Electronic Journal of Differential Equations, Vol. 2024 (2024), No. 06, pp. 1–14. ISSN: 1072-6691. URL: https://ejde.math.txstate.edu, https://ejde.math.unt.edu DOI: 10.58997/ejde.2024.06

EXISTENCE OF TWO INFINITE FAMILIES OF SOLUTIONS FOR SINGULAR SUPERLINEAR EQUATIONS ON EXTERIOR DOMAINS

JOSEPH IAIA

ABSTRACT. In this article we study radial solutions of $\Delta u + K(|x|)f(u) = 0$ in the exterior of the ball of radius R > 0 in \mathbb{R}^N with N > 2 where f grows superlinearly at infinity and is singular at 0 with $f(u) \sim \frac{1}{|u|^{q-1}u}$ and 0 < q < 1for small u. We assume $K(|x|) \sim |x|^{-\alpha}$ for large |x| and establish existence of two infinite families of sign-changing solutions when $N + q(N-2) < \alpha < 2(N-1)$.

1. INTRODUCTION

In this article we are interested in radial solutions of

 $\Delta u + K(|x|)f(u) = 0$ on $\mathbb{R}^N \setminus B_R$, u = 0 on ∂B_R , $u \to 0$ as $|x| \to \infty$, (1.1) when N > 2 and where B_R is the ball of radius R > 0 centered at the origin.

Assuming u(x) = u(|x|) = u(r) the above problem becomes

$$u'' + \frac{N-1}{r}u' + K(r)f(u) = 0 \quad \text{for } R < r < \infty,$$
(1.2)

$$u(R) = 0, \quad \lim_{r \to \infty} u(r) = 0.$$
 (1.3)

Numerous papers have proved existence of positive solutions of these equations with various nonlinearities f(u) and for various functions $K(|x|) \sim |x|^{-\alpha}$ with $\alpha > 0$. See for example [1, 4, 5, 7, 11, 12, 13].

Here we prove existence of two infinite families of solutions including signchanging solutions for this equation. We have also proved the existence of signchanging solutions in other recent papers [2, 3, 9, 10].

We use the following assumptions:

(H1) $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ is odd, locally Lipschitz, and

$$f(u) = |u|^{p-1}u + g(u)$$
 with $p > 1$

for large |u| and $\lim_{u\to\infty} \frac{|g(u)|}{|u|^p} = 0.$

²⁰²⁰ Mathematics Subject Classification. 34B40, 35B05.

Key words and phrases. Exterior domains; singular; semilinear; radial solution.

^{©2024.} This work is licensed under a CC BY 4.0 license. Submitted July 13, 2023. Published January 23, 2024.

(H2) There exists a locally Lipschitz $g_1 : \mathbb{R} \to \mathbb{R}$ such that

$$f(u) = \frac{1}{|u|^{q-1}u} + g_1(u)$$
 with $0 < q < 1$ for small $|u|$ and $g_1(0) = 0$.

(H3) f > 0 on $(0, \infty)$.

Let $F(u) = \int_0^u f(t) dt$. Since f is odd then F is even. Also, since 0 < q < 1 (by (H2)) it follows that f is integrable at 0 and therefore F is continuous with F(0) = 0. Also since f > 0 on $(0, \infty)$ it follows that F(u) > 0 for u > 0. Since F(u) is even then F(u) > 0 for $u \neq 0$.

We also assume K(r) > 0 and K'(r) are continuous on $[R, \infty)$. In addition, we assume that

(H4) there exist α_1, α_2 and positive K_1, K_2, K_3 such that

$$\frac{K_1}{r^{\alpha_1}} \le K \le \frac{K_2}{r^{\alpha_2}} \quad \text{and} \quad \frac{r|K'|}{K} \le K_3 \quad \text{on } [R, \infty), \tag{1.4}$$

where $N + q(N - 2) < \alpha_2 \le \alpha_1 < 2(N - 1)$.

In this article we prove the following result.

Theorem 1.1. Let N > 2 and assume (H1)–(H4). If R > 0, then there exist two infinite families u_n^{\pm} of solutions to (1.2)-(1.3). If R > 0 is sufficiently large then there are 2 solutions, u_n^{\pm} , with n interior zeros on (R, ∞) for all positive integers n and there is 1 positive solution. If R > 0 is sufficiently small then there is an $n_0 \ge 0$ such that there are 2 solutions with n zeros on (R, ∞) for all $n > n_0$ and there is one solution with n_0 zeros on (R, ∞) .

We remark that the solutions of (1.2)-(1.3) have continuous second derivatives except at points where $u(r_0) = 0$ because $\lim_{u\to 0} |f(u)| = \infty$. Solutions, however, do turn out to be $C^1[R,\infty)$. In addition, we will see in Lemma 2.1 that if a > 0then u(r) and u'(r) cannot both be zero at any $r \in [R,\infty)$. In particular, if u(z) = 0 then $u'(z) \neq 0$ and so by (H2) it follows that $r^{N-1}Kf(u)$ is integrable at z. Therefore, by a $C^1[R,\infty)$ solution of (1.2)-(1.3) we mean $u \in C^1[R,\infty)$ such that $r^{N-1}u' + \int_R^r t^{N-1}Kf(u) dt = R^{N-1}u'(R)$ for $r \geq R$, u(R) = 0, and $\lim_{r\to\infty} u(r) = 0$.

2. Preliminaries

Let R > 0. We begin our analysis of (1.2)-(1.3) by first making the change of variables $u(r) = v(r^{2-N}) = v(t)$ and obtaining

$$v''(t) + h(t)f(v(t)) = 0,$$

where

$$0 < h(t) = \frac{t^{\frac{2(N-1)}{2-N}} K(t^{\frac{1}{2-N}})}{(N-2)^2}$$

Henceforth we denote $R_1 = R^{2-N}$.

We now attempt to solve the initial value problem

$$v_a'' + h(t)f(v_a) = 0 \quad \text{for } 0 < t < R_1,$$
(2.1)

$$v_a(0) = 0, \quad v'_a(0) = a > 0$$
 (2.2)

and then try to find values of a so that

$$v_a(R_1) = 0. (2.3)$$

 $\mathbf{2}$

EJDE-2024/06

Let

$$\tilde{\alpha}_1 = \frac{2(N-1) - \alpha_1}{N-2}, \quad \tilde{\alpha}_2 = \frac{2(N-1) - \alpha_2}{N-2}.$$

It follows from (H4) and the definition of h that there exist positive h_1, h_2, h_3 such that

$$0 < h_1 t^{-\tilde{\alpha}_1} \le h(t) \le h_2 t^{-\tilde{\alpha}_2} \text{ and } \frac{t|h'|}{h} \le h_3,$$
 (2.4)

where $0 < \tilde{\alpha}_1 \leq \tilde{\alpha}_2 < 1 - q$.

First we prove existence of a solution to (2.1)-(2.2) on $[0, \epsilon_0]$ for some $\epsilon_0 > 0$. To do this we reformulate (2.1)-(2.2) as an appropriate integral equation. Let us suppose first that v_a is a solution (2.1)-(2.2). Integrating on (0, t) gives:

$$v'_{a} + \int_{0}^{t} h(x) f(v_{a}(x)) \, dx = a \quad \text{for } a > 0.$$
(2.5)

Integrating on (0, t) gives

$$v_a + \int_0^t \int_0^s h(x) f(v_a(x)) \, dx \, ds = at \quad \text{for } a > 0.$$
 (2.6)

A bit of care needs to be taken here because we first need to know that the integral in (2.5) is defined. To see this notice that if v_a is a solution of (2.1)-(2.2) then for sufficiently small t > 0 we have $\frac{a}{2}t \le v_a \le at$. In addition, it follows from (H1) and (H2) that there is a constant $f_1 > 0$ such that $f(v_a) \le f_1(v_a^{-q} + v_a^p)$ and therefore by (2.4) we have

$$0 < h(t)f(v_{a}) \leq f_{1}h_{2} \left(\frac{t^{-\tilde{\alpha}_{2}}}{v_{a}^{q}} + t^{-\tilde{\alpha}_{2}}v_{a}^{p}\right)$$

$$\leq f_{1}h_{2} \left(\frac{t^{-\tilde{\alpha}_{2}}}{(\frac{a}{2})^{q}t^{q}} + t^{-\tilde{\alpha}_{2}+p}a^{p}\right)$$

$$= f_{1}h_{2} \left(\frac{2^{q}}{a^{q}}t^{-\tilde{\alpha}_{2}-q} + t^{-\tilde{\alpha}_{2}+p}a^{p}\right).$$
(2.7)

From (2.4) we have $1 - \tilde{\alpha}_2 - q > 0$ and $1 - \tilde{\alpha}_2 + p > 0$ so it follows from (2.7) that $h(t)f(v_a)$ is integrable near t = 0. Thus the integral in (2.5) is defined and is a continuous function. It then follows that (2.6) is also defined.

Now using (H2) we see that (2.6) is equivalent to

$$v_a + \int_0^t \int_0^s h(x) \left(\frac{1}{v_a^q(x)} + g_1(v_a)\right) dx \, ds = at.$$
 (2.8)

Next let $v_a = tw$ in (2.8) which gives

$$w = a - \frac{1}{t} \int_0^t \int_0^s h(x) \left(\frac{1}{x^q w^q(x)} + g_1(xw)\right) dx \, ds.$$
(2.9)

We now define

$$S_{\epsilon} = \{ w \in C[0, \epsilon] : w(0) = a > 0, \text{ and } |w - a| \le \frac{a}{2} \text{ for all } t \in [0, \epsilon] \}.$$

Here $C[0, \epsilon]$ is the set of real-valued continuous functions on $[0, \epsilon]$ with the supremum norm $\|\cdot\|$. We define $T: S_{\epsilon} \to C[0, \epsilon]$ by Tw(0) = a and

$$Tw = a - \frac{1}{t} \int_0^t \int_0^s h(x) \left(\frac{1}{x^q w^q(x)} + g_1(xw)\right) dx \, ds \quad \text{for } t > 0.$$

As mentioned in (2.4) and (2.7) it follows that $0 < \frac{h(x)}{x^q} \le h_2 x^{-\tilde{\alpha}_2 - q}$ and $\tilde{\alpha}_2 + q < 1$. Hence $x^{-\tilde{\alpha}_2 - q}$ is integrable on $(0, \epsilon)$. Then it is straightforward to show T maps S_{ϵ} into S_{ϵ} if $\epsilon > 0$ is sufficiently small. Next let L be the Lipschitz constant for the function g_1 defined in (H2) and suppose $w_1, w_2 \in S$. Using the mean value theorem and the fact that $\frac{a}{2} \le w_i \le a$ for i = 1, 2 on $[0, \epsilon]$ we see that

J. IAIA

$$|Tw_{1} - Tw_{2}| \leq \frac{1}{t} \int_{0}^{t} \int_{0}^{s} \left(qh_{2} \left(\frac{2}{a}\right)^{q+1} x^{-\tilde{\alpha}_{2}-q} + Lx^{1-\tilde{\alpha}_{2}} \right) |w_{1} - w_{2}| \, dx \, ds$$

$$\leq ||w_{1} - w_{2}|| \left(\frac{qh_{2}}{(1 - \tilde{\alpha}_{2} - q)(2 - \tilde{\alpha}_{2} - q)} \left(\frac{2}{a}\right)^{q+1} t^{1-\tilde{\alpha}_{2}-q} + \frac{L}{(2 - \tilde{\alpha}_{2})(3 - \tilde{\alpha}_{2})} t^{2-\tilde{\alpha}_{2}} \right).$$
(2.10)

Since the term in parentheses in (2.10) goes to 0 as $t \to 0^+$, it follows that there exists $\epsilon_0 > 0$ and a c with 0 < c < 1 so that

$$||Tw_1 - Tw_2|| \le c ||w_1 - w_2||$$
 for all $w_i \in S_{\epsilon_0}$.

Thus T is a contraction and so by the contraction mapping principle T has a unique fixed point [8]. Therefore, we obtain a unique solution of (2.6) on $[0, \epsilon_0]$. It then follows that the integral term in (2.6) is differentiable which implies that v_a is differentiable and satisfies (2.5).

Next we let

$$E_a = \frac{v_a'^2}{2h} + F(v_a).$$
(2.11)

Recall from the comments after (H3) that $F(v_a) \ge 0$. Therefore from (2.1) and (2.4) it follows that

$$|E'_{a}| = \left| -\frac{h'}{2h^{2}} v_{a}^{\prime 2} \right| \le \left| \frac{th'}{h} \right| \frac{v_{a}^{\prime 2}}{2th} \le \frac{h_{3}E_{a}}{t}.$$
(2.12)

Thus $\left(\frac{E_a}{t^{h_3}}\right)' \leq 0$ for t > 0 and therefore integrating on $(\epsilon_0/2, t)$ (with the ϵ_0 in the proof of existence) gives

$$\frac{v_a'^2}{2h} + F(v_a) = E_a(t) \le C_1 t^{h_3} \le C_1 R_1^{h_3},$$

where $C_1 = E_a(\epsilon_0/2).(\epsilon_0/2)^{h_3}$.

Thus v_a and v'_a are uniformly bounded on a largest interval of the form $[\epsilon_0/2, T] \subset [\epsilon_0/2, R_1]$. It then follows from this that v_a and v'_a are defined and continuous on all of $[0, R_1]$. In addition, it also follows from this that the v_a vary continuously with respect to a.

Lemma 2.1. Assume (H1)–(H4) and let v_a solve (2.1)-(2.2) with a > 0. Then $|v_a| + |v'_a| > 0$ on $[0, R_1]$.

Proof. First since $v_a(0) = 0$ and $v'_a(0) = a > 0$ it follows that v_a and v'_a cannot both be zero at any $t \in [0, \epsilon]$ for some $\epsilon > 0$. Suppose now that there is a $t_0 \in (0, R_1]$ such that $v_a(t_0) = v'_a(t_0) = 0$. Thus $E_a(t_0) = 0$ and then from (2.12) it follows that $(E_a t^{h_3})' \ge 0$ on (t, t_0) . Integrating this on (t, t_0) yields $E_a \le 0$ on (t, t_0) . Since $E_a \ge 0$ it follows then that $E_a \equiv 0$ on $[0, t_0]$ and thus $v_a = v'_a = 0$ on $[0, t_0]$. This however contradicts that $v'_a(0) = a > 0$. Thus the lemma follows.

Lemma 2.2. Assume (H1)–(H4) and let v_a solve (2.1)-(2.2) with a > 0. Then v_a only has a finite number of zeros on $[0, R_1]$.

Proof. First since $v_a(0) = 0$ and $v'_a(0) = a > 0$ it follows that $v_a > 0$ on $(0, \epsilon)$ for some $\epsilon > 0$. Now suppose $v_a(z_k) = 0$ for $z_k \in [\epsilon/2, R_1]$ with $z_1 < z_2 < \cdots \leq R_1$. Then there exists z^* with $\epsilon/2 < z^* \leq R_1$ such that $z_k \to z^* \in [\epsilon/2, R_1]$ and $v_a(z^*) = 0$. In addition, it follows from Lemma 2.1 that $v'_a(z_k) \neq 0$ and thus there exist local extrema, M_k , with $z_k < M_k < z_{k+1}$ and $v'_a(M_k) = 0$. Thus we see $M_k \to z^*$ and $v'_a(z^*) = 0$. But this along with $v_a(z^*) = 0$ contradicts Lemma 2.1. Thus v_a has only a finite number of zeros on $[0, R_1]$.

Lemma 2.3. Assume (H1)–(H4) and let v_a solve (2.1)-(2.2). Suppose a > 0 is sufficiently small. Then v_a has a local maximum, $M_{1,a}$, and a zero, $z_{1,a}$, on $(0, R_1)$. In addition, $z_{1,a} \to 0$, $v'_a(z_{1,a}) \to 0$, and $v_a(M_{1,a}) \to 0$ as $a \to 0^+$. More generally, if a > 0 is sufficiently small and $k \ge 1$ then v_a has k zeros, $z_{i,a}$, and k local extrema, $M_{i,a}$, with $0 < M_{1,a} < z_{1,a} < M_{2,a} < z_{2,a} < \cdots < M_{k,a} < z_{k,a}$ on $(0, R_1)$. In addition, $\lim_{a\to 0^+} z_{i,a} = 0$, $\lim_{a\to 0^+} v'_a(z_{i,a}) = 0$, and $\lim_{a\to 0^+} |v_a(M_{i,a})| = 0$ for $1 \le i \le k$.

Proof. From (2.6) we have

$$v_a + \int_0^t \int_0^s h(x) f(v_a(x)) \, dx \, ds = at.$$
(2.13)

Suppose now that $v_a > 0$ on $(0, R_1)$. Then from (H2) and (H3) there is a constant $f_2 > 0$ such that $f(v_a) \ge f_2 v_a^{-q}$. In addition, from (2.4) we see that $h(t) \ge h_1 t^{-\tilde{\alpha}_1}$ and $1 - \tilde{\alpha}_1 - q > 0$. Substituting into (2.13) gives

$$\int_{0}^{t} \int_{0}^{s} h(x) f(v_{a}(x)) \, dx \, ds \ge f_{2} h_{1} \int_{0}^{t} \int_{0}^{s} x^{-\tilde{\alpha}_{1}} v_{a}^{-q}(x) \, dx \, ds.$$
(2.14)

Also, it follows from (2.1) and (H3) that when $v_a > 0$ we have $v''_a < 0$ and so integrating this inequality twice on (0, t) gives

$$0 < v_a < at. \tag{2.15}$$

 $\mathbf{5}$

Substituting this into (2.14) gives

$$f_{2}h_{1}\int_{0}^{t}\int_{0}^{s}x^{-\tilde{\alpha}_{1}}v_{a}^{-q} dx ds \geq \frac{f_{2}h_{1}}{a^{q}}\int_{0}^{t}\int_{0}^{s}x^{-\tilde{\alpha}_{1}-q} dx ds$$
$$= \frac{f_{2}h_{1}t^{2-\tilde{\alpha}_{1}-q}}{a^{q}(1-\tilde{\alpha}_{1}-q)(2-\tilde{\alpha}_{1}-q)}.$$
(2.16)

Substituting this expression into (2.13)-(2.14) gives

$$0 < v_a \le at - \frac{f_2 h_1 t^{2-\tilde{\alpha}_1 - q}}{a^q (1 - \tilde{\alpha}_1 - q)(2 - \tilde{\alpha}_1 - q)}.$$
(2.17)

However, the right-hand side of (2.17) is zero when

$$t = \left(\frac{a^{q+1}(1 - \tilde{\alpha}_1 - q)(2 - \tilde{\alpha}_1 - q)}{f_2 h_1}\right)^{\frac{1}{2 - \tilde{\alpha}_1 - q}}$$

and notice that this value of t is less than or equal to R_1 if a > 0 is sufficiently small. Thus (2.17) yields a contradiction and therefore v_a has a first zero, $z_{1,a}$, and $0 < z_{1,a} < R_1$ if a > 0 is sufficiently small. In addition, the above argument shows that

$$0 < z_{1,a} \le \left(\frac{a^{q+1}(1 - \tilde{\alpha}_1 - q)(2 - \tilde{\alpha}_1 - q)}{f_2 h_1}\right)^{\frac{1}{2 - \tilde{\alpha}_1 - q}} \to 0 \quad \text{as } a \to 0^+.$$
(2.18)

Thus

$$\lim_{a \to 0^+} z_{1,a} = 0. \tag{2.19}$$

Next we examine the following identity which is straightforward to establish by differentiation and (2.1),

J. IAIA

$$\frac{1}{2}v_a^{\prime 2} + h(t)F(v_a) + \int_0^t (-h'(s))F(v_a)\,ds = \frac{1}{2}a^2.$$
(2.20)

Evaluating at $z_{1,a}$ gives

$$\frac{1}{2}v_a^{\prime 2}(z_{1,a}) = \frac{1}{2}a^2 + \int_0^{z_{1,a}} h'(s)F(v_a)\,ds.$$
(2.21)

Since $F(t) = \int_0^t f(s) \, ds$ it follows from (H1) and (H2) that there is a constant $f_3 > 0$ such that

$$F(v_a) \le f_3(v_a^{1-q} + v_a^{p+1}) \quad \text{when } v_a > 0.$$
 (2.22)

Also from (2.4) we have

$$\frac{t|h'|}{h} \le h_3$$
 and so $|h'| \le h_2 h_3 t^{-1-\tilde{\alpha}_2}$. (2.23)

Substituting this into the right-hand side of (2.21) and using (2.15), (2.22) gives

$$\int_{0}^{z_{1,a}} h'(s)F(v_{a}) ds \leq \int_{0}^{z_{1,a}} f_{3}h_{2}h_{3}t^{-1-\tilde{\alpha}_{2}}(a^{1-q}t^{1-q}+a^{p+1}t^{p+1}) dt
= f_{3}h_{2}h_{3}\Big(\frac{a^{1-q}z_{1,a}^{1-\tilde{\alpha}_{2}-q}}{1-\tilde{\alpha}_{2}-q} + \frac{a^{p+1}z_{1,a}^{1-\tilde{\alpha}_{2}+p}}{1-\tilde{\alpha}_{2}+p}\Big)$$

$$\leq f_{3}h_{2}h_{3}a^{1-q}R_{1}^{1-\tilde{\alpha}_{2}-q}\Big(\frac{1}{1-\tilde{\alpha}_{2}-q} + \frac{a^{p+q}R_{1}^{p+q}}{1-\tilde{\alpha}_{2}+p}\Big).$$
(2.24)

Thus substituting (2.22) and (2.24) into (2.21) gives

$$\frac{1}{2}v_a^{\prime 2}(z_{1,a}) \le \frac{1}{2}a^2 + f_3h_2h_3a^{1-q}R_1^{1-\tilde{\alpha}_2-q} \left(\frac{1}{1-\tilde{\alpha}_2-q} + \frac{a^{p+q}R_1^{p+q}}{1-\tilde{\alpha}_2+p}\right) \to 0 \quad (2.25)$$

as $a \to 0^+$. Therefore,

$$\lim_{a \to 0^+} v'_a(z_{1,a}) = 0.$$
(2.26)

Next since $v_a(0) = v_a(z_{1,a}) = 0$ and $v'_a(0) = a > 0$ it follows that there is a local maximum, $M_{1,a}$, with $0 < M_{1,a} < z_{1,a}$. Evaluating (2.20) at $M_{1,a}$ gives

$$h(M_{1,a})F(v_a(M_{1,a})) = \frac{1}{2}a^2 + \int_0^{M_{1,a}} h'(t)F(v_a) dt.$$
(2.27)

Estimating as in (2.24)-(2.24) but now on $[0, M_{1,a}]$ (instead of $[0, z_{1,a}]$) we again obtain

$$\int_{0}^{M_{1,a}} h'(t)F(v_a) dt \le f_3 h_2 h_3 a^{1-q} R_1^{1-\tilde{\alpha}_2-q} \Big(\frac{1}{1-\tilde{\alpha}_2-q} + \frac{a^{p+q} R_1^{p+q}}{1-\tilde{\alpha}_2+p}\Big). \quad (2.28)$$

Then from (2.27)-(2.28) and (2.4) we obtain

$$F(v_a(M_{1,a})) \le \frac{f_3 h_2 h_3 a^{1-q} R_1^{1-\tilde{\alpha}_2+\tilde{\alpha}_1-q}}{h_1} \Big(\frac{1}{1-\tilde{\alpha}_2-q} + \frac{a^{p+q} R_1^{p+q}}{1-\tilde{\alpha}_2+p}\Big) \to 0 \quad (2.29)$$

as $a \to 0^+$. Therefore,

$$\lim_{a \to 0^+} v_a(M_{1,a}) = 0.$$
(2.30)

In a similar way we can show v_a has as many zeros as desired by choosing a > 0 sufficiently small and we can also similarly establish the analogs of (2.19), (2.26), and (2.30). This completes the proof of the lemma.

Lemma 2.4. Assume (H1)–(H4) and let v_a solve (2.1)-(2.2). If a > 0 is sufficiently large then v_a has a local maximum, $M_{1,a}$, on $(0, R_1)$.

Proof. Suppose not and so suppose v_a is increasing on $(0, R_1)$ for all sufficiently large a > 0. Then $v_a > 0$ on $(0, R_1)$ and so it follows from (2.1) that $v''_a < 0$ on $(0, R_1)$.

We now claim that $v_a(t_0) \to \infty$ as $a \to \infty$ for any fixed t_0 with $0 < t_0 \le R_1$. So suppose not. Thus suppose $0 < v_a \le C_2$ on $(0, t_0]$ where C_2 is independent of a. Using (2.15) and (2.22) we see that

$$F(v_a) \le f_3(v_a^{1-q} + v_a^{p+1}) = f_3 v_a^{1-q} (1 + v_a^{p+q})$$

$$\le f_3 v_a^{1-q} (1 + C_2^{p+q}) = f_3 C_3 v_a^{1-q}$$
(2.31)

where $C_3 = 1 + C_2^{p+q}$.

Then using (2.15) in (2.31) we obtain

$$F(v_a) \le f_3 C_3 v_a^{1-q} \le f_3 C_3 a^{1-q} t^{1-q}.$$
(2.32)

Substituting this into (2.20) and using (2.4) we then have $h(t) \leq h_2 t^{-\tilde{\alpha}_2}$ and $|h'| \leq h_2 h_3 t^{-\tilde{\alpha}_2-1}$. This gives

$$h(t)F(v_a) + \int_0^t (-h'(s))F(v_a) \, ds \le f_3h_2C_3 \left(1 + \frac{h_3}{1 - \tilde{\alpha}_2 - q}\right) a^{1-q} t^{1-\tilde{\alpha}_2 - q}$$

$$= C_4 a^{1-q} t^{1-\tilde{\alpha}_2 - q}$$

$$\le C_4 a^{1-q} t_0^{1-\tilde{\alpha}_2 - q}$$

$$(2.33)$$

where $C_4 = f_3 h_2 C_3 \left(1 + \frac{h_3}{1 - \tilde{\alpha}_2 - q} \right)$. Therefore from (2.20) and (2.33) we see that

$$\frac{1}{2}v_a^{\prime 2} \ge \frac{1}{2}a^2 - C_4 t_0^{1-\tilde{\alpha}-q} a^{1-q} \ge \frac{1}{2}a^2 - C_4 R_1^{1-\tilde{\alpha}-q} a^{1-q} \ge \frac{1}{8}a^2$$

for a sufficiently large. Thus $v'_a \ge a/2$ for a sufficiently large, and integrating this on $(0, t_0)$ gives

$$C_2 \ge v_a(t_0) \ge \frac{a}{2}t_0 \to \infty \quad \text{as } a \to \infty.$$

Hence we obtain a contradiction. Thus it follows that if v_a is increasing on $[0, R_1]$ then $v_a(t_0) \to \infty$ as $a \to \infty$ for every t_0 with $0 < t_0 \le R_1$.

Next it follows that if v_a is increasing on $[0, R_1]$ then since f is superlinear (by (H1)) then

$$\frac{h(t)f(v_a)}{v_a} \to \infty$$

uniformly on $[t_0, R_1]$ for any $t_0 > 0$ as $a \to \infty$. Therefore assuming v_a is increasing on $[0, R_1]$ we see that

$$I_a = \inf_{[t_0, R_1]} \frac{h(t)f(v_a)}{v_a} \to \infty \quad \text{as } a \to \infty.$$
(2.34)

Next we rewrite (2.1) as

$$v_a'' + \left(\frac{h(t)f(v_a)}{v_a}\right)v_a = 0.$$
 (2.35)

J. IAIA

Assuming v_a is increasing on $[0, R_1]$, we let y solve

$$y'' + I_a y = 0 (2.36)$$

with $y(t_0) = v_a(t_0)$ and $y'(t_0) = v'_a(t_0)$. Thus

$$y = v_a(t_0)\cos(\sqrt{I_a}(t-t_0)) + \frac{v_a'(t_0)}{\sqrt{I_a}}\sin(\sqrt{I_a}(t-t_0))$$

and so it follows that y is $2\pi/\sqrt{I_a}$ -periodic. Thus y must have a local maximum on $[t_0, t_0 + \frac{2\pi}{\sqrt{I_a}}]$. In addition, it follows from (2.34) that $[t_0, t_0 + \frac{2\pi}{\sqrt{I_a}}] \subset [t_0, R_1]$ if a is sufficiently large. We will now show that v_a must have a local maximum on $[t_0, t_0 + \frac{2\pi}{\sqrt{I_a}}] \subset [t_0, R_1]$ if a is sufficiently large. This is essentially the Sturm Comparison Theorem [6] but we write out the details because they are brief.

Let a > 0 be sufficiently large so that y has a local maximum $M < R_1$ and that y' > 0 on $[t_0, M]$. Multiplying (2.35) by y, (2.36) by v_a , and subtracting gives

$$(yv'_a - y'v_a)' + \left(\frac{h(t)f(v_a)}{v_a} - I_a\right)yv_a = 0.$$
 (2.37)

Integrating this on $[t_0, M]$ and using y'(M) = 0, $y(t_0) = v_a(t_0)$, and $y'(t_0) = v'_a(t_0)$ gives

$$y(M)v'_{a}(M) + \int_{t_{0}}^{M} \left(\frac{h(t)f(v_{a})}{v_{a}} - I_{a}\right)yv_{a} dt = 0.$$
(2.38)

On $[t_0, M]$ we have y > 0, $v_a > 0$. In addition, the term in parentheses in (2.38) is nonnegative. Thus we see $y(M)v'_a(M) \leq 0$ and therefore $v'_a(M) \leq 0$ since y(M) > 0. Now if $v'_a(M) < 0$ then since $v'_a(t_0) > 0$ it follows that v_a has a local maximum, $M_{1,a}$, with $t_0 < M_{1,a} < M$. On the other hand, if $v'_a(M) = 0$ then from (2.1) it follows that $v''_a(M) < 0$ and therefore M is a local maximum for v_a and we set $M_{1,a} = M$. Therefore in both cases we see that v_a has a local maximum, $M_{1,a}$, with $0 < M_{1,a} < R_1$ and $v'_a > 0$ on $[0, M_{1,a})$ if a > 0 is sufficiently large. \Box

Lemma 2.5. Assume (H1)–(H4) and let v_a solve (2.1)-(2.2). Suppose a > 0 is sufficiently large so that v_a has a smallest local maximum $M_{1,a}$ with $v'_a > 0$ on $[0, M_{1,a})$ and $M_{1,a} < R_1$. Then $\lim_{a\to\infty} v_a(M_{1,a}) = \infty$ and $\lim_{a\to\infty} M_{1,a} = 0$.

Proof. We first show that $v_a(M_{1,a}) \to \infty$ as $a \to \infty$. So suppose not. Mimicking the proof of Lemma 2.4, suppose there is a $C_5 > 0$ such that $v_a(M_{1,a}) \leq C_5$. Then using (2.31)-(2.32) and evaluating (2.20) and (2.33) at $t = M_{1,a}$ gives

$$\frac{1}{2}a^{2} = h(M_{1,a})F(v_{a}(M_{1,a})) + \int_{0}^{M_{1,a}} (-h'(s))F(v_{a}) ds$$

$$\leq f_{3}h_{2}C_{5}\left(1 + \frac{h_{3}}{1 - \tilde{\alpha}_{2} - q}\right)a^{1-q}t^{1-\tilde{\alpha}_{2} - q}$$

$$= C_{6}a^{1-q}M_{1,a}^{1-\tilde{\alpha}_{2} - q}$$

$$\leq C_{6}a^{1-q}R_{1}^{1-\tilde{\alpha}_{2} - q}$$
(2.39)

where $C_6 = f_3 h_2 C_5 (1 + \frac{h_3}{1 - \tilde{\alpha}_2 - q})$. Thus

$$\frac{1}{2}a^{1+q} \le C_6 R_1^{1-\tilde{\alpha}_2-q}.$$
(2.40)

EJDE-2024/06

However, the left-hand side of (2.40) goes to infinity as $a \to \infty$ but the right-hand side stays finite. Hence we obtain a contradiction and therefore we must have

$$\lim_{a \to \infty} v_a(M_{1,a}) = \infty. \tag{2.41}$$

Next we show $M_{1,a} \to 0$ as $a \to \infty$. By (H1) it follows that

$$f(v_a) \ge f_4 v_a^p$$
 when $v_a > 0$ for some constant $f_4 > 0$. (2.42)

We integrate (2.1) on $(t, M_{1,a})$ and estimate using the fact that v_a is increasing on $(t, M_{1,a})$ to obtain:

$$v'_{a} = \int_{t}^{M_{1,a}} h(s)f(v_{a}) \, ds \ge f_{4}v^{p}_{a} \int_{t}^{M_{1,a}} h(s) \, ds.$$
(2.43)

Dividing by v_a^p , recalling p > 1, and integrating on $(\frac{M_{1,a}}{2}, M_{1,a})$ gives

$$\frac{v_a^{1-p}(\frac{M_{1,a}}{2})}{p-1} \ge \frac{v_a^{1-p}(\frac{M_{1,a}}{2}) - v_a^{1-p}(M_{1,a})}{p-1} \ge f_3 \int_{\frac{M_{1,a}}{2}}^{M_{1,a}} \int_s^{M_{1,a}} h(s) \, ds.$$
(2.44)

Since $v_a'' < 0$ it follows that v_a is concave and thus $v_a(\lambda x + (1-\lambda)y) \ge \lambda v_a(x) + (1-\lambda)v_a(y)$ for $0 \le \lambda \le 1$. In particular, for $x = v_a(M_{1,a})$, y = 0, and $\lambda = \frac{1}{2}$ we obtain $v_a(\frac{M_{1,a}}{2}) \ge \frac{v_a(M_{1,a})}{2}$. Then it follows from this and (2.41) that $v_a(\frac{M_{1,a}}{2}) \to \infty$ as $a \to \infty$. Since p > 1 it follows then that the left-hand side of (2.44) goes to 0 as $a \to \infty$ and thus we must have

$$\lim_{n \to \infty} M_{1,a} = 0.$$
 (2.45)

This completes the proof.

Lemma 2.6. Assume (H1)–(H4) and let
$$v_a$$
 solve (2.1)-(2.2). Suppose $a > 0$ is sufficiently large. Then v_a has a zero, $z_{1,a}$, with $M_{1,a} < z_{1,a} < R_1$. In addition, $v_a > 0$ and $v'_a < 0$ on $(M_{1,a}, z_{1,a})$. Further $\lim_{a\to\infty} z_{1,a} = 0$, $\lim_{a\to\infty} v_a(M_{1,a}) = \infty$, and $\lim_{a\to\infty} v'_a(z_{1,a}) = -\infty$. More generally, if a is sufficiently large and $k \ge 1$ then v_a has k zeros, $z_{i,a}$, and k local extrema, $M_{i,a}$, with $0 < M_{1,a} < z_{1,a} < M_{2,a} < z_{2,a} < \cdots < M_{k,a} < z_{k,a}$ on $(0, R_1)$. In addition, $\lim_{a\to\infty} z_{i,a} = 0$, $\lim_{a\to\infty} |v'_a(z_{i,a})| = \infty$, and $\lim_{a\to\infty} |v_a(M_{i,a})| = \infty$ for $1 \le i \le k$.

Proof. It follows from Lemma 2.5 that

$$\lim_{a \to \infty} v_a(M_{1,a}) = \infty.$$
(2.46)

Assume now that $v_a > 0$ on $(M_{1,a}, R_1)$. Then using (2.42) and integrating on $(M_{1,a}, t)$ we obtain

$$-v_a' \ge f_4 v_a^p \int_{M_{1,a}}^t h(s) \, ds.$$

Dividing by v_a^p , integrating on $(M_{1,a}, t)$, and using (2.4) gives

$$v_{a}^{1-p} \geq v_{a}^{1-p} - v_{a}^{1-p}(M_{1,a})$$

$$\geq (p-1)f_{4} \int_{M_{1,a}}^{t} \int_{M_{1,a}}^{s} h(x) \, dx \, ds$$

$$= \frac{(p-1)f_{4}R_{1}^{-\tilde{\alpha}_{1}}}{2}(t-M_{1,a})^{2}.$$
(2.47)

Evaluating (2.47) at $t = \frac{R_1 + M_{1,a}}{2}$ we see

$$v_a^{1-p}\left(\frac{R_1+M_{1,a}}{2}\right) \ge \frac{(p-1)f_4R_1^{-\tilde{\alpha}_1}}{2}\left(\frac{R_1-M_{1,a}}{2}\right)^2$$

J. IAIA

and therefore

$$v_a^{p-1}\left(\frac{R_1 + M_{1,a}}{2}\right) \le \frac{8R_1^{\alpha_1}}{(p-1)f_4(R_1 - M_{1,a})^2}.$$
(2.48)

By (2.45) we see then for large *a* that

$$v_a\left(\frac{R_1+M_{1,a}}{2}\right) \le \left(\frac{32R_1^{\tilde{\alpha}_1-2}}{(p-1)f_4}\right)^{\frac{1}{p-1}}.$$
 (2.49)

Using that $v''_a < 0$ when $v_a > 0$ and the mean value theorem we see there is a c_a with $M_{1,a} < c_a < \frac{R_1 + M_{1,a}}{2}$ such that

$$v_{a}(M_{1,a}) - v_{a}\left(\frac{R_{1} + M_{1,a}}{2}\right) = -v_{a}'(c_{a})\left(\frac{R_{1} - M_{1,a}}{2}\right)$$

$$\leq -v_{a}'\left(\frac{R_{1} + M_{1,a}}{2}\right)\left(\frac{R_{1}}{2}\right).$$
(2.50)

Since $v'_a > 0$ on $(0, M_{1,a})$ it follows from (2.41) and (2.49) that the left-hand side of (2.50) goes to infinity as $a \to \infty$. And then from (2.45) and (2.50) it follows that

$$v'_a\left(\frac{R_1+M_{1,a}}{2}\right) \to -\infty \quad \text{as } a \to \infty.$$
 (2.51)

Since $v_a'' < 0$ when $v_a > 0$ it follows that v_a' is decreasing when $v_a > 0$ so:

$$v'_a < v'_a(\frac{R_1 + M_{1,a}}{2})$$
 for $t > \frac{R_1 + M_{1,a}}{2}$.

Integrating this on $\left(\frac{R_1+M_{1,a}}{2}, R_1\right)$ gives

$$v_a(R_1) < v_a(\frac{R_1 + M_{1,a}}{2}) + v'_a(\frac{R_1 + M_{1,a}}{2})(\frac{R_1 - M_{1,a}}{2}).$$
 (2.52)

It follows from (2.49) that the first term on the right-hand side (2.52) is bounded. Then from (2.45) we have $M_{1,a} \to 0$ as $a \to \infty$ and this along with (2.51) implies that the right-hand side of (2.52) becomes negative while the left-hand side stays positive. Thus we obtain a contradiction and therefore there exists $z_{1,a}$ with $M_{1,a} < z_{1,a} < R_1$ such that $v_a(z_{1,a}) = 0$ and $v_a > 0$ on $(M_{1,a}, z_{1,a})$.

 $z_{1,a} < R_1$ such that $v_a(z_{1,a}) = 0$ and $v_a > 0$ on $(M_{1,a}, z_{1,a})$. From the mean value theorem and that $v''_a < 0$ when $v_a > 0$ it follows that there is a d_a such that $M_{1,a} < d_a < z_{1,a}$ and

$$v_a(M_{1,a}) = |v_a(z_{1,a}) - v_a(M_{1,a})| = |v_a'(d_a)||z_{1,a} - M_{1,a}| \le |v_a'(d_a)|R_1 \le |v_a'(z_{1,a})|R_1$$

and since the left-hand side goes to infinity by (2.46) it then follows from the above inequality that

$$\lim_{a \to \infty} v'_a(z_{1,a}) = -\infty.$$
(2.53)

Next it follows from evaluating (2.47) at $\frac{M_{1,a}+z_{1,a}}{2}$ that we obtain

$$v^{1-p}\left(\frac{M_{1,a}+z_{1,a}}{2}\right) \ge \frac{(p-1)f_4 R_1^{-\tilde{\alpha}_1}}{2} \left(\frac{M_{1,a}-z_{1,a}}{2}\right)^2.$$
 (2.54)

Since $v_a'' < 0$ when $v_a > 0$ it follows that v_a is concave. Then it follows from this and (2.46) that $v_a(\frac{M_{1,a}+z_{1,a}}{2}) \geq \frac{v_a(M_{1,a})}{2} + \frac{v_a(z_{1,a})}{2} = \frac{v_a(M_{1,a})}{2} \to \infty$. Thus we see

10

the left-hand side of (2.54) goes to 0 as $a \to \infty$ and therefore $z_{1,a} - M_{1,a} \to 0$. Since $M_{1,a} \to 0$ by Lemma 2.5 we see then that

$$\lim_{a \to \infty} z_{1,a} = 0.$$
 (2.55)

In a similar way we can show that v_a as many zeros as desired on $(0, R_1)$ by choosing a > 0 sufficiently large, and we can obtain the analogs of (2.46), (2.53), and (2.55). This completes the proof.

Lemma 2.7. Assume (H1)–(H4) and let v_a solve (2.1)-(2.2) with a > 0. If R_1 is sufficiently small then there are values of a > 0 such that $v_a > 0$ on $(0, R_1)$. Also, if R_1 is sufficiently large then v_a has at least one zero on $(0, R_1)$ for all a > 0. Similarly, if $R_1 > 0$ is sufficiently large then v_a has at least k zeros on $(0, R_1)$ for all a > 0.

Proof. We prove the second part first. It follows from (H1)–(H3) that there is a constant $f_5 > 0$ such that $\frac{f(v)}{v} \ge f_5$ for all $v \ne 0$. In addition, we know from (2.4) that $h(t) \ge h_1 t^{-\tilde{\alpha}_1} \ge h_1 R_1^{-\tilde{\alpha}_1}$. Thus $\frac{h(t)f(v_a)}{v_a} \ge \frac{f_5}{R_1^{\tilde{\alpha}_1}}$.

Next we consider

$$w'' + \left(\frac{f_5 h_1}{R_1^{\tilde{\alpha}_1}}\right)w = 0,$$

$$w(0) = 0, w'(0) = a.$$

Thus:

$$w = c \sin\left(\sqrt{\frac{f_5 h_1}{R_1^{\tilde{\alpha}_1}}} x\right)$$

for some c > 0, and so w has a zero on $[0, \sqrt{\frac{R_1^{\tilde{\alpha}_1}}{f_5 h_1}} \pi]$. It follows then from the Sturm

Comparison Theorem [6] that v_a has at least one zero on $[0, R_1]$ if $\sqrt{\frac{R_1^{\tilde{\alpha}_1}}{f_5 h_1}} \pi < R_1$. That is, if

$$R_1 > \left(\frac{\pi^2}{f_5 h_1}\right)^{\frac{1}{2-\tilde{\alpha}_1}} = \left(\frac{\pi^2}{f_5 h_1}\right)^{\frac{N-2}{\alpha_1-2}}.$$

Similarly, v_a has at least k zeros on $[0, R_1]$ if

$$R_1 > \left(\frac{k^2 \pi^2}{f_5 h_1}\right)^{\frac{1}{2-\tilde{\alpha}_1}} = \left(\frac{k^2 \pi^2}{f_5 h_1}\right)^{\frac{N-2}{\alpha_1-2}}$$

Next we show that if R_1 is sufficiently small then there is a value of a > 0 such that $v_a > 0$ on $(0, R_1)$. First since $f(v_a) > 0$ for $v_a > 0$ by (H3) there is a constant $f_6 > 0$ such that $f(v_a) \ge f_6 > 0$ for $v_a > 0$. Thus it follows from this and (2.4) that $h(t)f(v_a) \ge f_6h_1t^{-\tilde{\alpha}_1}$. Suppose now that v_a has a zero, z_a , on $(0, R_1)$. Then there is an M_a with $0 < M_a < z_a$ such that v_a has a local maximum at M_a . Substituting $t = M_a$ into (2.5) then gives

$$\frac{f_6 h_1 M_a^{1-\tilde{\alpha}_1}}{1-\tilde{\alpha}_1} \le \int_0^{M_a} f_6 h_1 t^{-\tilde{\alpha}_1} dt \le \int_0^{M_a} h(t) f(v_a) dt = a.$$

It follows from this that

$$\lim_{a \to 0^+} M_a = 0. (2.56)$$

Returning to (2.20) and evaluating at M_a we see that

J. IAIA

$$\frac{1}{2}a^2 = h(M_a)F(v_a(M_a)) + \int_0^{M_a} (-h'(t))F(v_a) dt.$$
(2.57)

Then using (2.15), (2.22), and (2.4) we see that

$$\int_{0}^{M_{a}} (-h'(t))F(v_{a}) dt \leq f_{3}h_{2}h_{3} \int_{0}^{M_{a}} t^{-\tilde{\alpha}_{2}-1} (a^{1-q}t^{1-q} + a^{p+1}t^{p+1}) dt$$

$$= f_{3}h_{2}h_{3}a^{1-q} \left(\frac{R_{1}^{1-\tilde{\alpha}_{2}-q}}{1-\tilde{\alpha}_{2}-q} + \frac{a^{p+q}R_{1}^{1-\tilde{\alpha}_{2}+p}}{1-\tilde{\alpha}_{2}+p}\right).$$
(2.58)

Similarly,

$$h(M_a)F(v_a(M_a)) \le f_3h_2a^{1-q} \left(R_1^{1-\tilde{\alpha}_2-q} + a^{p+q}R_1^{1-\tilde{\alpha}_2+p}\right).$$
(2.59)

Now substituting (2.58)-(2.59) into (2.57) gives

$$\frac{1}{2}a^2 \le f_3 h_2 a^{1-q} \left(C_7 R_1^{1-\tilde{\alpha}_2-q} + a^{p+q} C_8 R_1^{1-\tilde{\alpha}_2+p} \right), \tag{2.60}$$

where $C_7 = (1 + \frac{h_3}{1 - \tilde{\alpha}_2 - q})$ and $C_8 = (1 + \frac{h_3}{1 - \tilde{\alpha}_2 + p})$. Select a = 1 and we see (2.60) becomes

$$1 \le 2f_3 h_2 \left(C_7 R_1^{1-\tilde{\alpha}_2-q} + C_8 R_1^{1-\tilde{\alpha}_2+p} \right)$$
(2.61)

Now if R_1 is sufficiently small we see that this violates (2.61). Thus if R_1 is sufficiently small and if a = 1 then $v_a > 0$ on $(0, R_1)$. This completes the proof.

3. Proof of Theorem 1.1

We saw from Lemma 2.2 that v_a has a finite number of zeros on $(0, R_1)$ for a > 0. Thus there exists an a > 0 such that v_a has the *least* number of zeros on $(0, R_1)$ among all a > 0. We denote the number of zeros of this particular v_a as $n_0 \ge 0$. (There may be more than one choice of a such that v_a has n_0 zeros on $(0, R_1)$ but choose one such a). Now let

$$S_{n_0} = \{a > 0 : v_a \text{ solves } (2.1) - (2.2) \text{ and has exactly } n_0 \text{ zeros on } (0, R_1) \}.$$

From the above comments it follows that S_{n_0} is nonempty and from Lemma 2.6 it follows that S_{n_0} is bounded above.

Next let $a_{n_0} = \sup S_{n_0}$. We now prove that $v_{a_{n_0}}$ has exactly n_0 zeros on $(0, R_1)$ and $v_{a_{n_0}}(R_1) = 0$. From the definition of n_0 it follows that $v_{a_{n_0}}$ has at least n_0 zeros on $(0, R_1)$. Now if $v_{a_{n_0}}$ has an $(n_0 + 1)$ st zero on $(0, R_1)$ then by continuity with respect to initial conditions then so does v_a for a close to a_{n_0} and $a < a_{n_0}$ but if $a < a_{n_0}$ then v_a has only n_0 zeros. Thus $v_{a_{n_0}}$ has exactly n_0 zeros on $(0, R_1)$. Now suppose $v_{a_{n_0}}(R_1) \neq 0$. Without loss of generality suppose that $v_{a_{n_0}}(R_1) > 0$. Now if a is close to a_{n_0} and $a > a_{n_0}$ then by continuity with respect to initial conditions and the fact that if $v_a(z) = 0$ then $v'_a(z) \neq 0$ it follows that $v_a(R_1) > 0$ and also v_a has n_0 zeros on $(0, R_1)$. But since $a > a_{n_0}$ then v_a has at least $n_0 + 1$ zeros on $(0, R_1)$ and so we obtain a contradiction. Thus it must be the case that $v_{a_{n_0}}(R_1) = 0$ and thus we obtain a solution of (2.1)-(2.2). Then by Lemma 2.1 it follows that $v'_{a_{n_0}}(R_1) \neq 0$ so let us assume without loss of generality that $v'_{a_{n_0}}(R_1) < 0$.

In a similar way we now define

 $S_{n_0+1} = \{a > 0 : v_a \text{ solves } (2.1) - (2.2) \text{ and has exactly } n_0 + 1 \text{ zeros on } (0, R_1) \}.$

It follows from Lemma 2.6 that S_{n_0+1} is bounded from above. For $a > a_{n_0}$ and a sufficiently close to a_{n_0} it follows again by continuity with respect to initial conditions that v_a has an $(n_0 + 1)$ st zero $z_{n_0+1} < R_1$ and z_{n_0+1} is close to R_1 . In addition, since $v'_{a_{n_0}}(R_1) < 0$ it follows that $v'_a(z_{n_0+1}) < 0$. Thus v_a has exactly $n_0 + 1$ zeros on $(0, R_1)$ for $a > a_{n_0}$ and a sufficiently close to a_{n_0} . Therefore S_{n_0+1} is nonempty.

Similarly we define $a_{n_0+1} = \sup S_{n_0+1}$ and we can similarly show that $v_{a_{n_0+1}}$ has exactly $n_0 + 1$ zeros on $(0, R_1)$ and $v_{a_{n_0+1}}(R_1) = 0$.

Continuing in this way we see that we can find an infinite number of solutions, v_{a_n} , where v_{a_n} has exactly n zeros on $(0, R_1)$ and $v_{a_n}(R_1) = 0$ for each $n \ge n_0$. Thus we have found one infinite family of solutions of (2.1)-(2.2).

Next we let

$$b_{n_0} = \inf S_{n_0}$$

By the above comments S_{n_0} is nonempty and by definition S_{n_0} is bounded below. Then $b_{n_0} \leq a_{n_0}$ and by a similar argument we can show that $v_{b_{n_0}}$ has exactly n_0 zeros on $(0, R_1)$ and $v_{a_{n_0}}(R_1) = 0$. Now it may be the case that $a_{n_0} = b_{n_0}$ so there may be only one solution with n_0 zeros. Next we let

$$b_{n_0+1} = \inf S_{n_0+1}.$$

Then we have $b_{n_0+1} < b_{n_0} \le a_{n_0} < a_{n_0+1}$ and we can show $v_{b_{n_0+1}}$ has exactly $n_0 + 1$ zeros on $(0, R_1)$ and $v_{b_{n_0+1}}(R_1) = 0$. Since $b_{n_0+1} < a_{n_0+1}$ it follows that we have two solutions, $v_{a_{n_0}}$ and $v_{b_{n_0}}$, with $n_0 + 1$ zeros on $(0, R_1)$. Continuing in this way we see that if $n > n_0$ we can find a second infinite family of solutions of (2.1)-(2.2), v_{b_n} , where v_{b_n} has exactly n zeros on $(0, R_1)$ and $v_{b_n}(R_1) = 0$.

Finally, we let $u_n^+(t) = v_{a_n}(t^{\frac{1}{2-N}})$ and $u_n^-(t) = v_{b_n}(t^{\frac{1}{2-N}})$ for all $n \ge n_0$. This completes the proof of Theorem 1.1.

References

- A. Abebe, M. Chhetri, L. Sankar, R. Shivaji; Positive solutions for a class of superlinear semipositone systems on exterior domains, *Boundary Value Problems*, 198, 2014.
- [2] M. Ali, J. Iaia; Existence and nonexistence for singular, sublinear problems on exterior domains, *Electronic Journal of Differential Equations*, Vol. 2021, No. 3, 1-17, 2021.
- [3] M. Ali, J. Iaia; Infinitely many solutions for a singular, semilinear problem on exterior domains, *Electronic Journal of Differential Equations*, Vol. 2021, No. 68, 1-17, 2021.
- [4] H. Berestycki, P. L. Lions; Non-linear scalar field equations I, Arch. Rational Mech. Anal., Volume 82, 313-347, 1983.
- [5] H. Berestycki, P. L. Lions, L. A. Peletier; An ODE approach to the existence of positive solutions for semilinear problems on R^N, *Indiana University Mathematics Journal*, Volume 30, No. 1, 141-157, 1981.
- [6] G. Birkhoff, G. C. Rota; Ordinary Differential Equations, 4th ed., Wiley, 1991.
- [7] M. Chhetri, L. Sankar, R. Shivaji; Positive solutions for a class of superlinear semipositone systems on exterior domains, *Boundary Value Problems*, 198-207, 2014.
- [8] L. Evans; Partial Differential Equations, 2nd ed., American Mathematical Society, 2010.
- [9] J. Iaia; Existence of solutions for semilinear problems on exterior domains, *Electronic Journal* of Differential Equations, No. 34, 1-10, 2020.
- [10] J. Iaia; Existence of solutions for semilinear problems with prescribed number of zeros on exterior domains, *Journal of Mathematical Analysis and Applications*, 446, 591-604, 2017.
- [11] E. K. Lee, R. Shivaji, B. Son; Positive radial solutions to classes of singular problems on the exterior of a ball, *Journal of Mathematical Analysis and Applications*, 434, No. 2, 1597-1611, 2016.
- [12] E. Lee, L. Sankar, R. Shivaji; Positive solutions for infinite semipositone problems on exterior domains, *Differential and Integral Equations*, Volume 24, Number 9/10, 861-875, 2011.

[13] L. Sankar, S. Sasi, R. Shivaji; Semipositone problems with falling zeros on exterior domains, Journal of Mathematical Analysis and Applications, Volume 401, Issue 1, 146-153, 2013.

Joseph Iaia

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH TEXAS, DENTON, TX 76203-5017, USA *Email address*: iaia@unt.edu

14