considerable attention has been devoted to characterizing global dynamics of
system (1.1) [6, 7, 9, 10, 17, 20, 24, 25, 26, 27, 29]. Jia-Su-Chen [21] once investigated
global dynamics of system (1.1) in the region:

G := {(tr, tc, tl, dr, dc, dl, α) ∈ R7 : trtl > 0, drdl < 0},

where G is divided into four parametric regions:

G1 := {(tr, tc, tl, dr, dc, dl, α) ∈ R7 : tr > 0, tl > 0, dr > 0, dl < 0},
G2 := {(tr, tc, tl, dr, dc, dl, α) ∈ R7 : tr > 0, tl > 0, dr < 0, dl > 0},
G3 := {(tr, tc, tl, dr, dc, dl, α) ∈ R7 : tr < 0, tl < 0, dr > 0, dl < 0},
G4 := {(tr, tc, tl, dr, dc, dl, α) ∈ R7 : tr < 0, tl < 0, dr < 0, dl > 0}.

By a proper transformation, the regions G2, G3 and G4 can be changed into the
region G1. So all discussions for system (1.1) were restricted in the region G1.
When dc ≤ 0, global phase portraits in the Poincaré disc and bifurcation diagrams
of system (1.1) in the region G1 were presented [21]. Therefore, in this study we
continue to explore global dynamics of system (1.1) in the region G1 when dc > 0.

The article is organized as follows. In Section 2, we state our main results of
system (1.1) with dc > 0 in the region G1. To study the local dynamical behaviors
of system (1.1), we introduce some preliminary results in Section 3. Local dynamics
of system (1.1) are investigated in Section 4. Nonlocal dynamics of system (1.1) are
explored in Section 5. The proofs of our main results are presented in Section 6,
while numerical phase portraits are demonstrated in Section 7. A brief conclusion
is given in Section 8.

2. Main results

In this section, we summarize our main results of system (1.1) with dc > 0 in
the region G1, i.e., the bifurcation diagram in the (α, tc)-plane and global phase
portraits in the Poincaré disc. Notice that the condition t2r − 4dr < 0 (resp. = 0 or
> 0) implies that the dynamics of right linear zone of system (1.1) is a focus (resp.
improper node or bidirectional node) (see Lemma 4.1 for more details). Moreover,
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since system (1.1) has different qualitative properties of equilibrium points at infin-
ity for the three conditions t2r − 4dr < 0, t2r − 4dr = 0 and t2r − 4dr > 0 (see Lemma
4.2 for more details), our main results are achieved in the following three regions:

G11 :=
{

(tr, tc, tl, dr, dc, dl, α) ∈ R7 : tr > 0, tl > 0, dr > 0, dc > 0, dl < 0,

t2r − 4dr < 0
}
⊂ G1,

G12 :=
{

(tr, tc, tl, dr, dc, dl, α) ∈ R7 : tr > 0, tl > 0, dr > 0, dc > 0, dl < 0,

t2r − 4dr = 0
}
⊂ G1,

G13 :=
{

(tr, tc, tl, dr, dc, dl, α) ∈ R7 : tr > 0, tl > 0, dr > 0, dc > 0, dl < 0,

t2r − 4dr > 0
}
⊂ G1.

System (1.1) has two equilibrium points El : ((α + dc)/dl − 1, tl(α + dc)/dl − tc)
and Ec : (α/dc, tcα/dc) when dc > 0, −dc < α < dc and tc < 0 in G1, where El is
a saddle, Ec is a stable node for tc

2 − 4dc ≥ 0 or a stable focus for tc
2 − 4dc < 0.

Theorems 2.1-2.3 and Theorems 2.4-2.6 are presented according to the nonexistence
of the homoclinic loop appearing in three linear zones which surrounds the stable
node Ec. For simplicity, we set

t∗c := −
tr(α− dc) + tr

√
(α− dc)2 + 4αdr − dr

dl
(α+ dc)2

2dr
+
tl(α+ dc)

2dl

t∗∗∗c := −
tr(α− dc +

√
4αdr + (α− dc)2)

2dr
,

where t∗c and t∗∗∗c are continuous functions on α when tr, dr, dc and dl are fixed.

Figure 1. Bifurcation diagram in the (α, tc)-plane of system (1.1)
as (tr, tc, tl, dr, dc, dl, α) ∈ G11.

Theorem 2.1. When (tr, tc, tl, dr, dc, dl, α) ∈ G11, the bifurcation diagram of sys-
tem (1.1) in the (α, tc)-plane consists of the following bifurcation curves:

(a) Boundary equilibrium bifurcation curves:

BE11 = {(α, tc) ∈ R2 : α = −dc}, BE12 = {(α, tc) ∈ R2 : α = dc}.
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(b) Homoclinic bifurcation curves:

HL11 = {(α, tc) ∈ R2 : −dc < α ≤ dc, tc = φ(α)},
HL12 = {(α, tc) ∈ R2 : α > dc, tc = ϕ(α)}.

(c) Double limit cycle bifurcation curve:

DL1 = {(α, tc) ∈ R2 : α > dc, tc = h(α)},
where the function tc = φ(α) is continuous, monotonic and satisfies

max{t∗c ,−2
√
dc} < φ(α) < 0 for − dc < α < dc,

max{t∗c ,−2
√
dc} < φ(α) < −tr

√
dc/dr for α = dc,

and the function tc = h(α) is continuous satisfying ϕ(α) < h(α) < t∗∗∗c for α > dc.
Moreover, the bifurcation diagram and global phase portraits in the Poincaré disc of
system (1.1) in G11 are respectively shown in Figures 1 and 2, where −dc < α∗ < dc,
and

I = {(α, tc) ∈ R2 : α < −dc},

II = {(α, tc) ∈ R2 : −dc < α < dc, tc ≥ 2
√
dc},

III = {(α, tc) ∈ R2 : −dc < α < dc, 0 < tc < 2
√
dc},

IV = {(α, tc) ∈ R2 : −dc < α < dc, tc = 0},
V = {(α, tc) ∈ R2 : −dc < α < dc, φ(α) < tc < 0},

V I = {(α, tc) ∈ R2 : −dc < α < dc, −2
√
dc < tc < φ(α)},

V II = {(α, tc) ∈ R2 : −dc < α < dc, tc ≤ −2
√
dc},

V III = {(α, tc) ∈ R2 : α > dc, tc > h(α)},
IX = {(α, tc) ∈ R2 : α > dc, ϕ(α) < tc < h(α)},

X = {(α, tc) ∈ R2 : α > dc, tc < ϕ(α)},

BE121 = {(α, tc) ∈ R2 : α = dc, tc ≥ 2
√
dc},

BE122 = {(α, tc) ∈ R2 : α = dc, −tr
√
dc/dr < tc < 2

√
dc},

BE123 = {(α, tc) ∈ R2 : α = dc, tc = −tr
√
dc/dr},

BE124 = {(α, tc) ∈ R2 : α = dc, φ(α) < tc < −tr
√
dc/dr},

BE125 = {(α, tc) ∈ R2 : α = dc, −2
√
dc < tc < φ(α)},

BE126 = {(α, tc) ∈ R2 : α = dc, tc ≤ −2
√
dc},

HL111 = {(α, tc) ∈ R2 : −dc < α < α∗ < dc, tc = φ(α)},
HL112 = {(α, tc) ∈ R2 : −dc < α = α∗ < dc, tc = φ(α)},
HL113 = {(α, tc) ∈ R2 : −dc < α∗ < α < dc, tc = φ(α)},

HL114 = {(α, tc) ∈ R2 : α = dc, tc = φ(α)}.

In Figure 2, the stable limit cycle is marked by red color, the center is marked
by baby blue color, the unstable limit cycle is marked by dark blue color, the semi-
stable limit cycle is marked by yellow color and the unstable homoclinic loop is
marked by green color. When there is a unique limit cycle (stable or unstable) in
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I II III IV

V VI VII VIII

IX X BE11 BE121

BE122 BE123 BE124 BE125

BE126 HL111 HL112 HL113

HL114 HL12 DL1

Figure 2. Global phase portraits in the Poincaré disc of system
(1.1) as (tr, tc, tl, dr, dc, dl, α) ∈ G11.
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Theorem 2.1, it involves two or three linear zones, see global phase portraits in the
Poincaré disc of V , X, BE124 and HL12. When there are two limit cycles, the inner
limit cycle involves two or three linear zones and the outer limit cycle involves three
linear zones, see global phase portrait in the Poincaré disc of IX. The semi-stable
limit cycle involves three linear zones, see global phase portrait in the Poincaré disc
of DL1. The homoclinic loop involves two (resp. three) linear zones, see global
phase portraits in the Poincaré disc of HL111 and HL112 (resp. HL113, HL114 and
HL12), and the homoclinic loop becomes tangent to Γr, see global phase portrait
in the Poincaré disc of HL112.

Figure 3. Bifurcation diagram in the (α, tc)-plane of system (1.1)
as (tr, tc, tl, dr, dc, dl, α) ∈ G12.

Theorem 2.2. When (tr, tc, tl, dr, dc, dl, α) ∈ G12, the bifurcation diagram of sys-
tem (1.1) in the (α, tc)-plane consists of the following bifurcation curves:

(a) Boundary equilibrium bifurcation curves:

BE21 = {(α, tc) ∈ R2 : α = −dc}, BE22 = {(α, tc) ∈ R2 : α = dc}.

(b) Homoclinic bifurcation curve:

HL2 = {(α, tc) ∈ R2 : −dc < α < dc, tc = φ(α)},

where the function tc = φ(α) is continuous, monotonic, satisfying max{t∗c ,−2
√
dc}

< φ(α) < 0 for −dc < α < dc. Moreover, the bifurcation diagram and global
phase portraits in the Poincaré disc of system (1.1) in G12 are respectively shown
in Figures 3 and 4, where −dc < α∗ < dc, and

R1 = {(α, tc) ∈ R2 : α < −dc},

R2 = {(α, tc) ∈ R2 : −dc < α < dc, tc ≥ 2
√
dc},

R3 = {(α, tc) ∈ R2 : −dc < α < dc, 0 < tc < 2
√
dc},

R4 = {(α, tc) ∈ R2 : −dc < α < dc, tc = 0},
R5 = {(α, tc) ∈ R2 : −dc < α < dc, φ(α) < tc < 0},

R6 = {(α, tc) ∈ R2 : −dc < α < dc, −2
√
dc < tc < φ(α)},
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R7 = {(α, tc) ∈ R2 : −dc < α < dc, tc ≤ −2
√
dc},

R8 = {(α, tc) ∈ R2 : α > dc},

BE221 = {(α, tc) ∈ R2 : α = dc, tc ≥ 2
√
dc},

BE222 = {(α, tc) ∈ R2 : α = dc, tc < 2
√
dc},

HL21 = {(α, tc) ∈ R2 : −dc < α < α∗ < dc, tc = φ(α)},
HL22 = {(α, tc) ∈ R2 : −dc < α = α∗ < dc, tc = φ(α)},
HL23 = {(α, tc) ∈ R2 : −dc < α∗ < α < dc, tc = φ(α)}.

R1 R2 R3 R4

R5 R6 R7 R8

BE21 BE221 BE222 HL21

HL22 HL23

Figure 4. Global phase portraits in the Poincaré disc of system
(1.1) as (tr, tc, tl, dr, dc, dl, α) ∈ G12.



8 M. JIA, Y. SU, H. CHEN EJDE-2023/83

In Theorem 2.2, the unstable limit cycle involves two or three linear zones, see
global phase portrait in the Poincaré disc of R5. The homoclinic loop involves two
(resp. three) linear zones, see global phase portraits in the Poincaré disc of HL21

and HL22 (resp. HL23). The homoclinic loop becomes tangent to Γr, see global
phase portrait in the Poincaré disc of HL22.

Figure 5. Bifurcation diagram in the (α, tc)-plane of system
(1.1) as (tr, tc, tl, dr, dc, dl, α) ∈ G13.

Theorem 2.3. When (tr, tc, tl, dr, dc, dl, α) ∈ G13, the bifurcation diagram of sys-
tem (1.1) in the (α, tc)-plane consists of the following bifurcation curves:

(a) Boundary equilibrium bifurcation curves:

BE31 = {(α, tc) ∈ R2 : α = −dc}, BE32 = {(α, tc) ∈ R2 : α = dc}.
(b) Homoclinic bifurcation curve:

HL3 = {(α, tc) ∈ R2 : −dc < α < dc, tc = φ(α)},
where the function tc = φ(α) is continuous and monotonic satisfying max{t∗c ,−2

√
dc}

< φ(α) < 0 for −dc < α < dc. Moreover, the bifurcation diagram and global phase
portraits in the Poincaré disc of system (1.1) in G13 are respectively shown in Fig-
ures 5 and 6, where −dc < α∗ < dc, and

I1 = {(α, tc) ∈ R2 : α < −dc},

I2 = {(α, tc) ∈ R2 : −dc < α < dc, tc ≥ 2
√
dc},

I3 = {(α, tc) ∈ R2 : −dc < α < dc, 0 < tc < 2
√
dc},

I4 = {(α, tc) ∈ R2 : −dc < α < dc, tc = 0},
I5 = {(α, tc) ∈ R2 : −dc < α < dc, φ(α) < tc < 0},

I6 = {(α, tc) ∈ R2 : −dc < α < dc, −2
√
dc < tc < φ(α)},

I7 = {(α, tc) ∈ R2 : −dc < α < dc, tc ≤ −2
√
dc},

I8 = {(α, tc) ∈ R2 : α > dc},

BE321 = {(α, tc) ∈ R2 : α = dc, tc ≥ 2
√
dc},
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BE322 = {(α, tc) ∈ R2 : α = dc, tc < 2
√
dc},

HL31 = {(α, tc) ∈ R2 : −dc < α < α∗ < dc, tc = φ(α)},
HL32 = {(α, tc) ∈ R2 : −dc < α = α∗ < dc, tc = φ(α)},
HL33 = {(α, tc) ∈ R2 : −dc < α∗ < α < dc, tc = φ(α)}.

I1 I2 I3 I4

I5 I6 I7 I8

BE31 BE321 BE322 HL31

HL32 HL33

Figure 6. Global phase portraits in the Poincaré disc of system
(1.1) as (tr, tc, tl, dr, dc, dl, α) ∈ G13.

Theorem 2.4. When (tr, tc, tl, dr, dc, dl, α) ∈ G11, the bifurcation diagram of sys-
tem (1.1) in the (α, tc)-plane consists of the following bifurcation curves:

(a) Boundary equilibrium bifurcation curves:

BE41 = {(α, tc) ∈ R2 : α = −dc}, BE42 = {(α, tc) ∈ R2 : α = dc}.
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(b) Homoclinic bifurcation curves:

HL41 = {(α, tc) ∈ R2 : −dc < α ≤ dc, tc = φ(α)},
HL42 = {(α, tc) ∈ R2 : α > dc, tc = ϕ(α)}.

(c) Double limit cycle bifurcation curve:

DL4 = {(α, tc) ∈ R2 : α > dc, tc = h(α)},
where the function tc = φ(α) is continuous and monotonic satisfying max{t∗c ,−2

√
dc}

< φ(α) < 0 for −dc < α < α, φ(α) = −2
√
dc for α = α = φ−1(−2

√
dc),

t∗c < φ(α) < −2
√
dc for α < α ≤ dc, the function tc = ϕ(α) is continuous and

monotonic, and the function tc = h(α) is continuous satisfying ϕ(α) < h(α) < t∗∗∗c
for α > dc. Moreover, the bifurcation diagram and global phase portraits in the
Poincaré disc of system (1.1) in G11 are shown in Figure 7, where −dc < α∗ < α <
dc, and

G1 = {(α, tc) ∈ R2 : α < −dc},

G2 = {(α, tc) ∈ R2 : −dc < α < dc, tc ≥ 2
√
dc},

G3 = {(α, tc) ∈ R2 : −dc < α < dc, 0 < tc < 2
√
dc},

G4 = {(α, tc) ∈ R2 : −dc < α < dc, tc = 0},
G5 = {(α, tc) ∈ R2 : −dc < α < α, φ(α) < tc < 0}∪

{(α, tc) ∈ R2 : α < α < dc, −2
√
dc < tc < 0},

G6 = {(α, tc) ∈ R2 : −dc < α < α, −2
√
dc < tc < φ(α)},

G7 = {(α, tc) ∈ R2 : α < α < dc, φ(α) < tc ≤ −2
√
dc},

G8 = {(α, tc) ∈ R2 : −dc < α < α, tc ≤ −2
√
dc}∪

{(α, tc) ∈ R2 : α < α < dc, tc < φ(α)},
G9 = {(α, tc) ∈ R2 : α > dc, tc > h(α)},

G10 = {(α, tc) ∈ R2 : α > dc, ϕ(α) < tc < h(α)},
G11 = {(α, tc) ∈ R2 : α > dc, tc < ϕ(α)},

BE421 = {(α, tc) ∈ R2 : α = dc, tc ≥ 2
√
dc},

BE422 = {(α, tc) ∈ R2 : α = dc, −tr
√
dc/dr < tc < 2

√
dc},

BE423 = {(α, tc) ∈ R2 : α = dc, tc = −tr
√
dc/dr},

BE424 = {(α, tc) ∈ R2 : α = dc, −2
√
dc < tc < tr

√
dc/dr},

BE425 = {(α, tc) ∈ R2 : α = dc, φ(α) < tc ≤ −2
√
dc},

BE426 = {(α, tc) ∈ R2 : α = dc, tc < φ(α)},
HL411 = {(α, tc) ∈ R2 : −dc < α < α∗ < α, tc = φ(α)},
HL412 = {(α, tc) ∈ R2 : −dc < α = α∗ < α, tc = φ(α)},
HL413 = {(α, tc) ∈ R2 : −dc < α∗ < α < α, tc = φ(α)},
HL414 = {(α, tc) ∈ R2 : −dc < α ≤ α < dc, tc = φ(α)},

HL415 = {(α, tc) ∈ R2 : α = dc, tc = φ(α)}.
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Bifurcation diagram in the (α, tc)-plane of system (1.1) as
(tr, tc, tl, dr, dc, dl, α) ∈ G11

G7 BE425 HL414 HL415

Figure 7. Bifurcation diagram and global phase portraits in the
Poincaré disc of system (1.1) as (tr, tc, tl, dr, dc, dl, α) ∈ G11.

As we observe, the unstable limit cycle involves two or three linear zones in the
global phase portrait in the Poincaré disc of G7 or BE425. The unstable homoclinic
loop involves three linear zones in the global phase portrait in the Poincaré disc of
HL414 or HL415. The equilibrium point lying in Sc is a stable node in the global
phase portrait in the Poincaré disc of G7 or HL414. However, in the global phase
portrait in the Poincaré disc of BE425 or HL415, the equilibrium point lying on the
switching line Γr is a stable node (as seen from Sc), and is an unstable focus (as
seen from Sr). Compared with Theorem 2.1, the homoclinic bifurcation curve of
system (1.1) in Theorem 2.4 is different in the region {(α, tc) ∈ R2| − dc < α ≤ dc}
of the (α, tc)-plane, while the other conditions are the same. Global phase portraits
in the Poincaré disc of BE41, BE421, BE422, BE423, BE424, BE426, HL411, HL412,
HL413, HL42, DL4, G1, G2, G3, G4, G5, G6, G8, G9, G10 and G11 of Theorem 2.4
are the same as those in the Poincaré disc of BE11, BE121, BE122, BE123, BE124,
BE126, HL111,HL112, HL113, HL12, DL1, I, II, III, IV , V , V I, V II, V III,
IX and X of Theorem 2.1, respectively. Therefore, we omit the details and only
present global phase portraits in the Poincaré disc of G7, BE425, HL414 and HL415

in Theorem 2.4.

Theorem 2.5. When (tr, tc, tl, dr, dc, dl, α) ∈ G12, the bifurcation diagram of sys-
tem (1.1) in the (α, tc)-plane consists of the following bifurcation curves:
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(a) Boundary equilibrium bifurcation curves:

BE51 = {(α, tc) ∈ R2 : α = −dc}, BE52 = {(α, tc) ∈ R2 : α = dc}.

(b) Homoclinic bifurcation curve:

HL5 = {(α, tc) ∈ R2 : −dc < α < dc, tc = φ(α)},

where the function tc = φ(α) is continuous and monotonic satisfying max{t∗c ,−2
√
dc}

< φ(α) < 0 for −dc < α < α, φ(α) = −2
√
dc for α = α = φ−1(−2

√
dc), and

t∗c < φ(α) < −2
√
dc for α < α < dc. Moreover, the bifurcation diagram and global

phase portraits in the Poincaré disc of system (1.1) in G12 are shown in Figure 8,
where −dc < α∗ < α < dc, and

N1 = {(α, tc) ∈ R2 : α < −dc},

N2 = {(α, tc) ∈ R2 : −dc < α < dc, tc ≥ 2
√
dc},

N3 = {(α, tc) ∈ R2 : −dc < α < dc, 0 < tc < 2
√
dc},

N4 = {(α, tc) ∈ R2 : −dc < α < dc, tc = 0},
N5 = {(α, tc) ∈ R2 : −dc < α < α, φ(α) < tc < 0}∪

{(α, tc) ∈ R2 : α < α < dc, −2
√
dc < tc < 0},

N6 = {(α, tc) ∈ R2 : −dc < α < α, −2
√
dc < tc < φ(α)},

N7 = {(α, tc) ∈ R2 : α < α < dc, φ(α) < tc ≤ −2
√
dc},

N8 = {(α, tc) ∈ R2 : −dc < α < α, tc ≤ −2
√
dc}

∪ {(α, tc) ∈ R2 : α < α < dc, tc < φ(α)},
N9 = {(α, tc) ∈ R2 : α > dc},

BE521 = {(α, tc) ∈ R2 : α = dc, tc ≥ 2
√
dc},

BE522 = {(α, tc) ∈ R2 : α = dc, tc < 2
√
dc},

HL51 = {(α, tc) ∈ R2 : −dc < α < α∗ < α, tc = φ(α)},
HL52 = {(α, tc) ∈ R2 : −dc < α = α∗ < α, tc = φ(α)},
HL53 = {(α, tc) ∈ R2 : −dc < α∗ < α < α, tc = φ(α)},
HL54 = {(α, tc) ∈ R2 : −dc < α ≤ α < dc, tc = φ(α)}.

Although homoclinic bifurcation curves of system (1.1) in Theorem 2.5 are dif-
ferent from the ones described in Theorem 2.2 in the region {(α, tc) ∈ R2| − dc <
α < dc} of the (α, tc)-plane, all other bifurcation curves of system (1.1) in Theorem
2.5 are the same as those shown in Theorem 2.2. It indicates that 14 global phase
portraits in the Poincaré disc of Theorem 2.5 can be found in Theorem 2.2. In
other words, global phase portraits in the Poincaré disc of BE51, BE521, BE522,
HL51, HL52, HL53, N1, N2, N3, N4, N5, N6, N8 and N9 of Theorem 2.5 are the
same as those in the Poincaré disc of BE21, BE221, BE222, HL211, HL212, HL213,
R1, R2, R3, R4, R5, R6, R7 and R8 of Theorem 2.2, respectively. Hence, we only
show global phase portraits in the Poincaré disc of N7 and HL514 in Theorem 2.5.
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Bifurcation diagram in the (α, tc)-plane of system (1.1) as
(tr, tc, tl, dr, dc, dl, α) ∈ G12

N7 HL54

Figure 8. Bifurcation diagram and global phase portraits in the
Poincaré disc of system (1.1) as (tr, tc, tl, dr, dc, dl, α) ∈ G12.

Theorem 2.6. When (tr, tc, tl, dr, dc, dl, α) ∈ G13, the bifurcation diagram of sys-
tem (1.1) in the (α, tc)-plane consists of the following bifurcation curves:

(a) Boundary equilibrium bifurcation curves:

BE61 = {(α, tc) ∈ R2 : α = −dc}, BE62 = {(α, tc) ∈ R2 : α = dc};
(b) Homoclinic bifurcation curve:

HL6 = {(α, tc) ∈ R2 : −dc < α < dc, tc = φ(α)},
where the function tc = φ(α) is continuous, monotonous and satisfies

max{t∗c ,−2
√
dc} < φ(α) < 0 for − dc < α < α,

φ(α) = −2
√
dc for α = α = φ−1(−2

√
dc),

and t∗c < φ(α) < −2
√
dc for α < α < dc. Moreover, the bifurcation diagram and

global phase portraits in the Poincaré disc of system (1.1) in G13 are shown in
Figure 9, where −dc < α∗ < α < dc, and

U1 = {(α, tc) ∈ R2 : α < −dc},

U2 = {(α, tc) ∈ R2 : −dc < α < dc, tc ≥ 2
√
dc},

U3 = {(α, tc) ∈ R2 : −dc < α < dc, 0 < tc < 2
√
dc},

U4 = {(α, tc) ∈ R2 : −dc < α < dc, tc = 0},
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Bifurcation diagram in the (α, tc)-plane of system (1.1) as
(tr, tc, tl, dr, dc, dl, α) ∈ G13

U7 HL64

Figure 9. Bifurcation diagram and global phase portraits in the
Poincaré disc of system (1.1) as (tr, tc, tl, dr, dc, dl, α) ∈ G13.

U5 = {(α, tc) ∈ R2 : −dc < α < α, φ(α) < tc < 0}

∪ {(α, tc) ∈ R2 : α < α < dc, −2
√
dc < tc < 0},

U6 = {(α, tc) ∈ R2 : −dc < α < α, −2
√
dc < tc < φ(α)},

U7 = {(α, tc) ∈ R2 : α < α < dc, φ(α) < tc ≤ −2
√
dc},

U8 = {(α, tc) ∈ R2 : −dc < α < α, tc ≤ −2
√
dc}

∪ {(α, tc) ∈ R2 : α < α < dc, tc < φ(α)},
U9 = {(α, tc) ∈ R2 : α > dc},

BE621 = {(α, tc) ∈ R2 : α = dc, tc ≥ 2
√
dc},

BE622 = {(α, tc) ∈ R2 : α = dc, tc < 2
√
dc},

HL61 = {(α, tc) ∈ R2 : −dc < α < α∗ < α, tc = φ(α)},
HL62 = {(α, tc) ∈ R2 : −dc < α = α∗ < α, tc = φ(α)},
HL63 = {(α, tc) ∈ R2 : −dc < α∗ < α < α, tc = φ(α)},
HL64 = {(α, tc) ∈ R2 : −dc < α ≤ α < dc, tc = φ(α)}.
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In Theorem 2.6, the homoclinic bifurcation curves of system (1.1) are different
from the ones described in Theorem 2.3 in the region {(α, tc) ∈ R2|−dc < α < dc} of
the (α, tc)-plane. However, the other bifurcation curves of system (1.1) in Theorem
2.6 are the same as those described in Theorem 2.3 under the same conditions.
Therefore, 14 global phase portraits in the Poincaré disc of Theorem 2.6 can be
found in Theorem 2.3. In other words, global phase portraits in the Poincaré disc
of BE61, BE621, BE622, HL61, HL62, HL63, U1, U2, U3, U4, U5, U6, U8 and U9 of
Theorem 2.6 are the same as the corresponding ones in the Poincaré disc of BE31,
BE321, BE322, HL311, HL312, HL313 and the regions I1, I2, I3, I4, I5, I6, I7, I8
of Theorem 2.3, respectively. Thus, we only illustrate global phase portraits in the
Poincaré disc of U7 and HL614 as given in Theorem 2.6.

In addition, note that system (1.1) is analytic in R2\{Γl ∪ Γr} and Lipschitz
continuous in R2. Therefore, classical theorems on the existence, uniqueness and
continuity of solutions hold for system (1.1) under the initial conditions [26].

3. Preliminaries

We consider a continuous planar piecewise linear differential system in the Liénard
form

ẋ = F (x)− y, ẏ = g(x), (3.1)

where the functions F (x) and g(x) satisfy the following four conditions for x ∈ (a, b)
with a < 0 < b:

(C1) both F (x) and g(x) are Lipschitz continuous with respect to x;
(C2) F (0) = g(0) = 0 and xg(x) > 0 for x 6= 0;
(C3) there exists a unique switching line x = 0;
(C4) the unique equilibrium point (0, 0), is a stable focus as seen from the left

linear zone of the switching line x = 0, and is an unstable focus as seen
from the right linear zone of the switching line x = 0.

Let z(x) :=
∫ x

0
g(s)ds with z1 := z(b) and z2 := z(a). Obviously, we have

z(x) > 0 for x ∈ (a, 0) ∪ (0, b) and z(x) = 0 for x = 0. Denote two branches of the
inverse of z(x) as x1(z) and x2(z) when x ≥ 0 and x ≤ 0, respectively. Set

F1(z) := F (x1(z)), F2(z) := F (x2(z)). (3.2)

Re-write system (3.1) as

dz

dy
=
z′(x)dx

dy
=
g(x)dx

dy
= F1(z)− y, z ∈ (0, z1) (3.3)

for x > 0, and

dz

dy
=
z′(x)dx

dy
=
g(x)dx

dy
= F2(z)− y, z ∈ (0, z2) (3.4)

for x < 0. From (3.1)-(3.2), we have the following result.

Proposition 3.1. If conditions (C1)–(C4) hold, then we have

(i) The unique equilibrium point O(0, 0) of system (3.1) is an unstable focus if
and only if F1(z) > F2(z) for 0 < z � 1.

(ii) The unique equilibrium point O(0, 0) of system (3.1) is a stable focus if and
only if F1(z) < F2(z) for 0 < z � 1.

(iii) The unique equilibrium point O(0, 0) of system (3.1) is a center if and only
if F1(z) = F2(z) for 0 < z � 1.
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Proof. Note that the existence, uniqueness and continuity of the solution of system
(3.1) holds under the initial conditions, so the qualitative property of O(0, 0) de-
pends on the qualitative property of the left-hand and right-hand linear zones of
the switching line x = 0. It follows from condition (C4) that O(0, 0) is a focus or
center.

To prove that O(0, 0) of system (3.1) is an unstable focus if and only if F1(z) >
F2(z) for 0 < z � 1, we suppose that O(0, 0) is a center, and take a closed
orbit denoted by γ in a small neighborhood of O(0, 0). We denote by A and B
the intersection points of γ with the positive and negative y-axis respectively, see
Figure 10(a). Furthermore, we denote the corresponding integral curves of systems
(3.3) and (3.4) by γ1 and γ2 respectively. Evidently, γ1 and γ2 are connected by
A and B. We denote by P the intersection point of γ1 with the curve F1(z), as
shown in Figure 10(b). If F1(z) > F2(z) holds in a small neighborhood of O(0, 0),
by the comparison theorem [11, Corollary 6.3] to systems (3.3) and (3.4) we know
that γ2 passing through A intersects the curve F1(z) at C and γ2 passing through
B intersects the curve F1(z) at D, where C lies on the right side of P and D lies on
the left side of P . This indicates that system (3.1) has no integral curves connecting
A and B. This contradicts the existence of γ. In other words, O(0, 0) is a focus
if F1(z) > F2(z) holds in a small neighborhood of O(0, 0). It is easy to see that
O(0, 0) is an unstable focus if and only if F1(z) > F2(z) for 0 < z � 1.

(a) (b)

Figure 10. (a) Closed orbit γ of system (3.1); (b) Closed orbits
γ1 and γ2 of systems (3.3) and (3.4) when F1(z) > F2(z).

Similarly, we can prove that O(0, 0) is a stable focus if and only if F1(z) < F2(z)
for 0 < z � 1. If F1(z) = F2(z) in a small neighborhood of O(0, 0), then γ1 and γ2

will coincide. This implies that O(0, 0) is a center if and only if F1(z) = F2(z) for
0 < z � 1. �

(C5) The unique equilibrium point (0, 0) is an unstable focus as seen from the
left linear zone of the switching line x = 0, and is a stable focus as seen
from the right linear zone of the switching line x = 0.

Proceeding in an analogous manner, we can derive the dual result of Proposition
3.1 as follows.

Proposition 3.2. If conditions (C1)–(C3), (C5) hold, then we have
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(i) The unique equilibrium point O(0, 0) of system (3.1) is a stable focus if and
only if F1(z) > F2(z) for 0 < z � 1.

(ii) The unique equilibrium point O(0, 0) of system (3.1) is an unstable focus if
and only if F1(z) < F2(z) for 0 < z � 1.

(iii) The unique equilibrium point O(0, 0) of system (3.1) is a center if and only
if F1(z) = F2(z) for 0 < z � 1.

4. Local dynamics of system (1.1)

Lemma 4.1. When dc > 0 in G1, system (1.1) has no equilibrium points if α <
−dc; one equilibrium point Ecl if α = −dc; two equilibrium points E1 and Ec if
−dc < α < dc; two equilibrium points E1 and Ecr if α = dc; and two equilibrium
points El and Er if α > dc. The qualitative properties of these equilibrium points
are shown in Table 1, where El : ((α + dc)/dl − 1, tl(α + dc)/dl − tc) lies in Sl,
Ec : (α/dc, tcα/dc) lies in Sc, Er : ((α − dc)/dr + 1, tr(α − dc)/dr + tc) lies in Sr,
Ecl : (−1,−tc) lies on the left switching line Γl, and Ecr : (1, tc) lies on the right
switching line Γr.

Table 1. Qualitative properties of finite equilibrium points of sys-
tem (1.1) with dc > 0 in G1

Possibilities tr, tc, dr, dc, α Number, Stability and Type

α < −dc 0

tc < 0 tc
2 − 4dc < 0 1, Ecl cusp (Fig. 11(a))

tc
2 − 4dc ≥ 0 1, Ecl saddle-node (Fig. 11(b))

α = −dc tc = 0 1, Ecl cusp (Fig. 11(c))

tc > 0 tc
2 − 4dc < 0 1, Ecl cusp (Fig. 11(d))

tc
2 − 4dc ≥ 0 1, Ecl saddle-node (Fig. 11(e))

tc < 0 tc
2 − 4dc < 0 2, E1 saddle, Ec stable focus

tc
2 − 4dc ≥ 0 2, E1 saddle, Ec stable node

−dc < α < dc tc = 0 2, E1 saddle, Ec center

tc > 0 tc
2 − 4dc < 0 2, E1 saddle, Ec unstable focus

dc > 0 tc
2 − 4dc ≥ 0 2, E1 saddle, Ec unstable node

tc < 0 tc
2 − 4dc < 0 tr

2 − 4dr < 0 2, E1 saddle, Ecr a focus or center

tr
2 − 4dr ≥ 0 2, E1 saddle, Ecr focus-node (Fig. 11(f))

tc
2 − 4dc ≥ 0 tr

2 − 4dr < 0 2, E1 saddle, Ecr node-focus (Fig. 11(g))

tr
2 − 4dr ≥ 0 2, E1 saddle, Ecr node-node (Fig. 11(h))

α = dc tc = 0 tr
2 − 4dr < 0 2, E1 saddle, Ecr unstable focus (Fig. 11(i))

tr
2 − 4dr ≥ 0 2, E1 saddle, Ecr focus-node (Fig. 11(j))

tc > 0 tc
2 − 4dc < 0 tr

2 − 4dr < 0 2, E1 saddle, Ecr unstable focus

tr
2 − 4dr ≥ 0 2, E1 saddle, Ecr focus-node (Fig. 11(k))

tc
2 − 4dc ≥ 0 tr

2 − 4dr < 0 2, E1 saddle, Ecr node-focus (Fig. 11(l))

tr
2 − 4dr ≥ 0 2, E1 saddle, Ecr unstable node

α > dc tr
2 − 4dr < 0 2, E1 saddle, Er unstable focus

tr
2 − 4dr ≥ 0 2, E1 saddle, Er unstable node

Proof. As we know, the number of equilibrium points of system (1.1) is determined
by the number of roots of g(x) = α. If dc > 0 in G1, by a direct calculation, we
see that system (1.1) exhibits two equilibrium points El and Er for α > dc, two
equilibrium points El and Ecr for α = dc, two equilibrium points El and Ec for
−dc < α < dc, one equilibrium point Ecl for α = −dc, and no equilibrium points
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for α < −dc, as shown in Table 1. The Jacobian matrices at El, Ec and Er have
the forms respectively

JE1 :=

[
t1 −1
d1 0

]
, JEc :=

[
tc −1
dc 0

]
, JEr :=

[
tr −1
dr 0

]
.

From det JE1
= d1 < 0, det JEc

= dc > 0 and det JEr
= dr > 0, it follows that El

is a saddle and Ec and Er are anti-saddles, as shown in Table 1.

(a) tc < 0, tc
2 − 4dc < 0 (b) tc < 0, tc

2 − 4dc ≥ 0 (c) tc = 0

(d) tc > 0, tc
2 − 4dc < 0 (e) tc > 0, tc

2 − 4dc ≥ 0 (f)
tc < 0, tc

2 − 4dc < 0,
tr

2 − 4dr ≥ 0

(g)
tc < 0, tc

2 − 4dc ≥ 0,
tr

2 − 4dr < 0
(h)

tc < 0, tc
2 − 4dc ≥ 0,

tr
2 − 4dr ≥ 0

(i) tc = 0, tr
2 − 4dr < 0

(j) tc = 0, tr
2 − 4dr ≥ 0 (k)

tc > 0, tc
2 − 4dc < 0,

tr
2 − 4dr ≥ 0

(l)
tc > 0, tc

2 − 4dc ≥ 0,
tr

2 − 4dr < 0

Figure 11. Qualitative properties of Ecl and Ecr of system (1.1)
with dc > 0 in G1
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It follows that the qualitative property of Ecl (resp. Ecr) depends on the qual-
itative property of the left-hand and right-hand linear zones of the switching line
Γl (resp. Γr). The equilibrium point Ecr is an unstable focus as seen from Sc, and
is an unstable focus as seen from Sr for tc > 0, tc

2 − 4dc < 0 and tr
2 − 4dr < 0.

Therefore, Ecr is an unstable focus in the above case. The equilibrium point Ecr is
a stable focus as seen from Sc, but is an unstable focus as seen from Sr for tc < 0,
tc

2 − 4dc < 0 and tr
2 − 4dr < 0. Then, Ecr can be a focus or center (see Lemma

5.9). The equilibrium point Ecr is a stable node as seen from Sc, and is an unstable
node as seen from Sr. So Ecr is a node-node, as shown in Figure 11(h). More
similar results are illustrated in Figure 11 as well. �

Lemma 4.2. [21] Equilibrium points at infinity of system (1.1) in the Poincaré
disc are shown in Figure 12 in the region G1.

t2r − 4dr < 0 t2r − 4dr = 0 t2r − 4dr > 0

Figure 12. Equilibrium points at infinity of system (1.1) in the
Poincaré disc in G1

5. Nonlocal dynamics of system (1.1)

In this section, we study limit cycles and homoclinic loops of system (1.1) with
dc > 0 in the region G1. By Lemma 4.1, Ecl lies on the left switching line Γl and
is a half of a saddle in Sl. Namely, system (1.1) has two invariant lines in Sl. We
know that system (1.1) has no limit cycles and homoclinic loops when α = −dc < 0.
Therefore, we only need to investigate limit cycles and homoclinic loops of system
(1.1) when α > −dc and dc > 0. When dc > 0, we separate our discussions into
three cases −dc < a < dc, a = dc and α > dc, respectively.

5.1. Limit cycles and homoclinic loops for dc > 0 and −dc < α < dc in G1.
According to Lemma 4.1, system (1.1) has two equilibrium points El and Ec when
dc > 0 and −dc < α < dc in G1. Moreover, E1 is a saddle and Ec is a node for
t2c − 4dc ≥ 0, tc 6= 0 or a focus for t2c − 4dc < 0, tc 6= 0 or a center for tc = 0. Set
m := α/dc. Then, the coordinates of Ec can be rewritten as (m, tcm). By making
a linear transformation

x→ x+m, y → y + tcm,

system (1.1) reduces to

dx

dt
= F̃ (x)− y, dy

dt
= g̃(x), (5.1)
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where

F̃ (x) =


tr(x+m− 1) + tc(−m+ 1), if x > −m+ 1,

tcx, if −m− 1 ≤ x ≤ −m+ 1,

tl(x+m+ 1) + tc(−m− 1), if x < −m− 1,

g̃(x) =


dr(x+m− 1) + dc(−m+ 1), if x > −m+ 1,

dcx, if −m− 1 ≤ x ≤ −m+ 1,

dl(x+m+ 1) + dc(−m− 1), if x < −m− 1.

It is easy to see that Ec of system (1.1) is moved to O(0, 0) of system (5.1) and El
of system (1.1) is moved to Nl(dc(m + 1)/dl −m − 1, tldc(m + 1)/dl − tc(m + 1))
of system (5.1). Clearly, we have −m + 1 > 0 and −m − 1 < 0 because of dc > 0
and −dc < α < dc. The plane R2 is divided into three open linear zones

S̃l := {(x, y) ∈ R2 : x < −m− 1},

S̃c := {(x, y) ∈ R2 : −m− 1 < x < −m+ 1},

S̃r := {(x, y) ∈ R2 : x > −m+ 1}

by two straight lines Γ̃l := {(x, y) ∈ R2 : x = −m − 1} and Γ̃r := {(x, y) ∈ R2 :

x = −m + 1}. For simplicity, for system (5.1) we still use F and g to represent F̃
and g̃, respectively. Note that systems (1.1) and (5.1) are topologically equivalent.
Therefore, we only need to study limit cycles and homoclinic loops of system (5.1)
to obtain the corresponding results for system (1.1) by a translation.

In the following lemma, we show the nonexistence of limit cycles and homoclinic
loops of system (1.1) with dc > 0 and −dc < α < dc in G1.

Lemma 5.1. Assume that dc > 0 and −dc < α < dc in G1. System (1.1) exhibits
neither limit cycles nor homoclinic loops when tc ≥ 0 or tc ≤ t∗c , where

t∗c := −
tr(α− dc) + tr

√
(α− dc)2 + 4αdr − dr

dl
(α+ dc)2

2dr
+
tl(α+ dc)

2dl
.

Proof. It follows from Lemma 4.1 that system (5.1) has two equilibrium points Nl
and O when dc > 0 and −dc < α < dc in G1. Moreover, Nl is a saddle, and O is
a node for t2c − 4dc ≥ 0, tc 6= 0 or a focus for t2c − 4dc < 0, tc 6= 0 or a center for
tc = 0. To study the nonexistence of limit cycles and homoclinic loops of system
(5.1), we set a generalized Filippov transformation

z(x) :=

∫ x

0

g(s)ds,

where x1(z) and x2(z) are the branches of the inverse of z(x) for x ≥ 0 and x < 0
respectively. Denote the abscissa of saddle point Nl by xNl

:= dc(m+1)/dl−m−1.
We know that limit cycles of system (5.1) must only surround O by the index theory
[38, Chapter 4] if they exist. Therefore, it suffices to consider x ∈ (xNl

,+∞). From
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system (5.1) it follows that

z(x) =



drx
2

2 + (dr − dc)(m− 1)x+ 1
2 (dr − dc)(m− 1)2

if x > −m+ 1,

dcx
2

2 if −m− 1 ≤ x ≤ −m+ 1,

dlx
2

2 + (dl − dc)(m+ 1)x+ 1
2 (dl − dc)(m+ 1)2

if xNl
< x < −m− 1.

(5.2)

Moreover,

z(x) ∈


(dc(−m+1)2

2 ,+∞), if x > −m+ 1,

[0, dc(−m+1)2

2 ], if 0 ≤ x ≤ −m+ 1,

(0, dc(m+1)2

2 ], if −m− 1 ≤ x < 0,

(dc(m+1)2

2 , zNl
), if xNl

< x < −m− 1,

where zNl
:= dc(dl − dc)(m+ 1)2/(2dl). It follows from (5.2) that

x1(z) =

{√
2z
dc
, if 0 ≤ x ≤ −m+ 1,

h1(z)−m+ 1, if x > −m+ 1,
(5.3)

x2(z) =

{
−
√

2z
dc
, if −m− 1 ≤ x < 0,

h2(z)−m− 1, if xNl
< x < −m− 1,

(5.4)

with

h1(z) :=
−dc(−m+ 1) +

√
(−drdc + d2

c)(−m+ 1)2 + 2drz

dr
,

h2(z) :=
−dc(−m− 1)−

√
(−dldc + d2

c)(−m− 1)2 + 2dlz

dl
.

Let F1(z) := F (x1(z)) and F2(z) := F (x2(z)). Proving that F1(z) > F2(z) or
F1(z) < F2(z) for z ∈ (0, zNl

), is equivalent to that there are no limit cycles and
homoclinic loops [27, Section 6]. Based on (5.3) and (5.4), we derive

F1(z) =

tc
√

2z
dc
, if 0 ≤ z ≤ dc(−m+1)2

2 ,

trh1(z) + tc(−m+ 1), if z > dc(−m+1)2

2 ,
(5.5)

and

F2(z) =

−tc
√

2z
dc
, if 0 < z ≤ dc(m+1)2

2 ,

tlh2(z) + tc(−m− 1), if dc(m+1)2

2 < z < zNl
.

(5.6)

From (5.5) and (5.6) it follows that

F1(z)− F2(z)

=


2tc

√
2z
dc
, if 0 < z ≤ dc(−m+1)2

2 ,

trh1(z) + tc(−m+ 1) + tc

√
2z
dc
, if dc(−m+1)2

2 < z ≤ dc(m+1)2

2 ,

trh1(z)− tlh2(z) + 2tc, if dc(m+1)2

2 < z < zNl

(5.7)
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for 0 < α < dc, and

F1(z)− F2(z)

=

2tc

√
2z
dc
, if 0 < z ≤ dc

2 ,

tr
−dc+

√
−drdc+d2c+2drz

dr
− tl

dc−
√
−dldc+d2c+2dlz

dl
+ 2tc, if dc

2 < z < zNl

(5.8)

for α = 0, and

F1(z)− F2(z)

=


2tc

√
2z
dc
, if 0 < z ≤ dc(m+1)2

2 ,

tc

√
2z
dc
− tlh2(z) + tc(m+ 1), if dc(m+1)2

2 < z ≤ dc(−m+1)2

2 ,

trh1(z)− tlh2(z) + 2tc, if dc(−m+1)2

2 < z < zNl

(5.9)

for −dc < α < 0.
We consider the value of F1(z) − F2(z) for 0 < α < dc by three cases tc > 0,

tc = 0 and tc < 0, see (5.7).

Case (a1) When tc > 0, we have F1(z) − F2(z) > 0 for z ∈ (0, dc(−m+ 1)2/2],
and

F ′1(z)− F ′2(z) =
tr√

(−drdc + d2
c)(−m+ 1)2 + 2drz

+
tc√
2dcz

> 0

for z ∈ (dc(−m+ 1)2/2, dc(m+ 1)2/2], and

F ′1(z)− F ′2(z)

=
tr√

(−drdc + d2
c)(−m+ 1)2 + 2drz

+
tl√

(−dldc + d2
c)(−m− 1)2 + 2dlz

> 0

for z ∈ (dc(m+ 1)2/2, zNl
). Therefore, we have F1(z)− F2(z) > 0 for z ∈ (0, zNl

).
According to [27, Section 6], we know that system (5.1) has no limit cycles and
homoclinic loops for tc > 0, 0 < α < dc and dc > 0.

Case (a2) When tc = 0, we have F1(z)−F2(z) = 0 for z ∈ (0, dc(−m+ 1)2/2] and
F ′1(z)−F ′2(z) > 0 for z ∈ (dc(−m+ 1)2/2, zNl

). Hence, we obtain F1(z)−F2(z) ≥ 0
for z ∈ (0, zNl

), which implies that system (5.1) has no limit cycles and homoclinic
loops according to [27, Section 6] when tc = 0, 0 < α < dc and dc > 0.

Case (a3) When tc < 0, we have F1(z) − F2(z) < 0 for z ∈ (0, dc(−m+ 1)2/2].
For z ∈ (dc(−m+ 1)2/2, dc(m+ 1)2/2], a routine computation gives rise to

F ′1(z)− F ′2(z) =
−tc
√

2drz + tc
√

(−drdc + d2
c)(−m+ 1)2 + 2drz√

(−drdc + d2
c)(−m+ 1)2 + 2drz ·

√
2dcz

< 0, if tc < −tr,
= 0, if tc = −tr,
> 0, if tc > −tr

for t2rdc − t2cdr = 0; and

F ′1(z)− F ′2(z)


< 0, if z < z0,

= 0, if z = z0,

> 0, if z > z0
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for t2rdc − t2cdr > 0; and

F ′1(z)− F ′2(z)


> 0, if z < z0,

= 0, if z = z0,

< 0, if z > z0

for t2rdc − t2cdr < 0, where

z0 :=
t2c(−drdc + d2

c)(−m+ 1)2

2(t2rdc − t2cdr)
. (5.10)

If t2rdc − t2cdr < 0 and z0 ∈ (dc(−m+ 1)2/2, dc(m+ 1)2/2], then

(F1(z)− F2(z))|z=z0

= tr
−dc(−m+ 1) +

√
(−drdc + d2

c)(−m+ 1)2 + 2drz0

dr
+ tc(−m+ 1) + tc

√
2z0

dc

=
(−trdc + tcdr −

√
(−dr + dc)(t2rdc − t2cdr)
dr

)
(−m+ 1) < 0.

If tc < tc, then

(F1(z)− F2(z))|
z=

dc(m+1)2

2

= tr
−dc(−m+ 1) +

√
d2
c(−m+ 1)2 + 4drdcm

dr
+ tc(−m+ 1) + tc(m+ 1)

= tr
−dc(−m+ 1) +

√
d2
c(−m+ 1)2 + 4drdcm

dr
+ 2tc < 0,

where

tc := −
tr(α− dc) + tr

√
(α− dc)2 + 4αdr

2dr
.

As z ∈ (dc(m+ 1)2/2, zNl
), if tc < t∗c , then F ′1(z)− F ′2(z) > 0 and

(F1(z)− F2(z))|z=zNl

= tr
dc(m− 1) +

√
d2
c(−m+ 1)2 + 4drdcm− drd2c

dl
(m+ 1)2

dr
− tldc(m+ 1)

dl
+ 2tc

< 0.

It is easy to check that t∗c < tc. So we have F1(z) − F2(z) < 0 for z ∈ (0, zNl
)

if tc < t∗c . According to [27, Section 6], system (5.1) exhibits no limit cycles and
homoclinic loops when tc ≤ t∗c , 0 < α < dc and dc > 0.

We now consider the value of F1(z) − F2(z) for α = 0 by three cases tc > 0,
tc = 0 and tc < 0, see (5.8).

Case (b1) When tc > 0, we have F1(z)− F2(z) > 0 for z ∈ (0, dc/2], and

F ′1(z)− F ′2(z) =
tr√

−drdc + d2
c + 2drz

+
tl√

−dldc + d2
c + 2dlz

> 0,

for z ∈ (dc/2, dc(dl − dc)/(2dl)). Therefore, F1(z)− F2(z) > 0 for z in the interval
(0, dc(dl − dc)/(2dl)). It follows from [27, Section 6] that system (5.1) exhibits no
limit cycles and homoclinic loops when tc > 0, α = 0 and dc > 0.

Case (b2) When tc = 0, we have F1(z)− F2(z) = 0 for z ∈ (0, dc/2] and F ′1(z)−
F ′2(z) > 0 for z ∈ (dc/2, zNl

). It implies that F1(z) − F2(z) ≥ 0 for z ∈ (0, zNl
).
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Therefore, system (5.1) exhibits no limit cycles and homoclinic loops [27, Section
6], when tc = 0, α = 0 and dc > 0.

Case (b3) When tc < 0, it follows that F1(z) − F2(z) < 0 for z ∈ (0, dc/2] and
F ′1(z)− F ′2(z) > 0 for z ∈ (dc/2, dc(dl − dc)/(2dl)). Furthermore, we have

(F1(z)− F2(z))|
z=

dc(dl−dc)

2dl

= tr
−dc +

√
d2
c −

drd2c
dl

dr
− tldc

dl
+ 2tc < 0,

when

tc < −
−trdc + tr

√
d2
c −

drd2c
dl

2dr
+
tldc
2dl

.

Note that t∗c with α = 0 is

t∗c −
(
−trdc + tr

√
d2
c − drd2

c/dl

)
/(2dr) + tldc/(2dl).

Therefore, we obtain F1(z) − F2(z) < 0 for z ∈ (0, dc(dl − dc)/(2dl)) if tc < t∗c .
Based on [27, Section 6], system (5.1) has no limit cycles and homoclinic loops
when tc ≤ t∗c , α = 0 and dc > 0.

Next, we discuss the sign of F1(z)−F2(z) for −dc < α < 0 by three cases tc > 0,
tc = 0 and tc < 0, see (5.9).

Case (c1) When tc > 0, we have F1(z)− F2(z) > 0 for z ∈ (0, dc(m+ 1)2/2], and

F ′1(z)− F ′2(z) =
tl√

(−dldc + d2
c)(−m− 1)2 + 2dlz

+
tc√
2dcz

> 0,

for z ∈ (dc(m+ 1)2/2, dc(−m+ 1)2/2], and

F ′1(z)− F ′2(z)

=
tr√

(−drdc + d2
c)(−m+ 1)2 + 2drz

+
tl√

(−dldc + d2
c)(−m− 1)2 + 2dlz

> 0

for z ∈ (dc(−m+ 1)2/2, zNl
). Thus, we obtain F1(z) − F2(z) > 0 for z ∈ (0, zNl

).
From [27, Section 6], it follows that system (5.1) exhibits no limit cycles and ho-
moclinic loops for tc > 0, −dc < α < 0 and dc > 0.

Case (c2). When tc = 0, we find F1(z)− F2(z) = 0 for z ∈ (0, dc(m+ 1)2/2] and
F ′1(z)−F ′2(z) > 0 for z ∈ (dc(m+ 1)2/2, zNl

), which means that F1(z)−F2(z) ≥ 0
for z ∈ (0, zNl

). Then, system (5.1) has no limit cycles and homoclinic loops
according to [27, Section 6], when tc = 0, −dc < α < 0 and dc > 0.

Case (c3). When tc < 0, we find F1(z)− F2(z) < 0 for z ∈ (0, dc(m+ 1)2/2]. For
z ∈ (dc(m+ 1)2/2, dc(−m+ 1)2/2], a routine computation gives rise to

F ′1(z)− F ′2(z)


< 0, if z < z0,

= 0, if z = z0,

> 0, if z > z0,

because t2l dc − t2cdl > 0, where z0 is given in (5.10). When tc < t̂c, it follows that

(F1(z)− F2(z))|
z=

dc(−m+1)2

2

= tc(−m+ 1)− tc(−m− 1)− tl
−dc(−m− 1)−

√
d2
c(m+ 1)2 − 4dldcm

dl
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= tl
dc(−m− 1) +

√
d2
c(m+ 1)2 − 4dldcm

dl
+ 2tc < 0,

where

t̂c :=
tl(α+ dc)− tl

√
(α+ dc)2 − 4αdl

2dl
.

For z ∈ (dc(m+ 1)2/2, zNl
), it holds that F ′1(z)− F ′2(z) > 0. If tc < t∗c , then

F1(z)− F2(z)|
z=

dc(dl−dc)(m+1)2

2dl

< 0.

We see that t∗c < t̂c implies F1(z)−F2(z) < 0 for z ∈ (0, zNl
) if tc < t∗c . According

to [27, Section 6], system (5.1) exhibits no limit cycles and homoclinic loops when
tc ≤ t∗c , −dc < α < 0 and dc > 0.

From Cases (a1), (a2), (b1), (b2), (c1), and (c2), we obtain that system (1.1)
exhibits neither limit cycles nor homoclinic loops when tc ≥ 0, −dc < α < dc and
dc > 0 in G1. System (1.1) has neither limit cycles nor homoclinic loops by Cases
(a3), (b3) and (c3), when tc ≤ t∗c , −dc < α < dc, and dc > 0 in G1. �

From Lemma 5.1, it suffices to study the existence of limit cycles of system (1.1)
when dc > 0, −dc < α < dc and t∗c < tc < 0 in G1. From Lemma 4.1, we know that
system (1.1) has two equilibrium points El and Ec when dc > 0, −dc < α < dc and
t∗c < tc < 0 in G1. Moreover, E1 is a saddle and Ec is a stable node for t2c − 4dc ≥ 0
or a stable focus for t2c−4dc < 0. Since Ec lies in Sc and limit cycles of system (1.1)
must only surround Ec by the index theory [38, Chapter 4], we obtain the existence
of small limit cycles of system (1.1) when dc > 0, −dc < α < dc and t∗c < tc < 0 in
G1 as follows.

Lemma 5.2. Assume that dc > 0 and −dc < α < dc in G1. If t∗c < tc < 0, then
the following two assertions hold.

(a) System (1.1) exhibits no small limit cycles when tc
2 − 4dc ≥ 0.

(b) System (1.1) exhibits at most one small limit cycle that is unstable when
tc

2− 4dc < 0. The small limit cycle lies in Sl ∪Γl ∪Sc if tc > tldc/dl or in

Sc ∪ Γr ∪ Sr if tc > −tr
√
dc/dr.

Proof. When dc > 0, −dc < α < dc and tc < 0 in G1, it follows from Lemma 4.1
that system (5.1) has two equilibrium points Nl and O, Nl is a saddle, and O is a
stable node for tc

2−4dc ≥ 0 or a stable focus for tc
2−4dc < 0. Applying the index

theory [38, Chapter 4], we know that limit cycle of system (5.1) must surround O
if it exists. Therefore, we study the existence of small limit cycles of system (5.1)
by analyzing the dynamical behavior of O. Given tc

2 − 4dc ≥ 0, since O is a stable

node, system (5.1) has at least one invariant line in S̃c, namely, there is no small
limit cycle. Thus we arrive at the desire result (a). Given tc

2 − 4dc < 0, we note

that small limit cycle of system (5.1) lies in S̃l∪ Γ̃l∪S̃c or in S̃c∪ Γ̃r∪S̃r if it exists.
We discuss it by classification in what follows.

Firstly, we denote the small limit cycle of system (5.1) by Γ1. The small limit

cycle Γ1 lies in S̃l ∪ Γ̃l ∪ S̃c, as shown in Figure 13(a). Moreover, A1, B1, C1, D1,
E1, F1, G1, and H1 are points on Γ1, the points A1, G1 lie on the line x = 0,

the points B1, F1 lie on the left switching line Γ̃l, the points C1, E1 lie on the line
x = tc(m + 1)/tl − m − 1, and D1, H1 are the intersection points of Γ1 and the
curve y = F (x). We claim that the intersection point of Γ1 and the negative x-axis
lies in the region {x ∈ R|xNl

< x < x∗}, where xNl
:= dc(m + 1)/dl − m − 1 is
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Small limit cycle of Γ1 of (5.1) Γ1 lies in the (p− y)-plane

Figure 13. Small limit cycles of system (5.1) in S̃l ∪ Γ̃l ∪ S̃c

the abscissa of saddle point Nl and x∗ := tc(m+ 1)/tl −m− 1 satisfies F (x∗) = 0.
Otherwise, we have ∮

Γ1

dE = g(x)F (x) < 0,

when the intersection point of Γ1 and the negative x-axis lies in the region {x ∈
R|x∗ ≤ x < 0}, where

E(x, y) :=

∫ x

0

g(s)ds+
y2

2

is an energy function along the vector field of system (5.1). This contradicts the
fact that

∮
Γ1
dE = 0.

To prove that ∮
Γ1

F ′(x)dt > 0, (5.11)

which indicates that the small limit cycle Γ1 is unstable and hyperbolic [7, Propo-
sisition 3.1], we let p := F (x) and denote by x1(p) and x2(p) the branches of the
inverse of p(x) for −m − 1 < x < −m + 1 and xNl

< x < −m − 1, respectively.
From system (5.1) it follows that

x1(p) =
p

tc
, for tc(−m+ 1) < p < −tc(m+ 1),

x2(p) =
p

tl
+

(tc − tl)(m+ 1)

tl
,

for − tc(m+ 1) +
tldc(m+ 1)

dl
< p < −tc(m+ 1).

(5.12)

We re-write (5.1) as

dy

dp
=
λ1(p)

p− y
, p ∈ (tc(−m+ 1), −tc(m+ 1)),

dy

dp
=
λ2(p)

p− y
, p ∈ (−tc(m+ 1) +

tldc(m+ 1)

dl
, −tc(m+ 1)),

(5.13)
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where

λ1(p) :=
g(x1)

F ′(x1)
=
dcp

t2c
, λ2(p) :=

g(x2)

F ′(x2)
=
dlp

t2l
+

(tcdl − tldc)(m+ 1)

t2l
.

If λ1(p) = λ2(p), then

p0 :=
t2c(tcdl − tldc)(m+ 1)

t2l dc − t2cdl
. (5.14)

From the sign of ẏ of system (5.1), we know that yA1
> yB1

> yC1
> 0 and

0 > yE1
> yF1

> yG1
, where yA1

, yB1
, yC1

, yE1
, yF1

and yG1
are the ordinates of

A1, B1, C1, E1, F1 and G1, respectively. It means that p0 < 0 if it exists. Then,
tc > tldc/dl. Denote x∗1 := x1(p0) and x∗2 := x2(p0). Evidently, we have

xNl
< x∗2 <

tc(m+ 1)

tl
−m− 1 < 0 < x∗1 < −m+ 1. (5.15)

We claim that p0 exists and p0 < 0, i.e., Γ1 intersects with the lines x = x∗1 and
x = x∗2. Otherwise, it follows from the comparison theorem [11, Corollary 6.3] that
it contradicts the existence of the small limit cycle Γ1. We denote

Γ1 := ∪4
i=1Γ1i,

where Γ11, Γ12, Γ13 and Γ14 are the parts of Γ1 located in the regions 0 ≤ x <
−m+ 1, −m− 1 ≤ x < 0, x∗ ≤ x < −m− 1, and xNl

< x < x∗, respectively. The
small limit cycle Γ1 in the (p, y)-plane is indicated in Figure 13(b). We have∫

Γ12

F ′(x)dt+

∫
Γ13

F ′(x)dt

=

∫ −tc(m+1)

0

dp

p− y1
−
∫ −tc(m+1)

0

dp

p− z1
−
∫ −tc(m+1)

0

dp

p− y2
+

∫ −tc(m+1)

0

dp

p− z2

=

∫ −tc(m+1)

0

(y1 − y2)

(p− y1)(p− y2)
+

∫ −tc(m+1)

0

(z2 − z1)

(p− z1)(p− z2)
> 0,

(5.16)
where y1 and y2 represent the orbit segments Γ12 and Γ13 respectively, which lie
above y = p, and z1 and z2 represent the orbit segments Γ12 and Γ13 respectively,
which lie below y = p. We now compare two integral curves Γ11 and Γ14. By
a change of coordinate transformation p → µp, y → µy with µ = yD1

/yH1
, Γ11

(ÂD1G) is an orbit segment crossing through D1, where p ≤ 0, and A and G are
points on Γ11 and both lie on the y-axis. The functions y1 and z1 represent the orbit
segments Γ11 respectively, which lie above and below the line y = p. Therefore,∫

Γ11

F ′(x)dt =

∫
̂G1H1A1

F ′(x)dt =

∫
ĜD1A

F ′(x)dt =

∫
Γ11

F ′(x)dt. (5.17)

Note that y1(pD1) = y2(pD1) = z1(pD1) = z2(pD1), y1(0) > y2(0) and z1(0) <
z2(0). By the uniqueness of zero of the equation λ1(p) = λ2(p), we have y1(p) >
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y2(p) and z1(p) < z2(p) for p ∈ (pD1
, 0). Then∫

Γ11

F ′(x)dt+

∫
Γ14

F ′(x)dt

= −
∫ pD1

0

dp

p− y1

+

∫ pD1

0

dp

p− z1
+

∫ pD1

0

dp

p− y2
−
∫ pD1

0

dp

p− z2

=

∫ pD1

0

(y2 − y1)

(p− y1)(p− y2)
+

∫ pD1

0

(z1 − z2)

(p− z1)(p− z2)
> 0.

(5.18)

So, we see that (5.11) follows from (5.16)-(5.18) immediately when tc > tldc/dl.

We claim that system (5.1) has at most one small limit cycle in S̃l ∪ Γ̃l ∪ S̃c.
Otherwise, there are at least two small limit cycles denoted by Γs1 and Γs2 in

S̃l ∪ Γ̃l ∪ S̃c, where Γs1 and Γs2 are adjacent to each other. From (5.11) it follows
that ∮

Γs1

F ′(x)dt > 0,

∮
Γs2

F ′(x)dt > 0.

In other words, Γs1 and Γs2 are all unstable [7, Proposisition 3.1]. According to
the Poincaré-Bendixson Theorem, there exists a stable limit cycle between Γs1 and
Γs2, which contradicts (5.11).

Small limit cycle Γ2 of (5.1) Γ2 lies in the (p, y)-plane

Figure 14. Small limit cycles of system (5.1) in S̃c ∪ Γ̃r ∪ S̃r

Secondly, we take the small limit cycle of system (5.1) that lies in S̃c ∪ Γ̃r ∪ S̃r,
denoted by Γ2, as shown in Figure 14(a). Note that A2, B2, C2, D2, E2, F2, G2, H2

are points on Γ2, the points A2, G2 lie on the line x = 0, the points B2, F2 lie on the

right switching line Γ̃r, the points C2, E2 lie on the line x = tc(m− 1)/tr −m+ 1,
and D2, H2 are the intersection points of Γ2 and the curve y = F (x). Set p := F (x).
Then, the limit cycle Γ2 in the (p, y)-plane is displayed in Figure 14(b). Similarly,
we can prove that ∮

Γ2

F ′(x)dt > 0, (5.19)

if tc > −tr
√
dc/dr, and system (5.1) has at most one small limit cycle in S̃c∪Γ̃r∪S̃r.

In addition, it is impossible for a limit cycle to lie in S̃c ∪ Γ̃r ∪ S̃r, when a limit

cycle lies in S̃l ∪ Γ̃l ∪ S̃c. The proof is complete. �
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Lemma 5.3. Assume that dc > 0 and −dc < α < dc in G1. If t∗c < tc < 0, then
the following two assertions hold:

(a) System (1.1) exhibits at most one limit cycle when tc
2−4dc ≥ 0. Moreover,

the limit cycle is large if it exists.
(b) System (1.1) exhibits at most two limit cycles when tc

2−4dc < 0. Moreover,
it consists of a small limit cycle and a large limit cycle if they exist.

(a) (b)

Figure 15. (a) Two large limit cycles Γ3 and Γ4 of system (5.1);

(b) Orbit segments B̂3D3F3 and B̂4D4F4.

Proof. It follows from Lemma 4.1 that system (5.1) has two equilibrium points Nl
and O as dc > 0, −dc < α < dc and tc < 0 in G1. A straightforward calculation
shows that Nl is a saddle, and O is a stable node for tc

2− 4dc ≥ 0 or a stable focus
for tc

2−4dc < 0. By the index theory [38, Chapter 4], we know that the limit cycle
of system (5.1) only surrounds O if it exists. Based on Lemma 5.2, we continue
to investigate the existence of large limit cycles of system (5.1). We take any two
large limit cycles of system (5.1) denoted by Γ3 and Γ4 that are adjacent to each
other, as indicated in Figure 15(a). The large limit cycle Γ3 is the innermost one,
Ai, Bi, Ci, Di, Ei, Fi, Gi, Hi, Ii, Ji,Ki, Li are points on Γi, the abscissa of Bi, Fi is
−m − 1, the abscissa of Ci, Ei is tc(m + 1)/tl − m − 1, the abscissa of Hi, Li is
m− 1, and the abscissa of Ii,Ki is tc(m− 1)/tr −m+ 1 for i = 3, 4. Following [9],
we now prove that ∮

Γ3

F ′(x)dt <

∮
Γ4

F ′(x)dt. (5.20)

Let y3(x) and y4(x) represent the orbit segments ̂L3A3B3 and ̂L4A4B4, respec-
tively. It follows that∫

̂L3A3B3

F ′(x)dt−
∫

̂L4A4B4

F ′(x)dt

=

∫ −m−1

m−1

F ′(x)

F (x)− y3(x)
dx−

∫ −m−1

m−1

F ′(x)

F (x)− y4(x)
dx

=

∫ −m−1

m−1

F ′(x)(y3(x)− y4(x))

(F (x)− y3(x))(F (x)− y4(x))
dx < 0,

(5.21)
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because of F ′(x) = tc < 0, y3(x)− y4(x) < 0 and (F (x)− y3(x))(F (x)− y4(x)) > 0
for x ∈ (−m− 1,m− 1). Similarly, we can obtain∫

̂F3G3H3

F ′(x)dt−
∫

̂F4G4H4

F ′(x)dt < 0. (5.22)

Consider a system without the switching lines

dx

dt
= tl(x+m+ 1) + tc(−m− 1)− y := F (x)− y,

dy

dt
= dl(x+m+ 1) + dc(−m− 1) := g(x),

(5.23)

in the region {(x, y) ∈ R2 : x ≤ 0}. Since systems (5.1) and (5.23) are the same
in the region {(x, y) ∈ R2 : x ≤ −m − 1}, we turn to study two orbit segments

B̂3D3F3 and B̂4D4F4 in system (5.23) for simplicity, as displayed in Figure 15(b).

We denote by Pi and Qi the first intersection point of the orbit segment B̂iDiFi
and y-axis for i = 3, 4 respectively, as t decreases and increases. To show that∫

̂P3D3Q3

F
′
(x)dt =

∫
̂P4D4Q4

F
′
(x)dt, (5.24)

using p = F (x) we re-write system (5.23) as

dy

dp
=
dlp+ tcdl(m+ 1)− tldc(m+ 1)

t2l (p− y)
. (5.25)

By making a change of coordinate transformation p → µp, y → µy with µ =

yD4/yD3 , ̂P3D3Q3 becomes an orbit segment crossing through D4 of system (5.25).
Therefore, we obtain (5.24). A routine computation gives rise to∫

P̂3B3

F
′
(x)dt−

∫
P̂4B4

F
′
(x)dt

=

∫ −m−1

0

F
′
(x)

F (x)− y3(x)
dx−

∫ −m−1

0

F
′
(x)

F (x)− y4(x)
dx

=

∫ −m−1

0

F
′
(x) (y3(x)− y4(x))(

F (x)− y3(x)
) (
F (x)− y4(x)

)dx > 0,

(5.26)

where y3(x) and y4(x) represent the orbit segments P̂3B3 and P̂4B4 respectively.
Combining (5.24) and (5.26) yields∫

̂B3D3F3

F ′(x)dt−
∫

̂B4D4F4

F ′(x)dt < 0. (5.27)

Similarly, we have ∫
Ĥ3J3L3

F ′(x)dt−
∫
Ĥ4J4L4

F ′(x)dt < 0. (5.28)

Hence, inequality (5.20) follows from (5.21)-(5.22) and (5.27)-(5.28) immediately.

(a) When tc
2 − 4dc ≥ 0, we suppose that system (5.1) has at least two large limit

cycles denoted by Γl1 and Γl2, where Γl1 and Γl2 are adjacent to each other and
Γl1 lies in the interior of Γl2. By Lemma 5.2, system (5.1) has no small limit cycles
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when tc
2− 4dc ≥ 0. It means that Γl1 is internally unstable. From (5.20) it follows

that ∮
Γl1

F ′(x)dt = 0,

∮
Γl2

F ′(x)dt > 0.

In other words, Γl1 is semi-stable (internally unstable and externally stable) and
Γl2 is unstable [7, Proposisition 3.1]. When a1 < a2, we obtain∣∣∣∣F (x)|tc=a1 − y g(x)

F (x)|tc=a2 − y g(x)

∣∣∣∣ (−m+ 1)g(x)(a1 − a2) ≤ 0, x > −m+ 1,

xg(x)(a1 − a2) < 0, −m− 1 ≤ x ≤ −m+ 1,

−(m+ 1)g(x)(a1 − a2) < 0,
dc(m+ 1)

dl
−m− 1 < x < −m− 1,

where the equality sign obviously cannot hold for the entire closed orbit of system
(5.1). Hence, the vector field (F (x) − y, g(x)) of system (5.1) is rotated about tc
by [22, Definition 1.6] or [38, Definition 3.3]. It follows from [38, Theorem 3.4]
that the semi-stable limit cycle Γl1 will bifurcate into at least one unstable limit
cycle and one stable limit cycle when tc varies in the suitable direction. This
contradicts (5.20). Thus, we infer that system (5.1) has at most one limit cycle
when tc

2 − 4dc ≥ 0. Moreover, the limit cycle is large if it exists.

(b) When tc
2 − 4dc < 0, we know that system (5.1) has at most one small limit

cycle by Lemma 5.2 and the small limit cycle is unstable if it exists. If system (5.1)
has no small limit cycles for tc

2 − 4dc < 0, the proof of which there is at most one
large limit cycle is the same as the proof of Part (a), Therefore, we omit it.

We denote the small limit cycle of system (5.1) by γs. We only need to study the
existence of large limit cycles when γs exists. Assume that system (5.1) exhibits
at least three large limit cycles when γs exists, denoted by γl1, γl2 and γl3, where
γl1 lies in the interior of γl2 and γl2 lies in the interior of γl3. Since the small limit
cycle γs is unstable, by (5.20) we have∮

γl1

F ′(x)dt < 0,

∮
γl2

F ′(x)dt = 0,

∮
γl3

F ′(x)dt > 0.

In other words, γl1 is stable, γl2 is semi-stable (internally unstable and externally
stable) and γl3 is unstable [7, Proposisition 3.1]. When tc varies in the suitable
direction, it follows from [38, Theorem 3.4] that the semi-stable limit cycle γl2 will
bifurcate into at least one unstable limit cycle and one stable limit cycle. This
contradicts (5.20).

We then suppose that system (5.1) has two large limit cycles when γs exists,
denoted by γ1 and γ2, where γ1 lies in the interior of γ2. Since the small limit cycle
γs is unstable, we find that γ1 is internally stable. If γ1 or γ2 is semi-stable, then
there are three large limit cycles by [38, Theorem 3.4] when tc varies in the suitable
direction. This is a contradiction. Therefore, we infer that γ1 is stable and γ2 is
unstable, i.e., ∮

γ1

F ′(x)dt < 0,

∮
γ2

F ′(x)dt > 0.

According to [38, Theorem 3.3], it follows that the attracting limit cycle of system
(5.1) contracts and the repelling limit cycle of system (5.1) expands when tc de-
creases. Therefore, γs and γ1 will coincide and become a semi-stable limit cycle
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γ (internally unstable and externally stable) when tc decreases to a certain value.
If tc continues to decrease, then the semi-stable limit cycle γ will disappear by
[38, Theorem 3.3] again. It implies that system (5.1) has one limit cycle γ2 when
tc → −∞. This contradicts the nonexistence of limit cycles of system (1.1) when
tc → −∞ (see Lemma 5.1). Therefore, we have arrived at the desired result. �

From Lemma 5.1, we only need to study homoclinic loops of system (1.1) when
dc > 0, −dc < α < dc and t∗c < tc < 0 in G1. It follows from Lemma 4.1 that El of
system (1.1) is a saddle and Ec of system (1.1) is a stable focus for tc

2− 4dc < 0 or
a stable node for tc

2−4dc ≥ 0 when dc > 0, −dc < α < dc and t∗c < tc < 0 in G1. It
is notable that t∗c may be greater than or less than or equal to −2

√
dc. Therefore,

we study homoclinic loops of system (1.1) for two cases max{t∗c ,−2
√
dc} < tc < 0

and t∗c < tc ≤ −2
√
dc. In the case of max{t∗c ,−2

√
dc} < tc < 0, homoclinic loops

of system (1.1) may involve two or three linear zones because Ec is a stable focus.
In the case of t∗c < tc ≤ −2

√
dc, homoclinic loops of system (1.1) only involve three

linear zones because Ec is a stable node, so there is invariant line in Sc.

Lemma 5.4. When dc > 0, −dc < α < dc and max{t∗c ,−2
√
dc} < tc < 0 in

G1, there is a continuous function tc = φ(α) ∈ (max{t∗c ,−2
√
dc}, 0) and a value

α∗ ∈ (−dc, dc) such that the following three assertions are true.

(a) System (1.1) exhibits a unique homoclinic loop involving two linear zones
when tc = φ(α) for α < α∗, and the homoclinic loop is unstable.

(b) System (1.1) exhibits a unique homoclinic loop that is tangent to Γr when
tc = φ(α) for α = α∗, and the homoclinic loop is unstable.

(c) System (1.1) exhibits a unique homoclinic loop involving three linear zones
when tc = φ(α) for α > α∗, and the homoclinic loop unstable.

Proof. For simplicity, we consider a continuous planar piecewise linear differential
system with two zones:

dx

dt
= F (x)− y, dy

dt
= g(x), (5.29)

where

F (x) =

{
tcx, if x ≥ −m− 1,

tl(x+m+ 1) + tc(−m− 1), if x < −m− 1,

g(x) =

{
dcx, if x ≥ −m− 1,

dl(x+m+ 1) + dc(−m− 1), if x < −m− 1.

Note that systems (5.1) and (5.29) are the same in the region {(x, y) ∈ R2 : x ≤
−m + 1}. Therefore, we consider the existence, uniqueness and stability of homo-
clinic loops of system (5.29) in the region {(x, y) ∈ R2 : x ≤ −m + 1}. System
(5.29) has two equilibrium points Nl and O when dc > 0 and −dc < α < dc in G1,
where Nl is a saddle and O is a stable focus if −2

√
dc < tc < 0.

To prove the existence of homoclinic loops of system (5.29), we denote the eigen-
values of the corresponding Jacobian matrix at the saddle point N1 by λ1 and λ2,
where

λ1 :=
tl −

√
t2l − 4dl
2

, λ2 :=
tl +

√
t2l − 4dl
2

, λ1 + λ2 = tl, λ1λ2 = dl. (5.30)
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We then obtain that the λ1-eigenvector and λ2-eigenvector of

JN1
:=

[
t1 −1
d1 0

]
=

[
λ1 + λ2 −1
λ1λ2 0

]
are (1, λ2)T and (1, λ1)T respectively. Denote the intersection point of the linear
λ1 (resp. λ2) invariant manifold that emanates from the saddle point Nl along the
eigenvector (1, λ2)T (resp. (1, λ1)T ) with the line x = −m− 1 by E : (−m− 1, y1)
(resp. A : (−m− 1, z1)). That is,[

α+dc
λ1λ2

−m− 1
(λ1+λ2)(α+dc)

λ1λ2
− tc(m+ 1)

]
+ ρ

[
1
λ2

]
=

[
−m− 1
y1

]
(5.31)

and [
α+dc
λ1λ2

−m− 1
(λ1+λ2)(α+dc)

λ1λ2
− tc(m+ 1)

]
+ ρ

[
1
λ2

]
=

[
−m− 1
z1

]
, (5.32)

where ρ = −α+dc
λ1λ2

. It follows from (5.31) and (5.32) that

z1 =
α+ dc
λ1

− tc(m+ 1), y1 =
α+ dc
λ2

− tc(m+ 1).

We denote the eigenvalues of the stable focus point O of system (5.29) by σ±ωi,
where

σ =
tc
2
, ω =

√
4dc − t2c

2
, σ2 + ω2 = dc.

Set η := σ
ω = tc√

4dc−t2c
. Let (xb, yb) be the initial point of an orbit of system (5.29)

with x ≥ −m − 1 and (xf , yf ) be the terminal point after a time t. By the phase
angle θ = −ωt, we have(

xf
yf

)
= e−ηθ

(
− 1
dc

cos θ + η
dc

sin θ 1
dc

sin θ + η
dc

cos θ
sin θ
ω

cos θ
ω

)(
xb
yb

)
. (5.33)

When E : (−m− 1, y1) is the beginning point for an orbit, we want to know the
point D : (0, y2) along the orbit as t decreases. From (5.33) it follows that(

0
y2

)
= e−ηθ

(
− 1
dc

cos θ + η
dc

sin θ 1
dc

sin θ + η
dc

cos θ
sin θ
ω

cos θ
ω

)(
−m− 1
y1

)
(5.34)

From the first coordinate of (5.34) we obtain

tan θ =
ηy1 +m+ 1

−y1 + ηm+ η
,

sin θ =

√
(ηy1 +m+ 1)2

(η2 + 1)[y2
1 + (m+ 1)2]

,

cos θ =

√
(−y1 + ηm+ η)2

(η2 + 1)[y2
1 + (m+ 1)2]

.

From the second coordinate of (5.34) we derive

y2 = e−ηθ
(
− m+ 1

ω

√
(ηy1 +m+ 1)2

(η2 + 1)[y2
1 + (m+ 1)2]

+
y1

ω

√
(−y1 + ηm+ η)2

(η2 + 1)[y2
1 + (m+ 1)2]

)
.
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When A : (−m− 1, z1) is the beginning point for an orbit, we want to know the
point B (0, z2) along the orbit as t increases. From (5.33) it follows that(

0
z2

)
= e−ηθ

(
− 1
dc

cos θ + η
dc

sin θ 1
dc

sin θ + η
dc

cos θ
sin θ
ω

cos θ
ω

)(
−m− 1
z1

)
.

Similarly, we have

z2 = e−ηθ
(m+ 1

ω

√
(ηz1 +m+ 1)2

(η2 + 1)[z2
1 + (m+ 1)2]

+
z1

ω

√
(−z1 + ηm+ η)2

(η2 + 1)[z2
1 + (m+ 1)2]

)
.

We define the Poincaé map P : (0, z2)→ (0, z∗) for system (5.29) with x ≥ 0, where
z2 and z∗ lie on the same orbit. We have

P (z∗) = −e−ηπz2

with

z∗ = −e−ηπe−ηθ
(m+ 1

ω

√
(ηz1 +m+ 1)2

(η2 + 1)[z2
1 + (m+ 1)2]

+
z1

ω

√
(−z1 + ηm+ η)2

(η2 + 1)[z2
1 + (m+ 1)2]

)
.

If z∗ = y2, then

e−ηπ
(m+ 1

ω

√
(ηz1 +m+ 1)2

(η2 + 1)[z2
1 + (m+ 1)2]

+
z1

ω

√
(−z1 + ηm+ η)2

(η2 + 1)[z2
1 + (m+ 1)2]

)
= −m+ 1

ω

√
(ηy1 +m+ 1)2

(η2 + 1)[y2
1 + (m+ 1)2]

+
y1

ω

√
(−y1 + ηm+ η)2

(η2 + 1)[y2
1 + (m+ 1)2]

.

(5.35)

Thus, system (5.29) has a homoclinic loop.
Note that system (5.29) is piecewise linear, Lipschitz continuous in R2 and ana-

lytic in R2\{(x, y) ∈ R2 : x = −m−1}. By [12, Theorem 3.3] and λ+ +λ− = tl > 0,
the homoclinic loop of system (5.29) is unstable.

As a1 < a2, it follows that∣∣∣∣F (x)|tc=a1 − y g(x)
F (x)|tc=a2 − y g(x)

∣∣∣∣
=

{
xg(x)(a1 − a2) ≤ 0 for x ≥ −m− 1,

−(m+ 1)g(x)(a1 − a2) < 0, for dc(m+1)
dl

−m− 1 < x < −m− 1,

where the equality sign cannot hold for the entire closed orbit of system (5.29).
Hence, the vector field (F (x) − y, g(x)) of system (5.29) is rotated about tc [22,
Definition 1.6] or [38, Definition 3.3]. From [21, Lemma 5.3], it follows that the
manifolds W+

N and W−N of the saddle point Nl of system (5.29) rotate clockwise

when tc increases and tl, dc, dl, α are fixed, where W+
N is the stable manifold of the

right-hand side of Nl and W−N is the unstable manifold of the right-hand side of Nl.
This indicates that system (5.29) exhibits at most one homoclinic loop.

To prove that the amplitude of the homoclinic loop of system (5.29) increases as
α increases, we use the transformation

x→ x−m− 1, y → y − tc(m+ 1),
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to change (5.29) to
dx

dt
= F̂ (x)− y, dy

dt
= ĝ(x), (5.36)

where

F̂ (x) =

{
tcx, if x ≥ 0,

tlx, if x < 0,

ĝ(x) =

{
dc(x−m− 1), if x ≥ 0,

dlx+ dc(−m− 1), if x < 0.

By the scaling transformation

x→ dc(m+ 1)x, y → dc(m+ 1)y, (5.37)

system (5.36) reduces to

dx

dt
= F (x)− y, dy

dt
= g(x), (5.38)

where

F (x) =

{
tcx, if x ≥ 0,

tlx, if x < 0,

g(x) =

{
dcx− 1, if x ≥ 0,

dlx− 1, if x < 0.

Evidently, system (5.38) is independent on α, so the homoclinic loop of system
(5.38) is independent on α as well. Since systems (5.29) and (5.38) are topologically
equivalent, it follows from the scaling transformation (5.37) that the amplitude of
the homoclinic loop of system (5.29) is increasing as α increases.

tc = φ(α) for α < α∗ tc = φ(α) for α = α∗ tc = φ(α) for α > α∗

Figure 16. Homoclinic loops of system (5.1)

We denote by C:(xc, tcxc) the right intersection point of the homoclinic loop of
system (5.29) with the curve y = F (x) If the point C is on the line x = −m + 1,
then

t2c
2
− dc =

dctc(−m+ 1)ω

e−ηπz2
. (5.39)

By solving equations (5.35) and (5.39) and using the implicit function theorem,
there exists a continuous function tc = φ(α) and a value α∗ such that system (5.29)
has one homoclinic loop that is tangent to the line x = −m+ 1 when tc = φ(α) for
α = α∗, where φ(α) ∈ (max{t∗c ,−2

√
dc}, 0) and α∗ ∈ (−dc, dc). Since systems (5.1)
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and (5.29) are the same in the region {(x, y) ∈ R2 : x ≤ −m+ 1}, we can plot the
homoclinic loop for system (5.1) which is unstable, see Figure 16(b). In view of the
monotonicity of the amplitude of the homoclinic loop of system (5.1) in the region
{(x, y) ∈ R2 : x ≤ −m+ 1}, we are led to the conclusion that the homoclinic loop
of system (5.1) involves two linear zones when tc = φ(α) for α < α∗, as shown in
Figure 16(a). In addition, given the existence, uniqueness and continuity of system
(5.1) under the initial conditions, we can obtain that the homoclinic loop of system
(5.1) involves three linear zones when tc = φ(α) for α > α∗, as shown in Figure
16(c). The proof of Lemma 5.4 is completed. �

The following lemma is concerning the existence, uniqueness and stability of
homoclinic loops of system (1.1) when dc > 0, −dc < α < dc and t∗c < tc ≤ −2

√
dc

in G1. The proof is closely similar to the one of Lemma 5.4, so we omit it.

Lemma 5.5. If dc > 0, −dc < α < dc and t∗c < tc ≤ −2
√
dc in G1, then system

(1.1) exhibits a unique homoclinic loop involving three linear zones that is unstable
when tc = φ(α) for α > α∗, where tc = φ(α) ∈ (t∗c ,−2

√
dc] is a continuous function

and α∗ ∈ (−dc, dc) is a constant.

For the uniqueness of limit cycle of system (1.1) with dc > 0 and −dc < α < dc,
we have the following lemma.

Lemma 5.6. If dc > 0, −dc < α < dc and max{t∗c ,−2
√
dc} < tc < 0 in G1,

then there is a continuous function tc = φ(α) ∈ (max{t∗c ,−2
√
dc}, 0) such that (a)

system (1.1) exhibits no limit cycles when tc ∈ (max{t∗c ,−2
√
dc}, φ(α)]; and (b)

system (1.1) exhibits a unique limit cycle that is unstable when tc ∈ (φ(α), 0).

Proof. When dc > 0, −dc < α < dc and max{t∗c ,−2
√
dc} < tc < 0 in G1, system

(1.1) has two equilibrium points El and Ec by Lemma 4.1, where El is a saddle and
Ec is a stable focus. Denote by W+

E1
and W−El

the stable and unstable manifolds

of the right-hand side of El of system (1.1), respectively. According to Lemma
5.4, system (1.1) exhibits a unique homoclinic loop that is unstable when tc =
φ(α) ∈ (max{t∗c ,−2

√
dc}, 0), see Figure 17(b). However, the unstable homoclinic

loop breaks when tc = φ(α)± ε, even ε > 0 is sufficiently small. According to [21,
Lemma 5.3], the manifolds W+

El
and W−El

rotate clockwise when tc increases and

tr, tl, dr, dc, dl, α are fixed. When tc = φ(α) − ε and tc = φ(α) + ε, the relative
locations of the manifolds W+

El
and W−El

are depicted in Figure 17(a) and (c),
respectively. By Lemma 5.4 again, we know that the unstable homoclinic loop
involves two or three linear zones depending on α and α∗, where α∗ ∈ (−dc, dc). It
implies that we need to consider the nonexistence of limit cycles of system (1.1) in
the interior of the unstable homoclinic loop by two cases α ≤ α∗ and α > α∗.

tc = φ(α)− ε tc = φ(α) tc = φ(α) + ε

Figure 17. Homoclinic loop bifurcation of system (1.1)
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For α ≤ α∗, from Lemma 5.4 we know that the unstable homoclinic loop of
system (1.1) involves two linear zones when tc = φ(α) for α ≤ α∗, and the unstable
homoclinic loop is tangent to Γr when tc = φ(α) for α = α∗. Now we claim that
there is no limit cycle in the interior of the unstable homoclinic loop. Suppose
that there exists a small limit cycle because system (1.1) has at most one small
limit cycle from Lemma 5.2. Since Ec is a stable focus and the homoclinic loop is
unstable, the small limit cycle is semi-stable by the Poincaré-Bendixson theorem.
This contradicts the fact that the small limit cycle of system (1.1) is unstable
by Lemma 5.2 if it exists. Therefore, system (1.1) exhibits no limit cycles when
tc = φ(α) for α ≤ α∗.

For α > α∗, it follows from Lemma 5.4 that the unstable homoclinic loop involves
three linear zones when tc = φ(α) for α > α∗. We claim that there is no limit cycle
in the interior of the unstable homoclinic loop. Otherwise, there exist two limit
cycles because system (1.1) has at most two limit cycles from Lemma 5.3. Since
Ec is a stable focus and the homoclinic loop is unstable, we infer that the two limit
cycles consist of an unstable limit cycle and a stable limit cycle, where the unstable
limit cycle lies in the interior of the stable limit cycle. When tc = φ(α) + ε,
the relative locations of the manifolds W+

El
and W−El

are shown in Figure 17(c).
However, by the Poincaré-Bendixson theorem, there exist three limit cycles when
tc ∈ (φ(α), φ(α) + ε), which contradicts the fact that system (1.1) has at most
two limit cycles according to Lemma 5.3. Therefore, system (1.1) exhibits no limit
cycles when tc = φ(α) for α > α∗. �

By an analogous argument, we can obtain the following result.

Lemma 5.7. If dc > 0, −dc < α < dc and t∗c < tc ≤ −2
√
dc in G1, then there is

a continuous function tc = φ(α) ∈ (t∗c ,−2
√
dc] such that (a) system (1.1) exhibits

no limit cycles when φ(α) ∈ (t∗c , φ(α)]; and (b) system (1.1) exhibits a unique limit
cycle that is unstable when tc ∈ (φ(α), −2

√
dc].

5.2. Limit cycles and homoclinic loops for α = dc > 0 in G1. It follows from
Lemma 4.1 that system (1.1) exhibits two equilibrium points El and Ecr when
α = dc > 0 in G1, where El lies in Sl and Ecr lies on Γr. Since El is a saddle, it
follows that limit cycles of system (1.1) must only surround Ecr by the index theory
of [38, Chapter 4] and homoclinic loops of system (1.1) must involve three linear
zones by the location of Ecr. Note that the condition t2r − 4dr < 0 (resp. = 0 or
> 0) means that the dynamic of right linear zone of system (1.1) is a focus (resp.
improper node or bidirectional node) by Lemma 4.1. Hence, there is at least one
invariant line in Sr when t2r − 4dr ≥ 0. This implies that system (1.1) has no limit
cycles and homoclinic loops when α = dc > 0 and t2r − 4dr ≥ 0. In other words,
we only need to investigate limit cycles and homoclinic loops of system (1.1) when
α = dc > 0 and t2r − 4dr < 0.

With the translation transformation x → x + 1, y → y + tc, system (1.1)
becomes

dx

dt
= F̂ (x)− y, dy

dt
= ĝ(x), (5.40)

where

F̂ (x) =


trx, if x > 0,

tcx, if − 2 ≤ x ≤ 0,

tl(x+ 2)− 2tc, if x < −2,
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ĝ(x) =


drx, if x > 0,

dcx, if − 2 ≤ x ≤ 0,

dl(x+ 2)− 2dc, if x < −2.

That is, Ecr of system (1.1) is moved to O1(0, 0) of system (5.40) and El of system
(1.1) is moved to Ml(2dc/dl − 2,−2tc + 2tldc/dl) of system (5.40). The plane R2 is
divided into three open linear zones

Ŝl = {(x, y) ∈ R2 : x < −2},

Ŝc = {(x, y) ∈ R2 : −2 < x < 0},

Ŝr = {(x, y) ∈ R2 : x > 0}

by two straight lines Γ̂l = {(x, y) ∈ R2 : x = −2} and Γ̂r = {(x, y) ∈ R2 : x = 0}.
For the sake of convenience, for system (5.40) we still use F and g to represent

F̂ and ĝ, respectively. Clearly, system (5.40) is topologically equivalent to system
(1.1), so for the existence of limit cycles and homoclinic loops of system (1.1) we
may start by analyzing system (5.40).

Lemma 5.8. If α = dc > 0 and t2r − 4dr < 0 in G1, then system (1.1) exhibits

neither limit cycles nor homoclinic loops when tc ≥ −tr
√
dc/dr or tc ≤ t∗∗c , where

t∗∗c := −tr

√
dcdl − d2

c

drdl
+
tldc
dl

.

Proof. When α = dc > 0 and t2r − 4dr < 0 in G1, it follows from Lemma 4.1 that
system (5.40) exhibits two equilibrium points O1 and Ml, where Ml is a saddle. We
define a generalized Filippov transformation

z(x) :=

∫ x

0

g(s)ds.

Let x1(z) and x2(z) be the branches of the inverse of z(x) for x ≥ 0 and x < 0,
respectively. Let F1(z) := F (x1(z)) and F2(z) := F (x2(z)). Denote the abscissa of
Ml by xMl

:= 2dc/dl − 2. Then we obtain

z(x) =


drx

2

2 ∈ [0,+∞), if x ≥ 0,
dcx

2

2 ∈ (0, 2dc], if − 2 ≤ x < 0,
dlx

2

2 + 2(dl − dc)x+ 2(dl − dc) ∈ (2dc, zMl
), if xMl

< x < −2,

(5.41)

where zMl
:= 2dc − 2d2

c/dl. It follows from (5.41) that

x1(z) =

√
2z

dr
, if z ≥ 0, (5.42)

x2(z) =

−
√

2z
dc
, if 0 < z ≤ 2dc,

−2(dl−dc)−
√
−4dc(dl−dc)+2dlz

dl
, if 2dc < z < zMl

.
(5.43)

From (5.42) and (5.43) we deduce

F1(z) = tr

√
2z

dr
, if z ≥ 0,



EJDE-2023/83 GLOBAL ANALYSIS ON A PLANAR PIECEWISE LINEAR SYSTEMS 39

F2(z) =

−tc
√

2z
dc
, if 0 < z ≤ 2dc,

tl
2dc−
√
−4dc(dl−dc)+2dlz

dl
− 2tc, if 2dc < z < zMl

.

Then we have

F1(z)− F2(z) =
√

2z(
tr√
dr

+
tc√
dc

)


> 0, if tc > −tr

√
dc
dr
,

= 0, if tc = −tr
√

dc
dr
,

< 0, if tc < −tr
√

dc
dr

(5.44)

for z ∈ (0, 2dc], and

F ′1(z)− F ′2(z) =
tr√
2drz

+
tl√

−4dc(dl − dc) + 2dlz
> 0 (5.45)

for z ∈ (2dc, zMl
). From (5.44) and (5.45) we find F1(z)−F2(z) ≥ 0 for z ∈ (0, zMl

)

if tc ≥ −tr
√
dc/dr. However, when tc < −tr

√
dc/dr, F1(z) − F2(z) < 0 holds for

z ∈ (0, zMl
) if and only if

(F1(z)− F2(z))|z=zMl
= 2tr

√
dcdl − d2

c

drdl
− 2tldc

dl
+ 2tc < 0. (5.46)

Solving (5.46) gives tc < t∗∗c . It is easy to check t∗∗c < −tr
√
dc/dr, so F1(z)−F2(z) <

0 holds for z ∈ (0, zMl
) if tc < t∗∗c . From [27, Section 6], it follows that system (5.40)

with α = dc > 0 and t2r − 4dr < 0 has neither limit cycles nor homoclinic loops

when tc ≥ −tr
√
dc/dr or tc ≤ t∗∗c . �

Note that in Lemma 4.1 it is unclear whether Ecr of system (1.1) is a focus or a
center when α = dc > 0, tc < 0, tc

2 − 4dc < 0 and tr
2 − 4dr < 0 in G1. Now we are

ready to answer this question.

Lemma 5.9. If α = dc > 0, tc < 0, tc
2 − 4dc < 0 and tr

2 − 4dr < 0 in G1, then
the equilibrium point Ecr of system (1.1) is an unstable focus for tc > −tr

√
dc/dr

or a center for tc = −tr
√
dc/dr or a stable focus for tc < −tr

√
dc/dr.

Proof. From Lemma 4.1 we know that Ecr of system (1.1) lies on Γr. When α =
dc > 0, tc < 0, tc

2 − 4dc < 0 and tr
2 − 4dr < 0 in G1, Ecr is a stable focus

as seen from Sc, but is an unstable focus as seen from Sr, so is O1 of system
(5.40). This implies condition (C4) of Proposition 3.1. In order to study the local
dynamics of O1 of system (5.40), it suffice to consider system (5.40) in the region
{(x, y) ∈ R2 : −2 < x < 2}. This implicitly implies that conditions (C1)–(C3)
of Proposition 3.1 hold. According to Proposition 3.1, we know that O1 of system
(5.40) is an unstable focus for tc > −tr

√
dc/dr or a stable focus for tc < −tr

√
dc/dr

or a center for tc = −tr
√
dc/dr by (5.44), so is Ecr of system (1.1). �

By Lemma 5.8, it suffices to study limit cycles of system (1.1) when α = dc > 0,

tr
2 − 4dr < 0 and t∗∗c < tc < −tr

√
dc/dr in G1. It follows from Lemmas 4.1

and 5.9 that El of system (1.1) is a saddle and Ecr of system (1.1) is a stable
focus for tc

2 − 4dc < 0 or node-focus (see Figure 11(g)) for tc
2 − 4dc ≥ 0 when

α = dc > 0, tr
2 − 4dr < 0 and t∗∗c < tc < −tr

√
dc/dr in G1. Obviously, we

have −2
√
dc < −tr

√
dc/dr because of tr

2 − 4dr < 0. However, t∗∗c may be greater

than or less than or equal to −2
√
dc. Therefore, we study limit cycles of system
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(1.1) by two cases max{t∗∗c ,−2
√
dc} < tc < −tr

√
dc/dr and t∗∗c < tc ≤ −2

√
dc,

while α = dc > 0 and tr
2 − 4dr < 0 in G1. In what follows, we discuss the

existence of limit cycles of system (1.1) with α = dc > 0 and tr
2 − 4dr < 0 when

max{t∗∗c ,−2
√
dc} < tc < −tr

√
dc/dr (see Lemma 5.10) or t∗∗c < tc ≤ −2

√
dc (see

Lemma 5.11) in G1.

Lemma 5.10. If α = dc > 0 and tr
2 − 4dr < 0 in G1, and max{t∗∗c ,−2

√
dc} <

tc < −tr
√
dc/dr, then system (1.1) exhibits at most one limit cycle, which is large

if it exists.

Proof. When α = dc > 0, tr
2 − 4dr < 0 and max{t∗∗c , −2

√
dc} < tc < −tr

√
dc/dr

in G1, it follows from Lemmas 4.1 and 5.9 that El of system (1.1) is a saddle and
Ecr of system (1.1) is a stable focus. By the index theory of [38, Chapter 4], we
know that limit cycles of system (1.1) must only surround Ecr. Since Ecr lies on
Γr and El lies in Sl, it follows that limit cycle of system (1.1) may be a small limit
cycle or a large limit cycle if it exists. If it is the small limit cycle, it only lies in
Sc ∪ Γr ∪ Sr.

We claim that system (1.1) has no small limit cycles when α = dc > 0, tr
2−4dr <

0 and max{t∗∗c ,−2
√
dc} < tc < −tr

√
dc/dr in G1. Otherwise, there is at least one

small limit cycle in Sc ∪ Γr ∪ Sr. Recall that system (1.1) exhibits at most one

small limit cycle that lies in Sc ∪ Γr ∪ Sr only if tc > −tr
√
dc/dr by Lemma 5.2

when dc > 0, −dc < α < dc and max{t∗c ,−2
√
dc} < tc < 0 in G1. When dc > 0 and

α→ dc, we know that t∗c changes to t∗∗c and the equilibrium point Ec of system (1.1)
changes to Ecr by Lemma 4.1. In view of the existence, uniqueness and continuity
of solutions of (1.1), there is at most one small limit cycle in Sc ∪ Γr ∪ Sr only

if tc > −tr
√
dc/dr when α = dc > 0, max{t∗∗c ,−2

√
dc} < tc < 0 in G1. This

contradicts the condition tc < −tr
√
dc/dr.

To prove that (1.1) has at most one large limit cycle when α = dc > 0, tr
2−4dr <

0 and max{t∗∗c ,−2
√
dc} < tc < −tr

√
dc/dr in G1, by way of contradiction we

assume that there are two large limit cycles of system (1.1) denoted by Γ1 and
Γ2, where Γ1 and Γ2 are adjacent to each other and Γ1 is the innermost one. As
discussing in the proof of Lemma 5.3, we can prove that∮

Γ1

F ′(x)dt <

∮
Γ2

F ′(x)dt.

Consequently, we obtain that system (1.1) has at most one large limit cycle if it
exists. �

When α = dc > 0, tr
2 − 4dr < 0 and t∗∗c < tc ≤ −2

√
dc in G1, from Lemma 4.1

we know that El of system (1.1) is a saddle and Ecr of system (1.1) is node-focus
as shown in Figure 11(g). Proceeding in analogous manner, we obtain the following
lemma.

Lemma 5.11. When α = dc > 0 and tr
2 − 4dr < 0 in G1, if t∗∗c < tc ≤ −2

√
dc,

then system (1.1) exhibits at most one limit cycle, which is large if it exists.

From Lemma 5.8, for homoclinic loops of system (1.1) we need to consider the

case of α = dc > 0, tr
2 − 4dr < 0 and t∗∗c < tc < −tr

√
dc/dr in G1. Since E1 of

system (1.1) lies in Sl and Ecr of system (1.1) lies on Γr, it follows that homoclinic
loops of system (1.1) must involve three linear zones. Thus, we obtain the following
result.
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Lemma 5.12. If α = dc > 0, tr
2 − 4dr < 0 and max{t∗∗c ,−2

√
dc} < tc <

−tr
√
dc/dr in G1, then system (1.1) exhibits a unique homoclinic loop involving

three linear zones that is unstable when tc = φ(α), where tc = φ(α) is a continuous

function satisfying φ(α) ∈ (max{t∗∗c ,−2
√
dc},−tr

√
dc/dr).

Proof. When α = dc > 0, tr
2 − 4dr < 0 and max{t∗∗c ,−2

√
dc} < tc < −tr

√
dc/dr

in G1, system (5.40) exhibits two equilibrium points Ml and O1 by Lemmas 4.1 and
5.9, where Ml is a saddle and O1 is a stable focus.

To prove the existence of homoclinic loops of system (5.40), we denote by W+
Ml

and W−Ml
the stable and unstable manifolds of the right-hand side of Ml of system

(5.40) respectively. If tr
2 − 4dr < 0, there is no equilibrium point at infinity in

the right half plane of system (5.40) by Lemma 4.2 (see Figure 12(a)). So the
manifolds W+

Ml
and W−Ml

must intersect the curve y = F (x). Denote the first

intersection point of W+
Ml

(resp. W−Ml
) with the curve y = F (x) by P (xP , F (xP ))

(resp. Q(xQ, F (xQ))). Evidently, system (5.40) has a homoclinic loop if and only if
xP − xQ = 0. To show the existence of homoclinic loops of system (5.40), we need

to prove xP − xQ > 0 for tc = t∗∗c and xP − xQ < 0 for tc = −tr
√
dc/dr.

tc = t∗∗c tc = −tr
√
dc/dr tc = φ(α)

Figure 18. Homoclinic loops of system (5.40)

When tc = t∗∗c , it follows from Lemma 5.8 that system (5.40) exhibits neither
limit cycles nor homoclinic loops. So xP − xQ 6= 0 and it must be xP − xQ > 0,
as shown in Figure 18(a). Otherwise, there exists at least one limit cycle by the
Poincaré-Bendixson theorem. This yields a contradiction.

When tc = −tr
√
dc/dr, from Lemma 5.8 system (5.40) exhibits neither limit

cycles nor homoclinic loops, i.e., xP − xQ 6= 0. Form (5.44) and (5.45), we see
F1(z)−F2(z) = 0 for z ∈ (0, 2dc] and F1(z)−F2(z) > 0 for z ∈ (2dc, 2dc− 2d2

c/dl].
We can directly get xP − xQ < 0 as we discussed for Proposition 3.1, see Figure
18(b).

There are some values tc ∈ (max{t∗∗c ,−2
√
dc}, −tr

√
dc/dr) so that xP −xQ = 0

for system (5.40) by the mean value theorem. Therefore, we obtain the existence
of homoclinic loops of system (5.40).

For the uniqueness of homoclinic loops of system (5.40), by following [21, Lemma
5.3], we know that the manifolds W+

Ml
and W−Ml

of Ml of system (5.40) rotate
clockwise when tc increases and tr, tl, dr, dc, dl, α are fixed. So there is a unique
value tc ∈ (max{t∗∗c ,−2

√
dc},−tr

√
dc/dr) satisfying xP − xQ = 0 for system

(5.40). Namely, there is a continuous and monotonous function φ(α) on tc such
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that (5.40) exhibits a unique homoclinic loop, as shown in Figure 18(c), where

φ(α) ∈ (max{t∗∗c ,−2
√
dc},−tr

√
dc/dr).

For the stability of homoclinic loop of system (5.40), at the saddle point Ml of
system (5.40), two eigenvalues of the associated Jacobian matrix are λ− and λ+

satisfying λ− + λ+ = tl. Due to tl > 0, by virtue of [12, Theorem 3.3], we know
that the homoclinic loop of system (5.40) is unstable. �

Similarly, we have the following lemma.

Lemma 5.13. If α = dc > 0, tr
2 − 4dr < 0 and t∗∗c < tc ≤ −2

√
dc in G1, then

system (1.1) exhibits a unique homoclinic loop involving three linear zones that
is unstable when tc = φ(α), where tc = φ(α) is a continuous function satisfying
φ(α) ∈ (t∗∗c ,−2

√
dc].

It is notable that system (1.1) also exhibits a unique homoclinic loop involving
three linear zones that is unstable if α = dc > 0, tr

2 − 4dr < 0 and tc = φ(α),

where tc = φ(α) is a continuous function satisfying φ(α) ∈ (t∗∗c , −tr
√
dc/dr). The

arguments are almost the same as we did for Lemma 5.12, so we skip them.

Lemma 5.14. When α = dc > 0, tr
2 − 4dr < 0 and t∗∗c < tc < −tr

√
dc/dr in G1,

there is a continuous function tc = φ(α) ∈ (t∗∗c ,−tr
√
dc/dr) such that the following

two assertions hold.

(a) System (1.1) exhibits no limit cycles when tc ∈ (t∗∗c , φ(α)].

(b) When tc ∈ (φ(α),−tr
√
dc/dr), system (1.1) exhibits a unique limit cycle

which is large and unstable.

Proof. When α = dc > 0, tr
2 − 4dr < 0 and t∗∗c < tc < −tr

√
dc/dr in G1, from

Lemmas 4.1 and 5.9 it follows that El of system (1.1) is a saddle and Ecr of system
(1.1) is a stable focus for tc

2 − 4dc < 0 or node-focus for tc
2 − 4dc ≥ 0, see Figure

11(g). We also know that system (1.1) has a unique homoclinic loop involving three
linear zones that is unstable when α = dc > 0, tr

2 − 4dr < 0 and tc = φ(α) in G1.
We claim that there is no limit cycle in the interior of the unstable homoclinic loop.
Otherwise, there is a semi-stable limit cycle (internally unstable and externally
stable) in the interior of the unstable homoclinic loop by the Poincaré-Bendixson
theorem. Moreover, there are two limit cycles if the unstable homoclinic loop
breaks. This contradicts Lemmas 5.10 and 5.11 Therefore, system (1.1) has no
limit cycles when α = dc > 0, tr

2 − 4dr < 0 and tc = φ(α) in G1.
Denote by W+

El
and W−El

the stable and unstable manifolds of the right-hand

side of El of system (1.1) respectively. From the proof of Lemma 5.18, we know
that the relative locations of the manifolds W+

El
and W−El

is shown in Figures 17(a)

and 17(c) respectively when tc ∈ (t∗∗c , φ(α)) and tc ∈ (φ(α),−tr
√
dc/dr). In view

of the fact that the interior of the unstable homoclinic loop of system (1.1) exhibits
no limit cycles, we arrive at the desired result. �

5.3. Limit cycles and homoclinic loops for α > dc > 0 in G1. By Lemma
4.1, we know that system (1.1) exhibits two equilibrium points El and Er when
α > dc > 0 in G1, and El in Sl is a saddle and Er in Sr is an unstable focus
for t2r − 4dr < 0 or an unstable node for t2r − 4dr ≥ 0. Therefore, limit cycle of
system (1.1) must only surround Er by the index theory of [38, Chapter 4] which
can be a small limit cycle or a large limit cycle. However, homoclinic loops of
system (1.1) only involve three linear zones. Note that system (1.1) has no limit
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cycles and homoclinic loops because of the invariant line in Sr when α > dc > 0
and t2r − 4dr ≥ 0 in G1. Therefore, we only need to investigate limit cycles and
homoclinic loops of system (1.1) when α > dc > 0 and t2r − 4dr < 0 in G1.

By setting e := (α− dc)/dr > 0, the coordinates of Er of system (1.1) can be
represented by (e+ 1, tre+ tc). By the transformation

x→ x+ e+ 1, y → y + tre+ tc,

we change system (1.1) to

dx

dt
= F (x)− y, dy

dt
= g(x), (5.47)

where

F (x) =


trx, if x > −e,
tcx+ (tc − tr)e, if − e− 2 ≤ x ≤ −e,
tl(x+ e+ 2)− tre− 2tc, if x < −e− 2,

g(x) =


drx, if x > −e,
dcx+ (dc − dr)e, if − e− 2 ≤ x ≤ −e,
dl(x+ e+ 2)− dre− 2dc, if x < −e− 2.

As we see, Er of system (1.1) changes to O2(0, 0) of system (5.47) and El of system
(1.1) changes to Pl((dr/dl − 1)e + 2dc/dl − 2, (tldr/dl − tr)e − 2tc + 2tldc/dl) of
system (5.47). The plane R2 can be divided into three open linear zones

Sl = {(x, y) ∈ R2 : x < −e− 2},
Sc = {(x, y) ∈ R2 : −e− 2 < x < −e},

Sr = {(x, y) ∈ R2 : x > −e}

by two straight lines Γl = {(x, y) ∈ R2 : x = −e − 2} and Γr = {(x, y) ∈ R2 : x =
−e}. For convenience, for system (5.47) we still use F and g to represent F and g
respectively. Since system (5.47) is topologically equivalent to system (1.1), we can
study limit cycles and homoclinic loops of system (1.1) through analyzing system
(5.47).

Lemma 5.15. If α > dc > 0 and t2r − 4dr < 0 in G1, then system (1.1) exhibits
neither limit cycles nor homoclinic loops when tc ≥ t∗∗∗c , where

t∗∗∗c := −
tr(α− dc +

√
4αdr + (α− dc)2)

2dr
.

Proof. When α > dc > 0 and t2r − 4dr < 0 in G1, system (5.47) has two equilibrium
points Pl and O2, where Pl is a saddle and O2 is an unstable focus by Lemma 4.1.
To prove the nonexistence of limit cycles and homoclinic loops of system (5.47), we
define the Filippov transformation

z(x) :=

∫ x

0

g(s)ds.
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It follows from system (5.47) that

z(x) =


drx

2

2 , if x > −e,
dc
2 (x+ e)2 − drex− dr

2 e
2, if − e− 2 ≤ x ≤ −e,

dl
2 (x+ e+ 2)2 − (dre+ 2dc)x− dr

2 e
2 − 2dc − 2dce, if xPl

< x < −e− 2,

(5.48)
and

z(x) ∈


[0,+∞), if x ≥ 0,

(0, dre
2

2 ), if − e < x < 0,

[dre
2

2 , 2dc + 2dre+ dre
2

2 ], if − e− 2 ≤ x ≤ −e,
(2dc + 2dre+ dre

2

2 , zPl
), if xPl

< x < −e− 2,

(5.49)

where xPl
:= (dr/dl−1)e+2dc/dl−2, zPl

:= 2dc+2dre+dre
2/2−(dre+ 2dc)

2/(2dl).
Let x1(z) and x2(z) be the branches of the inverse of z(x) for x ≥ 0 and xPl

<
x < 0 respectively. From (5.48) we derive

x1(z) =

√
2z

dr
, if x ≥ 0, (5.50)

x2(z) =

−
√

2z
dr
, if − e < x < 0,

(dr−dc)e−
√
d2re

2−drdce2+2dcz

dc
, if − e− 2 ≤ x ≤ −e.

(5.51)

We define F1(z) := F (x1(z)) and F2(z) := F (x2(z)). It follows from (5.50) and
(5.51) that

F1(z) = tr

√
2z

dr
, if z > 0,

F2(z) =

−tr
√

2z
dr
, if 0 < z < dre

2

2 ,

tc
dre−
√
d2re

2−drdce2+2dcz

dc
− tre, if dre

2

2 ≤ z ≤ 2dc + 2dre+ dre
2

2 .

By the two equalities above, we find that

F1(z)− F2(z)

=

2tr

√
2z
dr
, if 0 < z < dre

2

2 ,

tr

√
2z
dr
− tc

dre−
√
d2re

2−drdce2+2dcz

dc
+ tre, if dre

2

2 ≤ z ≤ 2dc + 2dre+ dre
2

2

for z ∈ (0, 2dc + 2dre+ dre
2/2]. Clearly, from the above equality we have F1(z)−

F2(z) > 0 when z ∈ (0, dre
2/2). When z ∈ [dre

2/2, 2dc + 2dre + dre
2/2], a direct

calculation gives rise to

F ′1(z)− F ′2(z) =
tr
√
d2
re

2 − drdce2 + 2dcz + tc
√

2drz√
d2
re

2 − drdce2 + 2dcz ·
√

2drz
> 0 (5.52)

for tc ≥ 0. For tc < 0 we have

F ′1(z)− F ′2(z) =
tr
√
d2
re

2 − drdce2 + 2dcz + tc
√

2drz√
d2
re

2 − drdce2 + 2dcz ·
√

2drz


< 0, if z < z0,

= 0, if z = z0,

> 0, if z > z0,

(5.53)
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as t2rdc − t2cdr > 0, or

F ′1(z)− F ′2(z) =


< 0, if dr < dc,

= 0, if dr = dc,

> 0, if dr > dc,

(5.54)

as t2rdc − t2cdr = 0, or

F ′1(z)− F ′2(z)


> 0, if z < z0,

= 0, if z = z0,

< 0, if z > z0,

(5.55)

as t2rdc − t2cdr < 0, where

z0 :=
t2r(drdce

2 − d2
re

2)

2(t2rdc − t2cdr)
. (5.56)

When z ∈ (2dc + 2dre+ dre
2/2, zPl

), from the monotonicity of F1(z) and F2(z),
we have

F1(z) > F1(2dc + 2dre+ dre
2/2), F2(z) < F2(2dc + 2dre+ dre

2/2).

That is, F1(z)− F2(z) > 0.
When tc ≥ 0, from (5.52) it follows that F1(z)−F2(z) > 0 for z ∈ (0, zPl

). When

−tr
√
dc/dr < tc < 0, we have

(F1(z)− F2(z))|z=z0 = tr

√
2z0

dr
− tc

dre−
√
d2
re

2 − drdce2 + 2dcz0

dc
+ tre > 0.

That is, F1(z)−F2(z) > 0 for z ∈ (0, zPl
). When tc ≤ −tr

√
dc/dr, from (5.54) and

(5.55), we have F1(z)− F2(z) > 0 for z ∈ (0, zPl
) if and only if

(F1(z)− F2(z))|
z=2dc+2dre+

dre2

2

= tr

√
4dc + 4dre+ dre2

dr
+ 2tc + tre > 0. (5.57)

Solving (5.57) leads to t∗∗∗c < tc ≤ −tr
√
dc/dr. According to [27, Section 6], we

know that system (5.47) exhibits neither limit cycles nor homoclinic loops when
α > dc > 0, t2r − 4dr < 0 and tc ≥ t∗∗∗c in G1. �

Similarly, we can obtain the following result.

Lemma 5.16. If α > dc > 0, tr
2 − 4dr < 0 and tc < t∗∗∗c in G1, then system (1.1)

exhibits at most two limit cycles.

Following [21, Lemma 5.3], we have the following lemma.

Lemma 5.17. if α > dc > 0, t2r − 4dr < 0 and tc < t∗∗∗c in G1, then system (1.1)
exhibits a unique homoclinic loop that is unstable when tc = ϕ(α) ∈ (−∞, t∗∗∗c ),
where the function tc = ϕ(α) is continuous and monotonous. Moreover, there
exists a unique limit cycle that is stable in the interior of the homoclinic loop .

Following [21, Lemma 5.4], we can further have the following lemma.

Lemma 5.18. If α > dc > 0, t2r − 4dr < 0 and tc < t∗∗∗c in G1 then there is a
continuous function tc = h(α) and a continuous and monotonous function tc =
ϕ(α) such that the following assertions are true, where −∞ < ϕ(α) < h(α) < t∗∗∗c .

(a) System (1.1) has a unique limit cycle that is stable when tc ∈ (−∞, ϕ(α)).
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(b) System (1.1) has exactly two limit cycles when tc ∈ (ϕ(α), h(α)). The inner
limit cycle is stable and the outer limit cycle is unstable.

(c) System (1.1) has a unique limit cycle that is semi-stable when tc = h(α).
(d) System (1.1) has no limit cycles when tc ∈ (h(α), t∗∗∗c ).

6. Proofs of main results

Proof of Theorem 2.1. When the parameters lie in the region G11, it follows from
Lemma 4.1 that system (1.1) has one equilibrium point Ecl for α = −dc and two
equilibrium points El and Ecr for α = dc. If α = −dc ± ε or α = dc ± ε with
small ε > 0, then Ecl or Ecr will vanish. Thus, BE11 and BE12 are the boundary
equilibrium bifurcation curves.

When the function tc = φ(α) is continuous and monotonous satisfying φ(α) ∈
(max{t∗c ,−2

√
dc}, 0) (resp. (max{t∗c ,−2

√
dc},−tr

√
dc/dr) for −dc < α < dc (resp.

α = dc), from Lemma 5.4 it follows that system (1.1) exhibits a unique homoclinic
loop that is unstable (resp. Lemma 5.12) when tc = φ(α). When the function the
function tc = ϕ(α) is continuous and monotonous satisfying ϕ(α) ∈ (−∞, t∗∗∗c ) for
α > dc, from Lemma 5.17 it follows that system (1.1) has a unique homoclinic loop
that is unstable when tc = ϕ(α). Therefore, HL11 and HL12 are the homoclinic
bifurcation curves.

From Lemma 5.18, it follows that system (1.1) exhibits a unique limit cycle that
is semi-stable when tc = h(α), where the function tc = h(α) is continuous satisfying
h(α) ∈ (ϕ(α), t∗∗∗c ) for α > dc. If tc = h(α) ± ε with small ε > 0, then the semi-
stable limit cycle will vanish. Moreover, there are two limit cycles accompanied by
the vanishing of the semi-stable limit cycle if ε < 0. Hence, we call DL the double
limit cycle bifurcation curve.

It follows from Lemma 5.6 that there is a unique limit cycle that is unstable
when parameters lie in the region V . By Lemma 5.14, system (1.1) exhibits a
unique limit cycle that is large and unstable when parameters lie in the region
BE124. By Lemma 5.18, there are two limit cycles when parameters lie in the
region IX. Moreover, the inner limit cycle is stable and the outer limit cycle is
unstable. From Lemma 5.18 again, there is a unique limit cycle that is stable when
parameters lie in the region X. By virtue of Lemmas 4.1 and 4.2, we depict global
phase portraits of system (1.1) in the Poincaré disc. �

Because the primary procedures in the proofs of Theorems 2.2–2.6 are closely
similar to the proof of Theorem 2.1, we omit them to avoid unnecessary repetition
and redundancy.

7. Numerical results

In this section we perform numerical phase portraits for system (1.1) to demon-
strate our theoretical results.

In Theorem 2.1, system (1.1) has 23 global phase portraits in the Poincaré disc.
Since there is no finite equilibrium point when parameters lie in the region I,
we show the remaining numerical phase portraits of system (1.1) in Figure 19.
Table 2 is offered to help facilitate understanding comparisons between global phase
portraits in the Poincaré disc in Theorem 2.1 and numerical phase portraits in
Figure 19. Similarly, we demonstrate numerical phase portraits of system (1.1) in
Figures 20 and 21 with the associated Tables, as stated in Theorems 2.2 and 2.4.
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Table 2. Numerical values chosen for plotting phase portraits of
Theorem 2.1

Figure Case α tc tr tl dr dc dl

19 (a) II -0.5 2 1 1 1 1 -1

19 (b) III -0.5 1 1 1 1 1 -1

19 (c) IV -0.5 0 1 1 1 1 -1

19 (d) V -0.5 -0.1 1 1 1 1 -1

19 (e) VI -0.5 -0.2 1 1 1 1 -1

19 (f) VII -0.5 -2 1 1 1 1 -1

19 (g) VIII 1.2 -1 1 1 1 1 -1

19 (h) IV 1.2 -1.7 1 1 1 1 -1

19 (i) X 1.2 -4 1 1 1 1 -1

19 (j) BE11 -1 0 1 1 1 1 -1

19 (k) BE121 1 2 1 1 1 1 -1

19 (l) BE122 1 0 1 1 1 1 -1

19 (m) BE123 1 -1 1 1 1 1 -1

19 (n) BE124 1 -1.009 1 1 1 1 -1

19 (o) BE125 1 -1.8 1 1 1 1 -1

19 (p) BE216 1 -2 1 1 1 1 -1

19 (q) HL111 -0.5 -0.171 1 1 1 1 -1

19 (r) HL112 -0.21 -0.1712 1 1 1 1 -1

19 (s) HL113 0 -0.338 1 1 1 1 -1

19 (t) HL114 1 -1.61 1 1 1 1 -1

19 (u) HL12 1.2 -1.929 1 1 1 1 -1

19 (v) DL1 1.2 -1.3766 1 1 1 1 -1

Table 3. Numerical values chosen for plotting phase portraits of
Theorem 2.2

Figure Case α tc tr tl dr dc dl

20 (a) R2 -0.5 2 2 1 1 1 -1

20 (b) R3 -0.5 1 2 1 1 1 -1

20 (c) R4 -0.5 0 2 1 1 1 -1

20 (d) R5 -0.5 -0.1 2 1 1 1 -1

20 (e) R6 -0.5 -0.2 2 1 1 1 -1

20 (f) R7 -0.5 -2 2 1 1 1 -1

20 (g) R8 1.2 -1 2 1 1 1 -1

20 (h) BE21 -1 0 2 1 1 1 -1

20 (i) BE221 1 2 2 1 1 1 -1

20 (j) BE222 1 -2 2 1 1 1 -1

20 (k) HL21 -0.5 -0.171 2 1 1 1 -1

20 (l) HL22 -0.21 -0.1712 2 1 1 1 -1

20 (m) HL23 0.1 -0.57 2 1 1 1 -1

8. Conclusion

In this article, we studied global dynamics of a continuous planar piecewise linear
differential system with three zones. Combining with results obtained in [21], we
have achieved our goal to fully present complicated and rich dynamical behaviors
through demonstrating global phase portraits in the Poincaré disc and bifurcation
diagrams of system (1.1) for the case trtl > 0 and drdl < 0.



48 M. JIA, Y. SU, H. CHEN EJDE-2023/83

Table 4. Numerical values chosen for plotting phase portraits of The-
orem 2.4

Figure Case α tc tr tl dr dc dl

21 (a) G5 0.5 -1 1 4 1 1 -1

21 (b) G6 0.2 -1.9 1 4 1 1 -1

21 (c) G7 0.8 -3 1 4 1 1 -1

21 (d) G8 0.8 -4 1 4 1 1 -1

21 (e) BE421 1 2 1 4 1 1 -1

21 (f) BE422 1 0 1 4 1 1 -1

21 (g) BE423 1 -1 1 4 1 1 -1

21 (h) BE424 1 -1.5 1 4 1 1 -1

21 (i) BE425 1 -3 1 4 1 1 -1

21 (j) BE425 1 -4 1 4 1 1 -1

21 (k) HL411 -0.6 -0.565 1 4 1 1 -1

21 (l) HL412 -0.446 -0.566 1 4 1 1 -1

21 (m) HL413 0 -1.38 1 4 1 1 -1

21 (n) HL414 0.8 -3.2 1 4 1 1 -1

21 (o) HL42 1 -3.7 1 4 1 1 -1

Specifically, we discussed limit cycles and homoclinic loops of system (1.1) with
dc > 0 and −dc < α < dc in G1 in Section 5.1. The obtained results are totally
distinguished from [21]. If φ(α) ∈ (max{t∗c ,−2

√
dc}, 0) (resp. φ(α) ∈ (t∗c ,−2

√
dc]),

system (1.1) exhibits a unique limit cycle that is unstable surrounding Ec when
tc ∈ (φ(α), 0) (resp. tc ∈ (φ(α),−2

√
dc]), see Lemma 5.6 (resp. Lemma 5.7). Ec

lies in Sc and is a stable focus (resp. a stable node). However, homoclinic loops
of system (1.1) may involve two or three linear zones. For example, system (1.1)
exhibits a unique homoclinic loop involving two (resp. three) linear zones when
tc = φ(α) for α < α∗ (resp. α > α∗) and exhibits a unique homoclinic loop that is
tangent to Γr when tc = φ(α) for α = α∗, when φ(α) ∈ (max{t∗c ,−2

√
dc}, 0), see

Lemmas 5.4-5.5. Limit cycles and homoclinic loops of system (1.1) with α = dc > 0
in G1 and with α > dc > 0 in G1 were explored in Sections 5.2 and 5.3 respectively.

In the future, we will develop the methods described herein to the Liénard system
with perturbations and present dynamical behaviors on limit cycles and homoclinic
loops in a subsequent paper somewhere else.
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