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ASYMPTOTIC STABILIZATION FOR BRESSE TRANSMISSION
SYSTEMS WITH FRACTIONAL DAMPING

JIANGHAO HAO, DINGKUN WANG

ABSTRACT. In this article, we study the asymptotic stability of Bresse trans-
mission systems with two fractional dampings. The dissipation mechanism of
control is given by the fractional damping term and acts on two equations. The
relationship between the stability of the system, the fractional damping index
0 € [0,1] and the different wave velocities is obtained. By using the semigroup
method, we obtain the well-posedness of the system. We also prove that when
the wave velocities are unequal or equal with 6 # 0, the system is not exponen-
tial stable, and it is polynomial stable. In addition, the precise decay rate is
obtained by the multiplier method and the frequency domain method. When
the wave velocities are equal with § = 0, the system is exponential stable.

1. INTRODUCTION

In the previous decades, various types of equations models have been used to
describe chemical, biological, physical, and engineering systems. In recent years,
the mathematical model of arc-shaped elastic structures has been greatly promoted
by more and more practical problems, and arc-shaped elastic structures are also
widely studied in the fields of ocean, engineering, aviation, architecture and so on.
Following the main idea of the deformation of elastic structures, we consider the
circular arch problem given by the equations of motion, also known as the Bresse
system (see [28] for details),

p1pe = Qz + LN, (1.1)
p2thue = My — Q, (1.2)
prwi = Ny —1Q, (1.3)
where
N = kol(w, — lp), (1.4)
Q = k(e + ¢+ ), (L5)
M = by, (1.6)

are the stress-strain relations for elastic behavior. Here p; = pA, po = pl, k =
K'GA, ko = EA, b= EI, | = R~'. Here p is the material density, E is the elastic
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modulus, G is the shear modulus, and &’ is the shear coefficient, A is the cross-
sectional area, I is the area of the cross-sectional second moment, and R is the
radius of curvature. These coefficients are normal numbers related to the physical
properties of the beam. Functions ¢, 1 and w denote vertical, shear angular and
longitudinal displacement.

In this article, we are interested in the asymptotic stability of Bresse systems
(from coupled equations — whose dampings are given by fractional damping
terms, and act on two equations respectively. The system is written as

P11 — K(0e + 0 +lw), — Kol(we — lp) + 'Yl(_axm)OSOt =0 1in (0,L) x RJF»
P2t — Dy + K( 0z + 0+ lw) + Y2(—04s)?1be =0 in (0, L) x RT,

prwy — ko(wy — 19) e + Kl(@x + U + lw) + v3(=0pe)Pw; =0 in (0,L) x R,
(1.7)
where 6 is a parameter in the interval [0,1] and damping coefficient v; > 0, i =
1,2,3. We consider the Dirichlet-Neumann-Neumann boundary conditions

90(0715) = cp(L,t) = 7/)1(0775) = sz(Lvt) = wiﬂ(oat) = wI(Lat) =0 in R+7 (18)

and the initial conditions
Sp(xv 0) = $o, th(xa 0) =¢1 in (Oa L)a
w(m70) :d}Oa 1/%(%0) :wl in (07L)7 (19)
w(z,0) = wo, wi(x,0)=w; in (0,L).

This fractional damping is an intermediate dissipation mechanism not previously
considered in Bresse systems. In special cases, the mechanism includes friction
damping (0 = 0) and Kelvin-Voigt damping (6 = 1). In books [I3} 25] we find the
following definition of fractional order operators: For a > 0, the bounded linear
operator A~ is defined by

1
A %=

T 2mi

/ AT — A)~ld),
Y

where ~ is a piecewise smooth path in ¥ R going from coe " to ooe? for some
d > 0. We refer to [I3] [25] for other relevant results on fractional powers.

First, we introduce some relevant results that motivated this work. To stabilize
the Bresse system, various kinds of damping are used and some decay results are
established. From a large number of literature, three basic damping mechanisms
can be distinguished, namely friction damping, Kelvin-Voigt damping and damping
with memory. By comparison, the friction damping term is relatively simple, and
the study of local Kelvin-Voigt damping is too much, while the damping with
memory is more complex, because the damping term is represented by various
forms of convolution products of the kernel. In the following content, we will briefly
introduce the asymptotic stability of Bresse system under these three damping
mechanisms.

Guesmia [22] studied that when the friction damping only acts on a vertical
displacement, under the Dirichlet-Neumann-Neumann boundary conditions, if

l#mm, Vmé€EZ, (1.10)
the system is not exponentially stable. If (1.10) holds and
—b
12 4 Ko P2 P1 (m7r2) . KP1

M Ymez, (1.11)
Kop2 p2(K + Ko)
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the system is polynomial attenuated (the meaning of coefficient is consistent with
that in this paper). Alabau Boussouira et al. studied in [5] that when the friction
damping only acts on the shear angular displacement, under the complete Dirichlet
boundary conditions, its stability is related to wave velocity ﬁ, p% and %. Denote
the difference of wave velocity

X0 = r_ i and x1 =K — Ko. (1.12)

P1 P2

when the wave velocity is equal, i.e. xg,x1 = 0, the system is decay exponentially.
When the wave velocity is not equal, i.e. xo # 0,x1 # 0 or xo # 0,x1 = 0, the
system attenuates in polynomial form of /¢ or t=1/3. The optimality of poly-
nomial decay is proved in [I6]. Under the Dirichlet-Neumann-Neumann boundary
conditions, if yg # 0 or x; = 0, the system is not exponentially stable. Finally,
numerical analysis is given to verify their conclusions. Afilal et al. [3] obtained that
when the friction damping only acts on the longitudinal displacement, under the
mixed boundary conditions

@(O’t) = wac(oat) = wm(())t) = @w(Lvt) = w([’?t) = w(L7t) =0 in R+,

| £ g +mm, VmeZ, (1.13)

and
Kop2 +bp1 T Kp1
(2 BOP2 0PV Ty R
a Kop2 (2 ) p2(k + Ko)

the system is exponentially stable. If only and hold, the system is
polynomial decay. The numerical analysis is also given.

When there are two friction damping in the system, Alves et al. [2] proved that
if there is no friction damping on the longitudinal displacement, the system is
exponentially stable under the Dirichlet-Neumann-Neumann boundary conditions
when x; = 0, and the system is non exponentially stable when x; # 0. At the
same time, they also proved that the decay is polynomial at the optimal rate t—/2.
Wehbe et al. [40] got that when there are two locally distributed feedbacks on the
shear angular displacement and longitudinal displacement,

. Ymez, (1.14)

p1¢1t — K(pe + 0 4+ lw), — kol(wy —lp) =0 in (0,L) x RT,
pothis — bue + K(pz + ¥ + lw) + ay(z)yy =0 in (0,L) x R,
p1wss — Ko(wy — 19)s + Kl (e + ¥ + lw) + a1 (x)wy =0 in (0,L) x RT,
where the positive continuous functions a;(z), j = 1,2 satisty the conditions
aj(z) >a_ >0 foreveryx € ©:=(0,c)U(d,L), 0<c<d<L.

It turned out that under the Dirichlet-Neumann-Neumann boundary conditions,
the system is exponentially stable when yg = 0. When xo # 0, then for any
positive integer m > 1, there exists a constant C,,, > 0 independent of initial value
Up € D(AT), j = 1,2 such that

Int\m
1850031, < Con ()" W Ul gy, ¥t > 0.
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For the Kelvin-Voigt damping system, Akil [I] studied the stability of Bresse
system with only one discontinuous local Kelvin-Voigt damping on the axial force:

P1Ptt — K(szv + ¢ + lw)w - fiol(wa: - l(p) - ld(x)(wtx - l‘Pt) =0 in (Oa L) X R+a
P2t — bhpy + k(@ + ¢ +lw) =0 in (0,L) x RT,
p1wis — [Ko(We — 19) e + d(x)(Wie — lpr)]e + Kl(ps + 9 +1w) =0 in (0,L) x R,

Suppose that there exists 0 < o < f < L and a positive constant dy such that

dy iz e (a,B),
d(z) = {0, if ze(0,0)U(B,L),

and under the complete Dirchlet boundary conditions, they proved that whether
the wave velocities are equal or not, the system exhibits polynomial decay. When
xo = 0, the decay rate is t~'. When yo # 0, the decay rate is t~*/2. For other
results on friction damping and Kelvin-Voigt damping, see [4, [I4] [37] and their
references.

Recently some scholars have also studied the stability of Bresse systems whose
damping term is dissipated through memory. When the memory terms of the three
equations exist simultaneously, it has the following form

/0009(5)<Pm(1:,t5)ds, /Ooog(s)d)m(z,ts)ds, /()Oog(s)wm(x,ts)dS,

where ¢ : Ry — R, is differentiable, non-increasing and integrable function on
Ry. Guesmia and Kafini [23] (three infinite memories), Guesmia and Kirane [24]
(two infinite memories), Guesmia [19] (one infinite memory only acts on the lon-
gitudinal displacement) and De Lima Santos et al. [36] (one infinite memory only
acts on the shear angular displacement) obtained the asymptotic stability of the
one-dimensional linear Bresse system under infinite memory, respectively. When
the kernel function decays exponential at infinity, if the wave propagation velocity
is the same, the exponential stability of the corresponding systems is obtained in
these papers, otherwise it will lead to polynomial stability with decay rate t=1/2.
Guesmia in [20] studied that an infinite memory only acts on the vertical displace-
ment, they proved that even if the wave propagation velocity is the same and the
kernel function has exponential decay at infinity, the exponential stability is not
tenable, but it decays as a polynomial with t='/4. In addition, the authors in [7]
considered the stability of Bresse system with memory term acting on shear an-
gular displacement under arbitrary growth of the relaxation function at infinity.
They not only proved that the system is well-posedness, but also presented two
general decay estimates: a uniform stability estimate under and another
general weak stability result. Some other authors have also considered the others
dissipation mechanisms in Bresse systems, such as thermoelastic Bresse systems,
(see [I5} 21, 26, B30]).

It is well known that the Bresse system evolved from the Timoshenko beam
equation. If R — oo and g = 0, then I — 0 (see above for specific physical
meanings), the model is simplified to Timoshenko beam equation (see [18]). If
R — oo and g # 0, then [ — 0, the model is simplified to Timoshenko beam
equation with past history (see [31]). It is noteworthy that Higidio Portillo Oquendo
et al. [32] dealt with the asymptotic behavior of the solution for a Timoshenko
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system with a fractional damping,
pl¢tt - K((bam + ¢$) =0 in (OaL) X R+7
ptht - bwww + Kf((bz + w) + (_8wm)0¢t =0 in (Oa L) X R+,

satisfying the boundary conditions
¢(07t) = ¢(L7t) = ¢T(O7t) = 'l/)r(Lvt) =0 onR".

Here, the parameter 6 € [0, 1], the damping only acts on one equation of the system,
and the exponentially decreasing kernel is considered. The authors obtained the
exact decay rate, which depends on the difference of the propagation speeds of the
two waves. To be precise, when the equations have different propagation speeds,
if & < 1/2 then the system decays polynomially with rate t=%/(2=20) if § > 1/2
then the system decays polynomially with rate t~/(29): when the equations have
the same propagation speed and 6 € (0, 1], the system decays polynomially with
rate t—1/(29) and these decay rates are optimal; when # = 0 and the equations have
the same propagation speed, the exponential decay of the system is obtained. Fur-
thermore, Astudillo and Oquendo [6] studied the stability of the Timoshenko beam
equation with fractional memory term under the exponentially decreasing kernels.
The relationship between stability, the wave velocity and the fractional damping
exponent is studied by using semi group method, and obtained the corresponding
exponential stability and precise polynomial decay rates.

The stability of some other Bresse systems with fractional derivatives have also
been studied. In [9], Oquendo and Sudrez introduced two internal damping terms
expressed by the generalized Caputo fractional derivative and studied the asymp-
totic stability of the following viscoelastic Bresse systems,

P1o1t — K(Pe + U+ lw)y — Kol(wy — lp) + a1 (2)0;""¢ = 0,

patbes — b + / 9(8)tban (£ — 8)ds + 1 (n + 1 + lw) + as ()0 = 0,
0
P1Wet — HO(ww - l‘P)w + Hl(@w + lb + lw) = 0’

in (0,L) x R, where the symbol 8> (or 87"") refers to the generalized Caputo
fractional derivative corresponding to the time variable ¢ of order a (or 8) and it
is expressed for the order a by

O f(t) = _ /t(t - s)_ae_"(t_s)ﬁ(s)ds

t 1l —a) Jo ds '
The authors not only proved the strong stability, lack of exponential stability and
polynomial stability of the system, but also gave an accurate decay rate (see Theo-
rem 3.8 of [9] for details), and also used numerical simulation to verify their results.
Earlier, Benaissa and Kasmi [§] considered the Bresse system with three control
boundary conditions of fractional derivative type, and they obtained the polynomial
decay result. There are many studies on fractional damping. For other types of

references, the readers can see [I1] [12] 27] B3] B8, B9] and the references therein.

Inspired by these works, we study the asymptotic behavior of the Bresse system
(L.7)-(L.9). Firstly we introduce some notation. For 1 < p < oo, L? := LF(0,L)
denotes the usual Lebesgue space with the norm || - ||f». For the convenience of
notation, we will use || - || instead of || - |2 and (-,-) instead of (-,-)z2. Let s be
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a nonnegative number, H* := H*(0, L) denotes the usual Sobolev space, equipped
with the norm || - ||gs. In the following, C' denotes a generic positive constant.
The set

L2(0,L) :={h € L*(0,L) : /L h(z)dz =0}
0

is a closed subspace with the L2-norm, therefore it is a Hilbert space. As we know,
the operators
E:=—0,,: D(E) C L*(0,L) — L*(0, L), (1.15)
E. := —0,, : D(E,) C L?*(0,L) — L%*(0, L), (1.16)
with respective domains
D(E) =: H*(0,L) N Hy(0, L),

D(E,) == {¢p,w € H*(0,L) N L2(0, L) : 1, (0) = p (L) = 0,w,(0) = w, (L) = 0},
are positive, self-adjoint and have compact inverse. Therefore, the operators E7 ,
E¢ are bounded for ¢ < 0, and positive self-adjoint for o € R. Furthermore, the
embeddings

D(E?') — D(E??), D(ET') — D(EZ?)
are continuous for oy > 3. The norms in D(E?) and D(E?) for o > 0 are given by
lelpee) = I1E7¢ll, [¥llpes) = B¢, and [Jwl|psg) := | B w| respectively.
Because the operators F and F, are positive, self-adjoint and they have compact
inverse, the spectrum of these operators is constituted only by positive eigenvalues.
The eigenvalues for both operators are given by &2, where
¢, — nm
n — L k)
and the corresponding unitary eigenfunctions associated to these eigenvalues are

en(x) = \/zsin(fnac), er(z) = \/gcos(fnx). (1.17)

The sequences {e,} and {e}} form the bases of the spaces L%(0, L) and L2(0, L)
respectively, then for ¢ € L%(0, L) and ¢, w € L2(0, L) we have

n €N,

oo oo oo
Y= Z<907 en)en, Y= Z<¢v €n)en, W= Z<7~U; €n)en-
n=1 n=1 n=1
Note that, for ¢ € D(E°+1/2), we have the following identities
BT Ro =N " g en)en, El0np=» 7 g en)es,
n=1 n=1
by Parseval’s identity, we obtain
IB7H 20| = | EZ 0] (1.18)
In particular, for ¢ = 0 we have |EY2p| = ||0,¢||. In a similar way, for ¢, w €
D(EZT?) it follows that
o+1/2 o o+1/2 o
|EZ 2y = [E70w, BT Pw] = || B 0wl (1.19)

At the same time, for ¢ € D(E?°) and ¢, w € D(E?°), with o¢g = max{c,1/2}, we
easily verify that

(BZY, 00) = — (Y2, E7), (EJw,pg) = —(wg, E7 ). (1.20)
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Our main results deal with the asymptotic behavior of the solution of this sys-
tem. The innovation of this paper is to extend the dissipation mechanism of control
in some literatures to the case of fractional damping, and is to study the asymptotic
stability of the system — when there are only two fractional damping re-
spectively. It is found that the stability is related to the wave speed and the
value of 6 € [0,1]. These results are clarified in Theorems which are mainly
stated as follows:

(i) When fractional damping acts on vertical displacement and shear angular
displacement, that is, 74 > 0,72 > 0,93 = 0, if x; = 0 and 6 € (0, 1], then
the semigroup e** decays polynomially with rate t~%/% when 6 = 0, then the
semigroup e decay exponentially; if y; # 0 and # < 1/2, then the semigroup e*A
decays polynomially with rate t=*/(=29) when 6 > 1/2, then the semigroup e
decays polynomially with rate ¢t=/(20).

(ii) When fractional damping acts on vertical displacement and longitudinal
displacements, that is, v; > 0,73 > 0,72 = 0, if xo = 0 and 6 € (0,1], then
the semigroup e’ decays polynomially with rate t=2/(2?) when 6 = 0, then the
semigroup e decay exponentially; if yo # 0 and 6 < 1 /2, then the semigroup elA
decays polynomially with rate t=1/(2=20) when 6 > 1/2, then the semigroup e**
decays polynomially with rate ¢/,

(iii) When fractional damping acts on longitudinal displacements and shear an-
gular displacement, that is, v > 0,73 > 0,71 = 0, if xo = 0 and 6 € (0, 1], then
the semigroup e** decays polynomially with rate ¢~/ when 6 = 0, then the
semigroup e decay exponentially; if yo # 0 and # < 1/2, then the semigroup e
decays polynomially with rate t=1/(2=2¢) when 6 > 1/2, then the semigroup elA
decays polynomially with rate ¢t=1/(20).

The outline of this article is the followings. In section 2 we study the well-
posedness result of solution to system —. In section 3, we prove the case of
lack of exponential stability. In section 4, we give the asymptotic behavior of the
corresponding semigroups, including exponential stability and polynomial stability,
and precise decay rates are obtained.

2. WELL-POSEDNESS OF SOLUTION

In this section, we use the semigroup theory to obtain the existence and unique-
ness of solution for system (|1.7)-(1.9). We denote the state space by
H = H}(0,L) x L*(0, L) x H(0,L) x L?(0,L) x H}(0,L) x L2(0,L),  (2.1)
where H!(0,L) := H*(0,L) N L2(0,L). Note that H is an Hilbert space with the
inner product
(U1, Ua)ae = p1{@1, 2) + p2(thr, o) + p1 (i, W) + ko(Ozwi — lip1, Opwa — lipa)
+ K£(0ztp1 + Y1 + lwy, 0rp2 + P + lwa) + b(0utb1, Outh2),
(2.2)
and the norm

U113, = prll 3117 + p2 |91 + pal| @)1 + #]| 0o + 9 + Lol |?

(2.3)
+ ol 8w — lp||? + b]|02|1%,

where Uz = (@iv@iaqpi,d}ivwivwi)Ta L= 172
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If we consider the vector U(t) = (p(t), 3(t), (), (t), w(t),w(t))T, then system
(1.7)-(1.9) can be written as the Cauchy problem
d
—U(t)=AU(t
CU(t) = AU(1)

U(0) = Uo,

(2.4)

where Uy = (o, @1, %0, 11, wo, w1)T is the vector of initial data and the operator
A is given by

®
2 (e + Yo + lwg) —&—%’ll(wm —ly) — Z—iE‘ggb
o
.AU == b P ] ~ B (25)
pjwmm - E(‘Pz +~1P + l'LU) — %E*’l/)
w
Ko _ _ kL _ 3 10,
s (Waz — lpa) 7 (Y + ¢+ lw) o Elw
with
D(A) = {U e 3 e HY(0,1), € HL(0,L), @ € HA(0, L),
¢ € Hy(0,L)NH*(0,L), ¢,w € H}(0,L) N H*(0,L), 20

KE@ +E"¢ € L*(0, L), bE.Y + 1 B € L(0, L),
roEyw +v3E%0 € L2(0, L)}.
We use the following Lumer-Phillips theorem [34] to prove the existence of solu-
tion of Cauchy problem (2.4)).

Theorem 2.1 ([34]). Let A a linear operator with dense domain D(A) in a Hilbert
space H. If A is dissipative and 0 € p(A), the resolvent set of A, then the operator
A is the generator of a Cy-semigroup of contractions on H.

We give the well-posedness result of solution as the following theorem.

Theorem 2.2. For Uy = (o, ©1, %0, %1, wo, w1)T € H, there exists a unique solu-
tion of Cauchy problem (2.4)
U= (p,0,9,9,w,@)7" € C(0,00);H).
Moreover, if Uy € D(A), then the solution is more regular, i.e.
U= (¢, @ ¢, ¥, w,@)" € C([0,00); D(A)) N C}([0, 00); H).-

Proof. We prove that the operator A in (2.5)) satisfies the conditions of Theorem
Firstly, from (2.6)) we can obtain that the domain of the operator A is dense
in H. In addition, for any U = (¢, @,v, 1, w,w)T € D(A) we obtain

Re(AU,U) = =71 | E?2@|? — 7l B — s EZ 2wl <0, (2.7)

Therefore, the operator A is dissipative. Secondly, we need to check that 0 € p(A).
To do this, for any F = (f1, fa, f3, f1, f5, f6)T € H, let us prove that the problem
AU = F has a unique solution U = (¢, 3,4, 1, w,w)T in D(A). According to the
definition of the operator A, the system can be written as

(15 = fla (28&)
K/(SO:E:E + ww + lwaj) + Hol(wz - lgD) - leEGSZ = p1f2a (28b)
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b= fs, (2-8¢)
b — Ko + 0 + lw) — 1 E% = pafy, (2:8d)
o= fs, (2.8¢)
Ro(Wer = lps) = Kl(z + ¢ + lw) — 33 BLD = py fo, (2.8f)
then from (2.8b)), (2.8d)) and (2.8¢)), we obtain
K(@ow + Yz +lwy) + Kol(wg — 1) = ha, (2.9a)
bipea — K(@x + 1 + lw) = ho, (2.9b)
K0(Waz — lpz) = kl(pe + ¢ + lw) = hs, (2.9¢)

where by = p fa+ 71 E f1, ha = p2 fat2 B f3 and hy = p1 fo+73 EY f5. Multiplying
(2.94) by ® € HL(0,L) , (2.9B) by ¥ € HL(0,L), and (2.9¢) by W € HL(0,L),
summing them, then system (2.9al)-(2.9¢) can be studied as a variational problem

B((¢, 0, w), (®,¥,W)) = L(P, T, W), (2.10)
where
B((¢, ¥, w), (2,9, W))
= k(e + 1+ 1w, ©p + U+ IW) + by, Up) + Ko (we — Lo, Wy — D),
L(Q, ¥, W) = —(h1, ®) — (h2, ¥) — (h3, W).
We can verify that B is a continuous sesquilinear form on (HJ(0,L) x H(0,L
H(0,L))% and L is a continuous linear form on H~1(0, L) x H*( 0
At the same time, taking (®, ¥, W) = (¢, %, w), we have
B((p, ¥, w), (¢, ¥, w)) = Koz + ¥ + ]| + bl ||* + Kollws — lpl|?.  (2.11)

Thus, we obtain the coercivity of this sesquilinear form. Now, applying Lax-
Milgram theorem and considering (|2.8a , and (2.8€), we have a unique so-
lution U € H. Since the solution satlsﬁes system (2.8a)-(2.81) in a weak sense, by
these equations, we can obtain that U € D(A). Finally, from I ) and (| - we

deduce ) ) )
K[z + 9+ lwl|® + bl[Y|* + kollws — |

= —p1{f2, 0) = p2{fa,b) — p1(fs, w) — M (E® f1, ) (2.12)
— 2B f3,0) — v3(EY f5, w).
From , we obtain
—%HEQ/%IIQ que/an? sl B[ < —~CRe(AU,U) < C|[F||[[U]]. (213)

Substituting ([2.13)) to , and using the Cauchy-Schwarz, Young’s and poincaré
inequalities, we obtain

H”QD:E +Y+ lw||2 =+ b||1/}9cH2 + KOHMQ: - l‘PH2
<e(llall® + 1vall® + llwa I + CAFIUN + 11F]1?)
for any constant € > 0. Using this inequality gives
g2l < Cllpw + ¥ + lw|® + [|9]|? + w]?)
< Cllpe + ¢ + 1wl + 9 l* + lwe]1?),
and
Jwa||* < Cllwa — lol* + [l¢l1?)
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< CO(|lwg — l@”2 + ||90x||2)

< O(lwe = lol* + gz + 3 + lwl|? + |9 |* + ellws]|?),
for fixing constant € enough small. By using poincaré inequality we obtain

Kllps + 9+ lwl|® + [[¢al” + rollwe —lpl|> < CUFNUI + 1F?).
Furthermore, from ([2.8a)), (2.8¢|), (2.8¢)), it follows that
pillell? + pall]I* + pallwl® < C|IF|I2.
Therefore, from the above inequalities we conclude
U] < C|IF|I?,

that is, 0 € p(A). From Theorem we obtain that A is the generator of a
Cy-semigroup of contractions in H, and the well-posedness of the Cauchy problem
(2.4) is a result of the semigroup theory. The proof of T heoremis complete. [

3. LACK OF EXPONENTIAL STABILITY

In this section, we show that the semigroup associated with the Bresse system
is not exponentially stable. We will use Pruss’s theorem [35] to prove the lack of
exponential stability. That is, we will show that there exists a sequence of values
An, such that

|(An = A) "l £(0) — 00
It is equivalent to prove the existence of a sequence {F,,} C H and a sequence of
complex numbers {\,} C iR, with F}, is bounded in # such that

A = A) ™ Fylly — o0,
where
A\ — AU, =F,
with U,, not bounded. Taking F,, = (fi, f2, f3, f1, f5, f6)T, we write firstly the
spectral equation in terms of its components as follows,

An‘P_@: f17 (313‘)
l

M = (0 + )y — = (wy —lg) + LEp=fo,  (3.1D)

f1 1 P1
At — 1 = fs, (3.1c)

_ b -

P2 P2 P2
/\nw —w = f5, (318)
ki

Al — 2w, = 19)s + —(pu + 0+ lw) + L E% = fo, (3.1f)

P1 P1 P1

The main result of this section is stated as follows.

Theorem 3.1. (i) When v1,72 > 0,73 = 0, if x1 # 0, or x1 = 0 and

0 € (0,1], then the semigroup associated to system — is not ex-
ponentially stable.

(ii) When v1,v3 > 0,72 = 0, if xo Z# 0, or xo = 0 and 6 € (0,1], then the
semigroup associated to system — s mot exponentially stable.

(iii) When 2,73 > 0,71 = 0, if xo # 0, or xo = 0 and 6 € (0,1], then the
semigroup associated to system — s not exponentially stable.
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Proof. Using Pruss’s theorem [35], and taking f; = f3 = f5 = 0 in (3.1a)-(3.1f) we
obtain

Anp = @, (3.2a)
l
M@ — oy 4+ 1)y — 22 (wy — 1) + LB = f, (3.2b)
p1 p1 P1
Anth =1, (3.2¢)
-
Mt = g+ 2B+ oy 4+ lw) = fi, (3.2d)
P2 P2 P2
Apw = W, (3.2¢)
kl
At — 2w, — 19z + (g + b + lw) + L E%D = f. (3.2f)
p1 p1 P
Substituting (3.2a)), (3.2c), and (3.2¢]) into (3.2b)), (3.2d) and (3.21)) respectively, we
obtain
2 Kol st 0
Anp — f(soz ¢ +Hlw)e — —(we —lp) + =M E"¢ = fo,
P1 P1
Ao — —wm . o+ + w) + Vz M B = fu, (3.3)
kl
)\iw — @(wz —1p)e + — (o + ¥ +1lw) + E)\nEfw = fs.
p1 p1 P1

Because of the Dirichlet-Neumann-Neumann boundary conditions , we take o,
¥, w are of the form ¢ = A, sin(*"*x), 1 = B, cos(Fx) and w = C,, cos(*Fx)
with n € N, where 4,,, B,, and C, depend on \, and w111 be explicitly determined
below. After performing some simplifications, we will obtain a system of the form

AU =2,
with
U= (An, Bo, Co)T, 2= ( f2 L o )T
T sin(®Fx)’ cos(®Fx)’ cos(®rx)/ '
Pi(\,)  (nm) Hetedn
P Yt T XCH N
l(kt+kKo) (nm K
(:1 HCO R P3(An)
where
l Y nmw
PuOh) = 32 4 (e 0 Ty (P,
() S+
b nrw K 7 nmw
Py(M\) = A2 — ()2 + — 4+ X ()Y,
5(An) L) o, M)
l v3 nmw
Py(An) = A2 4+ 0 (B2 B 8 (B2
5(2n) Pl(L) P11 <L)

By solving this system, the expressions of A,, B,, C,, are obtained. And to do
that, we set

Pi(\,)  (nE) Heteeln
det(A) l 25 P 57*;
(m;&o)(%) % P3<)\n)
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Next, we will discuss the non-exponential stability of the system in the following
three cases.

Case (i) When 71, 72 > 0, 73 = 0. We consider the expression

Pr(An) () smfﬁ
:72(”%) PQ(A") cos(f"%m)
I(k+ko) (M) 13 fo
N P1 L P1 cos( & x)
n K (nm l(rt+r nmy|°
Pi(An) & (nE) Hetre)(ax
s(nm) By ks
l(k+k nm K
(wheo) (nz) L P3(\n)
Taking fo = f1 =0, fo = cos("Fx), and P3(\,) = A} + 50("F) + ':Tlf =co €R.
Here, if x1 # 0, then ¢g := %, while if x; = 0, then ¢y is a given constant.

Thus we have

For large values of n, we have A,, € iR and |A,| ~ O(n). So we obtain

Pi(An)Po(An) — o (2)2

B P1pP2

Cn = det; (A ’
where
det(0n) = Pr(An) PalAn)ep + 2L K0) 0y ) (BT o) o
1 n) — £1An )12 \An )CO p%pz L 2\"\n P% L
K212 K2 nm

- Pi(\n)

—c
pip2 pipa L
with the polynomials reduced to

K2 K ,nm kol? M nw

Ko MNT (o 2 20
Pi(An) = o — —2(—)2 — == —)? 4+ ==+ A
1) = o P1(L) p1 ,01(L) PP (L)
il nmo | all® | m LURYT
=co+ () + T + = ()%,
o+ B+ 1 I (T
and
Pa(0) = c _mo(mr)Q_/-@lQ_’_ b(’l’Lﬂ')2+ K +’}/2)\ <n7r)29
2 T L pr p2 L p2 p2 L
b ko, nmo, K2 K 2. nT g
=c+(———)(—) " ——+—+ = (—)".
0 (p2 Pl)(L) or T 2t o ()

Next, we discuss the classifications.
For the subcase x1 = 0, we obtain

IPL O] = €0+ A (55)27 ~ O(n1+2),
P1 L
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b K NT K2 Kk nmw
P\ =cot+(—— =) (=) — —+ — + Zx. ()%
FP2(An) = co (Pz Pl)(L) p1 - P2 P2 <L)
O(n'*+2%), if xo = 0,
~ < O0n*?) if xyo #0and § > 1/2,

O(n?), if xo#0and 6 <1/2.

Thus, we have

:‘{2 nm

- ,01,02( L

[P1(An) P2(An) )|~ Pr(An) Pa(Mn)

O(n**t4%), if xo =0,
~ < OMm>9) if xo £0, 6 >1/2,
On3+29) if xo #0, 6 < 1/2,
O(n ), if 8>1/2, xo=0,
|d€t()\n)| ~ 34260 . o
! O(n*™%), if0<1/2, xo =0,
O(n?*t49), if 0 >1/2, xo # 0,
| det(An)] ~ s .
! O(n?), if 0 <1/2, xo #0,

According to the ratio, it is found that whether x( is 0 or not, the asymptotic
behavior of C,, can be estimated as

o(1), if0>1/2,
|Cn| ~ 20-1y  :
O(n=~1), ifo <1/2.

( 2440

For the subcase x; # 0, we have
O(n'*+2%), if 0 >1/2,

then

|P1 ()‘n)P2(/\n)

K2 onm 2 O(n?+49) if 6 > 1/2,
pip2 L O(n), if <1/2,

Substituting ¢y = Plotro) ong Py()\,) into deti()\,), we obtain

p1(K—Ko)

(K + Ko )? @)2] 26212 (K + ko) nl)2

[det(0)] = Pa () [Pr(h) = = (T (T
K212 k2 nm
- Pi(An) —co—— (=)
P1P2 pip2 L
al nmoy | Dall? | vy nmiae Dl nm
= coPo(M)[co + XU (D2 by, (B2 Il T
0P (M) feo + =2 () + = A ()Y = ()
2k212(k + ko) , T K212 K? nm
2ELEL R (M Byt e (M
pPip2 L p1p2 pip2 L
X112 y1, 0T 0gy 26212 (K + Ko) ,nT o
= coPo(Mp)[co + XL Dy (y2ey y SRR T Ro) T
0F2(n)[co p1 p1 (L)] pip2 (L)
K212 k2 nm
—Pi(\)—— —co—— ()"

Co
pP1P2 pip2 L
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O(n3+29), if 6 <1/2.
So, the asymptotic behavior of C,, can be estimated as

o(1), if0>1/2,
[Cnl| ~ 1-26 .
O(n't=2%), ifo <1/2.

{0(n2+49), if0>1/2,

Hence,
L
. nm L
0 > pal 10,y = prCol? [ cos?(Fra)de = N
So, when y; # 0, we have
pL O(n), if0>1/2,
Un > Q= )\n Cn ~
[Ualle > /2= Dl G {OWQML oo

n— oo

while when x; = 0, we have

L ifo>1/2
U7 > pluucAw{wm’ A

2 O(n?®), if0<1/2.
If & € (0,1], then lim, o [|[Upn|lx = +o0o. This means that the corresponding

semigroup is not exponentially stable when x; # 0 or x; = 0 and 6 € (0,1]. The
first result of this theorem is proved.

Case (ii) When 71, 3 > 0, and 2 = 0, we consider the expression

2 l(k+K nmw
Pl(An) sin(f"T"m) ( :1 0)(T)
£ () _fa Is
" iQ )L cos(2Ex) P2
. DR ey PsOw)
n = K (nm l(k+k nm ’
Pi(\n) () Hotro) ;1 O)(T)
K (nm Ik
’ E()T) P2l(>\n) o
KT Ko nm K
laz) s py(y,)

3

™

We take fo = fg =0, fu = Cos(?x), and Py(\,) = A2 + p%(%)? + piz =by € R.
Here, if xg # 0, then by := m, while if xo = 0, then by is a given constant.
Then b
nmw K
Mo=py— —(—)— =
0 P2( L ) P2

For large values of n, we have A,, € iR and |A,| ~ O(n). So, we obtain

2 2
P Ps(\) — Llectra)? (nr 2

" detg()\n) ’
where
26212 (K + Ko) N, (k+ Ko)? nm gy
= P,(\,)P. SR ARTRO) My2 g D AR T RO) (T
det(An) = Pr(An) P2(An)bo + P ( T )= —bo p ( T )
272 2
— PO L Py~ (e

pipz o pipst L



EJDE-2023/87 ASYMPTOTIC STABILIZATION FOR BRESSE SYSTEMS 15

with the polynomials reduced to

K Kol Vi, ,MT . 99
= b + — )P - =+ =+ =\ )
o+ hol () - 2 ()
and
b nm K Ko M Kl Y3 nmw
P)\n :b_772_7 U 2+7 7)\’”7297
3(An) = bo PQ(L) p2 Pl(L) P P (L)
b 2
=+ (20— 2y By B R Ty (BT,

p1 p2 L P2 p1 Pl L

Through calculation, we find that the estimate of the asymptotic behavior of B, is
consistent with the estimate of C), in the item (i) of this Theorem, and only replace

x1 and xo in C,, with xo and x; in B, respectively. So we will not go into details
here.

Case (iii) When 72, 3 > 0, and v, = 0, we consider the expression

sm(]i?T"x) pﬁ(nf) l(”::l’io) (Tﬂ')
cos(]i—"r) P l(:\ ) Plp’:
A — cos( &) p1 3()\ )
L RGeS
l(n/fng)lkr)zrr) Plij ) P/(J;\ )
P1 L 1 3\An

We Take fo = sin("F'x), f1 = cos(%Fx), fo = 0, and Pi(\,) = A\p+ 2 (Lg)ungif —
ag, where ¢y € R is a given constant. Then

12
A =g — ()2 - T

p1 L P
For large values of n, we have A, € iR and |\,| ~ O(n) So, we obtain
. Py(An)Ps(Ay) — SEEmod ()2 2 () ()2

dets(A,) ’
where
2k212(k + Ko) T
T e L a1

K212 K2 nm .,

dgt(An) = PQ()\n)Pg()\n)ao

—ao(An)

pipz " pipe L

with the polynomials reduced to

K N IiolQ b nm nmw
P )\n _ v tN2 A )\ 20
) = a0 — (O = O (e K 22 (B,
nT.o Kk Kol? 2. N 9
=ag + — )+ ———+ = ()7,
o+ Ixol() = o o ()
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and
K N kol> Ko ,mm KIZ s nmw
Pi(A\) =a0 — — ()2 — =— + () + — + = A (—)%,
3(An) = a0 Pl(L) p1 Pl(L) p1 p1 (L)
xil nmo all® | s, g
=ap+ ()% — T+ BN ().
’ PI(L) p1 p1 (L)

Next, we discuss the classification. For the subcase xo = 0, we have
K Kol | e UURYT 1426
Py(A\p)|=ap+— ——+ =X (=)7 ~O(n ,
o] = e+ 2 = P 22y (BT 0! +2)
O(?’L1+29)7 if X1 = 07
[P3(An)] ~ § O(n'+2%), if x1 #0, 6 >1/2,
O(n?), if x1 #£0.6<1/2.
Thus, we have
KI?(k + ko) T K212 K nm
B = S Py (T
i L p1p2 pr L
O(n2+49)v if x1 =0,
~ < O0m*19) if 1 #£0, 0 > 1/2,
O(n3+2%), if x1 #0, 0 < 1/2,

O(n?*t49), if0>1/2, x1 =0,
O(n*+2%), if9<1/2, x1 =0.
O(n?*t49) if 0 >1/2, x1 #0,
O(n*), if 0 <1/2, x1 #0.

|P2()\n)P3(>‘n) -

| det(An)] ~ {

| det(An)] ~ {

According to the ratio, it is found that whether x; is 0 or not, the asymptotic
behavior of A,, can be estimated as

A 0(1), if0>1/2,
" O(n2*—1), ifh<1/2.
For the subcase xo # 0, we have P3()\;,) is unchanged and
O(n't2%), ifg>1/2,
(o) ~ 4 00 T 02 Y
O(n?), itg <1/2.
Then
O(n?*t49)if 0 > 1/2, x1 =0,
[Po(An) P3(An)] ~ § O(nT29)if 6 < 1/2, x1 = 0,0(n**49),if 6 > 1/2, x1 #0,
O(n*),if 0 < 1/2, x1 #0,
O(n3+29), if X1 = O,

K nm .
PO ST~ 8 0), 160> 172, 31 0
O(n%), ite <1/2, x1 #0.
Thus we obtain
klI2(k + ko) nm .y K22 K N o
Py(\)Ps(\p) — ———(—)"— — = Ps(\) —(—
[ P2(An) P3(An) P ()=, ~ B ()
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O(n*+49) if 0 > 1/2,
O(n*),, if6<1/2,

when x; = 0 or x; # 0; and

O(n*+49), if 0 > 1/2,

det(An)] ~
| dgt(n)] {0(n4), if 0 <1/2,

when x1 = 0 or x1 # 0. Therefore regardless of the value of x; and 6, the asymptotic
behavior of A,, can be estimated as |A4,| ~ O(1). It follows that

_nl

A A2
L A

L
~ . nm
0B > 800y = palado? [ sin(Fa)da

So when yg # 0, we have

L
1Unllse = /5= [Anl|4n] ~ O() and  lim [[Un 2 = +o0,

while when xg = 0, we have

L @) ifg>1/2
1l > 4/ 22 |An||An|~{ (), 002172

2 O(n?%), if 6 <1/2,

and if 6 € (0, 1], then lim,,_,« ||Un|l3% = +o00. This means that the corresponding
semigroup is not exponentially stable when y; # 0 or x; = 0 and 0 € (0,1]. This
shows the third result of Theorem [3.1} which completes the proof. (]

4. STABILITY RESULTS

In this section we study the asymptotic behavior of the semigroup e** associ-
ated to the system - when fractional damping is applied to two equations
separately. The following spectral characteristics of exponential and polynomial
stability of semigroups will be used to obtain the stability results. Firstly we give
the following useful theorems.

Theorem 4.1 ([I7]). Let A be the generator of a Cy-semigroup of contractions
on a Hilbert space. Then, the semigroup €A is exponentially stable if and only if
iR C p(A) and

limsup ||(iA] — A) 7Y < oo.

[A] =00
Theorem 4.2 ([I0, 29]). Let A the generator of a Cy-semigroup of bounded oper-
ators on a Hilbert space with iR C p(A). Then we have

||etAUO|| < Ct71/0||U0||D(A)7 vt > 07 UO € D(A)a

if and only if
limsup [A| || (iA] — A) 7Y < 0.
[A]| =00
In the remainder of this article, C' and Cs represent positive constants that
assume different values at different locations. In most cases, it may be Cs — oo
when § — 0F.
Using the above theorems, we obtain some estimates for the solution

U = (¢, ¢, %, ¢, w, w)"



18 J. HAO, D. WANG EJDE-2023/87

of the equation (1Al — A)U = F, where A € R and F = (f1, fo, f3, f1, 5, f6)T € H.
Then the system can be decomposed into the following forms

Ap— @ = f1, (4.1a)

IALP — K(@e + 1 + 1w)y — Kol(wy — 1p) + EYG = p1 fa, (4.1b)
iXp—1p = fs, (4.1¢c)

iNp2th — Dby + K( Py + 0+ 1w) + 12BN = pafy, (4.1d)

iIAw —w = f, (4.1e)

iAp1@ — Ko(we — 19)z + kl(0p + ¥ + lw) + 13 ELD = p1 fo. (4.1f)

Before stating the main stability results we need to introduce some lemmas. In
all the lemmas below, we assume that 8 € [0,1], U € D(A) is the solution of the
equation (¢A] — A)U = F for real number A > 0. Note that similar to and
using 7 we obtain the first estimate

VB2 G| 4a | EL P12 +ys ]| B 2] |2 < CRe((iIA-A)U, U) < C|F|||U]; (4.2)
that is,
IE?2@|* < ClIF ||V, (4.3)
0/2 7
1BZ23)2 < ClFIlu], (44)
IE°@|* < C|FI|U].
Using (4.1a) and taking into account estimates (4.3)), we have

N B2l < |EP2@| + |EO2 1102 < CIFINUI + IIF1%), (4.6)

in the same way, we obtain
NEg|P < CIIFINU] +I1F]?), (4.7)
NEw|> < C(IFINUN+ I1F)1?). (4.8)

Lemma 4.3. Let § > 0 and « < 0. There exists positive constant Cs, such that

for |\| > & the solution U = (w,@,w,zﬁ,w,ﬁ))T of system (4.1a))-(4.11) satisfies the

following estimates: (i)
N|ET@|? < C5(|EZ2 ¢l + | B2 I + | EZ 0]%)
+ e N (|BOFE G2 + s, (IFNU N + I F)12),
and (ii)
IEE+33]|2 < C5(WEE 3% + | B2 + | B2 @)|2)
+ el EFEG|2 + Cc, (IFIIU + I1FI12),

where 1 is positive or zero if the the damping coefficient 1 is present or not present
respectively.

Proof. Multiplying (4.1b)) by i\, taking the inner product with E*@ and using the
definition of the operator F, applying the self-adjointness of E? for o € R, we
obtain

N E2 @|)? = iXe(Ew, EQ) — iX&(ty, B*P) — idkl{wy, E@) — iXkol(wy, E*@)
+idol* (0, E@) + idvi (E°, B*G) — iAp1(f2, E*).
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Substituting in the previous equality, we obtain
PN B2 G| = wl|EZ 2|2 + m(BF T2 1, B3V 26) — iAn(i,, BOG)
— ik + ko)l (we, B@) + kol?| EZ Q| + kol (E2 f1, E2$) (4.9)
+idy (B2, BF5 §) — idpy (f2, BVG).

Next, let’s estimate some items in (4.9)). First, we estimate the items with f in
(4.9). Applying Cauchy-Schwarz and Young’s inequalities, for ¢ small enough to be
chosen later, we have

a1 [ S oy 1 a4 1 [ S
W(EEF2f1, BE5Y20)| < CIIETT2 Al + CIETT2g|* < C|F|* + O EZ T2 9|,
[kol*(E% f1,E2 )| < OB Al + C|E%@|* < C||F|* + C|IEZ g%,
[iAp1(f2, E“G)| < CIIB% fo|* + A | B2 g||* < C||FI|” +X?|| B2 g%

Then, using integration by parts, the self-adjointness of £? and (|1.19)), applying
Cauchy-Schwarz, Young’s inequalities and (4.3)), for ¢ small enough to be chosen
later, we have

o
2

(iAo, EYG)| = [iAk(EZ ), EZ &)
+

Ak + ko)l (wg, EOF)| = [iA(k + ro){E2 w, B2 3,)]
= |(5 + ko) EZ (i + f5), E¥TE3)|
< C|\EZ|)* + CIEF G| + | FII?,
|idy1 (E?/2, E°F53)| < C| EY/2@|| + &1 | B3 3|2
< elllE*T5 | + C., || FI||U].

Substituting the above estimates into (4.9) and considering o < 0, we obtain the
first result of Lemma [4.3] Similarly, rewriting (£.9) introduces the item (ii) of this
Lemma. The proof is complete. ([

Lemma 4.4. Let § > 0 and o < 0. There exists positive constant Cs, such that

for |\| > & the solution U = (@cﬁ,@[},@[;,w,ﬁ))T of system (4.1a)-(4.11)) satisfies the

following estimates: (i)
a ~ a1 - a o ~
NNEFG|? < Cs(| B2 + | EF G|? + | B2 0])%) + es)2|| B2t 22
+Co, (IF U+ [IF1),
(ii)
a1~ a - a . a+2 ~
IEZ*29)? < Cs(VIBZ9)? + |EZ@|° + | B2 @]?) + ead?|| E*F2 5|
+C, (IFINUN -+ 1F117)
(iii)

o
2

o 1 - < ~ o
NNETH|? < Cs(|BE 20| + | BE @I + |B2 $I|?) + e3A?| B2 ]|
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+Ce, (IFNIT N+ IE1P),
and (i)
a1 a o a X~ a+8 ~
IEZ 20| < Cs (V| EFw|)* + | B2 @I + | B2 |%) + ea)?| B 24>
+Ce, (IFINUN + 1E1%),

where 9 and €3 are positive or zero if the the damping coefficient o and 73 are
present or not present, respectively.

Proof. Multiplying and by ¢A, taking the inner product with Ef‘z/;
and E2w, respectively. Using the definition of the operator F,, applying the self-
adjointness of E? for o € R, by integration by parts, we obtain the results of this
Lemma. Since the corresponding steps and estimates are similar to Lemma [{.3] we
will not repeat them here. (Il

Lemma 4.5. Let § > 0 and a < 0. There exists positive constant Cs, such that
for |\| > 0§ the solution U = (¢, $, ¥, v, w,w)T of system (4.1a))-(4.1f) satisfies the

following estimates,

a

182 (00 + 9 + )| < B2 xo X2y, B2 ,) + CIEE G| + C| B

+ CIE@|? — 72 (B, E(pr + ¥ + lw))

b bl
- Ewlwz,Ef*@ @) — —vgw,Ea*" )+ C||F|.

Proof. Taking the inner product of (4.1d) and E*(p, + 1+ lw), using the fact that
E° is self-adjoint for any o € R, and applying (4.1c|), we deduce that

KN B2 (pr + 0 + lw)||?
= P2 XY, B2 (05 + ¢ + lw)) + pa((iAfz + f1), ES (¢ + ¥ + lw)) (4.10)
+ b<¢)x9¢a Eg(‘ﬁx ++ ZW)> - 72 <Ef’t/~), Eg(‘ﬁx ++ lw)>

Next, we estimate the third term on the right of the equality. Using the definition
of f. and E, integration by parts, from (4.1b)), (4.1a]), (4.1€), and (4.1f) we have

b(Ya, B (02 + 9 + 1))
_b<wzv Ef(spw +v+ lw)w>

b
— (s, B (A1 = Fol(wy — lip) + 1EY G — pifa))

P32y, B2 o) — ", B (s — l))

p1b

”;b (s BE (M1 + £2) —

b
’Yl <1/)x,Ea+6 >

plwa,E“(Z/\flJrfz)) P32y, B o) — L (, E2H0G)

- *<¢, ES(iAp1 + k(g + 1 + lw) + 3B — py fe))

plbwr,anﬁfz» P32, B2 o) — L (, E2H0)

blPl blPl 2Py

——= (¢, Bw) + U, BX(i\fs + fo)) — bl"?’w,Ea”’ )
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— (Y, B2 (9 + 1 + lw)).
Substituting the above expression in (4.10)), from the definition of (|1.12]) we obtain

K B2 9z + 9 + lw)||?

a bl
= ol 22N, B o,) + paX [ BE G| + (1p2 + B0 (0, Efw)

Lo — (Yo, BX(IAS1L + f2)) + p2{(iAfs + fa), B (00 + 4 + 1w)) (4.11)

4 ot lbl P B fs + fo)) — BI2(th, B 9y + 1) + L))
o DL B0 — o205, B2 e 6+ 1) — 0, o)

Now, we estimate some items on the right side of formula (4.11). Using the
self-adjointness of E¢ and (1.19)), Cauchy-Schwarz and Young’s inequalities, we
have

P o, BN+ o)) = P22 (B, 1) — NP2 (B, )

”1b<E“¢z,f2> +zAp1b<E°‘w (f1))

a+1 o
< CIES 2 wlIF | + X B2 + C| FJ?
< ON||E29|” + C|IF||U|| + C| FII?,

since a < 0, then o + % < % and a < §. Considering the continuous embedding

D(E?") — D(E??), for 01 > 09, using equivalent norm and ||Ei/2wH < U]l to
obtain the above estimate. Similarly,

bl o
B, B2 (iMs + fo)) < ONI|BE | + C| P2

Using Cauchy—SchwarZ and Young’s inequalities, by (|1.18))-(1.19) and the continu-
ous embedding o — 3 S 2 we have

p2((iAfs + fa), B3 (pa + ¢ + lw))
= p2((fa), EZ (02 + ¥ + lw)) + idp2(f3, EX (02 + ¥ + lw))
< CIE (s + % + )| F|l + CINIEY f3llI1EZ 2 (2 + 8 + )|
< CIIB2 (g0 + 1 + Ww)||* + ON[ B> + CA?| B2 F |
+ O EXFwll? + O||F|?
< C|lBZ (g + v+ 1w)[|* + CN|EZ 0|2 + ON| B |
+ O | B2 w|? + C||F|I%.
We also have from Cauchy-Schwarz and Young’s inequalities

1bl 1bl

(Ips + PN (0, Bow) = (Ips + 2)N2(BE y, B2 w)

< 0A2\|Efw||2 + O EEw|?,
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61> (0, B2 (0 +  + lw))| = [bI*(EZ 4, B2 (0 + 1) + [w))]
< C|EBZ Y| + C||EZ (po + ¥ + lw)|.

Substituting the above estimates into (4.11)), using the continuous embedding and
(4.1a]), (4.1c) and (4.1€]), we conclude that

|EZ (¢ + ¥ + lw)|?
< P20 N2, B2 ) + OXNBE Y + O BEw]® + 032 B o

b ) - bl ot
- 271<¢$7Eg+9(p> - ’72<E31/’7E* ((px +77Z) + lw)> - EV3<¢7E* +0w> + C(||F’H2
P1pP: Io% ST g - o o

< B8 yo N2, B2 ) + OB + C|lEE ) + C| B2 511

b ~ o bl o

The proof is complete. O

Lemma 4.6. Let § > 0 and o < 0. There exists positive constant Cg, such that

for |\| > & the solution U = (w,@,w,zﬁ,w,ﬁ))T of system (4.1a))-(4.11) satisfies the

following estimates:

|EZ I + B2 (ws — 19)|?
< halp (. Bewe) + CIEZG|? + CIEE | + O B (00 + v + 1)
(B3, B2 (w, — 10)) + “ L + 4 + lw, BSH0@) + O FI”
0

Proof. Performing the duality product between (4.1b)) and F%(w, — ly), using
(4.1a), and integrating by parts, we obtain

rolll B2 (w,, — 1)

= (iAp1} — k(@ + ¥ + W)y + 1 EG — p1 fo, ES(wy — 1))

= p1(—=Np —iAf1, B (wy — lp)) — p1{fo, BX(wy — 1))
+ K{(a + 9 + lw), BX(wy — 19)s) + M (B3, B (wy — 1))

= =X, Edwe) — pr(iMf1 + fa, BS (we — 19)) + prIN|| B2 o
+71({E° @, B (wy — 19)) + K{(¢0r + ¥ + lw), BX (wz — 1p)a).

(4.12)
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Substituting (4.1 into the last item of the above estimate, and using (4.1e]) yield
K((pz + 9 + lw), EY (wy — 1))
1
= k{(pz + 9 + lw), I?OES(Z'/\PND + Kl(px + P + lw) + Y3 B2 — p1fe))

% ”2

— At (e + 40 ), B2 (=N — iAfs)) + —nE (e + 0 + lw)
+ @«% ), B = S (g 9+ ), B2 fo) (4.13)

/:FG)\2< anm> pl'%)\2<,(/},Ea > ’73 <(§Oz + w + lw),Ef+9@>
Ro

+ —nEE(% + 4+ )2 - %<(¢m + 4+ lw), EX(iMfs + fe))

I
_ P2, Bw).
Ko

Substituting (4.13) into (4.12), from the definition of (1.12]) we have
roll| B2 (we — lp)||?

« /4:21 K3
= |x1]p1 A} (@, ESw,) + p1l\2 || B2 o||? + ,TOHEE (pz + 2 + lw)|?
Kl K . o
pio M| B w|? - 22 SN, ) = pulidf 4+ fo, B w —lp)) (A1)
K K ~
p1<<%+w+lw> Ea(@/\f5+fe)> f<<%+w+zw>,m+9w>

+ 71<E090, B (wg — 1p)).
Now, we estimate some terms on the right-hand side of (4.14]). Using the self-
adjointness of EZ and (|1.19)), Cauchy-Schwarz and Young’s inequalities, we have

|p1 (A1 + fo, EZ (we — 1))
= |p1(fe, B (wa — o)) + |p1(iAf1, EL (we — 1p))]

(J/—l .
= |p1(fo, EY(we — lp))| + |p1 <i)\Ei/2f1,E* 2wg) — |lp1(iAfi, E“p)||
< COIF|EX (we = lp)|| + CIMFI[EZw] + CI[|F|[[| B
< C||F|? + CllES (we — o) || + CA|| ESw||® + CN?|| E%o|)?,

and
P1K |2 a P1R s s 21052 211 %, 12
1~ A (0, B2w)| = |27 . AEZ Y, AEZ w)| < CN[|EZ |7 + CA°|| B2 wl|®.

Con81der1ng the continuous embedding D(E?') — D(E?2) for o1 > 09, using
-, Cauchy-Schwarz and Young’s inequalities, we obtain

”p1<(%+¢+lw) EZ(iMfs + fo))
_ @<(%+¢+lw) B2 fo) [+ 5 HiM e + 0+ 1), B2 )|
- %<<%+w+zw>ﬁff6>|—ﬁ—om< 0 (s)e) + = ALY, i)

+ BPLN(Ew, f5)
Ko
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< C|IFI? + CIEL (0o + 9 + 1) |[* + O EZw||* + CN*|| Ep||* + CN || EZ|1*.

Substituting the above estimates in (4.14]), using the continuous embedding, o <
«/2, and (4.1a), (4.1c)), (4.1€), we conclude that

|BE ]2 + |1 B2 (w, - 1)
< halpi\ (e, BSw,) + ON EEG|? + OX| B p|? + C1EE (. + 9 + )
K
(B, B2 (w0, = 19)) + 2w 446 + b, BSH0d) + | F?
0

< halp X (e, B2ws) + CIEE I + CIE2 6| + OB (g + 0 + w)|?
+NUE'G, B (we — L0)) + " o + 9 + b, B0 + |

The proof is complete. O

Lemma 4.7. The solution U = (p, @, 1,1, w,w)T of system [@&.1a)-[@.1f) satisfies
1/2 -
1B 20112 = all? < Cs (017 + el + [lw] + [ FINU] + [ F1I2).

Proof. Taking the inner product of (4.1d)) with ¢, using ([1.19) and integrating by
parts, we obtain

bIE 4 ]* = bl
= —iAp2(th, V) — K{(pr + P + lw), V) — Y2 (ESD, ) 4 palfa, 1)
= pal[D 11 + P2, f3) = wlp, e + KlI9|1? + Un(w, )
— o (B2 BV + po(fay ).
Applying Cauchy-Schwarz and Young’s inequalities, by and we have
I = bl |
< CIPIP + Il + Nl + 1l + 1Bl + (| B2 )12)
< C(IID1% + lel? + llwl® + IFINTI + 1F11%),
which completes the proof. ([

Next, we prove the asymptotic stability of system (1.7))-(1.9) when the fractional
damping acts on two of the equations. Firstly we consider the case 71,72 > 0 and

73 = 0.

Lemma 4.8. Let 6 > 0 and v1,72 > 0, v3 = 0. There exists positive constant Cs,

such that for || > 6 the solution U = (cp,g?;,z/),z[),w,tb)T of system (4.1a))-(4.11)
satisfies the following:

() [@l2 < CO? (IPNT]+ | FI?)  when xi =0,
() o] < X2 (IPI[U] + | FI?)  when xi #0 and 6 < 1/2,
(i) (@] < CoA* (IFU] + [FI?)  when xi #0 and 6 > 1/2.

Proof. Adding (4.1a)), (4.1c|) and (4.1€), we obtain

iNpe + 9 +lw) = (@ + 9 +10) + (fi)z + f3+ f5.
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The inner product of the above formula and kE% (¢, + 1 + lw), by partial integral

and (4.1b) to deduce
RIE2 (@ + ¢ + lw)||?
K~ 7 ~ e
= @+ P+ 10) + (f1)e + fo+ f5, B (0o + 9+ l0)

1 i
= j< @, B (—idp1® + Kol (wy — 19) — nE*3 + p1f2))

%<<w+lw> (F)o + f + f, B2 (0 + 10 + L)
a4 8 l 4.15
= pillEF QI + S IBET 6| + 2@, B (we — 1)) + 56, 2 fo) o

+ a«i/; + lw) + (f1)a + f3+ f5. ES(pr + U + lw))
SCHE*%@HQ ||E9/2~||2+C||E21/1||2+C’||E2w|\2
C a
+ 32 182 (we — 1o)|I* + || F|I%.

The last step follows from the self-adjointness of E?, Cauchy-Schwarz and Young’s
inequalities, the continuous embedding and (4.1¢)), j4.le ). It can be seen from (|4.15])
that the estimate here is different from Lemma [4.5] which is independent of xo.

Substituting (4.15)) into the result of Lemma note that 3 = 0, using contin-
uous embedding and (4.1c)), (4.1€), (4.3), we obtain

B2 @|* + |1 B2 (ws — lo)|I?
< xalo X\, BCwy) + CIEZ | + CIE2|* + O EZ (00 + ¢ + lw) |
+71(E° @, B (w, — L)) + C||F|?

o s 5 a 0/2 ~

< balpi X, Brwe) + CIES I + CIER I + HE gl + || B 2
+C|BEw|? + CIE¢|* + C| B+ (w, — l@)IIZ +F|?

< [l A\, Bfw,) + CIEZG|? + C|BEg|)* + C| B (w, — I

+HIFNNUI+(1F2
(4.16)
When x; = 0, taking o« = —6 in (4.16]), then from the continuous embedding we
have

|2 0]? + | B (we — 1) P < CIEZ" 200 + CILE=26I + | PV + |1 £
<C(IFNUl+1FI7),
since —0/2 < 0/2, we have ) and ([@.4). So, we obtain
|1EZa)? < C(IFIT] + |1F]?), (4.17)
1B (w, = 10)I> < C(IFIT] + |1 F]1?). (4.18)
On the other hand, we have

—6/2 —6/2 —0/2
1B w, |12 < C (1B (we — 19)|12 + || BZ 20 ).
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Then using and we have
|B2 | = | E- 2w, |2 < C(IFIUI + I1FIP). (4.19)
From we have w = i lw — f5, then by we obtain
1Bl = 18 - f5)?
< ONY|EE 5wl + C|| F)? (4.20)
< CA2(IFINUI + 1)

Then, by applying the interpolation inequalities, from (4.18]) and (|4.20)) we conclude
that
19
Il < 1B 0|0 2 @

1-0 9
< C(VIFINITT+TE1) ™ (NVIFIUT+ 1£12) (4.21)
< GsINPVIENIU] + £

@] < CsXP(IFINUN + 1F)1?).-
This leads to the first result of this Lemma.
When y; # 0, we have

IEE @) + | EE (w, — o)

< OO, Ew,) + C||EX |2 + CIEE 3|1? + C|| E**2 (w, — o)
+IFENT] + (1712

< OXHp, B2 (wy — lp)) + CA2 (i, E29)) + C|| B §||? + C| E% g2
+ CIIE**2 (w, — )| + IF U] + | F1?

< CX|EE3|% + C|EE I + CIIE+E (w, — 1)1 + | FIIUI + | FI1.

Considering a = § — 1 and § < 1/2 in (£22), then ¢ + o < £, from the continuous
embedding we obtain

This yields

(4.22)

B a2 1 1B 0 — 1)
B2 2wl + 1 EL 2 (we = lp)|

2]

8_1 1~
< CON||B2 2 |* + CllEZ 29l + IIFIIU] + | F]%.
Taking into account &« = 6 — 1 in the item (i) of Lemma we obtain

0 6 _ 1

91 . - 91
N2l < C(IBY2| + 182 72117 + 182> a|*) + | F U]+ |17

0 1
< ClE2 a|* + C(IFIIU] +IF1),

since § < 1/2, then o + g <3, % -3< g and (4.4]). Substituting the last formula

to obtain

9 _
2

1
@l + B2 (we = o) |I> < CUIEFINU N+ I1F1%);

6 _ 1
272

12
that is,

N

|E:
6 _ 1
1EE 2 (w, — 19)|2 < C(IFIU] + | F]12). (4.24)

wl* < C(IFTI+ I1717), (4.23)
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Similar to the estimates of (4.19) and (4.6), we deduce that
0/2 -
1B @) < X2 (|FI|U] + 11F]1?), (4.25)

Then, by applying the interpolation inequalities, from (4.23]) and (4.25)) we conclude
that

‘]

@) < B2 2|0 | B 5]
0 1—6
< Cs(VIFIIUT+ ) (IAWVIENTT + 1F]?) (4.26)
< G5\ VIFTITT+ TF]P

@l < Cs 22 (IF U+ (1)
This leads to the second result of this Lemma.
For the third result of this lemma, that is, # > 1/2, considering « = —6 in ,
then g +a < §, because of the continuous embedding, we deduce that

Thus it yields

—0/2 .. —0/2
B2 + 1B (we — o)
—0/2 - —0/2 7
< ON|| B 2@l + | B4 + | F (U + || FI1%.
Taking into account & = —@ in the item (i) of Lemma we obtain
e/ 1_0 /9 ~ /2
NIEZ2el? < O (18272 6l + |1 EZ291 + | EZ0))”) + | FIIU) + 1112
—0/2 ..
< CIE@|?) + CIFINT -+ I1F12),
since 6 > 1/2, then a—i—g <3, %—g < g and (4.4). furthermore, —g < g is an
identity. Substituting the last formula to obtain
—0/2 - —0/2
|BZ*2 ) 4+ | B (we — 1) < CIFINUI+ I1FIP):
that is,
—0/2 -
IEZ2m) < CIPIIU] + (1F]2), (4.27)
—0/2
1B (w, = 1) < C(IFINUI + | F1), (4.28)
Similar to the estimates in the previous two parts, we have
1_0
1B2 72 @)* < CR(IIF NIV + 1F11%), (4.29)
Using the same interpolation inequalities as in (4.21]), and applying (4.27)), (4.29)

we conclude that
@l < CAP (IFIIU ] + 11 F]1%)-
The third conclusion of this Lemma has also been proved. So the proof is complete.
O

Secondly we consider the case v1,7v3 > 0, and 2 = 0.

Lemma 4.9. Let 6 > 0 and 71,73 > 0, y2 = 0. then there exists positive constant
Cs, such that for |\| > & the solution U = (¢, p, 0, %, w, )T of system (4.1a)-(@.11)

satisfies
@) NP < CsX* (IF NIV + 1F]1*) - when xo = 0,
() [[bl* < CsX* 2 (IFIU + 7)) when xo # 0 and 6 <1/2,
(i) &> < CoN**(IFIIUN +IFI?)  when xo # 0 and § > 1/2.
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Proof. Taking the inner product of (4.1b)) with E®, to deduce that

K| B2 s |2
= (iAp16 — k(s + W)y — Kol(wy — 1) + 11 EY G — p1fa, ESy)
= —Pl)\2<90» Efwz> - i)\p1<f17 E3w$> - ’%<90:E:ca Ea"/}w> (430)

— U+ o) (wa, B} + ol (0, ES0) + 11 (B3, B )
— p1{fa, B3 z).

Next, we estimate the item —x{py., E21,) in (4.30). For this end, taking the inner
product of (4.1d) with kE®¢,, noting that v, = 0, we have

K . ~
—#{paz, Be) = T{iAp2t) + Ko + 9 +1w) = p2fa, Bl )
_kp .\ kp
= b2A2<an r) =N f3 B2 pa) + ||E* ol

2

K2 o K4l o K2 o
+ ?W,E* Pa) + T(w,E* Pu) — T<f47E* Px)-
Substitute the last formula and use integration by parts to obtain
K B2 a]® = —=p1 X2 (0, EXy) — idp1(f1, BESte) — Uk + ko) (W, ESthy)

+ wol2{ip, BO,) +  (EY 25, B2 y,) — p1<f2,E“wr>
Hp . kp
;A?wm o) — N2 gy B2y + o
K2 K2l /{p

+ o (U B on) + = (w, B2 pa) — =2 (fa, B pa),

(4.31)

where
[iAp1(f1, ESa)| = |idpL(f1)e, BS9)| < CN|EEw|? + || F|2,
Uk + ko) (we, B&Ya)| < ON[ B w,|? + ON| EE 4, %,
012 {p, BE2t)| < CAZ| B2 gl|? + ON2|EE s |2,

The estimates for the remaining items are similar to the those above. Substituting
these estimates into (4.31]) and using Cauchy-Schwarz, Young’s inequalities, (|1.12))

and yield
R B2 o
< X0l A2 (p, ES9n) + CO B3 Y2 + CH| B2 ¢l + C|| B2 ¢, |2 (4.32)
+ CIEZ | + CIES 2, |2 + IFIU] + |12

For the case o = 0, taking o = —6 in (4.32)), because of the continuous embedding
we have

—6/2 —0/2 —6/2 —0/2 ~
1By, |? < O BZYP9)12 + O BX P, |12 + CllES 32
—6/2
+ C|EZ PP + (|F|IU| + || F1>
Taking into account o = —6 in the item (ii) of Lemma [£.3] using (L.18) we obtain

(4.33)

0/2 5
1B 20,12 = ||E2 % |2
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—0/2 ~ —0/2 —0/2
< C(IEZP3IP + 1B 29| + 1B Pw)?) + | FIIU | + || FII2.

The estimate of ||E_9/2w$\|2 can be obtained in the same way. Substituting into
(4.33) and using (1.19), we obtain
B2 22 = || B2 2y, |2
—0/2 —0/2 ~ —0/2 ~
< CIES 9|2 + CES 3|12 + CIESa)? + | FI|U | + || F)1?
—6/2
< CIIEZ*9)12 + | FI|U|| + || FII?,
(4.34)

since @%ﬁ (4.1d). Consider o = —6 in the item (i) of Lemma [4.4] and divide

by A2, by (4.1a)), (4. 1c and (4.1d) to obtain

—9/2 7 -3 —0/2 —0/2
IEZ20)2 < (| B2 202 + | B0l + | B 2wl?) + | P2 (4.35)
From the v = 0, we have 5 = 0. Substituting (4.34)) into (4.35)) we have
—0/2 7 —0/2 7 —0/2 -0/2
IBZ29)12 < C(I1BS2001% + | BP0 + | B Pw)?) + | FIUI + || FII?
—0/2 7
< C(I1EZ212 + | FINUI + | FII?)-

(4.36)
Thus,
—0/2 7
B2 < C(IFNT ] + 1 FIP). (4.37)
Taking into account o = —@ in the item (ii) of Lemmad.4|and e = 0, using —g < g
and (4.37)), we deduce that
|E2 5017 < O (IF U] + | FI). (4.38)

Similar to the interpolation inequality as (4.21]), use (4.37) and (4.38) to conclude
191 < CsX** (IF WU+ [1F11%).

This leads to the first result of Lemma 4.9
For the case xg # 0, we have

IBE g, |2 < CIEZ v, + CX||BE 5|2 + CA2E2g|)* + C|| BE o |
a a+?
+ B2 we|® + CIIES 2 a2 + | F U] + || FIJ?

< ON\EE G| + CNYEZ |2 + C|EE o, || + ClE2 w,]|? (4.39)
B2 ol° + |EZ |2 + C|EE 0, |2 + C|| EE w,|

a+?
+ OB ga|* + I FIUY + (1.

Considering &« = § — 1 and § < 1/2 in (4.39)), we have g +a < §, by continuous
embedding, (L.18), (L.19), (4.3), and (4.5), we obtain
1

1 =

B2 2 12 < CNEZ 25|12+ |IEZ 2o |2 + |E2™ 2 CIEZ 2w |12
IE2" 24| < CNNEZ 23| + | B2 2u|® + | B2 20| + CIEZ ™ 2w, |
+IFNU)+ IF)?

9 _ 1
2

" 0 0
< CN|E2 2G| + 1B o) + | B2~ 2|2 + O|| EY 2 w|?

+IFNUN+ 1F)?

1 8 _1 ~
2

2 P83 2 3 2
SCNNEZ2QIP+ | B2 291> + [IFIUN + | FII°.
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Taking into account o = ¢ — 1 in the item (i) of Lemma [4.3] note that § < 1/2 and
(4.3), substituting the last formula to obtain

0_1 0/2 - 0_1 - 0_1 _
1B2 72| < CIEY2@|? + Cl B2 24| + C| B2 2 a|* + | FII|U]| + [|F]*
01 -
< CIEz 9>+ (IFIUN + I1F1).
Similar to the process of (£.35)-({-36), —Z is replaced by & — 1, 1 — £ is replaced
by g, we have
0_1 -
B2 29> < CIFIUN + 1F1). (4.40)
Taking o = § — 1 in the item (ii) of Lemma [4.4] again, we obtain
0/2 7
B3] < ex*(|FIU T+ 1 FI2). (4.41)

Using the same interpolation inequalities with (4.26]), and applying (4.40)-(4.41]),

we conclude that

5] < CsX*2(IF U]+ 1F11%).-

The second conclusion of Lemma [.9] follows.

For the third result of this Lemma, that is > 1/2, then %—g < g. Considering
a = —01in (4.39)), then g +a < §, by the continuous embedding we deduce

—0/2 —0/2 - —0/2 —0/2 ~ —0/2
1B 2|2 < ONES 2312 + 1B gul? + 1B 1% + Ol B P |12
+IFNUl -+ 1117
3% - —0/2 7 —0/2 ~ 3-%
< OB 2 @l + | BP0 + | BP0l + | B2 7 )

1

]
+C|E2 2wl + ||F[|U] + | F)?
—0/2 7
< | EZY2RI12 + | PO+ | F)2

Here, we use (|1.18) and (1.19]), and consider « = —0 in item (i) of lemma and
f > 1/2 to obtain the above inequality. Then similar to the process of (|4.35)-(4.38]),
we obtain

—0 ~

IEZ2917 < C(IFINT + 1 F1P), (4.42)
1_6 ~

127211 < CA(IFNT] + 1F1%)- (4.43)

Similar to the interpolation inequality as (4.21]), apply (4.42]) and (4.43) to conclude
that

15 < CAP(IFINUI + 1F11%).
The third conclusion of Lemma [4.9| can be obtained. The proof is complete. ([l
Thirdly we consider the case v3,7v3 > 0 and v, = 0.

Lemma 4.10. Let 6 > 0 and v2,v3 > 0, y1 = 0. Then there exists positive constant
Cs, such that for |\| > & the solution U = (¢, @, 0, ¥, w, )T of system (4.1a)-(@.11)

satisfies
©) Nel* < CAP(IF NIV + IF|*)  when xo = 0,
(i) [l < CsA?22 (| FIIU]| + [|FII”)  when xo # 0 and 6 < 1/2,
(i) [@l* < CAP(IFNIIU] +IFI?)  when xo# 0 and 6 > 1/2.
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Proof. From ) and (4.1e]) we obtain
Z>\(w:r —lp) = (Wz — 1) + (f5)z — Lf1-
Taking the inner product with koE%(w, — lp) we deduce that

kol B2 (we — lp)||?

K
= (@ —18) + (f5)e — Uf1, B2 (w0 — 1))
1
= a(mEf(—i)\Pﬂff — Kl(px + 0 + lw) — 3 ED + p1 fs))
R -
+ 2 1p + (f5)e — U1, B (wy — 1))
oy
s oy aie o gl (4.44)
= pil| BE 0| + SISl — (@, B (o + 4 + )
K - ~
+ S+ (fo)e — U, B2 (ws — 19)) + (a0, B2 fo)

a C .
< C|ES @l + S| B w1

+ CEE (9 + 0 + )| + C| EF 0|2 + || F|2,

here we used the facts of o <0, , the self-adjointness of E¢, Cauchy-Schwarz
and Young’s inequalities. It can be seen from that the estimate here is
different from Lemma [4.6] which is independent of x;.

From the result of Lemma the fact vy = 0, and using , the self-
adjointness of EZ, Cauchy-Schwarz and Young’s inequalities we deduce that

1EE (0o + ¢ + lw)|?
< B o\, B2,) + CIBEY|? + Ol BE 6|2 + €| B% |
+ OB + CIEZ 0| + CIE (s + v + )P + CIIF|>  (445)
< Clxol (VI BE G112 + 1BZ 0:]1%) + ClEZ I + C| BE 3] + C| B2 3|
+ CIIEZ Y2 + OB (0 + ¥ + L) |2 + | FI|[U] + | F|1%
Case 1: yo = 0. Taking o« = —6 in , we obtain § + 60 = g and g—i—a =3,
because of , , , and the continuous embedding, we have
1B (00 + 4 + lw)|?
< CIE=/29|? + C|E- 2@l + C| B a|® + | FIU| + | FI? (4.46)
< CIE 2@l + | FINU|| + |1 F)I2.
On the other hand,
||E:9/2%||2 < OB (o + 0 + 1) + | B2l + | B Pw?). (4.47)
Thus by —4 < 4, ([#46), (£1d), (£1d), [@4) and (£F), we have
HEIM%IIQ < OIEPE|1? + CIE )1 + CIEPwl® + | FINU Y + | F)12
< CIEPE? + | FIIU] + | FI2

(4.48)
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Taking into account o = —@ in the item (i) of Lemma dividing A2, and from
v =0 and (1.18)) we obtain

|E=125)> < OB 2ell® + 1B *wl? + | B wll?) + | FI?
< CIE= | + CIFINUN + IF]%).
The above estimate and (4.48)) yield
—6/2 ~
IEZ?2gI12 < C(IFNTN + | FIIP). (4.49)
Taking aw = —6 in the item (ii) of Lemma from (4.49) we obtain

_8
2

12272 gl < X (IFIUI + 1F11)- (450)

Using the interpolation inequality similar to (4.21)), by (4.49)-(4.50) we obtain
lell < CsX? (IFIU N+ 1F %)

This leads to the first result of Lemma [£.10l

Case 2: xo # 0. Taking o = 6 — 1 in (4.45)) and noting # < 1/2, from (4.4)), (4.1¢),

(1.19) and continuous embedding we obtain

(pr + 9+ lw)|?

1

0_1 - 0_1 0_1 0_1
< Clxol(VI1B2 29| + |B2 ™% 0al?) + Cll B2 2 w||* + C|| B2 > 2|

A
1B

P , (4.51)
+CIE: 27+ FNUI+F]
2 83,712 -3 12 53 12 2
SCONNES 297+ ClE: 2@ol” + CIEZ 22"+ | FIIUN + [1F]1°
Taking into account &« = 6 — 1 in the item (i) of Lemma from (4.4) we obtain

o _ 1 -
NBZ )

. o_1 2_1 .
< C(IB2912 + B2 @l + | B2 20 |®) + IFWIU] + | FII” (4.52)

5-3 312 2
<clez zal”+ IFNUl+ 1F]"
Substituting (4.52)) into (4.51)) gives

8 _
2

% l 2 <C E%7% 2 CIE %* 2 FlllU F 2
(o + o +l0)|” < CIEZ 2"+ CllE2 2o|I” + IFIU] + [ F]I"
In addition, similar to (4.47))-(4.50)), fg is replaced by g - %, % — g is replaced by

g, we have

6
B2

9 6 _ 1 6 _1
B2 |2 = B2 2 0.l < CIB2 262 + IIFIU] + |FI?, (4.53)
o_1
1Bz 728l < C(IFINUI + I1F]), (4.54)
0/2 ~
IE25]2 < X (IR U]+ (| FII?).- (4.55)

Using the same interpolation inequalities with similar as (4.26)), and applying (4.54))-
(4.55)), we conclude that
gl < CsA*=* (IFINU | + 1F %)

The second conclusion of Lemma [£.10] follows.
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Case 3: For the third result of this Lemma, that is, § > 1/2. Taking o = —6 in
(4.45), and from the continuous embedding we obtain

1EZ2 (0r + 0 + )2
< ON||EZV240)12 + CES o2 + O B w2
+ClBZP |2 + [ FINU) + £
< ON|EZPPIP + OB P |? + CIBZ )12 + | FINU N + 1 1

Next, we use Lemma [£.4] to estimate the first item in (4.54)). Consider o = —6 and
f > 1/2 in the item (i) of Lemma by (4.4) we deduce that

(4.56)

—0/2 = 186 ~ —0/2 ~ —0/2 ~
N\ ESOPI2 < CE2 2|2 + O ESYP )2 + C\ B w|? + || F)| U || + || FI?
—0/2 ~
< C|EZP3)2 + ||F(I|IU|| + | FII.
Substituting this into (4.56) gives
—0/2 —0/2 ~ —6/2

1EZ 2 (0 + 0+ w)|? < CIES 3| + CIEPoa| + | FIIU| + || F|2. (4.57)

In addition, similar to (4.47))-(4.50), we have

1_9 —0/2 —0/2
IBZ 2|2 = | B2 < CIEZ2312 + (|F(|IU|| + | FII2, (4.58)
—60/2 ~
1ES23)2 < c(IF U]+ |FI), (4.59)
1_0 _
1B272 ¢l < O (IFIUI + | FII?). (4.60)

Using the same interpolation inequalities as for (4.21)), and applying (4.59)-(4.60)
we conclude that

2l < CsN (IFHIT -+ 1E112).

The third conclusion of this Lemma can be obtained. The proof is complete. [

Finally, we present the stability results of system (1.7))-(1.9) (or problem ({2.4)).

Theorem 4.11. Assume that xo and x1 defined by (1.12)) and 0 € [0,1]. Then the
semigroup e corresponding to problem (2.4) is stable as follows:
(i) Assume y1,7v2 > 0,73 = 0.

e If x1 = 0 and the exponents 0 = 0, then the semigroup is stable exponen-
tially, i.e., there exist positive constants C' and dg such that

AU || < Ce%t ¥t > 0.

e If x1 = 0 and the exponents 61 € (0,1], then the semigroup is stable poly-
nomially with the estimate

||€tAU0|| < C’t_l/(QQ)HU()HD(_A)7 vVt >0, Uy € D(.A)
o Ifx1 #0, then the semigroup is stable polynomially with the estimates

tA Ct= V20U pay, i 0 € [0,1/2],
||€ UOH < 1/(20 .
Ct=YCN Ul pay,  if 0 € [1/2,1],

for ¥t >0, Uy € D(A).
(ii) Assume v1,73 > 0,72 = 0.
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o If xo = 0 and the exponents 8 = 0, then the semigroup is stable exponen-
tially, i.e., there exist positive constants C' and ég such that

AU || < Ce%t, vt > 0.
e If xo = 0 and the exponents 61 € (0,1], then the semigroup is stable poly-
nomially with the estimate as following,
[T || < Ct=Y DUl pay, Yt >0, Uy € D(A).
e If xo # 0, then the semigroup is stable polynomially with the estimate

Ct=1/ =201y if 6 €[0,1/2
let 4 <4670 0ol pa) Z'f €[0,1/2],
Ct=YCNUslpay,  if0 €[1/2,1],
for vt >0, Uy € D(A).
(iil) Assume vya,7v3 > 0,71 = 0.
o If x1 = 0 and the exponents 8 = 0, then the semigroup is stable exponen-
tially, i.e., there exist positive constants C' and ég such that
e AUg|| < Ce™%t Wit > 0.
e If x1 = 0 and the exponents 01 € (0,1], then the semigroup is stable poly-
nomially with the estimate
e U]l < Ct=YCONUp pay, ¥t >0, Uy € D(A).
o Ifx1 #0, then the semigroup is stable polynomially with the estimate

tA Ct= 29Ul pay, if 0 € [0,1/2],
[e™Uoll < a0 ‘
Ct=VCNUollpay,  if 0 €[1/2,1],

for ¥t >0, Uy € D(A).
Proof. We use Theorems [£.1] and [£.2] to prove these stability results. So, we check

the conditions of these two Theorems.

Step 1. We prove iR C p(A) through a contradictory argument. Suppose that
iR ¢ p(A). From Theorem 1, we know that 0 € p(A), then we denote \g the
maximum positive number such that (—iXo,ixg) C p(A), therefore —iXg or iXg is
an element of the spectrum o(A). Suppose that iAg € o(A) (if —iAo € o(A) the
process is similar). Then, for ¢ € (0, )\g), there exist a sequence of real numbers
{An}, such that A\, € [4,X0), An — Ao, and a sequence of unit vectors {U, =
(©ns Py Uy Uy W, W )T} C D(A) satisfying

1(iAn = A)Un|| = [|Fnll = 0

as n — oo. That iS7 if Fn = (f1n7f2n7 fSna f4na f5n7f6n)T7 then we have

iNpn — @ = fin — 0 in HE(0,L), (4.61a)

iIMN1Pn — K(Pna + U+ 1w0n)z — Kol (Wng — lpn) + 11 E @ = p1fon — 0, (4.61b)
in L*(0, L)

iMpp — Py = fan — 0 in HY0, L), (4.61c)

iNp2tn = Dug + 6(Pna + Pn + lwn) + 12 B2y = pafan — 0 (4.61d)
in L2(0, L),

iAW, — W, = fsn — 0 in HX(0, L), (4.61e)
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in L2(0, L). (4.616)
In the same way as we obtained in , we have
VB2 Gul? + Al B 2| + 5| B2 < CIF [l Ul — 0. (4.62)
Then the following estimates hold
IBnll* < NE*2@a)1* < C|F|[nl|U]ln — O, (4.63)
[9al® < |1E*2Pn||* < CIF[1a]|Uln — 0, (4.64)
[@n|* < B 200[|* < C|[F|ln]|U]ln — O (4.65)

From Lemma [4.7] ([.63), (4.65), (4.1d) and (4.1€) we find that
1B 24n]l* = [[nel”
< Cs (19l + lenll + lwall® + 1Fla Ul + I1F117) (4.66)
< C(IFNalUln + IFII7) — 0
On the other hand,
lena + 9n +lwn]|* < Clllenall® + [¥nl? + wall?)
<||E%n||2 + ||¢n||2 o+ [l )

( 1B 2n* + 15 a2+ pllwnll2 +FI?).
Taking « = 0 in the item (ii) of Lemma and dividing A2, we obtain
1 - ~
32 1B28all? < C(I1nl + llwm* + lwonl)

+ e E2@n)? + Cey (IFlln Ul + IFII7).-
Whether e is zero or not, we can get from Lemmas [.8] [£.9] and [£.10]

ﬁ||E1/2 Bnll? — 0.

thus, from (4.63)) and (4.65) we deduce that
0na + Pn + lw, | — 0. (4.67)

Similarly, it follows that
1/2
[wne = Wnll* < Clwnz]|® + lonll®) = C(”E*/ wall” + llenll®)
1 _ 1, .
S C(FHEUZUMW + FH‘PnHQ) =0
The estimates (4.62))-(4.68)) imply that ||U,|| — 0 which is absurd with ||U,|| = 1,

for all n € N. Consequently iR C p(A).

Step 2. Let U = (¢, @, 1,9, w, )T be the solution of the system (i\ — A)U = F.
Once we have proven iR C p(A), and then according to Theorems [4.1] and we
need to prove the decay rate of the desired semigroup e*. Because the proving
process is very similar, we only prove the item (i) of Theorem and the other
two results have similar proof.

Assume 1,y > 0,73 = 0. From we have

~ 0 7
IE?2G0l|? + 72 B 20| < CIF U s

(4.68)
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that is,
I18all? < I1E2@n)? < CIFa|lU s (4.69)
19l < 1E*2G0 ] < CIFI U (4.70)
From ([4.66)-(4.68) we have
[nall* < Cs (6l + lnll® + llwnll® + |F 1Tl + 1F]17)
< C(Jlwnll® + 1 EllnllU s + 1F113),

[z + tn + lwn|?
1/2

< CUIEpull® + [l + llwn?)

. - 1, - 1, . 4.72
< C(IBnlP + 1Bl + 35 190l + 518 ?) + (LE L + 1212 47

A A
1, .
< Cxgllanl® + 1 FlallUlln + 1F15-
1/2
e = tpal® < CUIE*wall” + pnll®)
- 1.
< Cllonll? + llenl® + lall® + pll%”2 +IFII%) (4.73)
< Cllw, |+ C|IF |3
The above estimates imply that
U2 < M@l + 1F U+ [ F]-
It can be seen from Lemma [{.8] that, when x; = 0 and 6§ = 0, we obtain
1011 < Cs(IFllnllUln + [ F11%);
when x1 =0 or x1 # 0 and 6 > 1/2, we obtain
1Unl? < CsX* (1 FlnllU 1 + I FI12);
when x; # 0 and 6 < 1/2, we obtain
1Unl? < CsA*=2 (IF 1l Ul + 1F1)-
Hence, applying Young’s inequality, it follows that
Unll® < Cs|IFIl5, o UL)I2 < CoAPFIZ, or [[UL]1? < CsA*™2| FJ7,

which is the desired result. Consequently, when x; = 0 and 6 = 0, by Theorem [£.1]
we obtain that the semigroup is exponentially stable. When x; = 0 and 6 € (0, 1],
by Theorem the semigroup decays polynomially with the rate t—/(29). When
x1 # 0 and 6 € [0,1/2], by Theorem the semigroup decays polynomially with
the rate t=1/(2=29) When y; # 0 and 6 € [1/2,1], by Theorem 4.2 the semigroup
decays polynomially with the rate t~1/(2®). Then the item (i) of Theorem
is be established. Similarly, we can get the other two results. Thus the proof is
complete. O

Remark 4.12. Alves et al. [2] studied the asymptotic behavior of the system when
friction damping acts on the vertical displacement and the angle displacement at
the same time (that is, # = 0 and 3 = 0 in system (1.7)-(1.9)). They obtained
the exponential decay and polynomial decay of the system respectively. These
results are consistent with our conclusions obtained in the item (i) of Theorem
4.11} Furthermore, Alves et al. showed that the polynomial decay rate t72 is
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optimal. Thus we believe that our polynomial stability results are optimal, which
will be our next research topic.
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