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EXISTENCE OF TWO INFINITE FAMILIES OF SOLUTIONS

FOR SINGULAR SUPERLINEAR EQUATIONS ON

EXTERIOR DOMAINS

JOSEPH IAIA

Abstract. In this article we study radial solutions of ∆u + K(|x|)f(u) = 0

in the exterior of the ball of radius R > 0 in RN with N > 2 where f grows
superlinearly at infinity and is singular at 0 with f(u) ∼ 1

|u|q−1u
and 0 < q < 1

for small u. We assume K(|x|) ∼ |x|−α for large |x| and establish existence
of two infinite families of sign-changing solutions when N + q(N − 2) < α <

2(N − 1).

1. Introduction

In this article we are interested in radial solutions of

∆u+K(|x|)f(u) = 0 on RN\BR, u = 0 on ∂BR, u→ 0 as |x| → ∞, (1.1)

when N > 2 and where BR is the ball of radius R > 0 centered at the origin.
Assuming u(x) = u(|x|) = u(r) the above problem becomes

u′′ +
N − 1

r
u′ +K(r)f(u) = 0 for R < r <∞, (1.2)

u(R) = 0, lim
r→∞

u(r) = 0. (1.3)

Numerous papers have proved existence of positive solutions of these equations
with various nonlinearities f(u) and for various functions K(|x|) ∼ |x|−α with
α > 0. See for example [1, 4, 5, 7, 11, 12, 13].

Here we prove existence of two infinite families of solutions including sign-
changing solutions for this equation. We have also proved the existence of sign-
changing solutions in other recent papers [2, 3, 9, 10].

We use the following assumptions:

(H1) f : R\{0} → R is odd, locally Lipschitz, and

f(u) = |u|p−1u+ g(u) with p > 1

for large |u| and limu→∞
|g(u)|
|u|p = 0.
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(H2) There exists a locally Lipschitz g1 : R→ R such that

f(u) =
1

|u|q−1u
+ g1(u) with 0 < q < 1 for small |u| and g1(0) = 0.

(H3) f > 0 on (0,∞).

Let F (u) =
∫ u
0
f(t) dt. Since f is odd then F is even. Also, since 0 < q < 1

(by (H2)) it follows that f is integrable at 0 and therefore F is continuous with
F (0) = 0. Also since f > 0 on (0,∞) it follows that F (u) > 0 for u > 0. Since
F (u) is even then F (u) > 0 for u 6= 0.

We also assume K(r) > 0 and K ′(r) are continuous on [R,∞). In addition, we
assume that

(H4) there exist α1, α2 and positive K1,K2,K3 such that

K1

rα1
≤ K ≤ K2

rα2
and

r|K ′|
K
≤ K3 on [R,∞), (1.4)

where N + q(N − 2) < α2 ≤ α1 < 2(N − 1).

In this article we prove the following result.

Theorem 1.1. Let N > 2 and assume (H1)–(H4). If R > 0, then there exist two
infinite families u±n of solutions to (1.2)-(1.3). If R > 0 is sufficiently large then
there are 2 solutions, u±n , with n interior zeros on (R,∞) for all positive integers
n and there is 1 positive solution. If R > 0 is sufficiently small then there is an
n0 ≥ 0 such that there are 2 solutions with n zeros on (R,∞) for all n > n0 and
there is one solution with n0 zeros on (R,∞).

We remark that the solutions of (1.2)-(1.3) have continuous second derivatives
except at points where u(r0) = 0 because limu→0 |f(u)| = ∞. Solutions, however,
do turn out to be C1[R,∞). In addition, we will see in Lemma 2.1 that if a > 0
then u(r) and u′(r) cannot both be zero at any r ∈ [R,∞). In particular, if
u(z) = 0 then u′(z) 6= 0 and so by (H2) it follows that rN−1Kf(u) is integrable
at z. Therefore, by a C1[R,∞) solution of (1.2)-(1.3) we mean u ∈ C1[R,∞)
such that rN−1u′ +

∫ r
R
tN−1Kf(u) dt = RN−1u′(R) for r ≥ R, u(R) = 0, and

limr→∞ u(r) = 0.

2. Preliminaries

Let R > 0. We begin our analysis of (1.2)-(1.3) by first making the change of
variables u(r) = v(r2−N ) = v(t) and obtaining

v′′(t) + h(t)f(v(t)) = 0,

where

0 < h(t) =
t
2(N−1)
2−N K(t

1
2−N )

(N − 2)2
.

Henceforth we denote R1 = R2−N .
We now attempt to solve the initial value problem

v′′a + h(t)f(va) = 0 for 0 < t < R1, (2.1)

va(0) = 0, v′a(0) = a > 0 (2.2)

and then try to find values of a so that

va(R1) = 0. (2.3)
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Let

α̃1 =
2(N − 1)− α1

N − 2
, α̃2 =

2(N − 1)− α2

N − 2
.

It follows from (H4) and the definition of h that there exist positive h1, h2, h3 such
that

0 < h1t
−α̃1 ≤ h(t) ≤ h2t−α̃2 and

t|h′|
h
≤ h3, (2.4)

where 0 < α̃1 ≤ α̃2 < 1− q.
First we prove existence of a solution to (2.1)-(2.2) on [0, ε0] for some ε0 > 0.

To do this we reformulate (2.1)-(2.2) as an appropriate integral equation. Let us
suppose first that va is a solution (2.1)-(2.2). Integrating on (0, t) gives:

v′a +

∫ t

0

h(x)f(va(x)) dx = a for a > 0. (2.5)

Integrating on (0, t) gives

va +

∫ t

0

∫ s

0

h(x)f(va(x)) dx ds = at for a > 0. (2.6)

A bit of care needs to be taken here because we first need to know that the
integral in (2.5) is defined. To see this notice that if va is a solution of (2.1)-(2.2)
then for sufficiently small t > 0 we have a

2 t ≤ va ≤ at. In addition, it follows from
(H1) and (H2) that there is a constant f1 > 0 such that f(va) ≤ f1(v−qa + vpa) and
therefore by (2.4) we have

0 < h(t)f(va) ≤ f1h2
( t−α̃2

vqa
+ t−α̃2vpa

)
≤ f1h2

( t−α̃2

(a2 )qtq
+ t−α̃2+pap

)
= f1h2

(2q

aq
t−α̃2−q + t−α̃2+pap

)
.

(2.7)

From (2.4) we have 1− α̃2 − q > 0 and 1− α̃2 + p > 0 so it follows from (2.7) that
h(t)f(va) is integrable near t = 0. Thus the integral in (2.5) is defined and is a
continuous function. It then follows that (2.6) is also defined.

Now using (H2) we see that (2.6) is equivalent to

va +

∫ t

0

∫ s

0

h(x)
( 1

vqa(x)
+ g1(va)

)
dx ds = at. (2.8)

Next let va = tw in (2.8) which gives

w = a− 1

t

∫ t

0

∫ s

0

h(x)
( 1

xqwq(x)
+ g1(xw)

)
dx ds. (2.9)

We now define

Sε = {w ∈ C[0, ε] : w(0) = a > 0, and |w − a| ≤ a

2
for all t ∈ [0, ε]}.

Here C[0, ε] is the set of real-valued continuous functions on [0, ε] with the supremum
norm ‖ · ‖. We define T : Sε → C[0, ε] by Tw(0) = a and

Tw = a− 1

t

∫ t

0

∫ s

0

h(x)
( 1

xqwq(x)
+ g1(xw)

)
dx ds for t > 0.
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As mentioned in (2.4) and (2.7) it follows that 0 < h(x)
xq ≤ h2x

−α̃2−q and α̃2+q < 1.

Hence x−α̃2−q is integrable on (0, ε). Then it is straightforward to show T maps Sε
into Sε if ε > 0 is sufficiently small. Next let L be the Lipschitz constant for the
function g1 defined in (H2) and suppose w1, w2 ∈ S. Using the mean value theorem
and the fact that a

2 ≤ wi ≤ a for i = 1, 2 on [0, ε] we see that

|Tw1 − Tw2| ≤
1

t

∫ t

0

∫ s

0

(
qh2
(2

a

)q+1
x−α̃2−q + Lx1−α̃2

)
|w1 − w2| dx ds

≤ ‖w1 − w2‖
( qh2

(1− α̃2 − q)(2− α̃2 − q)
(2

a

)q+1
t1−α̃2−q

+
L

(2− α̃2)(3− α̃2)
t2−α̃2

)
.

(2.10)

Since the term in parentheses in (2.10) goes to 0 as t → 0+, it follows that there
exists ε0 > 0 and a c with 0 < c < 1 so that

‖Tw1 − Tw2‖ ≤ c‖w1 − w2‖ for all wi ∈ Sε0 .
Thus T is a contraction and so by the contraction mapping principle T has a unique
fixed point [8]. Therefore, we obtain a unique solution of (2.6) on [0, ε0]. It then
follows that the integral term in (2.6) is differentiable which implies that va is
differentiable and satisfies (2.5).

Next we let

Ea =
v′2a
2h

+ F (va). (2.11)

Recall from the comments after (H3) that F (va) ≥ 0. Therefore from (2.1) and
(2.4) it follows that

|E′a| =
∣∣− h′

2h2
v′2a
∣∣ ≤ ∣∣ th′

h

∣∣ v′2a
2th
≤ h3Ea

t
. (2.12)

Thus
(
Ea
th3

)′ ≤ 0 for t > 0 and therefore integrating on (ε0/2, t) (with the ε0 in the
proof of existence) gives

v′2a
2h

+ F (va) = Ea(t) ≤ C1t
h3 ≤ C1R

h3
1 ,

where C1 = Ea(ε0/2).(ε0/2)h3 .
Thus va and v′a are uniformly bounded on a largest interval of the form [ε0/2, T ] ⊂

[ε0/2, R1]. It then follows from this that va and v′a are defined and continuous on
all of [0, R1]. In addition, it also follows from this that the va vary continuously
with respect to a.

Lemma 2.1. Assume (H1)–(H4) and let va solve (2.1)-(2.2) with a > 0. Then
|va|+ |v′a| > 0 on [0, R1].

Proof. First since va(0) = 0 and v′a(0) = a > 0 it follows that va and v′a cannot both
be zero at any t ∈ [0, ε] for some ε > 0. Suppose now that there is a t0 ∈ (0, R1]
such that va(t0) = v′a(t0) = 0. Thus Ea(t0) = 0 and then from (2.12) it follows that
(Eat

h3)′ ≥ 0 on (t, t0). Integrating this on (t, t0) yields Ea ≤ 0 on (t, t0). Since
Ea ≥ 0 it follows then that Ea ≡ 0 on [0, t0] and thus va = v′a = 0 on [0, t0]. This
however contradicts that v′a(0) = a > 0. Thus the lemma follows. �

Lemma 2.2. Assume (H1)–(H4) and let va solve (2.1)-(2.2) with a > 0. Then va
only has a finite number of zeros on [0, R1].
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Proof. First since va(0) = 0 and v′a(0) = a > 0 it follows that va > 0 on (0, ε) for
some ε > 0. Now suppose va(zk) = 0 for zk ∈ [ε/2, R1] with z1 < z2 < · · · ≤ R1.
Then there exists z∗ with ε/2 < z∗ ≤ R1 such that zk → z∗ ∈ [ε/2, R1] and
va(z∗) = 0. In addition, it follows from Lemma 2.1 that v′a(zk) 6= 0 and thus there
exist local extrema, Mk, with zk < Mk < zk+1 and v′a(Mk) = 0. Thus we see
Mk → z∗ and v′a(z∗) = 0. But this along with va(z∗) = 0 contradicts Lemma 2.1.
Thus va has only a finite number of zeros on [0, R1]. �

Lemma 2.3. Assume (H1)–(H4) and let va solve (2.1)-(2.2). Suppose a > 0 is
sufficiently small. Then va has a local maximum, M1,a, and a zero, z1,a, on (0, R1).
In addition, z1,a → 0, v′a(z1,a)→ 0, and va(M1,a)→ 0 as a→ 0+. More generally,
if a > 0 is sufficiently small and k ≥ 1 then va has k zeros, zi,a, and k local
extrema, Mi,a, with 0 < M1,a < z1,a < M2,a < z2,a < · · · < Mk,a < zk,a on (0, R1).
In addition, lima→0+ zi,a = 0, lima→0+ v

′
a(zi,a) = 0, and lima→0+ |va(Mi,a)| = 0 for

1 ≤ i ≤ k.

Proof. From (2.6) we have

va +

∫ t

0

∫ s

0

h(x)f(va(x)) dx ds = at. (2.13)

Suppose now that va > 0 on (0, R1). Then from (H2) and (H3) there is a constant
f2 > 0 such that f(va) ≥ f2v−qa . In addition, from (2.4) we see that h(t) ≥ h1t−α̃1

and 1− α̃1 − q > 0. Substituting into (2.13) gives∫ t

0

∫ s

0

h(x)f(va(x)) dx ds ≥ f2h1
∫ t

0

∫ s

0

x−α̃1v−qa (x) dx ds. (2.14)

Also, it follows from (2.1) and (H3) that when va > 0 we have v′′a < 0 and so
integrating this inequality twice on (0, t) gives

0 < va < at. (2.15)

Substituting this into (2.14) gives

f2h1

∫ t

0

∫ s

0

x−α̃1v−qa dx ds ≥ f2h1
aq

∫ t

0

∫ s

0

x−α̃1−q dx ds

=
f2h1t

2−α̃1−q

aq(1− α̃1 − q)(2− α̃1 − q)
.

(2.16)

Substituting this expression into (2.13)-(2.14) gives

0 < va ≤ at−
f2h1t

2−α̃1−q

aq(1− α̃1 − q)(2− α̃1 − q)
. (2.17)

However, the right-hand side of (2.17) is zero when

t =
(aq+1(1− α̃1 − q)(2− α̃1 − q)

f2h1

) 1
2−α̃1−q

and notice that this value of t is less than or equal to R1 if a > 0 is sufficiently
small. Thus (2.17) yields a contradiction and therefore va has a first zero, z1,a, and
0 < z1,a < R1 if a > 0 is sufficiently small. In addition, the above argument shows
that

0 < z1,a ≤
(aq+1(1− α̃1 − q)(2− α̃1 − q)

f2h1

) 1
2−α̃1−q → 0 as a→ 0+. (2.18)
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Thus
lim
a→0+

z1,a = 0. (2.19)

Next we examine the following identity which is straightforward to establish by
differentiation and (2.1),

1

2
v′2a + h(t)F (va) +

∫ t

0

(−h′(s))F (va) ds =
1

2
a2. (2.20)

Evaluating at z1,a gives

1

2
v′2a (z1,a) =

1

2
a2 +

∫ z1,a

0

h′(s)F (va) ds. (2.21)

Since F (t) =
∫ t
0
f(s) ds it follows from (H1) and (H2) that there is a constant

f3 > 0 such that
F (va) ≤ f3(v1−qa + vp+1

a ) when va > 0. (2.22)

Also from (2.4) we have

t|h′|
h
≤ h3 and so |h′| ≤ h2h3t−1−α̃2 . (2.23)

Substituting this into the right-hand side of (2.21) and using (2.15), (2.22) gives∫ z1,a

0

h′(s)F (va) ds ≤
∫ z1,a

0

f3h2h3t
−1−α̃2(a1−qt1−q + ap+1tp+1) dt

= f3h2h3

(a1−qz1−α̃2−q
1,a

1− α̃2 − q
+
ap+1z1−α̃2+p

1,a

1− α̃2 + p

)
≤ f3h2h3a1−qR1−α̃2−q

1

( 1

1− α̃2 − q
+
ap+qRp+q1

1− α̃2 + p

)
.

(2.24)

Thus substituting (2.22) and (2.24) into (2.21) gives

1

2
v′2a (z1,a) ≤ 1

2
a2 + f3h2h3a

1−qR1−α̃2−q
1

( 1

1− α̃2 − q
+
ap+qRp+q1

1− α̃2 + p

)
→ 0 (2.25)

as a→ 0+. Therefore,
lim
a→0+

v′a(z1,a) = 0. (2.26)

Next since va(0) = va(z1,a) = 0 and v′a(0) = a > 0 it follows that there is a local
maximum, M1,a, with 0 < M1,a < z1,a. Evaluating (2.20) at M1,a gives

h(M1,a)F (va(M1,a)) =
1

2
a2 +

∫ M1,a

0

h′(t)F (va) dt. (2.27)

Estimating as in (2.24)-(2.24) but now on [0,M1,a] (instead of [0, z1,a]) we again
obtain∫ M1,a

0

h′(t)F (va) dt ≤ f3h2h3a1−qR1−α̃2−q
1

( 1

1− α̃2 − q
+
ap+qRp+q1

1− α̃2 + p

)
. (2.28)

Then from (2.27)-(2.28) and (2.4) we obtain

F (va(M1,a)) ≤ f3h2h3a
1−qR1−α̃2+α̃1−q

1

h1

( 1

1− α̃2 − q
+
ap+qRp+q1

1− α̃2 + p

)
→ 0 (2.29)

as a→ 0+. Therefore,
lim
a→0+

va(M1,a) = 0. (2.30)
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In a similar way we can show va has as many zeros as desired by choosing a > 0
sufficiently small and we can also similarly establish the analogs of (2.19), (2.26),
and (2.30). This completes the proof of the lemma. �

Lemma 2.4. Assume (H1)–(H4) and let va solve (2.1)-(2.2). If a > 0 is sufficiently
large then va has a local maximum, M1,a, on (0, R1).

Proof. Suppose not and so suppose va is increasing on (0, R1) for all sufficiently
large a > 0. Then va > 0 on (0, R1) and so it follows from (2.1) that v′′a < 0 on
(0, R1).

We now claim that va(t0)→∞ as a→∞ for any fixed t0 with 0 < t0 ≤ R1. So
suppose not. Thus suppose 0 < va ≤ C2 on (0, t0] where C2 is independent of a.
Using (2.15) and (2.22) we see that

F (va) ≤ f3(v1−qa + vp+1
a ) = f3v

1−q
a (1 + vp+qa )

≤ f3v1−qa (1 + Cp+q2 ) = f3C3v
1−q
a

(2.31)

where C3 = 1 + Cp+q2 .
Then using (2.15) in (2.31) we obtain

F (va) ≤ f3C3v
1−q
a ≤ f3C3a

1−qt1−q. (2.32)

Substituting this into (2.20) and using (2.4) we then have h(t) ≤ h2t−α̃2 and |h′| ≤
h2h3t

−α̃2−1. This gives

h(t)F (va) +

∫ t

0

(−h′(s))F (va) ds ≤ f3h2C3

(
1 +

h3
1− α̃2 − q

)
a1−qt1−α̃2−q

= C4a
1−qt1−α̃2−q

≤ C4a
1−qt1−α̃2−q

0

(2.33)

where C4 = f3h2C3

(
1 + h3

1−α̃2−q

)
. Therefore from (2.20) and (2.33) we see that

1

2
v′2a ≥

1

2
a2 − C4t

1−α̃−q
0 a1−q ≥ 1

2
a2 − C4R

1−α̃−q
1 a1−q ≥ 1

8
a2

for a sufficiently large. Thus v′a ≥ a/2 for a sufficiently large, and integrating this
on (0, t0) gives

C2 ≥ va(t0) ≥ a

2
t0 →∞ as a→∞.

Hence we obtain a contradiction. Thus it follows that if va is increasing on [0, R1]
then va(t0)→∞ as a→∞ for every t0 with 0 < t0 ≤ R1.

Next it follows that if va is increasing on [0, R1] then since f is superlinear (by
(H1)) then

h(t)f(va)

va
→∞

uniformly on [t0, R1] for any t0 > 0 as a→∞. Therefore assuming va is increasing
on [0, R1] we see that

Ia = inf
[t0,R1]

h(t)f(va)

va
→∞ as a→∞. (2.34)

Next we rewrite (2.1) as

v′′a +
(h(t)f(va)

va

)
va = 0. (2.35)
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Assuming va is increasing on [0, R1], we let y solve

y′′ + Iay = 0 (2.36)

with y(t0) = va(t0) and y′(t0) = v′a(t0). Thus

y = va(t0) cos(
√
Ia(t− t0)) +

v′a(t0)√
Ia

sin(
√
Ia(t− t0))

and so it follows that y is 2π/
√
Ia-periodic. Thus y must have a local maximum

on [t0, t0 + 2π√
Ia

]. In addition, it follows from (2.34) that [t0, t0 + 2π√
Ia

] ⊂ [t0, R1]

if a is sufficiently large. We will now show that va must have a local maximum
on [t0, t0 + 2π√

Ia
] ⊂ [t0, R1] if a is sufficiently large. This is essentially the Sturm

Comparison Theorem [6] but we write out the details because they are brief.
Let a > 0 be sufficiently large so that y has a local maximum M < R1 and that

y′ > 0 on [t0,M ]. Multiplying (2.35) by y, (2.36) by va, and subtracting gives

(yv′a − y′va)′ +
(h(t)f(va)

va
− Ia

)
yva = 0. (2.37)

Integrating this on [t0,M ] and using y′(M) = 0, y(t0) = va(t0), and y′(t0) = v′a(t0)
gives

y(M)v′a(M) +

∫ M

t0

(h(t)f(va)

va
− Ia

)
yva dt = 0. (2.38)

On [t0,M ] we have y > 0, va > 0. In addition, the term in parentheses in (2.38)
is nonnegative. Thus we see y(M)v′a(M) ≤ 0 and therefore v′a(M) ≤ 0 since
y(M) > 0. Now if v′a(M) < 0 then since v′a(t0) > 0 it follows that va has a local
maximum, M1,a, with t0 < M1,a < M . On the other hand, if v′a(M) = 0 then from
(2.1) it follows that v′′a(M) < 0 and therefore M is a local maximum for va and we
set M1,a = M . Therefore in both cases we see that va has a local maximum, M1,a,
with 0 < M1,a < R1 and v′a > 0 on [0,M1,a) if a > 0 is sufficiently large. �

Lemma 2.5. Assume (H1)–(H4) and let va solve (2.1)-(2.2). Suppose a > 0 is
sufficiently large so that va has a smallest local maximum M1,a with v′a > 0 on
[0,M1,a) and M1,a < R1. Then lima→∞ va(M1,a) =∞ and lima→∞M1,a = 0.

Proof. We first show that va(M1,a) → ∞ as a → ∞. So suppose not. Mimicking
the proof of Lemma 2.4, suppose there is a C5 > 0 such that va(M1,a) ≤ C5. Then
using (2.31)-(2.32) and evaluating (2.20) and (2.33) at t = M1,a gives

1

2
a2 = h(M1,a)F (va(M1,a)) +

∫ M1,a

0

(−h′(s))F (va) ds

≤ f3h2C5

(
1 +

h3
1− α̃2 − q

)
a1−qt1−α̃2−q

= C6a
1−qM1−α̃2−q

1,a

≤ C6a
1−qR1−α̃2−q

1

(2.39)

where C6 = f3h2C5(1 + h3

1−α̃2−q ). Thus

1

2
a1+q ≤ C6R

1−α̃2−q
1 . (2.40)
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However, the left-hand side of (2.40) goes to infinity as a→∞ but the right-hand
side stays finite. Hence we obtain a contradiction and therefore we must have

lim
a→∞

va(M1,a) =∞. (2.41)

Next we show M1,a → 0 as a→∞. By (H1) it follows that

f(va) ≥ f4vpa when va > 0 for some constant f4 > 0. (2.42)

We integrate (2.1) on (t,M1,a) and estimate using the fact that va is increasing on
(t,M1,a) to obtain:

v′a =

∫ M1,a

t

h(s)f(va) ds ≥ f4vpa
∫ M1,a

t

h(s) ds. (2.43)

Dividing by vpa, recalling p > 1, and integrating on (
M1,a

2 ,M1,a) gives

v1−pa (
M1,a

2 )

p− 1
≥
v1−pa (

M1,a

2 )− v1−pa (M1,a)

p− 1
≥ f3

∫ M1,a

M1,a
2

∫ M1,a

s

h(s) ds. (2.44)

Since v′′a < 0 it follows that va is concave and thus va(λx+(1−λ)y) ≥ λva(x)+(1−
λ)va(y) for 0 ≤ λ ≤ 1. In particular, for x = va(M1,a), y = 0, and λ = 1

2 we obtain

va(
M1,a

2 ) ≥ va(M1,a)
2 . Then it follows from this and (2.41) that va(

M1,a

2 ) → ∞ as
a → ∞. Since p > 1 it follows then that the left-hand side of (2.44) goes to 0 as
a→∞ and thus we must have

lim
a→∞

M1,a = 0. (2.45)

This completes the proof. �

Lemma 2.6. Assume (H1)–(H4) and let va solve (2.1)-(2.2). Suppose a > 0 is
sufficiently large. Then va has a zero, z1,a, with M1,a < z1,a < R1. In addition,
va > 0 and v′a < 0 on (M1,a, z1,a). Further lima→∞ z1,a = 0, lima→∞ va(M1,a) =
∞, and lima→∞ v′a(z1,a) = −∞. More generally, if a is sufficiently large and k ≥ 1
then va has k zeros, zi,a, and k local extrema, Mi,a, with 0 < M1,a < z1,a <
M2,a < z2,a < · · · < Mk,a < zk,a on (0, R1). In addition, lima→∞ zi,a = 0,
lima→∞ |v′a(zi,a)| =∞, and lima→∞ |va(Mi,a)| =∞ for 1 ≤ i ≤ k.

Proof. It follows from Lemma 2.5 that

lim
a→∞

va(M1,a) =∞. (2.46)

Assume now that va > 0 on (M1,a, R1). Then using (2.42) and integrating on
(M1,a, t) we obtain

−v′a ≥ f4vpa
∫ t

M1,a

h(s) ds.

Dividing by vpa, integrating on (M1,a, t), and using (2.4) gives

v1−pa ≥ v1−pa − v1−pa (M1,a)

≥ (p− 1)f4

∫ t

M1,a

∫ s

M1,a

h(x) dx ds

=
(p− 1)f4R

−α̃1
1

2
(t−M1,a)2.

(2.47)
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Evaluating (2.47) at t =
R1+M1,a

2 we see

v1−pa

(R1 +M1,a

2

)
≥ (p− 1)f4R

−α̃1
1

2

(R1 −M1,a

2

)2
and therefore

vp−1a

(R1 +M1,a

2

)
≤ 8Rα̃1

1

(p− 1)f4(R1 −M1,a)2
. (2.48)

By (2.45) we see then for large a that

va

(R1 +M1,a

2

)
≤
( 32Rα̃1−2

1

(p− 1)f4

) 1
p−1

. (2.49)

Using that v′′a < 0 when va > 0 and the mean value theorem we see there is a ca
with M1,a < ca <

R1+M1,a

2 such that

va(M1,a)− va
(R1 +M1,a

2

)
= −v′a(ca)

(R1 −M1,a

2

)
≤ −v′a

(R1 +M1,a

2

)(R1

2

)
.

(2.50)

Since v′a > 0 on (0,M1,a) it follows from (2.41) and (2.49) that the left-hand side
of (2.50) goes to infinity as a→∞. And then from (2.45) and (2.50) it follows that

v′a

(R1 +M1,a

2

)
→ −∞ as a→∞. (2.51)

Since v′′a < 0 when va > 0 it follows that v′a is decreasing when va > 0 so:

v′a < v′a(
R1 +M1,a

2
) for t >

R1 +M1,a

2
.

Integrating this on (
R1+M1,a

2 , R1) gives

va(R1) < va(
R1 +M1,a

2
) + v′a(

R1 +M1,a

2
)(
R1 −M1,a

2
). (2.52)

It follows from (2.49) that the first term on the right-hand side (2.52) is bounded.
Then from (2.45) we have M1,a → 0 as a → ∞ and this along with (2.51) implies
that the right-hand side of (2.52) becomes negative while the left-hand side stays
positive. Thus we obtain a contradiction and therefore there exists z1,a with M1,a <
z1,a < R1 such that va(z1,a) = 0 and va > 0 on (M1,a, z1,a).

From the mean value theorem and that v′′a < 0 when va > 0 it follows that there
is a da such that M1,a < da < z1,a and

va(M1,a) = |va(z1,a)−va(M1,a)| = |v′a(da)||z1,a−M1,a| ≤ |v′a(da)|R1 ≤ |v′a(z1,a)|R1

and since the left-hand side goes to infinity by (2.46) it then follows from the above
inequality that

lim
a→∞

v′a(z1,a) = −∞. (2.53)

Next it follows from evaluating (2.47) at
M1,a+z1,a

2 that we obtain

v1−p
(M1,a + z1,a

2

)
≥ (p− 1)f4R

−α̃1
1

2

(M1,a − z1,a
2

)2
. (2.54)

Since v′′a < 0 when va > 0 it follows that va is concave. Then it follows from this

and (2.46) that va(
M1,a+z1,a

2 ) ≥ va(M1,a)
2 +

va(z1,a)
2 =

va(M1,a)
2 → ∞. Thus we see
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the left-hand side of (2.54) goes to 0 as a → ∞ and therefore z1,a −M1,a → 0.
Since M1,a → 0 by Lemma 2.5 we see then that

lim
a→∞

z1,a = 0. (2.55)

In a similar way we can show that va as many zeros as desired on (0, R1) by
choosing a > 0 sufficiently large, and we can obtain the analogs of (2.46), (2.53),
and (2.55). This completes the proof. �

Lemma 2.7. Assume (H1)–(H4) and let va solve (2.1)-(2.2) with a > 0. If R1 is
sufficiently small then there are values of a > 0 such that va > 0 on (0, R1). Also,
if R1 is sufficiently large then va has at least one zero on (0, R1) for all a > 0.
Similarly, if R1 > 0 is sufficiently large then va has at least k zeros on (0, R1) for
all a > 0.

Proof. We prove the second part first. It follows from (H1)–(H3) that there is a

constant f5 > 0 such that f(v)
v ≥ f5 for all v 6= 0. In addition, we know from (2.4)

that h(t) ≥ h1t−α̃1 ≥ h1R−α̃1
1 . Thus h(t)f(va)

va
≥ f5

R
α̃1
1

.

Next we consider

w′′ +
(f5h1
Rα̃1

1

)
w = 0,

w(0) = 0, w′(0) = a.

Thus:

w = c sin
(√f5h1

Rα̃1
1

x
)

for some c > 0, and so w has a zero on [0,

√
R
α̃1
1

f5h1
π]. It follows then from the Sturm

Comparison Theorem [6] that va has at least one zero on [0, R1] if

√
R
α̃1
1

f5h1
π < R1.

That is, if

R1 > (
π2

f5h1
)

1
2−α̃1 =

( π2

f5h1

) N−2
α1−2

.

Similarly, va has at least k zeros on [0, R1] if

R1 >
(k2π2

f5h1

) 1
2−α̃1

=
(k2π2

f5h1

) N−2
α1−2

.

Next we show that if R1 is sufficiently small then there is a value of a > 0 such
that va > 0 on (0, R1). First since f(va) > 0 for va > 0 by (H3) there is a constant
f6 > 0 such that f(va) ≥ f6 > 0 for va > 0. Thus it follows from this and (2.4) that
h(t)f(va) ≥ f6h1t−α̃1 . Suppose now that va has a zero, za, on (0, R1). Then there
is an Ma with 0 < Ma < za such that va has a local maximum at Ma. Substituting
t = Ma into (2.5) then gives

f6h1M
1−α̃1
a

1− α̃1
≤
∫ Ma

0

f6h1t
−α̃1 dt ≤

∫ Ma

0

h(t)f(va) dt = a.

It follows from this that

lim
a→0+

Ma = 0. (2.56)
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Returning to (2.20) and evaluating at Ma we see that

1

2
a2 = h(Ma)F (va(Ma)) +

∫ Ma

0

(−h′(t))F (va) dt. (2.57)

Then using (2.15), (2.22), and (2.4) we see that∫ Ma

0

(−h′(t))F (va) dt ≤ f3h2h3
∫ Ma

0

t−α̃2−1(a1−qt1−q + ap+1tp+1) dt

= f3h2h3a
1−q
( R1−α̃2−q

1

1− α̃2 − q
+
ap+qR1−α̃2+p

1

1− α̃2 + p

)
.

(2.58)

Similarly,

h(Ma)F (va(Ma)) ≤ f3h2a1−q
(
R1−α̃2−q

1 + ap+qR1−α̃2+p
1

)
. (2.59)

Now substituting (2.58)-(2.59) into (2.57) gives

1

2
a2 ≤ f3h2a1−q

(
C7R

1−α̃2−q
1 + ap+qC8R

1−α̃2+p
1

)
, (2.60)

where C7 = (1 + h3

1−α̃2−q ) and C8 = (1 + h3

1−α̃2+p
). Select a = 1 and we see (2.60)

becomes

1 ≤ 2f3h2

(
C7R

1−α̃2−q
1 + C8R

1−α̃2+p
1

)
(2.61)

Now if R1 is sufficiently small we see that this violates (2.61). Thus if R1 is suffi-
ciently small and if a = 1 then va > 0 on (0, R1). This completes the proof. �

3. Proof of Theorem 1.1

We saw from Lemma 2.2 that va has a finite number of zeros on (0, R1) for a > 0.
Thus there exists an a > 0 such that va has the least number of zeros on (0, R1)
among all a > 0. We denote the number of zeros of this particular va as n0 ≥ 0.
(There may be more than one choice of a such that va has n0 zeros on (0, R1) but
choose one such a). Now let

Sn0
= {a > 0 : va solves (2.1)-(2.2) and has exactly n0 zeros on (0, R1)}.

From the above comments it follows that Sn0
is nonempty and from Lemma 2.6 it

follows that Sn0 is bounded above.
Next let an0 = supSn0 . We now prove that van0

has exactly n0 zeros on (0, R1)

and van0
(R1) = 0. From the definition of n0 it follows that van0

has at least n0 zeros

on (0, R1). Now if van0
has an (n0 + 1)st zero on (0, R1) then by continuity with

respect to initial conditions then so does va for a close to an0
and a < an0

but if
a < an0 then va has only n0 zeros. Thus van0

has exactly n0 zeros on (0, R1). Now

suppose van0
(R1) 6= 0. Without loss of generality suppose that van0

(R1) > 0. Now
if a is close to an0

and a > an0
then by continuity with respect to initial conditions

and the fact that if va(z) = 0 then v′a(z) 6= 0 it follows that va(R1) > 0 and also
va has n0 zeros on (0, R1). But since a > an0 then va has at least n0 + 1 zeros on
(0, R1) and so we obtain a contradiction. Thus it must be the case that van0

(R1) = 0

and thus we obtain a solution of (2.1)-(2.2). Then by Lemma 2.1 it follows that
v′an0

(R1) 6= 0 so let us assume without loss of generality that v′an0
(R1) < 0.

In a similar way we now define

Sn0+1 = {a > 0 : va solves (2.1)-(2.2) and has exactly n0 + 1 zeros on (0, R1)}.
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It follows from Lemma 2.6 that Sn0+1 is bounded from above. For a > an0
and a

sufficiently close to an0 it follows again by continuity with respect to initial con-
ditions that va has an (n0 + 1)st zero zn0+1 < R1 and zn0+1 is close to R1. In
addition, since v′an0

(R1) < 0 it follows that v′a(zn0+1) < 0. Thus va has exactly

n0 + 1 zeros on (0, R1) for a > an0 and a sufficiently close to an0 . Therefore Sn0+1

is nonempty.
Similarly we define an0+1 = supSn0+1 and we can similarly show that van0+1

has exactly n0 + 1 zeros on (0, R1) and van0+1(R1) = 0.
Continuing in this way we see that we can find an infinite number of solutions,

van , where van has exactly n zeros on (0, R1) and van(R1) = 0 for each n ≥ n0.
Thus we have found one infinite family of solutions of (2.1)-(2.2).

Next we let

bn0
= inf Sn0

.

By the above comments Sn0 is nonempty and by definition Sn0 is bounded below.
Then bn0

≤ an0
and by a similar argument we can show that vbn0

has exactly n0
zeros on (0, R1) and van0

(R1) = 0. Now it may be the case that an0
= bn0

so there
may be only one solution with n0 zeros. Next we let

bn0+1 = inf Sn0+1.

Then we have bn0+1 < bn0
≤ an0

< an0+1 and we can show vbn0+1
has exactly

n0 + 1 zeros on (0, R1) and vbn0+1(R1) = 0. Since bn0+1 < an0+1 it follows that

we have two solutions, van0
and vbn0

, with n0 + 1 zeros on (0, R1). Continuing in
this way we see that if n > n0 we can find a second infinite family of solutions of
(2.1)-(2.2), vbn , where vbn has exactly n zeros on (0, R1) and vbn(R1) = 0.

Finally, we let u+n (t) = van(t
1

2−N ) and u−n (t) = vbn(t
1

2−N ) for all n ≥ n0. This
completes the proof of Theorem 1.1. �
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