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FAILURE OF THE HOPF-OLEINIK LEMMA FOR A LINEAR

ELLIPTIC PROBLEM WITH SINGULAR CONVECTION OF

NON-NEGATIVE DIVERGENCE

LUCIO BOCCARDO, JESÚS ILDEFONSO DÍAZ, DAVID GÓMEZ-CASTRO

Abstract. In this article we study the existence, uniqueness, and integrability
of solutions to the Dirichlet problem − div(M(x)∇u) = − div(E(x)u) + f in

a bounded domain of RN with N ≥ 3. We are particularly interested in

singular E with divE ≥ 0. We start by recalling known existence results when
|E| ∈ LN that do not rely on the sign of divE. Then, under the assumption

that divE ≥ 0 distributionally, we extend the existence theory to |E| ∈ L2.
For the uniqueness, we prove a comparison principle in this setting. Lastly, we

discuss the particular cases of E singular at one point as Ax/|x|2, or towards

the boundary as divE ∼ dist(x, ∂Ω)−2−α. In these cases the singularity of
E leads to u vanishing to a certain order. In particular, this shows that the

Hopf-Oleinik lemma, i.e. ∂u/∂n < 0, fails in the presence of such singular drift

terms E.

1. Introduction

It is well known that many relevant applications lead to the presence of a con-
vection term in the correspondent model which, in its simplest formulation, leads
to a boundary value problem for linear elliptic second order equation of the type

−div(M(x)∇u) = −div(uE(x)) + f(x) in Ω

u = 0 on ∂Ω.
(1.1)

Here Ω ⊂ RN , N ≥ 3, is an open, bounded set, and we assume that M ∈
L∞(Ω)N×N is elliptic

M(x)ξ · ξ ≥ α|ξ|2, ∀ξ ∈ RN and a.e. x ∈ Ω.

According to the regularity of the right-hand side datum f(x) it is natural to search

the solution in the energy space W 1,2
0 (Ω) (case of f ∈ H−1(Ω): see, e.g. [21, 16, 1]),

or in a larger Sobolev space if f is singular (see [1]); when f ∈ L1(Ω), see, for
instance, [8], or when L1(Ω, δ) with δ(x) = d(x, ∂Ω), see, e.g., [7, 13].

In the mentioned references it assumed that the convection term is regular (for
instance E ∈W 1,∞(Ω)) and that it satisfies an additional condition which helps to
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have a maximum principle:

divE ≥ 0 a.e. on Ω. (1.2)

Recently, some effort has been devoted to get an existence and regularity theory
under more general conditions on the convection term E by different authors (see,
e.g. [1, 5] and their references). For instance, solutions in the energy space can be

considered under the conditions |E| ∈ LN (Ω) and f ∈ L
2N
N+2 (Ω). In [13] and [12]

the authors study the case in which |E| ∈ LN (Ω) and divE = 0 in Ω and E ·n = 0
on ∂Ω, f ∈ L1(Ω, δ). See also [15, 20].

In this article, we show that (1.2) makes divE behave like a non-negative poten-
tial in the Schrödinger case, and we can apply techniques from that setting. See, for
example, [12, 13, 14, 17]. We focus on the case where (1.2) holds in distributional
sense.

The article is structured as follows. First, in Section 2 we review known results

for the case |E| ∈ LN and f ∈ L
2N
N+2 (Ω) which were published in [1], were shown

there is a unique weak solution of (1.1) that can be constructed by approximation.
In Section 3 we show that if |E| ∈ L2(Ω), divE ≥ 0, and f ∈ Lm(Ω) for some
m > 1 then the same approximation procedure converges to a weak solution of
(1.1), and we give some a priori bounds for this solution. In Section 4 we show

that, if we also assume f ∈ L
2N
N+2 (Ω), then this constructed solution is the unique

weak solution of (1.1).
Then we move to discussing interesting examples that fall in this setting. In

Section 5 we focus on the case

E(x) = A
x

|x|2
, (1.3)

which is somehow in the limit of theory since it is not in LN (Ω) but it is in Lr(Ω)
for r ∈ [1, N). In [5] the authors examined the more general class

|E| ≤ |A|
|x|

. (1.4)

The authors show existence of solutions u, where the summability is reduced as |A|
is increased. Their results indicate that the sign of A should play a role, but the
application of Hardy’s inequality (which they use in a crucial way) is not able to
detect this fact. In Theorem 5.2 we show that if N > 1, f ∈ Lm(Ω) for suitable
m, and A > 0 then we can use the sign of divE to deduce that the solution uA of
(1.1) with E = A x

|x|2 satisfies

uA → 0 in L1(Ω) as A→ +∞ .

By the contrary, when A < 0 we cannot improve the result in [5]. Notice that this
is similar to the equation L(uB) +B uB = f , whereas B →∞ we have uB → 0.

Lastly, in Section 6, we discuss the case where E is suitably singular only on the
boundary. We present an example showing that if divE behaves like d(x, ∂Ω)−2−γ

for some γ > 0 and f is bounded, then the solutions are flat on the boundary, i.e.

|u(x)| ≤ C dist(x, ∂Ω)α for some α > 1 .

In particular, this shows that the Hopf-Oleinik lemma, i.e. ∂u
∂n < 0 on ∂Ω, fails in

the presence of such singular drift terms E. Our example can be easily extended
to a more general class of E, as we comment in Section 7. Again, we use the
fact that divE acts as a potential. However, in the Schrödinger equation it is
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sufficient that V (x) ≥ Cδ−2 to get flat solutions, whereas for E we need a strictly
larger exponent (see Remark 6.6). Questions of this type are quite relevant in the
framework of linear Schrödinger equations associated to singular potential since
they can be understood as complements to the Heisenberg Incertitude Principle
(see, e.g. [10, 11, 12, 13, 18, 14]). We conclude with some further comments and
open problems in Section 7.

2. Known results when |E| ∈ LN

We define the Sobolev conjugate exponent

m∗ =
mN

N −m
if m ≤ N, m∗∗ = (m∗)∗ =

mN

N − 2m
if m ≤ N

2
.

We have that m∗∗ ∈ [1,∞] for N
N+2 ≤ m ≤ N

2 . Notice that m∗ ≥ 2 if and only if

m ≥ 2N
N+2 = (2∗)′. Notice that, since m ≥ 1 we have m∗ ≥ m. In order to compute

explicit a priori estimates, we use the Sobolev embedding constant Sp such that,
for 1 < p < +∞

Sp‖u‖Lp∗ (Ω) ≤ ‖∇u‖Lp(Ω). (2.1)

We point out the relevance of the constants, for N > 2 of (2∗)′ = 2N
N+2 . This

constant depends only of N . Since we are going to require the Sobolev embedding
for p = 2, we assume that N ≥ 3. In [1] the author proves the following existence
theorem with a priori estimates.

Theorem 2.1 ([1]). Let f ∈ L
2N
N+2 (Ω) and |E| ∈ LN (Ω). Then, there exists a

unique weak solution u of (1.1) in the sense that

u ∈W 1,2
0 (Ω) is such that

∫
Ω

M(x)∇u∇v =

∫
Ω

uE(x) · ∇v +

∫
Ω

f(x) v(x),

for all v ∈W 1,2
0 (Ω). and it satisfies

(1) Logarithmic estimate:(∫
Ω

| log(1 + |u|)|2
)2/2∗

≤ 1

S2
2α

2

∫
Ω

|E|2 +
2

S2
2α

∫
Ω

|f |,

(2) Gradient estimate: there exists C = C(α,N) such that∫
Ω

|∇u|2 ≤ C
(
‖E‖2LN + ‖f‖2

L
2N
N+2

)
. (2.2)

(3) Stampacchia-type summability: For m ∈ [ 2N
N+2 ,

N
2 ) there exists a constant

C = C(m,α, N, ‖E‖LN ) such that

‖u‖m∗∗ ≤ C‖f‖m. (2.3)

(4) Stampacchia-type boudedness: Let r > N and m > N
2 . There exists C such

that

‖u‖L∞ ≤ C(m, r, α, ‖f‖Lm , ‖E‖Lr ). (2.4)

Remark 2.2. The natural theory for this problem in energy space is precisely
|E| ∈ LN (Ω), since in the weak formulation we need to justify a term of the form

Eu∇v, where u, v ∈ W 1,2
0 (Ω). This means that u ∈ L2∗ whereas ∇v ∈ L2. So we

always have that uE ∈ L2(Ω).
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In [1] the main tool to study the linear problem (1.1) are the auxiliary non-linear
Dirichlet problems

−div(M(x)∇un) = −div
( un

1 + 1
nun

En(x)
)

+ fn(x) Ω

u = 0 ∂Ω,
(2.5)

where the author take fn = Tn(f) a truncation of f through the family

Tn(s) =

{
s |s| ≤ k,
k sign(s) |s| > k,

and En = E
1+ 1

n |E|
. We will take advantage of a similar approximation.

Remark 2.3. Since the problem is linear, for t ∈ R we have that tu is solution of

−div(M(x)∇[t u]) = −div([t u]E(x)) + t f(x),

and that E does not change. Thus, using (2.2)

t2
∫

Ω

|∇u|2 ≤ C
(
‖E‖2LN + t2‖f‖2

L
2N
N+2

)
.

Dividing by t−2 and taking the limit as t→∞ gives∫
Ω

|∇u|2 ≤ C‖f‖2
L

2N
N+2

. (2.6)

Notice that in Theorem 4.1 we will prove this fact for the case divE ≥ 0.

3. Existence theory when |E| ∈ L2 and divE ≥ 0

The structural assumption in this section is the following:

E belongs to the Lebesgue space (L2(Ω))N ,

divE ≥ 0 in D′(Ω), that is

∫
Ω

E · ∇φ ≤ 0, ∀0 ≤ φ ∈W 1,2
0 (Ω).

(3.1)

Theorem 3.1. Assume (3.1) and

f ∈ Lm(Ω), 1 < m <
N

2
, (3.2)

and let p = min{2,m∗}. Then, there exists a weak solution u of (1.1) in the sense

that u ∈W 1,p
0 (Ω) is such that∫

Ω

M(x)∇u∇v =

∫
Ω

uE(x) · ∇v +

∫
Ω

f(x) v(x), ∀v ∈W 1,∞
0 (Ω). (3.3)

Furthermore, it satisfies

‖u‖
W 1,m∗

0 (Ω)
≤ Cm‖f‖m, if 1 < m <

2N

N + 2
;

‖u‖W 1,2
0 (Ω) + ‖u‖m∗∗ ≤ C̃m ‖f‖m, if

2N

N + 2
≤ m<N

2
.

(3.4)

Remark 3.2. From the gradient estimates, we can extend (3.3) to all v ∈W 1,q
0 (Ω)

by approximation, where q = p′.

Since the construction of solutions in the proof of Theorem 3.1 is achieved by
approximation, we have the following result.
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Corollary 3.3. The solutions constructed in Theorem 3.1 satisfy (2.3) and (2.4).

We say that un is a weak solution of (2.5) if u ∈W 1,2
0 (Ω) is such that∫

Ω

M(x)∇un∇v =

∫
Ω

un

1 + 1
n |un|

En(x) · ∇v +

∫
Ω

fn(x) v(x), ∀v ∈W 1,2
0 (Ω).

(3.5)
The existence of a weak solution if En ∈ L2(Ω)N is a consequence of the Schauder

theorem. The proof of Theorem 3.1 is based on the following approximation lemma

Lemma 3.4. Let un be any weak solution of (3.5) with En = E, (3.1), (3.2), and
fn = Tn(f). Then, for any weak solution un of (3.5) we have that{

‖un‖W 1,m∗
0 (Ω)

≤ Cm ‖f‖m, if 1 < m < 2N
N+2 ;

‖un‖W 1,2
0 (Ω) + ‖un‖m∗∗ ≤ C̃m ‖f‖m, if 2N

N+2 ≤ m ≤
N
2 .

(3.6)

where
Cm does not depend on E. (3.7)

Hence, up to a subsequence, {un} converges weakly in Lm
∗∗

.

Proof. Our proof is the same of [4], since we will see that the contribution of
new term on E is a negative number. We use Tk(un)|Tk(un)|2γ−2 as test function

in (3.5), γ = m∗∗

2∗ ; we repeat it is possible since every Tk(un) has exponential
summability. Note that 2γ − 1 > 0 since m > 1. Thus, we have∫

Ω

M(x)∇un∇(Tk(un)|Tk(un)|2γ−2)

=

∫
Ω

un

1 + 1
n |un|

E(x) · ∇(Tk(un)|Tk(un)|2γ−2) +

∫
Ω

fn(x)Tk(un)|Tk(un)|2γ−2.

To study the second integral, we define the function

Hγ(s) =

∫ s

0

t |t|2γ−2

1 + 1
n |t|

dt.

It is easy to check that Hγ(s) ≥ 0 for all s ∈ R. Thus, using the sign condition on
divE we have that∫

Ω

un

1 + 1
n |un|

E(x) · ∇(Tk(un)|Tk(un)|2γ−2)

=

∫
Ω

(2γ − 1)
Tk(un) |Tk(un)|2γ−2

1 + 1
n |Tk(un)|

E(x) · ∇Tk(un)

=

∫
Ω

Hγ(Tk(un))E(x) · ∇Tk(un)

=

∫
Ω

E(x) · ∇[Hγ(Tk(un))] ≤ 0.

Hence, we have that∫
Ω

M(x)∇un∇(Tk(un)|Tk(un)|2γ−2) ≤
∫

Ω

fn(x)Tk(un)|Tk(un)|2γ−2,

which is the starting point of [4], and we obtain the estimates

‖Tk(un)‖
W 1,m∗

0 (Ω)
≤ Cm ‖f‖m, if 1 < m <

2N

N + 2
;
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‖Tk(un)‖W 1,2
0 (Ω) + ‖Tk(un)‖m∗∗ ≤ C̃m ‖f‖, if

2N

N + 2
≤ m<N

2
.

Letting k →∞ we recover (3.6). �

With this lemma, we can pass to the limit to prove Theorem 3.1.

Proof of Theorem 3.1. Up to subsequences, {Tk(un)}, as constructed above, con-

verges weakly (in W 1,m∗

0 (Ω) or in W 1,2
0 (Ω)∩Lm∗∗(Ω)) and it is possible to pass to

some u (note that u ∈ Lm∗∗(Ω)). Recall that E ∈ (L2)N . To pass to the limit in∫
Ω

un

1 + 1
n |un|

En(x) · ∇v

in (3.5) we need

1 ≥ 1

m∗∗
+

1

N
+

1

2
.

That is equivalent to m ≥ 2N
N+2 . Thus we pass also to the limit in (3.6). �

Remark 3.5. Note that, once more it is possible to develop an approximate method
in order to prove the existence when E ∈ Lr. Indeed, let E0 ∈ Lr, r > 1 and
En ∈ L2 converging to E0 in Lr. Define now un in the corresponding way, we can
use the statement of (3.7), so that we can say that estimates (3.4) still hold for
this new sequence {un} and once more we can pass to the limit, and we prove the
existence if

1 ≥ 1

r
+

1

m
− 2

N

We can provide further a priori estimates when divE ≥ 0.

Proposition 3.6. The solutions constructed in Theorem 3.1 satisfy the following
additional estimates:

(1) (L1 estimate) If divE ∈ L1(Ω) then we have that∫
Ω

|u|divE ≤
∫

Ω

|f |. (3.8)

(2) (Lm estimate) If divE ≥ c0 > 0 and m > 1 then

‖u‖Lm ≤
m

m− 1

‖f‖Lm
c0

. (3.9)

We will later take advantage of (3.8) and present several extensions. See, e.g.,
Lemma 6.3 where we extend the result to divE ∈ L1

loc.

Remark 3.7. Notice that (3.9) blows up as m → 1. In fact, it is known that the
case m = 1 does not satisfy such an estimate.

We prove a priori estimates under the assumption of divE ≥ 0 for bounded (or
even smooth) E, which we now know will hold for approximations.

Proof of Proposition 3.6. Assume first that E ∈ (LN )N , and f ∈ Lm for m ≥ 2N
N+2 .

Then, we can deal with the unique solution u ∈ W 1,2
0 (Ω) that exists by Theorem

2.1. Because of the construction by approximation in Theorem 3.1 the estimates
pass to the limit in the construction. Take h ∈ W 1,∞(R) such that h(0) = 0. We
take v = h(u) as a test function we can write

α

∫
Ω

h′(u)|∇u|2 ≤
∫

Ω

M(x)∇u · ∇h(u) =

∫
Ω

uE · ∇h(u) +

∫
Ω

fh(u).
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We can write

u∇h(u) = uh′(u)∇u = ∇F (u)

where F (s) =
∫ s

0
τ h′(τ)dτ . Hence,

α

∫
Ω

h′(u)|∇u|2 ≤
∫

Ω

E · ∇F (u) +

∫
Ω

fh(u).

Now we prove both items
(1) Since divE ∈ L1(Ω) we can integrate by parts again to deduce

α

∫
Ω

h′(u)|∇u|2 +

∫
Ω

F (u) divE ≤
∫

Ω

fh(u). (3.10)

Let us consider hε(s) = Tε(s)/ε. Then h′ε ≥ 0 and |hε| ≤ 1 and, hence, in (3.10)∫
Ω

Fε(u) divE ≤
∫

Ω

|f |.

It is clear that Fε(s)→ |s| a.e. as ε→ 0. Then∫
Ω

|u|divE ≤
∫

Ω

|f |.

(2) Let us take, for m > 1, h(s) = |s|m−1 then

F (s) = (m− 1)

∫ s

0

|τ |m−2 sign(τ)τdτ =
m− 1

m
sm.

Hence, going back to (3.10),

c0
m− 1

m
‖u‖mLm ≤

m− 1

m

∫
Ω

|u|m divE ≤
∫

Ω

f |u|m−1 ≤ ‖f‖Lm‖u‖m−1
Lm .

Hence, we simplify

‖u‖Lm ≤
m

m− 1

‖f‖Lm
c0

. �

4. Comparison principle and uniqueness

To show uniqueness of solutions we prove a weak maximum principle.

Theorem 4.1. Let f ∈ L
2N
N+2 (Ω) and (3.1). Then, if u ∈W 1,2

0 (Ω) is a solution of
(3.3) then

‖∇u+‖2 ≤
1

αS2
‖f+‖ 2N

N+2
.

Hence, there is, at most, one solution of (3.3) in W 1,2
0 (Ω). Furthermore, if f ≥ 0

then u ≥ 0.

We first prove the following lemma.

Lemma 4.2. Let m, r > 1, E ∈ Lr′(Ω) with 0 ≤ divE ∈ D′(Ω). Then, we have
that

−
∫

Ω

E∇v ≥ 0 ∀ 0 ≤ v ∈W 1,r
0 (Ω). (4.1)
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Proof. By definition of having a sign in distributional sense, for 0 ≤ ϕ ∈ C∞c (Ω),
we have that

−
∫

Ω

E∇ϕ = 〈divE,ϕ〉 ≥ 0.

For 0 ≤ v ∈ W 1,r
0 (Ω), we can find a sequence 0 ≤ ϕn ∈ C∞c (Ω), such that ϕn → v

in W 1,r
0 (Ω). In particular, ∇ϕ → ∇v in Lr(Ω). We can pass to the limit in the

estimate. �

Proof of Theorem 4.1. Let u be a solution. Take ρn a family of non-negative molli-
fiers, and use vn = ρn∗u+ as a test function. Passing to the limit in n and applying
the previous lemma

α

∫
Ω

|∇u+|2 ≤
∫

Ω

E∇
u2

+

2
+

∫
Ω

fu+ ≤ ‖f‖(2∗)′‖u+‖2∗ ≤
1

S
‖f‖(2∗)′‖∇u+‖2.

We recover the estimate. �

Lemma 4.3. Let E ∈ Lr(Ω)N for r > 1 with divE ≥ 0 in D′(Ω). Then, there
exists a sequence En ∈W 1,∞(Ω) with divEn ≥ 0 such that E → E in Lr(Ω)N .

Proof. We use a similar decomposition to [22, Theorem 1.5] (done there for r = 2).
First, we define

−∆p(1) = divE in Ω,

p(1) = 0 on ∂Ω.

By well-known results we obtain a unique solution p(1) ∈ W 1,r
0 (Ω). Take E(1) =

∇p(1). Lastly, take E(2) = E − E(1) ∈ Lr(Ω). Notice that divE(2) = 0. Due

to [19], E(2) admits a divergence-free extension to Lr(Rd), which we denote Ẽ(2).

We can take a family of mollifiers ρn, and E
(2)
n = Ẽ(2) ∗ ρn ∈ W 1,∞(Ω). Now let

0 ≤ g(1) = divE(1) ∈ W−1,r′(Ω). Let g
(1)
n ≥ 0 be a sequence of C∞c (Ω) functions

with g
(1)
n → g(1) in Lr

′
(Ω). Take p

(1)
n the unique solution to

−∆p(1)
n = g(1)

n in Ω,

p(1)
n = 0 in ∂Ω.

Finally, define E
(1)
n = ∇p(1)

n ∈ W 1,∞(Ω). It is now easy to see that E
(i)
n → E(i) in

Lr(Ω)N for i = 1, 2, and the proof is complete. �

Theorem 4.4. Let f ∈ Lm(Ω) and E ∈ Lr(Ω) such that 0 ≤ divE ∈ D′(Ω) and

1

min{2∗,m∗∗}
+

1

r
≤ 1 if

2N

N + 2
≤ m ≤ N

2

1

2∗
+

1

r
≤ 1 otherwise.

(4.2)

Then, taking q = min{2,m∗} (using formally m∗ = ∞ for m ≥ N) there exists a

solution of: u ∈W 1,q
0 (Ω) such that∫

Ω

M(x)∇u∇v =

∫
Ω

uE∇v +

∫
Ω

fv, ∀v ∈W 1,q′

0 (Ω). (4.3)

Furthermore, if m ≥ 2N
N+2 and r ≥ N it is the unique solution of (3.3).
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Proof. Let fk = Tk(f) where Tk is the cut-off function. We consider Ek constructed
in Lemma 4.3. By Proposition 3.6 there exists a unique weak uk solution of (3.3).
Since the ·∗ operation is monotone, then q∗ = min{2∗,m∗∗}. The sequence uk is

uniformly bounded in W 1,q
0 (Ω). Therefore, by the Sobolev embedding theorem, it

is uniformly bounded on Lq
∗
(Ω). Up to a subsequence, there exists u ∈ W 1,q

0 (Ω)
such that

∇uk ⇀ ∇u in Lq(Ω)

uk ⇀ u in Lq
∗
(Ω).

Since M ∈ L∞(Ω)N×N , Ek → E ∈ Lr(Ω)N strongly and (4.2) we have that

M(x)∇uk ⇀M(x)∇u in Lq(Ω)

ukEk ⇀ uE in L1(Ω).

Therefore, we can pass to the limit in the weak formulation for v ∈ W 1,∞
0 (Ω).

If m ≥ 2N
N+2 and r ≥ N , then uE ∈ L2(Ω), and it is a solution of (3.3) by

approximation. �

5. Convection with singularity at one point

With the approach developed in this paper we are able to study the special
situation

E = A
x

|x|2
where A > 0 (5.1)

which is somehow in the limit of theory since it is not in LN (Ω), but it is in Lr(Ω)
for r ∈ [1, N). In [5] the authors examined the framework of drifts such that

|E| ≤ |A|
|x|

, (5.2)

The authors show existence of solutions u under (5.2), where the summability is
reduced as |A| is increased. They proved the following result.

Theorem 5.1 ([5]). Let f ∈ Lm(Ω) and |E| ≤ |A|/|x|. Then, there exists a solution
u the solution of (1.1) and

(1) If |A| < α(N−2m)
m and m ∈ [ 2N

N+2 ,
N
2 ) then u ∈W 1,2

0 (Ω) ∩ Lm∗∗(Ω).

(2) If |A| < α(N−2m)
m and m ∈ (1, 2N

N+2 ) then u ∈W 1,m∗

0 (Ω).

(3) If |A| < α(N − 2) and m = 1 then ∇u ∈ (M
N
N−1 (Ω))N and u ∈ W 1,q

0 (Ω),
for every q < N

N−1 .

Above, M
N
N−1 denotes the Marcinkiewicz space (see [5] for the definition and

some properties). The argument in [5] is based on Hardy’s inequality(N − 2

N

)2
∫
RN

|u|2

|x|2
≤
∫
RN
|∇u|2. (5.3)

We are able to extend this result to distinguish depending on the sign of A. Our
result is the following theorem.
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Theorem 5.2. Let f ∈ Lm(Ω) for some m > 1 and (5.1). Then, there exists a
solution uA of (4.3), and it satisfies the estimates in Proposition 3.6. Furthermore,
uA → 0 as A→∞ in the sense that∫

Ω

|uA(x)|
|x|2

≤ 1

A(N − 2)

∫
Ω

|f |.

We point out that, if m > 2N
N+2 , we have furthermore uAE ∈ L2(Ω).

Proof. Since N ≥ 3 we know that |E| ∈ L2(Ω) and that

divE = r1−N ∂

∂r
(rN−1Ar−1) =

A(N − 2)

|x|2
(5.4)

is non-negative, and it is in L1(Ω). Then, we have satisfied the existence theory of
Theorem 3.1. Because of Proposition 3.6 and (5.4) the estimate follows. �

6. Convection with singularity on the boundary

The aim of this section is to understand the case where E is regular inside Ω
but blows up towards ∂Ω. For the sake of simplicity we present an example, which
as mentioned in Section 7 can be generalized, but the computations become quite
technical. Let us consider ϕ1 the first eigenfunction of −∆ with Dirichlet boundary
conditions, i.e.,

−∆ϕ1 = λ1ϕ1in Ω,

ϕ1 = 0on ∂Ω.

We normalize it so that ‖∇ϕ1‖L∞ = 1. It is known that there exists C > 0 such
that

0 < C dist(x, ∂Ω) ≤ ϕ1(x) ≤ C−1 dist(x, ∂Ω), ∀x ∈ Ω,

and near ∂Ω we have that
|∇ϕ1(x)| ≥ C > 0.

We focus our efforts on the particular case

E = −ϕ−1−γ
1 ∇ϕ1, for some γ > 0, (6.1)

and f ∈ L∞c (Ω), the space of bounded functions with compact support in Ω.
The aim of this section is to prove the following theorem.

Theorem 6.1. Let E be given by (6.1), M = I and f ∈ L∞c (Ω). Then there exists
a unique u ∈ H1

0 (Ω) ∩ L∞(Ω) such that uE ∈ L∞(Ω) and u is a weak solution in
the sense that (3.3) holds. Furthermore, u is flat on the boundary in the sense that

for all α > 1 we have that |u(x)| ≤ Cα dist(x, ∂Ω)α, for a.e. x ∈ Ω. (6.2)

We will give the proof below. First, we prove positivity in the interior.

Proposition 6.2. In the assumptions of Theorem 6.1 if f ≥ 0 and
∫

Ω
f > 0, then

u > 0 in Ω.

Proof. Let Ωη = {x ∈ Ω : d(x,Ω) > η}. Consider uη the solution of (1.1) with
E given by (6.1) and uη = 0 in ∂Ωη. Notice that E is smooth on Ωη for η > 0.
Since we already know from Theorem 4.1 that u ≥ 0 in Ω, the classical comparison
principle in Ωη ensures that uη ≤ u for any η ≥ 0. Take η > 0 small enough so that∫

Ωη
f > 0. Then, by the “classical” strong maximum principle we obtain uη > 0 in

Ωη, and the proof is complete. �
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It is immediate to compute that

divE = (1 + γ)ϕ−2−γ
1 |∇ϕ1|2 − ϕ−1−γ

1 ∆ϕ1

= (1 + γ)ϕ−2−γ
1 |∇ϕ1|2 + λ1ϕ

−γ
1 .

Hence divE(x) ≥ cdist(x, ∂Ω)−2−γ near the boundary. Notice that E and divE
are not in L1(Ω). We start the proof with a lemma.

Lemma 6.3. In the assumptions of Theorem 4.4, assume furthermore that divE ∈
L1

loc(Ω). Then udivE ∈ L1(Ω), still satisfying estimate (3.8).

Proof. We consider the approximating sequence for Theorem 4.4. For the approxi-
mation we know that ∫

Ω

|un|divEn ≤
∫

Ω

|f |.

Let us fix K b Ω. We have that∫
K

|un|divEn ≤
∫

Ω

|f |.

Since we know that divEn → divE in L1(K), we have that, up to a further
subsequence, divEn converges a.e. in K. Hence, applying Fatou’s lemma∫

K

|u|divE ≤
∫

Ω

|f |.

Since this estimate is uniform in K, we can take Kh = {x ∈ Ω : dist(x, ∂Ω) ≥ h}
and deduce, as h→ 0, that (3.8) holds. �

The solution found in Theorem 6.1 is unique in a certain class. We provide a
uniqueness result extending Theorem 4.1, which can itself be generalized to a larger
framework.

Lemma 6.4. Assume that u ∈ H1
0 (Ω), E ∈ L∞loc(Ω), u|E| ∈ L2(Ω), divE ≥ 0

distributionally, and f ∈ L
2N
N+2 (Ω). Then

‖∇u+‖2 ≤
1

αS2
‖f+‖ 2N

N+2
.

In particular, there is at most one weak solution in H1
0 (Ω) of (1.1).

Proof. We want to repeat the argument in Theorem 4.1, i.e., taking v = u+ in the
weak formulation and using that

−
∫

Ω

uE · ∇u+ ≥ 0.

We prove this formula by approximation. Take η ∈ C∞c (Ω). There exists K b Ω
and φm ∈ C∞0 (K) such that φm → u+η in H1

0 (Ω). We have that

−
∫

Ω

φmE · ∇φm = 〈divE,
φ2
m

2
〉 ≥ 0.

Since E ∈ L∞(K), we pass to the limit to deduce

−
∫

Ω

(u+η) · E∇(u+η) ≥ 0.
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Now we expand∫
Ω

(u+η)E · ∇(u+η) =

∫
Ω

u2
+ηE · ∇η +

∫
Ω

u+η
2E · ∇u+

Now we take ηm ↗ 1. In particular ηm(x) = η0(mϕ1(x)) where η0 is non-
decreasing, η0(s) = 0 if s ≤ 1 and η0(s) = 1 if s > 2. Clearly ‖∇ηm‖L∞ ≤ Cm.
Since u+ ∈ H1

0 (Ω), then u+(x)/ϕ1(x) ∈ L2(Ω) by Hardy’s inequality. And we
compute∣∣ ∫

Ω

u2
+ηm · E∇ηm

∣∣ ≤ ∫
ϕ1(x)≤ 1

m

u+

ϕ1

ϕ1

m
|uE|Cm ≤ C

∫
ϕ1(x)≤ 1

m

u+

ϕ1
|uE| → 0

since u+

ϕ1
|uE| ∈ L1(Ω) and the size of the domain tends to zero. We conclude, by

Dominated Convergence that

0 ≥
∫

Ω

(u+ηm) · E∇(u+ηm)→
∫

Ω

u+E · ∇u+ =

∫
Ω

uE · u+. �

We are finally ready to prove the main result.

Proof of Theorem 6.1. The uniqueness claim is proven in Lemma 6.4. We now
prove the existence and bounds by approximation. We can assume, without loss of
generality, that f ≥ 0, and construct approximations of E given by

E` = −(ϕ1 +
1

`
)−1−γ∇ϕ1.

Clearly E` ∈ L∞(Ω). These satisfy the assumptions of Theorem 3.1. Hence, there
exists a weak solution u` ∈ H1

0 (Ω) of (1.1) where E = E`. We compute

divE` = (1 + γ)(ϕ1 +
1

`
)−2−γ |∇ϕ1|2 + λ1(ϕ1 +

1

`
)−1−γϕ1.

This is non-negative. Hence, from Theorem 4.1 we have that

‖∇u`‖L2 ≤ C‖f‖L∞ .
Splitting the behaviour near the boundary and away from the boundary, it is easy
to see that divE` ≥ c0 > 0 uniformly. Therefore, by Proposition 3.6 we have that

‖u`‖L∞ ≤
‖f‖L∞
c0

. (6.3)

Now we must construct barrier functions. Select a single α > 1 and the barrier

U =
1

α
(ϕ1 +

1

`
)α.

We drop the dependence on ` and α to make the presentation below more readable.
Plugging it into the equation we obtain

−∆U + div(UE`)

= −∆U +∇U · E` + U divE`

= −(α− 1)(ϕ1 +
1

`
)α−2|∇ϕ1|2 + λ1(ϕ1 +

1

`
)α−1ϕ1 − (ϕ1 +

1

`
)α−2−γ |∇ϕ1|2

+ (1 + γ)(ϕ1 +
1

`
)α−2−γ |∇ϕ1|2 + λ1(ϕ1 +

1

`
)α−1−γϕ1

≥
(
γ(ϕ1 +

1

`
)−γ − (α− 1)

)
(ϕ1 +

1

`
)α−2|∇ϕ1|2.
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This is non-negative if ϕ1(x) + 1
m ≤ (α−1

γ )−1/γ . There exists ηα > 0 small enough

such that

f(x) = 0 and ϕ1(x) ≤ 1

2
(
α− 1

γ
)−1/γ , ∀x such that dist(x, ∂Ω) ≤ ηα.

We will use the neighborhood of the boundary Aα = {x ∈ Ω : dist(x, ∂Ω) < ηα}.
Also, we consider the candidate super-solution

u(x) = U(x)
( α

mindist(x,∂Ω)=ηα ϕ1(x)α
+
α

c0

‖f‖L∞
mindist(x,∂Ω)≥ηα ϕ1(x)α

)
.

We denote the constant on the right-hand side as Cα. Using the first term of Cα,
u ≥ u when dist(x, ∂Ω) = ηα. Also, u = 1

mα ≥ 0 = u on ∂Ω. Let us call

f = −∆u+ div(uE`).

By the previous computations, if ` ≥ 2(α−1
γ )

1
γ , we have f ≥ 0 = f in Aα, and

clearly f ∈ L∞(Aα). Hence, by Theorem 4.1 we have that

0 ≤ u`(x) ≤ u(x), x ∈ Aα.
Also, by (6.3) and the second part of Cα, we have that

0 ≤ u`(x) ≤ u(x), x ∈ Ω \Aα.
Eventually, we deduce that for any α > 1 we have

0 ≤ u`(x) ≤ Cα
α

(ϕ1 +
1

`
)α, ∀x ∈ Ω and ` ≥ 2(

α− 1

γ
)

1
γ .

In particular, picking α = γ + 1 we deduce that

|u`E`| ≤
Cγ+1

γ + 1
‖∇ϕ1‖L∞ =

Cγ+1

γ + 1
.

We deduce that, up to a subsequence,

u` → u a.e. and strongly in L2 and u` ⇀ u weakly in H1
0 (Ω).

This implies that u`E` → uE a.e. And hence uE is bounded. Passing to the
limit in the weak formulation by the Dominated Convergence Theorem, the result
is proven. �

Remark 6.5. Notice that the construction of the super-solution above can be done
in any dimension N ≥ 1. However, most of the results in the rest of the paper are
only available for N ≥ 3.

Remark 6.6. For Schrödinger-type equations −∆u+ V u = f , it is known that if
the potential V is greater than dist(x, ∂Ω)−2 and f is compactly supported, then u
is flat on the boundary, in the sense that |u| ≤ C dist(x, ∂Ω)1+ε. This means that
∂nu = 0 on ∂Ω. This means that it satisfies Dirichlet and Neumann homogeneous
boundary conditions. And it can be extended by 0 outside Ω with higher regularity
than H1. In contrast, the exponent γ in the above result can not be taken as γ = 0
in order to get flat solutions. Indeed, the convection term E · ∇ϕ1, in the above
computations, is more singular than the term ϕ1 divE. A very explicit example
can be done in one dimension: if we consider E = −Cx−1 then this drift does not
generate flat solutions since if we take U(x) = xα then

−U ′′ + (EU)′ = (−αxα−1 − Cxα−1)′ = −(α+ C)(α− 1)xα−2,
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and this is a supersolution only if α ≤ 1.

Corollary 6.7. In the hypothesis of Theorem 6.1 replace f ∈ L∞c (Ω) by

|f(x)| ≤ C dist(x, ∂Ω)ω for 0 ≤ ω ≤ γ + 1.

Then
|u(x)| ≤ dist(x, ∂Ω)α for all α ∈ (1, γ + 2− ω) .

Proof. We maintain the notation of the proof of Theorem 6.1. We have already
shown that, on a neighborhood of the boundary,

−∆U + div(UEm) ≥ γ

2
(ϕ1 +

1

m
)α−2−γ |∇ϕ1|2 ≥ c1(ϕ1 +

1

m
)α−2−γ ≥ c2|f |.

For α in the range (1, γ + 2− ω), we can take as a supersolutions for the approxi-
mating sequence

u(x) = U(x)
( 1

c2
+

α

mindist(x,∂Ω)=ηα ϕ1(x)α
+
α

c0

‖f‖L∞
mindist(x,∂Ω)≥ηα ϕ1(x)α

)
.

And the rest of the proof remains as in Theorem 6.1. �

7. Further remarks, extensions, and open problems

(1) We point that the proofs of our estimates can be extended to many non-linear
settings.

(2) Theorem 6.1 admits many generalizations. For instance, one can consider
the case |E| ≤ c0 dist(x, ∂Ω)−γ−1 with divE ≥ c1 dist(x, ∂Ω)−γ−2 up to suitable
conditions on the constants. Also, the techniques in this paper could be extended
to the situation where dist(x, ∂Ω) is replaced by dist(x,Γ) with a suitable part
Γ ⊂ ∂Ω. The case Γ an interior manifold can also be studied.

(3) Including a non-negative potential. The same analysis can be performed on
the equation

−div(M(x)∇u) + a(x)u = −div(uE(x)) + f(x)

when a ≥ 0. As above, our approach allows for less regularity in a than most
previous literature, e.g. a ∈ L1

loc(Ω). Furthermore, one will then obtain∫
Ω

|u|(a+ divE) ≤
∫

Ω

|f |.

Hence, one can reduce the hypothesis to a+ divE ≥ 0 in the whole analysis.
(4) The study of a ≡ 1 is useful in the study of the evolution problem

ut − div(M(x)∇u) + div(uE(x)) = 0.

For the study of this problem one can write ut +Au = 0 where

Au = − div(M(x)∇u) + div(uE(x)).

To obtain solutions in semigroup form in Lp (where 1 ≤ p ≤ +∞), following the
theory of accretive operators, it is sufficient that,

‖u‖Lp ≤ ‖u+ λAu‖Lp .
Letting f = u+ λAu, this is precisely what we have proven above, where M = λI
and a ≡ 1. See also [6].

(5) We point out that when |E| ≤ |A|/|x|, we have that, if m > 2N
N+2 then

u|E| ∈ L2(Ω). It seems possible to extend the uniqueness result (6.4) to this
setting.
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