EXISTENCE OF TWO INFINITE FAMILIES OF SOLUTIONS FOR SINGULAR SUPERLINEAR EQUATIONS ON EXTERIOR DOMAINS

JOSEPH IAIA

Abstract

In this article we study radial solutions of $\Delta u+K(|x|) f(u)=0$ in the exterior of the ball of radius $R>0$ in \mathbb{R}^{N} with $N>2$ where f grows superlinearly at infinity and is singular at 0 with $f(u) \sim \frac{1}{|u|^{q-1} u}$ and $0<q<1$ for small u. We assume $K(|x|) \sim|x|^{-\alpha}$ for large $|x|$ and establish existence of two infinite families of sign-changing solutions when $N+q(N-2)<\alpha<$ $2(N-1)$.

1. Introduction

In this article we are interested in radial solutions of
$\Delta u+K(|x|) f(u)=0 \quad$ on $\mathbb{R}^{N} \backslash B_{R}, \quad u=0 \quad$ on $\partial B_{R}, \quad u \rightarrow 0$ as $|x| \rightarrow \infty, \quad$ (1.1)
when $N>2$ and where B_{R} is the ball of radius $R>0$ centered at the origin.
Assuming $u(x)=u(|x|)=u(r)$ the above problem becomes

$$
\begin{gather*}
u^{\prime \prime}+\frac{N-1}{r} u^{\prime}+K(r) f(u)=0 \quad \text { for } R<r<\infty \tag{1.2}\\
u(R)=0, \quad \lim _{r \rightarrow \infty} u(r)=0 \tag{1.3}
\end{gather*}
$$

Numerous papers have proved existence of positive solutions of these equations with various nonlinearities $f(u)$ and for various functions $K(|x|) \sim|x|^{-\alpha}$ with $\alpha>0$. See for example [1, 4, 5, 7, 11, 12, 13].

Here we prove existence of two infinite families of solutions including signchanging solutions for this equation. We have also proved the existence of signchanging solutions in other recent papers [2, 3, 2, 10].

We use the following assumptions:
(H1) $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ is odd, locally Lipschitz, and

$$
f(u)=|u|^{p-1} u+g(u) \text { with } p>1
$$

for large $|u|$ and $\lim _{u \rightarrow \infty} \frac{|g(u)|}{|u|^{p}}=0$.

[^0](H2) There exists a locally Lipschitz $g_{1}: \mathbb{R} \rightarrow \mathbb{R}$ such that
$$
f(u)=\frac{1}{|u|^{q-1} u}+g_{1}(u) \text { with } 0<q<1 \text { for small }|u| \text { and } g_{1}(0)=0
$$
(H3) $f>0$ on $(0, \infty)$.
Let $F(u)=\int_{0}^{u} f(t) d t$. Since f is odd then F is even. Also, since $0<q<1$ (by (H2)) it follows that f is integrable at 0 and therefore F is continuous with $F(0)=0$. Also since $f>0$ on $(0, \infty)$ it follows that $F(u)>0$ for $u>0$. Since $F(u)$ is even then $F(u)>0$ for $u \neq 0$.

We also assume $K(r)>0$ and $K^{\prime}(r)$ are continuous on $[R, \infty)$. In addition, we assume that
(H4) there exist α_{1}, α_{2} and positive K_{1}, K_{2}, K_{3} such that

$$
\begin{equation*}
\frac{K_{1}}{r^{\alpha_{1}}} \leq K \leq \frac{K_{2}}{r^{\alpha_{2}}} \quad \text { and } \quad \frac{r\left|K^{\prime}\right|}{K} \leq K_{3} \quad \text { on }[R, \infty) \tag{1.4}
\end{equation*}
$$

where $N+q(N-2)<\alpha_{2} \leq \alpha_{1}<2(N-1)$.
In this article we prove the following result.
Theorem 1.1. Let $N>2$ and assume (H1)-(H4). If $R>0$, then there exist two infinite families $u_{n}^{ \pm}$of solutions to $1.2-(1.3)$. If $R>0$ is sufficiently large then there are 2 solutions, $u_{n}^{ \pm}$, with n interior zeros on (R, ∞) for all positive integers n and there is 1 positive solution. If $R>0$ is sufficiently small then there is an $n_{0} \geq 0$ such that there are 2 solutions with n zeros on (R, ∞) for all $n>n_{0}$ and there is one solution with n_{0} zeros on (R, ∞).

We remark that the solutions of $(\sqrt{1.2})-(1.3)$ have continuous second derivatives except at points where $u\left(r_{0}\right)=0$ because $\lim _{u \rightarrow 0}|f(u)|=\infty$. Solutions, however, do turn out to be $C^{1}[R, \infty)$. In addition, we will see in Lemma 2.1 that if $a>0$ then $u(r)$ and $u^{\prime}(r)$ cannot both be zero at any $r \in[R, \infty)$. In particular, if $u(z)=0$ then $u^{\prime}(z) \neq 0$ and so by (H2) it follows that $r^{N-1} K f(u)$ is integrable at z. Therefore, by a $C^{1}[R, \infty)$ solution of 1.2 - 1.3 we mean $u \in C^{1}[R, \infty)$ such that $r^{N-1} u^{\prime}+\int_{R}^{r} t^{N-1} K f(u) d t=R^{N-1} u^{\prime}(R)$ for $r \geq R, u(R)=0$, and $\lim _{r \rightarrow \infty} u(r)=0$.

2. Preliminaries

Let $R>0$. We begin our analysis of $\sqrt{1.2}-1.3$ by first making the change of variables $u(r)=v\left(r^{2-N}\right)=v(t)$ and obtaining

$$
v^{\prime \prime}(t)+h(t) f(v(t))=0
$$

where

$$
0<h(t)=\frac{t^{\frac{2(N-1)}{2-N}} K\left(t^{\frac{1}{2-N}}\right)}{(N-2)^{2}}
$$

Henceforth we denote $R_{1}=R^{2-N}$.
We now attempt to solve the initial value problem

$$
\begin{gather*}
v_{a}^{\prime \prime}+h(t) f\left(v_{a}\right)=0 \quad \text { for } 0<t<R_{1}, \tag{2.1}\\
v_{a}(0)=0, \quad v_{a}^{\prime}(0)=a>0 \tag{2.2}
\end{gather*}
$$

and then try to find values of a so that

$$
\begin{equation*}
v_{a}\left(R_{1}\right)=0 \tag{2.3}
\end{equation*}
$$

Let

$$
\tilde{\alpha}_{1}=\frac{2(N-1)-\alpha_{1}}{N-2}, \quad \tilde{\alpha}_{2}=\frac{2(N-1)-\alpha_{2}}{N-2}
$$

It follows from (H4) and the definition of h that there exist positive h_{1}, h_{2}, h_{3} such that

$$
\begin{equation*}
0<h_{1} t^{-\tilde{\alpha}_{1}} \leq h(t) \leq h_{2} t^{-\tilde{\alpha}_{2}} \quad \text { and } \quad \frac{t\left|h^{\prime}\right|}{h} \leq h_{3} \tag{2.4}
\end{equation*}
$$

where $0<\tilde{\alpha}_{1} \leq \tilde{\alpha}_{2}<1-q$.
First we prove existence of a solution to $2.1-2.2$ on $\left[0, \epsilon_{0}\right]$ for some $\epsilon_{0}>0$. To do this we reformulate $(2.1)-(2.2)$ as an appropriate integral equation. Let us suppose first that v_{a} is a solution (2.1)-2.2). Integrating on $(0, t)$ gives:

$$
\begin{equation*}
v_{a}^{\prime}+\int_{0}^{t} h(x) f\left(v_{a}(x)\right) d x=a \quad \text { for } a>0 \tag{2.5}
\end{equation*}
$$

Integrating on $(0, t)$ gives

$$
\begin{equation*}
v_{a}+\int_{0}^{t} \int_{0}^{s} h(x) f\left(v_{a}(x)\right) d x d s=a t \quad \text { for } a>0 \tag{2.6}
\end{equation*}
$$

A bit of care needs to be taken here because we first need to know that the integral in (2.5) is defined. To see this notice that if v_{a} is a solution of 2.1$)-2.2$ then for sufficiently small $t>0$ we have $\frac{a}{2} t \leq v_{a} \leq a t$. In addition, it follows from (H1) and (H2) that there is a constant $f_{1}>0$ such that $f\left(v_{a}\right) \leq f_{1}\left(v_{a}^{-q}+v_{a}^{p}\right)$ and therefore by 2.4 we have

$$
\begin{align*}
0<h(t) f\left(v_{a}\right) & \leq f_{1} h_{2}\left(\frac{t^{-\tilde{\alpha}_{2}}}{v_{a}^{q}}+t^{-\tilde{\alpha}_{2}} v_{a}^{p}\right) \\
& \leq f_{1} h_{2}\left(\frac{t^{-\tilde{\alpha}_{2}}}{\left(\frac{a}{2}\right)^{q} t^{q}}+t^{-\tilde{\alpha}_{2}+p} a^{p}\right) \tag{2.7}\\
& =f_{1} h_{2}\left(\frac{2^{q}}{a^{q}} t^{-\tilde{\alpha}_{2}-q}+t^{-\tilde{\alpha}_{2}+p} a^{p}\right) .
\end{align*}
$$

From (2.4) we have $1-\tilde{\alpha}_{2}-q>0$ and $1-\tilde{\alpha}_{2}+p>0$ so it follows from (2.7) that $h(t) f\left(v_{a}\right)$ is integrable near $t=0$. Thus the integral in 2.5) is defined and is a continuous function. It then follows that 2.6 is also defined.

Now using (H2) we see that 2.6 is equivalent to

$$
\begin{equation*}
v_{a}+\int_{0}^{t} \int_{0}^{s} h(x)\left(\frac{1}{v_{a}^{q}(x)}+g_{1}\left(v_{a}\right)\right) d x d s=a t \tag{2.8}
\end{equation*}
$$

Next let $v_{a}=t w$ in 2.8 which gives

$$
\begin{equation*}
w=a-\frac{1}{t} \int_{0}^{t} \int_{0}^{s} h(x)\left(\frac{1}{x^{q} w^{q}(x)}+g_{1}(x w)\right) d x d s \tag{2.9}
\end{equation*}
$$

We now define

$$
S_{\epsilon}=\left\{w \in C[0, \epsilon]: w(0)=a>0, \text { and }|w-a| \leq \frac{a}{2} \text { for all } t \in[0, \epsilon]\right\}
$$

Here $C[0, \epsilon]$ is the set of real-valued continuous functions on $[0, \epsilon]$ with the supremum norm $\|\cdot\|$. We define $T: S_{\epsilon} \rightarrow C[0, \epsilon]$ by $T w(0)=a$ and

$$
T w=a-\frac{1}{t} \int_{0}^{t} \int_{0}^{s} h(x)\left(\frac{1}{x^{q} w^{q}(x)}+g_{1}(x w)\right) d x d s \quad \text { for } t>0
$$

As mentioned in (2.4) and (2.7) it follows that $0<\frac{h(x)}{x^{q}} \leq h_{2} x^{-\tilde{\alpha}_{2}-q}$ and $\tilde{\alpha}_{2}+q<1$. Hence $x^{-\tilde{\alpha}_{2}-q}$ is integrable on $(0, \epsilon)$. Then it is straightforward to show T maps S_{ϵ} into S_{ϵ} if $\epsilon>0$ is sufficiently small. Next let L be the Lipschitz constant for the function g_{1} defined in (H2) and suppose $w_{1}, w_{2} \in S$. Using the mean value theorem and the fact that $\frac{a}{2} \leq w_{i} \leq a$ for $i=1,2$ on $[0, \epsilon]$ we see that

$$
\begin{align*}
\left|T w_{1}-T w_{2}\right| \leq & \frac{1}{t} \int_{0}^{t} \int_{0}^{s}\left(q h_{2}\left(\frac{2}{a}\right)^{q+1} x^{-\tilde{\alpha}_{2}-q}+L x^{1-\tilde{\alpha}_{2}}\right)\left|w_{1}-w_{2}\right| d x d s \\
\leq & \left\|w_{1}-w_{2}\right\|\left(\frac{q h_{2}}{\left(1-\tilde{\alpha}_{2}-q\right)\left(2-\tilde{\alpha}_{2}-q\right)}\left(\frac{2}{a}\right)^{q+1} t^{1-\tilde{\alpha}_{2}-q}\right. \tag{2.10}\\
& \left.+\frac{L}{\left(2-\tilde{\alpha}_{2}\right)\left(3-\tilde{\alpha}_{2}\right)} t^{2-\tilde{\alpha}_{2}}\right)
\end{align*}
$$

Since the term in parentheses in 2.10 goes to 0 as $t \rightarrow 0^{+}$, it follows that there exists $\epsilon_{0}>0$ and a c with $0<c<1$ so that

$$
\left\|T w_{1}-T w_{2}\right\| \leq c\left\|w_{1}-w_{2}\right\| \quad \text { for all } w_{i} \in S_{\epsilon_{0}}
$$

Thus T is a contraction and so by the contraction mapping principle T has a unique fixed point [8]. Therefore, we obtain a unique solution of 2.6 on $\left[0, \epsilon_{0}\right]$. It then follows that the integral term in 2.6 is differentiable which implies that v_{a} is differentiable and satisfies 2.5).

Next we let

$$
\begin{equation*}
E_{a}=\frac{v_{a}^{\prime 2}}{2 h}+F\left(v_{a}\right) \tag{2.11}
\end{equation*}
$$

Recall from the comments after (H3) that $F\left(v_{a}\right) \geq 0$. Therefore from 2.1 and (2.4) it follows that

$$
\begin{equation*}
\left|E_{a}^{\prime}\right|=\left|-\frac{h^{\prime}}{2 h^{2}} v_{a}^{\prime 2}\right| \leq\left|\frac{t h^{\prime}}{h}\right| \frac{v_{a}^{\prime 2}}{2 t h} \leq \frac{h_{3} E_{a}}{t} \tag{2.12}
\end{equation*}
$$

Thus $\left(\frac{E_{a}}{t^{h 3}}\right)^{\prime} \leq 0$ for $t>0$ and therefore integrating on $\left(\epsilon_{0} / 2, t\right)$ (with the ϵ_{0} in the proof of existence) gives

$$
\frac{v_{a}^{\prime 2}}{2 h}+F\left(v_{a}\right)=E_{a}(t) \leq C_{1} t^{h_{3}} \leq C_{1} R_{1}^{h_{3}}
$$

where $C_{1}=E_{a}\left(\epsilon_{0} / 2\right) .\left(\epsilon_{0} / 2\right)^{h_{3}}$.
Thus v_{a} and v_{a}^{\prime} are uniformly bounded on a largest interval of the form $\left[\epsilon_{0} / 2, T\right] \subset$ $\left[\epsilon_{0} / 2, R_{1}\right]$. It then follows from this that v_{a} and v_{a}^{\prime} are defined and continuous on all of $\left[0, R_{1}\right]$. In addition, it also follows from this that the v_{a} vary continuously with respect to a.

Lemma 2.1. Assume $(\mathrm{H} 1)-(\mathrm{H} 4)$ and let v_{a} solve 2.1$)-(2.2$ with $a>0$. Then $\left|v_{a}\right|+\left|v_{a}^{\prime}\right|>0$ on $\left[0, R_{1}\right]$.
Proof. First since $v_{a}(0)=0$ and $v_{a}^{\prime}(0)=a>0$ it follows that v_{a} and v_{a}^{\prime} cannot both be zero at any $t \in[0, \epsilon]$ for some $\epsilon>0$. Suppose now that there is a $t_{0} \in\left(0, R_{1}\right]$ such that $v_{a}\left(t_{0}\right)=v_{a}^{\prime}\left(t_{0}\right)=0$. Thus $E_{a}\left(t_{0}\right)=0$ and then from 2.12) it follows that $\left(E_{a} t^{h_{3}}\right)^{\prime} \geq 0$ on $\left(t, t_{0}\right)$. Integrating this on $\left(t, t_{0}\right)$ yields $E_{a} \leq 0$ on $\left(t, t_{0}\right)$. Since $E_{a} \geq 0$ it follows then that $E_{a} \equiv 0$ on $\left[0, t_{0}\right]$ and thus $v_{a}=v_{a}^{\prime}=0$ on $\left[0, t_{0}\right]$. This however contradicts that $v_{a}^{\prime}(0)=a>0$. Thus the lemma follows.
Lemma 2.2. Assume (H1)-(H4) and let v_{a} solve (2.1)-2.2 with $a>0$. Then v_{a} only has a finite number of zeros on $\left[0, R_{1}\right]$.

Proof. First since $v_{a}(0)=0$ and $v_{a}^{\prime}(0)=a>0$ it follows that $v_{a}>0$ on $(0, \epsilon)$ for some $\epsilon>0$. Now suppose $v_{a}\left(z_{k}\right)=0$ for $z_{k} \in\left[\epsilon / 2, R_{1}\right]$ with $z_{1}<z_{2}<\cdots \leq R_{1}$. Then there exists z^{*} with $\epsilon / 2<z^{*} \leq R_{1}$ such that $z_{k} \rightarrow z^{*} \in\left[\epsilon / 2, R_{1}\right]$ and $v_{a}\left(z^{*}\right)=0$. In addition, it follows from Lemma 2.1 that $v_{a}^{\prime}\left(z_{k}\right) \neq 0$ and thus there exist local extrema, M_{k}, with $z_{k}<M_{k}<z_{k+1}$ and $v_{a}^{\prime}\left(M_{k}\right)=0$. Thus we see $M_{k} \rightarrow z^{*}$ and $v_{a}^{\prime}\left(z^{*}\right)=0$. But this along with $v_{a}\left(z^{*}\right)=0$ contradicts Lemma 2.1. Thus v_{a} has only a finite number of zeros on $\left[0, R_{1}\right]$.

Lemma 2.3. Assume (H1)-(H4) and let v_{a} solve (2.1)-(2.2). Suppose $a>0$ is sufficiently small. Then v_{a} has a local maximum, $M_{1, a}$, and a zero, $z_{1, a}$, on $\left(0, R_{1}\right)$. In addition, $z_{1, a} \rightarrow 0, v_{a}^{\prime}\left(z_{1, a}\right) \rightarrow 0$, and $v_{a}\left(M_{1, a}\right) \rightarrow 0$ as $a \rightarrow 0^{+}$. More generally, if $a>0$ is sufficiently small and $k \geq 1$ then v_{a} has k zeros, $z_{i, a}$, and k local extrema, $M_{i, a}$, with $0<M_{1, a}<z_{1, a}<M_{2, a}<z_{2, a}<\cdots<M_{k, a}<z_{k, a}$ on $\left(0, R_{1}\right)$. In addition, $\lim _{a \rightarrow 0^{+}} z_{i, a}=0, \lim _{a \rightarrow 0^{+}} v_{a}^{\prime}\left(z_{i, a}\right)=0$, and $\lim _{a \rightarrow 0^{+}}\left|v_{a}\left(M_{i, a}\right)\right|=0$ for $1 \leq i \leq k$.

Proof. From (2.6) we have

$$
\begin{equation*}
v_{a}+\int_{0}^{t} \int_{0}^{s} h(x) f\left(v_{a}(x)\right) d x d s=a t \tag{2.13}
\end{equation*}
$$

Suppose now that $v_{a}>0$ on $\left(0, R_{1}\right)$. Then from (H2) and (H3) there is a constant $f_{2}>0$ such that $f\left(v_{a}\right) \geq f_{2} v_{a}^{-q}$. In addition, from (2.4) we see that $h(t) \geq h_{1} t^{-\tilde{\alpha}_{1}}$ and $1-\tilde{\alpha}_{1}-q>0$. Substituting into (2.13) gives

$$
\begin{equation*}
\int_{0}^{t} \int_{0}^{s} h(x) f\left(v_{a}(x)\right) d x d s \geq f_{2} h_{1} \int_{0}^{t} \int_{0}^{s} x^{-\tilde{\alpha}_{1}} v_{a}^{-q}(x) d x d s \tag{2.14}
\end{equation*}
$$

Also, it follows from (2.1) and (H3) that when $v_{a}>0$ we have $v_{a}^{\prime \prime}<0$ and so integrating this inequality twice on $(0, t)$ gives

$$
\begin{equation*}
0<v_{a}<a t \tag{2.15}
\end{equation*}
$$

Substituting this into (2.14) gives

$$
\begin{align*}
f_{2} h_{1} \int_{0}^{t} \int_{0}^{s} x^{-\tilde{\alpha}_{1}} v_{a}^{-q} d x d s & \geq \frac{f_{2} h_{1}}{a^{q}} \int_{0}^{t} \int_{0}^{s} x^{-\tilde{\alpha}_{1}-q} d x d s \tag{2.16}\\
& =\frac{f_{2} h_{1} t^{2-\tilde{\alpha}_{1}-q}}{a^{q}\left(1-\tilde{\alpha}_{1}-q\right)\left(2-\tilde{\alpha}_{1}-q\right)}
\end{align*}
$$

Substituting this expression into (2.13)-2.14) gives

$$
\begin{equation*}
0<v_{a} \leq a t-\frac{f_{2} h_{1} t^{2-\tilde{\alpha}_{1}-q}}{a^{q}\left(1-\tilde{\alpha}_{1}-q\right)\left(2-\tilde{\alpha}_{1}-q\right)} \tag{2.17}
\end{equation*}
$$

However, the right-hand side of 2.17 is zero when

$$
t=\left(\frac{a^{q+1}\left(1-\tilde{\alpha}_{1}-q\right)\left(2-\tilde{\alpha}_{1}-q\right)}{f_{2} h_{1}}\right)^{\frac{1}{2-\tilde{\alpha}_{1}-q}}
$$

and notice that this value of t is less than or equal to R_{1} if $a>0$ is sufficiently small. Thus 2.17) yields a contradiction and therefore v_{a} has a first zero, $z_{1, a}$, and $0<z_{1, a}<R_{1}$ if $a>0$ is sufficiently small. In addition, the above argument shows that

$$
\begin{equation*}
0<z_{1, a} \leq\left(\frac{a^{q+1}\left(1-\tilde{\alpha}_{1}-q\right)\left(2-\tilde{\alpha}_{1}-q\right)}{f_{2} h_{1}}\right)^{\frac{1}{2-\tilde{\alpha}_{1}-q}} \rightarrow 0 \quad \text { as } a \rightarrow 0^{+} \tag{2.18}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\lim _{a \rightarrow 0^{+}} z_{1, a}=0 . \tag{2.19}
\end{equation*}
$$

Next we examine the following identity which is straightforward to establish by differentiation and 2.1,

$$
\begin{equation*}
\frac{1}{2} v_{a}^{\prime 2}+h(t) F\left(v_{a}\right)+\int_{0}^{t}\left(-h^{\prime}(s)\right) F\left(v_{a}\right) d s=\frac{1}{2} a^{2} \tag{2.20}
\end{equation*}
$$

Evaluating at $z_{1, a}$ gives

$$
\begin{equation*}
\frac{1}{2} v_{a}^{\prime 2}\left(z_{1, a}\right)=\frac{1}{2} a^{2}+\int_{0}^{z_{1, a}} h^{\prime}(s) F\left(v_{a}\right) d s \tag{2.21}
\end{equation*}
$$

Since $F(t)=\int_{0}^{t} f(s) d s$ it follows from (H1) and (H2) that there is a constant $f_{3}>0$ such that

$$
\begin{equation*}
F\left(v_{a}\right) \leq f_{3}\left(v_{a}^{1-q}+v_{a}^{p+1}\right) \quad \text { when } v_{a}>0 . \tag{2.22}
\end{equation*}
$$

Also from (2.4) we have

$$
\begin{equation*}
\frac{t\left|h^{\prime}\right|}{h} \leq h_{3} \quad \text { and so } \quad\left|h^{\prime}\right| \leq h_{2} h_{3} t^{-1-\tilde{\alpha}_{2}} \tag{2.23}
\end{equation*}
$$

Substituting this into the right-hand side of 2.21) and using 2.15, 2.22 gives

$$
\begin{align*}
\int_{0}^{z_{1, a}} h^{\prime}(s) F\left(v_{a}\right) d s & \leq \int_{0}^{z_{1, a}} f_{3} h_{2} h_{3} t^{-1-\tilde{\alpha}_{2}}\left(a^{1-q} t^{1-q}+a^{p+1} t^{p+1}\right) d t \\
& =f_{3} h_{2} h_{3}\left(\frac{a^{1-q} z_{1, a}^{1-\tilde{\alpha}_{2}-q}}{1-\tilde{\alpha}_{2}-q}+\frac{a^{p+1} z_{1, a}^{1-\tilde{\alpha}_{2}+p}}{1-\tilde{\alpha}_{2}+p}\right) \tag{2.24}\\
& \leq f_{3} h_{2} h_{3} a^{1-q} R_{1}^{1-\tilde{\alpha}_{2}-q}\left(\frac{1}{1-\tilde{\alpha}_{2}-q}+\frac{a^{p+q} R_{1}^{p+q}}{1-\tilde{\alpha}_{2}+p}\right)
\end{align*}
$$

Thus substituting 2.22 and 2.24 into 2.21 gives

$$
\begin{equation*}
\frac{1}{2} v_{a}^{\prime 2}\left(z_{1, a}\right) \leq \frac{1}{2} a^{2}+f_{3} h_{2} h_{3} a^{1-q} R_{1}^{1-\tilde{\alpha}_{2}-q}\left(\frac{1}{1-\tilde{\alpha}_{2}-q}+\frac{a^{p+q} R_{1}^{p+q}}{1-\tilde{\alpha}_{2}+p}\right) \rightarrow 0 \tag{2.25}
\end{equation*}
$$

as $a \rightarrow 0^{+}$. Therefore,

$$
\begin{equation*}
\lim _{a \rightarrow 0^{+}} v_{a}^{\prime}\left(z_{1, a}\right)=0 \tag{2.26}
\end{equation*}
$$

Next since $v_{a}(0)=v_{a}\left(z_{1, a}\right)=0$ and $v_{a}^{\prime}(0)=a>0$ it follows that there is a local maximum, $M_{1, a}$, with $0<M_{1, a}<z_{1, a}$. Evaluating 2.20 at $M_{1, a}$ gives

$$
\begin{equation*}
h\left(M_{1, a}\right) F\left(v_{a}\left(M_{1, a}\right)\right)=\frac{1}{2} a^{2}+\int_{0}^{M_{1, a}} h^{\prime}(t) F\left(v_{a}\right) d t \tag{2.27}
\end{equation*}
$$

Estimating as in 2.24 - 2.24 but now on $\left[0, M_{1, a}\right.$] (instead of $\left[0, z_{1, a}\right]$) we again obtain

$$
\begin{equation*}
\int_{0}^{M_{1, a}} h^{\prime}(t) F\left(v_{a}\right) d t \leq f_{3} h_{2} h_{3} a^{1-q} R_{1}^{1-\tilde{\alpha}_{2}-q}\left(\frac{1}{1-\tilde{\alpha}_{2}-q}+\frac{a^{p+q} R_{1}^{p+q}}{1-\tilde{\alpha}_{2}+p}\right) \tag{2.28}
\end{equation*}
$$

Then from 2.27)-2.28 and 2.4 we obtain

$$
\begin{equation*}
F\left(v_{a}\left(M_{1, a}\right)\right) \leq \frac{f_{3} h_{2} h_{3} a^{1-q} R_{1}^{1-\tilde{\alpha}_{2}+\tilde{\alpha}_{1}-q}}{h_{1}}\left(\frac{1}{1-\tilde{\alpha}_{2}-q}+\frac{a^{p+q} R_{1}^{p+q}}{1-\tilde{\alpha}_{2}+p}\right) \rightarrow 0 \tag{2.29}
\end{equation*}
$$

as $a \rightarrow 0^{+}$. Therefore,

$$
\begin{equation*}
\lim _{a \rightarrow 0^{+}} v_{a}\left(M_{1, a}\right)=0 \tag{2.30}
\end{equation*}
$$

In a similar way we can show v_{a} has as many zeros as desired by choosing $a>0$ sufficiently small and we can also similarly establish the analogs of 2.19, 2.26, and 2.30 . This completes the proof of the lemma.

Lemma 2.4. Assume (H1)-(H4) and let v_{a} solve 2.1 - 2.2 . If $a>0$ is sufficiently large then v_{a} has a local maximum, $M_{1, a}$, on $\left(0, R_{1}\right)$.

Proof. Suppose not and so suppose v_{a} is increasing on $\left(0, R_{1}\right)$ for all sufficiently large $a>0$. Then $v_{a}>0$ on $\left(0, R_{1}\right)$ and so it follows from 2.1 that $v_{a}^{\prime \prime}<0$ on $\left(0, R_{1}\right)$.

We now claim that $v_{a}\left(t_{0}\right) \rightarrow \infty$ as $a \rightarrow \infty$ for any fixed t_{0} with $0<t_{0} \leq R_{1}$. So suppose not. Thus suppose $0<v_{a} \leq C_{2}$ on ($0, t_{0}$] where C_{2} is independent of a. Using 2.15 and 2.22 we see that

$$
\begin{align*}
F\left(v_{a}\right) & \leq f_{3}\left(v_{a}^{1-q}+v_{a}^{p+1}\right)=f_{3} v_{a}^{1-q}\left(1+v_{a}^{p+q}\right) \\
& \leq f_{3} v_{a}^{1-q}\left(1+C_{2}^{p+q}\right)=f_{3} C_{3} v_{a}^{1-q} \tag{2.31}
\end{align*}
$$

where $C_{3}=1+C_{2}^{p+q}$.
Then using 2.15 in 2.31 we obtain

$$
\begin{equation*}
F\left(v_{a}\right) \leq f_{3} C_{3} v_{a}^{1-q} \leq f_{3} C_{3} a^{1-q} t^{1-q} \tag{2.32}
\end{equation*}
$$

Substituting this into (2.20) and using (2.4) we then have $h(t) \leq h_{2} t^{-\tilde{\alpha}_{2}}$ and $\left|h^{\prime}\right| \leq$ $h_{2} h_{3} t^{-\tilde{\alpha}_{2}-1}$. This gives

$$
\begin{align*}
h(t) F\left(v_{a}\right)+\int_{0}^{t}\left(-h^{\prime}(s)\right) F\left(v_{a}\right) d s & \leq f_{3} h_{2} C_{3}\left(1+\frac{h_{3}}{1-\tilde{\alpha}_{2}-q}\right) a^{1-q} t^{1-\tilde{\alpha}_{2}-q} \\
& =C_{4} a^{1-q} t^{1-\tilde{\alpha}_{2}-q} \tag{2.33}\\
& \leq C_{4} a^{1-q} t_{0}^{1-\tilde{\alpha}_{2}-q}
\end{align*}
$$

where $C_{4}=f_{3} h_{2} C_{3}\left(1+\frac{h_{3}}{1-\tilde{\alpha}_{2}-q}\right)$. Therefore from 2.20) and 2.33) we see that

$$
\frac{1}{2} v_{a}^{\prime 2} \geq \frac{1}{2} a^{2}-C_{4} t_{0}^{1-\tilde{\alpha}-q} a^{1-q} \geq \frac{1}{2} a^{2}-C_{4} R_{1}^{1-\tilde{\alpha}-q} a^{1-q} \geq \frac{1}{8} a^{2}
$$

for a sufficiently large. Thus $v_{a}^{\prime} \geq a / 2$ for a sufficiently large, and integrating this on $\left(0, t_{0}\right)$ gives

$$
C_{2} \geq v_{a}\left(t_{0}\right) \geq \frac{a}{2} t_{0} \rightarrow \infty \quad \text { as } a \rightarrow \infty
$$

Hence we obtain a contradiction. Thus it follows that if v_{a} is increasing on $\left[0, R_{1}\right]$ then $v_{a}\left(t_{0}\right) \rightarrow \infty$ as $a \rightarrow \infty$ for every t_{0} with $0<t_{0} \leq R_{1}$.

Next it follows that if v_{a} is increasing on $\left[0, R_{1}\right]$ then since f is superlinear (by (H1)) then

$$
\frac{h(t) f\left(v_{a}\right)}{v_{a}} \rightarrow \infty
$$

uniformly on $\left[t_{0}, R_{1}\right]$ for any $t_{0}>0$ as $a \rightarrow \infty$. Therefore assuming v_{a} is increasing on $\left[0, R_{1}\right]$ we see that

$$
\begin{equation*}
I_{a}=\inf _{\left[t_{0}, R_{1}\right]} \frac{h(t) f\left(v_{a}\right)}{v_{a}} \rightarrow \infty \quad \text { as } a \rightarrow \infty . \tag{2.34}
\end{equation*}
$$

Next we rewrite (2.1) as

$$
\begin{equation*}
v_{a}^{\prime \prime}+\left(\frac{h(t) f\left(v_{a}\right)}{v_{a}}\right) v_{a}=0 \tag{2.35}
\end{equation*}
$$

Assuming v_{a} is increasing on $\left[0, R_{1}\right]$, we let y solve

$$
\begin{equation*}
y^{\prime \prime}+I_{a} y=0 \tag{2.36}
\end{equation*}
$$

with $y\left(t_{0}\right)=v_{a}\left(t_{0}\right)$ and $y^{\prime}\left(t_{0}\right)=v_{a}^{\prime}\left(t_{0}\right)$. Thus

$$
y=v_{a}\left(t_{0}\right) \cos \left(\sqrt{I_{a}}\left(t-t_{0}\right)\right)+\frac{v_{a}^{\prime}\left(t_{0}\right)}{\sqrt{I_{a}}} \sin \left(\sqrt{I_{a}}\left(t-t_{0}\right)\right)
$$

and so it follows that y is $2 \pi / \sqrt{I_{a}}$-periodic. Thus y must have a local maximum on $\left[t_{0}, t_{0}+\frac{2 \pi}{\sqrt{I_{a}}}\right]$. In addition, it follows from 2.34) that $\left[t_{0}, t_{0}+\frac{2 \pi}{\sqrt{I_{a}}}\right] \subset\left[t_{0}, R_{1}\right]$ if a is sufficiently large. We will now show that v_{a} must have a local maximum on $\left[t_{0}, t_{0}+\frac{2 \pi}{\sqrt{I_{a}}}\right] \subset\left[t_{0}, R_{1}\right]$ if a is sufficiently large. This is essentially the Sturm Comparison Theorem [6] but we write out the details because they are brief.

Let $a>0$ be sufficiently large so that y has a local maximum $M<R_{1}$ and that $y^{\prime}>0$ on $\left[t_{0}, M\right]$. Multiplying 2.35 by y, 2.36 by v_{a}, and subtracting gives

$$
\begin{equation*}
\left(y v_{a}^{\prime}-y^{\prime} v_{a}\right)^{\prime}+\left(\frac{h(t) f\left(v_{a}\right)}{v_{a}}-I_{a}\right) y v_{a}=0 \tag{2.37}
\end{equation*}
$$

Integrating this on $\left[t_{0}, M\right]$ and using $y^{\prime}(M)=0, y\left(t_{0}\right)=v_{a}\left(t_{0}\right)$, and $y^{\prime}\left(t_{0}\right)=v_{a}^{\prime}\left(t_{0}\right)$ gives

$$
\begin{equation*}
y(M) v_{a}^{\prime}(M)+\int_{t_{0}}^{M}\left(\frac{h(t) f\left(v_{a}\right)}{v_{a}}-I_{a}\right) y v_{a} d t=0 \tag{2.38}
\end{equation*}
$$

On $\left[t_{0}, M\right]$ we have $y>0, v_{a}>0$. In addition, the term in parentheses in 2.38 is nonnegative. Thus we see $y(M) v_{a}^{\prime}(M) \leq 0$ and therefore $v_{a}^{\prime}(M) \leq 0$ since $y(M)>0$. Now if $v_{a}^{\prime}(M)<0$ then since $v_{a}^{\prime}\left(t_{0}\right)>0$ it follows that v_{a} has a local maximum, $M_{1, a}$, with $t_{0}<M_{1, a}<M$. On the other hand, if $v_{a}^{\prime}(M)=0$ then from (2.1) it follows that $v_{a}^{\prime \prime}(M)<0$ and therefore M is a local maximum for v_{a} and we set $M_{1, a}=M$. Therefore in both cases we see that v_{a} has a local maximum, $M_{1, a}$, with $0<M_{1, a}<R_{1}$ and $v_{a}^{\prime}>0$ on $\left[0, M_{1, a}\right)$ if $a>0$ is sufficiently large.

Lemma 2.5. Assume (H1)-(H4) and let v_{a} solve 2.1-(2.2). Suppose $a>0$ is sufficiently large so that v_{a} has a smallest local maximum $M_{1, a}$ with $v_{a}^{\prime}>0$ on $\left[0, M_{1, a}\right)$ and $M_{1, a}<R_{1}$. Then $\lim _{a \rightarrow \infty} v_{a}\left(M_{1, a}\right)=\infty$ and $\lim _{a \rightarrow \infty} M_{1, a}=0$.

Proof. We first show that $v_{a}\left(M_{1, a}\right) \rightarrow \infty$ as $a \rightarrow \infty$. So suppose not. Mimicking the proof of Lemma 2.4, suppose there is a $C_{5}>0$ such that $v_{a}\left(M_{1, a}\right) \leq C_{5}$. Then using (2.31)- 2.32 and evaluating (2.20) and (2.33) at $t=M_{1, a}$ gives

$$
\begin{align*}
\frac{1}{2} a^{2} & =h\left(M_{1, a}\right) F\left(v_{a}\left(M_{1, a}\right)\right)+\int_{0}^{M_{1, a}}\left(-h^{\prime}(s)\right) F\left(v_{a}\right) d s \\
& \leq f_{3} h_{2} C_{5}\left(1+\frac{h_{3}}{1-\tilde{\alpha}_{2}-q}\right) a^{1-q} t^{1-\tilde{\alpha}_{2}-q} \tag{2.39}\\
& =C_{6} a^{1-q} M_{1, a}^{1-\tilde{\alpha}_{2}-q} \\
& \leq C_{6} a^{1-q} R_{1}^{1-\tilde{\alpha}_{2}-q}
\end{align*}
$$

where $C_{6}=f_{3} h_{2} C_{5}\left(1+\frac{h_{3}}{1-\tilde{\alpha}_{2}-q}\right)$. Thus

$$
\begin{equation*}
\frac{1}{2} a^{1+q} \leq C_{6} R_{1}^{1-\tilde{\alpha}_{2}-q} \tag{2.40}
\end{equation*}
$$

However, the left-hand side of 2.40 goes to infinity as $a \rightarrow \infty$ but the right-hand side stays finite. Hence we obtain a contradiction and therefore we must have

$$
\begin{equation*}
\lim _{a \rightarrow \infty} v_{a}\left(M_{1, a}\right)=\infty \tag{2.41}
\end{equation*}
$$

Next we show $M_{1, a} \rightarrow 0$ as $a \rightarrow \infty$. By (H1) it follows that

$$
\begin{equation*}
f\left(v_{a}\right) \geq f_{4} v_{a}^{p} \text { when } v_{a}>0 \text { for some constant } f_{4}>0 . \tag{2.42}
\end{equation*}
$$

We integrate 2.1 on $\left(t, M_{1, a}\right)$ and estimate using the fact that v_{a} is increasing on $\left(t, M_{1, a}\right)$ to obtain:

$$
\begin{equation*}
v_{a}^{\prime}=\int_{t}^{M_{1, a}} h(s) f\left(v_{a}\right) d s \geq f_{4} v_{a}^{p} \int_{t}^{M_{1, a}} h(s) d s \tag{2.43}
\end{equation*}
$$

Dividing by v_{a}^{p}, recalling $p>1$, and integrating on $\left(\frac{M_{1, a}}{2}, M_{1, a}\right)$ gives

$$
\begin{equation*}
\frac{v_{a}^{1-p}\left(\frac{M_{1, a}}{2}\right)}{p-1} \geq \frac{v_{a}^{1-p}\left(\frac{M_{1, a}}{2}\right)-v_{a}^{1-p}\left(M_{1, a}\right)}{p-1} \geq f_{3} \int_{\frac{M_{1, a}}{2}}^{M_{1, a}} \int_{s}^{M_{1, a}} h(s) d s \tag{2.44}
\end{equation*}
$$

Since $v_{a}^{\prime \prime}<0$ it follows that v_{a} is concave and thus $v_{a}(\lambda x+(1-\lambda) y) \geq \lambda v_{a}(x)+(1-$ $\lambda) v_{a}(y)$ for $0 \leq \lambda \leq 1$. In particular, for $x=v_{a}\left(M_{1, a}\right), y=0$, and $\lambda=\frac{1}{2}$ we obtain $v_{a}\left(\frac{M_{1, a}}{2}\right) \geq \frac{v_{a}\left(M_{1, a}\right)}{2}$. Then it follows from this and 2.41) that $v_{a}\left(\frac{M_{1, a}}{2}\right) \rightarrow \infty$ as $a \rightarrow \infty$. Since $p>1$ it follows then that the left-hand side of 2.44 goes to 0 as $a \rightarrow \infty$ and thus we must have

$$
\begin{equation*}
\lim _{a \rightarrow \infty} M_{1, a}=0 \tag{2.45}
\end{equation*}
$$

This completes the proof.
Lemma 2.6. Assume $(\mathrm{H} 1)-(\mathrm{H} 4)$ and let v_{a} solve 2.1)-2.2. Suppose $a>0$ is sufficiently large. Then v_{a} has a zero, $z_{1, a}$, with $M_{1, a}<z_{1, a}<R_{1}$. In addition, $v_{a}>0$ and $v_{a}^{\prime}<0$ on $\left(M_{1, a}, z_{1, a}\right)$. Further $\lim _{a \rightarrow \infty} z_{1, a}=0, \lim _{a \rightarrow \infty} v_{a}\left(M_{1, a}\right)=$ ∞, and $\lim _{a \rightarrow \infty} v_{a}^{\prime}\left(z_{1, a}\right)=-\infty$. More generally, if a is sufficiently large and $k \geq 1$ then v_{a} has k zeros, $z_{i, a}$, and k local extrema, $M_{i, a}$, with $0<M_{1, a}<z_{1, a}<$ $M_{2, a}<z_{2, a}<\cdots<M_{k, a}<z_{k, a}$ on $\left(0, R_{1}\right)$. In addition, $\lim _{a \rightarrow \infty} z_{i, a}=0$, $\lim _{a \rightarrow \infty}\left|v_{a}^{\prime}\left(z_{i, a}\right)\right|=\infty$, and $\lim _{a \rightarrow \infty}\left|v_{a}\left(M_{i, a}\right)\right|=\infty$ for $1 \leq i \leq k$.

Proof. It follows from Lemma 2.5 that

$$
\begin{equation*}
\lim _{a \rightarrow \infty} v_{a}\left(M_{1, a}\right)=\infty \tag{2.46}
\end{equation*}
$$

Assume now that $v_{a}>0$ on $\left(M_{1, a}, R_{1}\right)$. Then using 2.42 and integrating on $\left(M_{1, a}, t\right)$ we obtain

$$
-v_{a}^{\prime} \geq f_{4} v_{a}^{p} \int_{M_{1, a}}^{t} h(s) d s
$$

Dividing by v_{a}^{p}, integrating on $\left(M_{1, a}, t\right)$, and using 2.4) gives

$$
\begin{align*}
v_{a}^{1-p} & \geq v_{a}^{1-p}-v_{a}^{1-p}\left(M_{1, a}\right) \\
& \geq(p-1) f_{4} \int_{M_{1, a}}^{t} \int_{M_{1, a}}^{s} h(x) d x d s \tag{2.47}\\
& =\frac{(p-1) f_{4} R_{1}^{-\tilde{\alpha}_{1}}}{2}\left(t-M_{1, a}\right)^{2} .
\end{align*}
$$

Evaluating 2.47) at $t=\frac{R_{1}+M_{1, a}}{2}$ we see

$$
v_{a}^{1-p}\left(\frac{R_{1}+M_{1, a}}{2}\right) \geq \frac{(p-1) f_{4} R_{1}^{-\tilde{\alpha}_{1}}}{2}\left(\frac{R_{1}-M_{1, a}}{2}\right)^{2}
$$

and therefore

$$
\begin{equation*}
v_{a}^{p-1}\left(\frac{R_{1}+M_{1, a}}{2}\right) \leq \frac{8 R_{1}^{\tilde{\alpha}_{1}}}{(p-1) f_{4}\left(R_{1}-M_{1, a}\right)^{2}} \tag{2.48}
\end{equation*}
$$

By 2.45 we see then for large a that

$$
\begin{equation*}
v_{a}\left(\frac{R_{1}+M_{1, a}}{2}\right) \leq\left(\frac{32 R_{1}^{\tilde{\alpha}_{1}-2}}{(p-1) f_{4}}\right)^{\frac{1}{p-1}} \tag{2.49}
\end{equation*}
$$

Using that $v_{a}^{\prime \prime}<0$ when $v_{a}>0$ and the mean value theorem we see there is a c_{a} with $M_{1, a}<c_{a}<\frac{R_{1}+M_{1, a}}{2}$ such that

$$
\begin{align*}
v_{a}\left(M_{1, a}\right)-v_{a}\left(\frac{R_{1}+M_{1, a}}{2}\right) & =-v_{a}^{\prime}\left(c_{a}\right)\left(\frac{R_{1}-M_{1, a}}{2}\right) \tag{2.50}\\
& \leq-v_{a}^{\prime}\left(\frac{R_{1}+M_{1, a}}{2}\right)\left(\frac{R_{1}}{2}\right) .
\end{align*}
$$

Since $v_{a}^{\prime}>0$ on $\left(0, M_{1, a}\right)$ it follows from (2.41) and 2.49 that the left-hand side of 2.50 goes to infinity as $a \rightarrow \infty$. And then from 2.45) and 2.50 it follows that

$$
\begin{equation*}
v_{a}^{\prime}\left(\frac{R_{1}+M_{1, a}}{2}\right) \rightarrow-\infty \quad \text { as } a \rightarrow \infty \tag{2.51}
\end{equation*}
$$

Since $v_{a}^{\prime \prime}<0$ when $v_{a}>0$ it follows that v_{a}^{\prime} is decreasing when $v_{a}>0$ so:

$$
v_{a}^{\prime}<v_{a}^{\prime}\left(\frac{R_{1}+M_{1, a}}{2}\right) \text { for } t>\frac{R_{1}+M_{1, a}}{2} .
$$

Integrating this on $\left(\frac{R_{1}+M_{1, a}}{2}, R_{1}\right)$ gives

$$
\begin{equation*}
v_{a}\left(R_{1}\right)<v_{a}\left(\frac{R_{1}+M_{1, a}}{2}\right)+v_{a}^{\prime}\left(\frac{R_{1}+M_{1, a}}{2}\right)\left(\frac{R_{1}-M_{1, a}}{2}\right) \tag{2.52}
\end{equation*}
$$

It follows from (2.49) that the first term on the right-hand side $\sqrt{2.52}$ is bounded. Then from 2.45) we have $M_{1, a} \rightarrow 0$ as $a \rightarrow \infty$ and this along with (2.51) implies that the right-hand side of 2.52 becomes negative while the left-hand side stays positive. Thus we obtain a contradiction and therefore there exists $z_{1, a}$ with $M_{1, a}<$ $z_{1, a}<R_{1}$ such that $v_{a}\left(z_{1, a}\right)=0$ and $v_{a}>0$ on $\left(M_{1, a}, z_{1, a}\right)$.

From the mean value theorem and that $v_{a}^{\prime \prime}<0$ when $v_{a}>0$ it follows that there is a d_{a} such that $M_{1, a}<d_{a}<z_{1, a}$ and
$v_{a}\left(M_{1, a}\right)=\left|v_{a}\left(z_{1, a}\right)-v_{a}\left(M_{1, a}\right)\right|=\left|v_{a}^{\prime}\left(d_{a}\right)\right|\left|z_{1, a}-M_{1, a}\right| \leq\left|v_{a}^{\prime}\left(d_{a}\right)\right| R_{1} \leq\left|v_{a}^{\prime}\left(z_{1, a}\right)\right| R_{1}$ and since the left-hand side goes to infinity by 2.46 it then follows from the above inequality that

$$
\begin{equation*}
\lim _{a \rightarrow \infty} v_{a}^{\prime}\left(z_{1, a}\right)=-\infty \tag{2.53}
\end{equation*}
$$

Next it follows from evaluating 2.47 at $\frac{M_{1, a}+z_{1, a}}{2}$ that we obtain

$$
\begin{equation*}
v^{1-p}\left(\frac{M_{1, a}+z_{1, a}}{2}\right) \geq \frac{(p-1) f_{4} R_{1}^{-\tilde{\alpha}_{1}}}{2}\left(\frac{M_{1, a}-z_{1, a}}{2}\right)^{2} \tag{2.54}
\end{equation*}
$$

Since $v_{a}^{\prime \prime}<0$ when $v_{a}>0$ it follows that v_{a} is concave. Then it follows from this and 2.46 that $v_{a}\left(\frac{M_{1, a}+z_{1, a}}{2}\right) \geq \frac{v_{a}\left(M_{1, a}\right)}{2}+\frac{v_{a}\left(z_{1, a}\right)}{2}=\frac{v_{a}\left(M_{1, a}\right)}{2} \rightarrow \infty$. Thus we see
the left-hand side of 2.54 goes to 0 as $a \rightarrow \infty$ and therefore $z_{1, a}-M_{1, a} \rightarrow 0$. Since $M_{1, a} \rightarrow 0$ by Lemma 2.5 we see then that

$$
\begin{equation*}
\lim _{a \rightarrow \infty} z_{1, a}=0 \tag{2.55}
\end{equation*}
$$

In a similar way we can show that v_{a} as many zeros as desired on $\left(0, R_{1}\right)$ by choosing $a>0$ sufficiently large, and we can obtain the analogs of (2.46), 2.53), and 2.55 . This completes the proof.

Lemma 2.7. Assume (H1)-(H4) and let v_{a} solve (2.1)-(2.2) with $a>0$. If R_{1} is sufficiently small then there are values of $a>0$ such that $v_{a}>0$ on $\left(0, R_{1}\right)$. Also, if R_{1} is sufficiently large then v_{a} has at least one zero on $\left(0, R_{1}\right)$ for all $a>0$. Similarly, if $R_{1}>0$ is sufficiently large then v_{a} has at least k zeros on $\left(0, R_{1}\right)$ for all $a>0$.

Proof. We prove the second part first. It follows from (H1)-(H3) that there is a constant $f_{5}>0$ such that $\frac{f(v)}{v} \geq f_{5}$ for all $v \neq 0$. In addition, we know from 2.4 that $h(t) \geq h_{1} t^{-\tilde{\alpha}_{1}} \geq h_{1} R_{1}^{-\tilde{\alpha}_{1}}$. Thus $\frac{h(t) f\left(v_{a}\right)}{v_{a}} \geq \frac{f_{5}}{R_{1}^{\tilde{\alpha}_{1}}}$.

Next we consider

$$
\begin{aligned}
& w^{\prime \prime}+\left(\frac{f_{5} h_{1}}{R_{1}^{\tilde{\alpha}_{1}}}\right) w=0 \\
& w(0)=0, w^{\prime}(0)=a
\end{aligned}
$$

Thus:

$$
w=c \sin \left(\sqrt{\frac{f_{5} h_{1}}{R_{1}^{\tilde{\alpha}_{1}}}} x\right)
$$

for some $c>0$, and so w has a zero on $\left[0, \sqrt{\frac{R_{1}^{\tilde{\alpha}_{1}}}{f_{5} h_{1}}} \pi\right]$. It follows then from the Sturm Comparison Theorem [6] that v_{a} has at least one zero on $\left[0, R_{1}\right]$ if $\sqrt{\frac{R_{1}^{\tilde{\alpha}_{1}}}{f_{5} h_{1}}} \pi<R_{1}$. That is, if

$$
R_{1}>\left(\frac{\pi^{2}}{f_{5} h_{1}}\right)^{\frac{1}{2-\tilde{\alpha}_{1}}}=\left(\frac{\pi^{2}}{f_{5} h_{1}}\right)^{\frac{N-2}{\alpha_{1}-2}}
$$

Similarly, v_{a} has at least k zeros on $\left[0, R_{1}\right]$ if

$$
R_{1}>\left(\frac{k^{2} \pi^{2}}{f_{5} h_{1}}\right)^{\frac{1}{2-\bar{\alpha}_{1}}}=\left(\frac{k^{2} \pi^{2}}{f_{5} h_{1}}\right)^{\frac{N-2}{\alpha_{1}-2}} .
$$

Next we show that if R_{1} is sufficiently small then there is a value of $a>0$ such that $v_{a}>0$ on $\left(0, R_{1}\right)$. First since $f\left(v_{a}\right)>0$ for $v_{a}>0$ by (H3) there is a constant $f_{6}>0$ such that $f\left(v_{a}\right) \geq f_{6}>0$ for $v_{a}>0$. Thus it follows from this and (2.4) that $h(t) f\left(v_{a}\right) \geq f_{6} h_{1} t^{-\tilde{\alpha}_{1}}$. Suppose now that v_{a} has a zero, z_{a}, on $\left(0, R_{1}\right)$. Then there is an M_{a} with $0<M_{a}<z_{a}$ such that v_{a} has a local maximum at M_{a}. Substituting $t=M_{a}$ into (2.5) then gives

$$
\frac{f_{6} h_{1} M_{a}^{1-\tilde{\alpha}_{1}}}{1-\tilde{\alpha}_{1}} \leq \int_{0}^{M_{a}} f_{6} h_{1} t^{-\tilde{\alpha}_{1}} d t \leq \int_{0}^{M_{a}} h(t) f\left(v_{a}\right) d t=a
$$

It follows from this that

$$
\begin{equation*}
\lim _{a \rightarrow 0^{+}} M_{a}=0 \tag{2.56}
\end{equation*}
$$

Returning to 2.20 and evaluating at M_{a} we see that

$$
\begin{equation*}
\frac{1}{2} a^{2}=h\left(M_{a}\right) F\left(v_{a}\left(M_{a}\right)\right)+\int_{0}^{M_{a}}\left(-h^{\prime}(t)\right) F\left(v_{a}\right) d t \tag{2.57}
\end{equation*}
$$

Then using (2.15), 2.22, and (2.4) we see that

$$
\begin{align*}
\int_{0}^{M_{a}}\left(-h^{\prime}(t)\right) F\left(v_{a}\right) d t & \leq f_{3} h_{2} h_{3} \int_{0}^{M_{a}} t^{-\tilde{\alpha}_{2}-1}\left(a^{1-q} t^{1-q}+a^{p+1} t^{p+1}\right) d t \tag{2.58}\\
& =f_{3} h_{2} h_{3} a^{1-q}\left(\frac{R_{1}^{1-\tilde{\alpha}_{2}-q}}{1-\tilde{\alpha}_{2}-q}+\frac{a^{p+q} R_{1}^{1-\tilde{\alpha}_{2}+p}}{1-\tilde{\alpha}_{2}+p}\right)
\end{align*}
$$

Similarly,

$$
\begin{equation*}
h\left(M_{a}\right) F\left(v_{a}\left(M_{a}\right)\right) \leq f_{3} h_{2} a^{1-q}\left(R_{1}^{1-\tilde{\alpha}_{2}-q}+a^{p+q} R_{1}^{1-\tilde{\alpha}_{2}+p}\right) . \tag{2.59}
\end{equation*}
$$

Now substituting (2.58)-2.59 into (2.57) gives

$$
\begin{equation*}
\frac{1}{2} a^{2} \leq f_{3} h_{2} a^{1-q}\left(C_{7} R_{1}^{1-\tilde{\alpha}_{2}-q}+a^{p+q} C_{8} R_{1}^{1-\tilde{\alpha}_{2}+p}\right) \tag{2.60}
\end{equation*}
$$

where $C_{7}=\left(1+\frac{h_{3}}{1-\tilde{\alpha}_{2}-q}\right)$ and $C_{8}=\left(1+\frac{h_{3}}{1-\tilde{\alpha}_{2}+p}\right)$. Select $a=1$ and we see 2.60$)$ becomes

$$
\begin{equation*}
1 \leq 2 f_{3} h_{2}\left(C_{7} R_{1}^{1-\tilde{\alpha}_{2}-q}+C_{8} R_{1}^{1-\tilde{\alpha}_{2}+p}\right) \tag{2.61}
\end{equation*}
$$

Now if R_{1} is sufficiently small we see that this violates 2.61). Thus if R_{1} is sufficiently small and if $a=1$ then $v_{a}>0$ on $\left(0, R_{1}\right)$. This completes the proof.

3. Proof of Theorem 1.1

We saw from Lemma 2.2 that v_{a} has a finite number of zeros on $\left(0, R_{1}\right)$ for $a>0$. Thus there exists an $a>0$ such that v_{a} has the least number of zeros on ($0, R_{1}$) among all $a>0$. We denote the number of zeros of this particular v_{a} as $n_{0} \geq 0$. (There may be more than one choice of a such that v_{a} has n_{0} zeros on ($0, R_{1}$) but choose one such a). Now let

$$
S_{n_{0}}=\left\{a>0: v_{a} \text { solves 2.1)-(2.2) and has exactly } n_{0} \text { zeros on }\left(0, R_{1}\right)\right\}
$$

From the above comments it follows that $S_{n_{0}}$ is nonempty and from Lemma 2.6 it follows that $S_{n_{0}}$ is bounded above.

Next let $a_{n_{0}}=\sup S_{n_{0}}$. We now prove that $v_{a_{n_{0}}}$ has exactly n_{0} zeros on $\left(0, R_{1}\right)$ and $v_{a_{n_{0}}}\left(R_{1}\right)=0$. From the definition of n_{0} it follows that $v_{a_{n_{0}}}$ has at least n_{0} zeros on $\left(0, R_{1}\right)$. Now if $v_{a_{n_{0}}}$ has an $\left(n_{0}+1\right)$ st zero on $\left(0, R_{1}\right)$ then by continuity with respect to initial conditions then so does v_{a} for a close to $a_{n_{0}}$ and $a<a_{n_{0}}$ but if $a<a_{n_{0}}$ then v_{a} has only n_{0} zeros. Thus $v_{a_{n_{0}}}$ has exactly n_{0} zeros on $\left(0, R_{1}\right)$. Now suppose $v_{a_{n_{0}}}\left(R_{1}\right) \neq 0$. Without loss of generality suppose that $v_{a_{n_{0}}}\left(R_{1}\right)>0$. Now if a is close to $a_{n_{0}}$ and $a>a_{n_{0}}$ then by continuity with respect to initial conditions and the fact that if $v_{a}(z)=0$ then $v_{a}^{\prime}(z) \neq 0$ it follows that $v_{a}\left(R_{1}\right)>0$ and also v_{a} has n_{0} zeros on $\left(0, R_{1}\right)$. But since $a>a_{n_{0}}$ then v_{a} has at least $n_{0}+1$ zeros on $\left(0, R_{1}\right)$ and so we obtain a contradiction. Thus it must be the case that $v_{a_{n_{0}}}\left(R_{1}\right)=0$ and thus we obtain a solution of $2.1-2.2$. Then by Lemma 2.1 it follows that $v_{a_{n_{0}}}^{\prime}\left(R_{1}\right) \neq 0$ so let us assume without loss of generality that $v_{a_{n_{0}}}^{\prime}\left(R_{1}\right)<0$.

In a similar way we now define
$S_{n_{0}+1}=\left\{a>0: v_{a}\right.$ solves 2.1-2.2 and has exactly $n_{0}+1$ zeros on $\left.\left(0, R_{1}\right)\right\}$.

It follows from Lemma 2.6 that $S_{n_{0}+1}$ is bounded from above. For $a>a_{n_{0}}$ and a sufficiently close to $a_{n_{0}}$ it follows again by continuity with respect to initial conditions that v_{a} has an $\left(n_{0}+1\right)$ st zero $z_{n_{0}+1}<R_{1}$ and $z_{n_{0}+1}$ is close to R_{1}. In addition, since $v_{a_{n_{0}}}^{\prime}\left(R_{1}\right)<0$ it follows that $v_{a}^{\prime}\left(z_{n_{0}+1}\right)<0$. Thus v_{a} has exactly $n_{0}+1$ zeros on $\left(0, R_{1}\right)$ for $a>a_{n_{0}}$ and a sufficiently close to $a_{n_{0}}$. Therefore $S_{n_{0}+1}$ is nonempty.

Similarly we define $a_{n_{0}+1}=\sup S_{n_{0}+1}$ and we can similarly show that $v_{a_{n_{0}+1}}$ has exactly $n_{0}+1$ zeros on $\left(0, R_{1}\right)$ and $v_{a_{n_{0}+1}}\left(R_{1}\right)=0$.

Continuing in this way we see that we can find an infinite number of solutions, $v_{a_{n}}$, where $v_{a_{n}}$ has exactly n zeros on $\left(0, R_{1}\right)$ and $v_{a_{n}}\left(R_{1}\right)=0$ for each $n \geq n_{0}$. Thus we have found one infinite family of solutions of $(2.1)-(2.2)$.

Next we let

$$
b_{n_{0}}=\inf S_{n_{0}}
$$

By the above comments $S_{n_{0}}$ is nonempty and by definition $S_{n_{0}}$ is bounded below. Then $b_{n_{0}} \leq a_{n_{0}}$ and by a similar argument we can show that $v_{b_{n_{0}}}$ has exactly n_{0} zeros on $\left(0, R_{1}\right)$ and $v_{a_{n_{0}}}\left(R_{1}\right)=0$. Now it may be the case that $a_{n_{0}}=b_{n_{0}}$ so there may be only one solution with n_{0} zeros. Next we let

$$
b_{n_{0}+1}=\inf S_{n_{0}+1}
$$

Then we have $b_{n_{0}+1}<b_{n_{0}} \leq a_{n_{0}}<a_{n_{0}+1}$ and we can show $v_{b_{n_{0}+1}}$ has exactly $n_{0}+1$ zeros on $\left(0, R_{1}\right)$ and $v_{b_{n_{0}+1}}\left(R_{1}\right)=0$. Since $b_{n_{0}+1}<a_{n_{0}+1}$ it follows that we have two solutions, $v_{a_{n_{0}}}$ and $v_{b_{n_{0}}}$, with $n_{0}+1$ zeros on $\left(0, R_{1}\right)$. Continuing in this way we see that if $n>n_{0}$ we can find a second infinite family of solutions of (2.1)-(2.2), $v_{b_{n}}$, where $v_{b_{n}}$ has exactly n zeros on $\left(0, R_{1}\right)$ and $v_{b_{n}}\left(R_{1}\right)=0$.

Finally, we let $u_{n}^{+}(t)=v_{a_{n}}\left(t^{\frac{1}{2-N}}\right)$ and $u_{n}^{-}(t)=v_{b_{n}}\left(t^{\frac{1}{2-N}}\right)$ for all $n \geq n_{0}$. This completes the proof of Theorem 1.1.

References

[1] A. Abebe, M. Chhetri, L. Sankar, R. Shivaji; Positive solutions for a class of superlinear semipositone systems on exterior domains, Boundary Value Problems, 198, 2014.
[2] M. Ali, J. Iaia; Existence and nonexistence for singular, sublinear problems on exterior domains, Electronic Journal of Differential Equations, Vol. 2021, No. 3, 1-17, 2021.
[3] M. Ali, J. Iaia; Infinitely many solutions for a singular, semilinear problem on exterior domains, Electronic Journal of Differential Equations, Vol. 2021, No. 68, 1-17, 2021.
[4] H. Berestycki, P. L. Lions; Non-linear scalar field equations I, Arch. Rational Mech. Anal., Volume 82, 313-347, 1983.
[5] H. Berestycki, P. L. Lions, L. A. Peletier; An ODE approach to the existence of positive solutions for semilinear problems on \mathbb{R}^{N}, Indiana University Mathematics Journal, Volume 30, No. 1, 141-157, 1981.
[6] G. Birkhoff, G. C. Rota; Ordinary Differential Equations, 4th ed., Wiley, 1991.
[7] M. Chhetri, L. Sankar, R. Shivaji; Positive solutions for a class of superlinear semipositone systems on exterior domains, Boundary Value Problems, 198-207, 2014.
[8] L. Evans; Partial Differential Equations, 2nd ed., American Mathematical Society, 2010.
[9] J. Iaia; Existence of solutions for semilinear problems on exterior domains, Electronic Journal of Differential Equations, No. 34, 1-10, 2020.
[10] J. Iaia; Existence of solutions for semilinear problems with prescribed number of zeros on exterior domains, Journal of Mathematical Analysis and Applications, 446, 591-604, 2017.
[11] E. K. Lee, R. Shivaji, B. Son; Positive radial solutions to classes of singular problems on the exterior of a ball, Journal of Mathematical Analysis and Applications, 434, No. 2, 1597-1611, 2016.
[12] E. Lee, L. Sankar, R. Shivaji; Positive solutions for infinite semipositone problems on exterior domains, Differential and Integral Equations, Volume 24, Number 9/10, 861-875, 2011.
[13] L. Sankar, S. Sasi, R. Shivaji; Semipositone problems with falling zeros on exterior domains, Journal of Mathematical Analysis and Applications, Volume 401, Issue 1, 146-153, 2013.

Joseph Iaia
Department of Mathematics, University of North Texas, Denton, TX 76203-5017, USA
Email address: iaia@unt.edu

[^0]: 2020 Mathematics Subject Classification. 34B40, 35B05.
 Key words and phrases. Exterior domains; singular; semilinear; radial solution.
 (C)2024. This work is licensed under a CC BY 4.0 license.

 Submitted July 13, 2023. Published January 23, 2024.

