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EXISTENCE OF SOLUTIONS TO QUASILINEAR

SCHRÖDINGER EQUATIONS WITH EXPONENTIAL

NONLINEARITY

UBERLANDIO B. SEVERO, BRUNO H. C. RIBEIRO, DIOGO DE S. GERMANO

Abstract. In this article we study the existence of solutions to quasilinear
Schrödinger equations in the plane, involving a potential that can change sign

and a nonlinear term that may be discontinuous and exhibit exponential crit-

ical growth. To prove our existence result, we combine the Trudinger-Moser
inequality with a fixed point theorem.

1. Introduction and main result

In this work we consider the quasilinear equation

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = f(x, u) + λ|u|p−2u+ h(x)g(u) (1.1)

in R2, where g : R → R+ is a function of class C1, V : R2 → R is a potential
that can change sign, f : R2 × R → R is a measurable function, which may have
exponential critical growth of Trudinger-Moser type, λ ∈ R is a parameter, p ≥ 2
and h ∈ Lq(R2) for some 1 < q ≤ 2.

When g(s) ≡ 1 and λ = 0, equation (1.1) becomes the nonhomogeneous semilin-
ear Schrödinger equation

−∆u+ V (x)u = f(x, u) + h(x) in R2, (1.2)

which has been studied by several researchers, see for example [1, 2, 5, 12, 14],
[16] for a problem in a bounded domain. Usually, to obtain the existence and
multiplicity of solutions, the authors require a restriction on the norm of the term
h(x) and thus (1.2) is regarded as a perturbation of the equation −∆u+ V (x)u =
f(x, u), x ∈ R2. In (1.1), h(x)g(u) can be viewed as the perturbation term.

The study of (1.1) is also related to the existence of standing wave solutions for
quasilinear Schrödinger equations of the form

i∂tw = −∆w +W (x)w − p̃(x, |w|2)w −∆[ρ(|w|2)]ρ′(|w|2)w, (1.3)

where w : R×RN → C is the unknown function, W : RN → R is a given potential,
ρ : R+ → R and p̃ : RN ×R+ → R are real functions satisfying suitable conditions.
Equation (1.3) has modeled many physical phenomena depending on the function
ρ; for details see [3, 21, 22, 25].
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By considering standing wave solutions, i.e., solutions of the form w(t, x) =
exp(−iEt)u(x), where E ∈ R and u is a real function, one knows that w satisfies
(1.3) if and only if u(x) solves the elliptic equation

−∆u+ V (x)u−∆[ρ(u2)]ρ′(u2)u = p(x, u) in RN , (1.4)

where V (x) = W (x)− E and p(x, u) = p̃(x, u2). If we now use

g2(u) = 1 +
[(ρ(u2))′]2

2
,

then (1.4) is transformed in the quasilinear elliptic equation (see [25])

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = p(x, u) in RN , (1.5)

which becomes (1.1) when p(x, u) = f(x, u) + λ|u|p−2u + h(x)g(u) and N = 2.
Equation (1.5) have been extensively investigated in the literature depending on
the function g. For example, if g2(s) = 1 + 2s2 then we obtain the superfluid film
equation

−∆u+ V (x)u−∆(u2)u = p(x, u) in RN ,
which was studied for instance in [7, 13, 20, 21]. More generally, if we set g2(s) =
1 + 2γ2(s2)2γ−1, γ > 1/2, which corresponds to ρ(s) = sγ , we obtain

−∆u+ V (x)u− γ∆(|u|2γ)|u|2γ−2u = p(x, u) in RN , (1.6)

which has been treated, for instance, in [19, 28].
Motivated by these physical and mathematical aspects, Equation (1.5) has at-

tracted the attention of numerous researchers, leading to results of existence and
multiplicity of solutions. Noteworthy contributions include the works [10, 15, 22, 25]
in dimensions N ≥ 3 and [23, 24] in the plane. In the later ones, the nonlinear-
ity p(x, u) is continuous and exhibits exponential critical growth in the sense of
Trudinger-Moser inequality. Moreover, these studies assume that the potential
V (x) is continuous, bounded from below and the main results are obtained by ex-
ploiting variational methods. In [22], the authors studied (1.1), with λ = 0 and
in dimension N ≥ 3, considering potentials V (x) that can be discontinuous and
singular. Furthermore, they allow the nonlinearity to be discontinuous and to have
critical growth. By applying a fixed point theorem, they prove that the problem
has a weak solution by working in the space D1,2(RN ).

In this article, under certain assumptions on g(s), V (x), f(x, s), and h(x), and by
applying a fixed point theorem (see Lemma 2.6), as in [22] we show that (1.1) admits
at least one weak solution. Here, the potential V (x) has similar characteristics as in
[22]. The nonlinear term f(x, s) can be discontinuous and the critical exponential
growth is allowed for it. We emphasize that the context in dimension two is more
delicate because it makes no sense to work in the space D1,2(R2) and embedding
available. Therefore, the strategy used to apply the fixed theorem is different from
that of [22]. Our intention is to complement the study carried out in [22] and extend
the results obtained in [23, 24].

Next, state the hypotheses on g(s), V (x) and f(x, s). With respect to g(s), we
assume the following standard conditions:

(A1) g ∈ C1(R,R+) is even, g′(s) ≥ 0 for all s ≥ 0 and g(0) = 1;
(A2) there exists α ≥ 1 such that (α− 1)g(s) ≥ g′(s)s for all s ≥ 0;

(A3) lims→+∞
g(s)
sα−1 =: β > 0.



EJDE-2024/?? QUASILINEAR SCHRÖDINGER EQUATIONS 3

Hypotheses of this type have been considered in [8, 10, 22]. Since g(s) ≥ 1 for all
s ∈ R, the primitive G(s) :=

∫ s
0
g(t)dt is increasing, G(0) = 0 and its inverse G−1

is also increasing. Hereafter, for convenience we denote G1 := G−1(1) > 0. The
following function g satisfies (A1)–(A3):

(a) g(s) ≡ 1 (α = 1 and β = 1);

(b) g(s) = (1 + 2s2)1/2 (α = 2 and β =
√

2);

(c) g(s) = (1 + 2γ2(s2)2γ−1)1/2 (α = 2γ and β =
√

2γ).

They appear in the context of mathematical physics, as previously mentioned.
The existence of solutiona for equations of the form (1.5) has been discussed

under various conditions on the potential V (x) and the nonlinear term p(x, s), see
for instance [10, 15, 25, 26]. It is usually assumed that the potential is continuous
and another condition that guarantees some compactness result. Inspired by [6, 22],
we focus here on the case where V can have discontinuity and change sign without
requiring any additional condition to obtain compactness.

Denoting V ± = max{±V, 0} and inspired by [22, 27], we consider the following
hypotheses on V :

(A4) V + ∈ L1
loc(R2) and there exists a constant R0 > 0 such that

0 < V0 := inf
|x|≥R0

V +(x) ≤ sup
|x|≥R0

V +(x) <∞;

(A5) V − ∈ Lp0(BR0
) for some 1 < p0 ≤ ∞, where BR0

denotes the open ball
centered at the origin in R2 with radius R0.

In the following, for simplicity, we assume that R0 ≥ 1 and consider a constant

V∞ ≥ max{R0, G
2
1}

2|λ|Gp−21

p
(1.7)

satisfying V +(x) ≤ V∞ for almost every |x| ≥ R0. Note that V can change sign
and singularities can appear in some points of R2. A simple example of a potential
V (x) satisfying (A4) and (A5) is

Vδ(x) = − δ

|x|1/γ
for |x| ≤ R0, and C1 ≤ Vδ(x) ≤ C2 for |x| > R0, (1.8)

for some δ,R0 > 0, γ > 1, and 0 < C1 ≤ C2 <∞.
Problems involving (1.5) with critical nonlinearities in dimension N ≥ 3 have

been addressed for instance in [10, 17, 18]. For dimension two, we can cite [23, 24],
which consider the nonlinearity with exponential critical growth. However, in these
works the authors suppose that the nonlinearity is continuous. In this article, we
consider a more general class of nonlinearities f(x, u), i.e., motivated by [22] we
introduce the following hypotheses on f :

(A6) for each measurable function u : R2 → R, the Nemytskĭi function Nf :
R2 → R given by Nf (x) = f(x, u(x)) is measurable;

(A7) for almost every x ∈ R2, the quotient f(x,s)
g(s) is nondecreasing in s.

(A8) there exist C1, C2 > 0, 1 < σ ≤ ∞, ς0 > 0, ρ, µ > 1 and k ∈ Lσ(R2) such
that

|f(x, s)| ≤ C1k(x)|s|ρ + C2(eς0(s
2)α − 1)|s|µ, for all (x, s) ∈ R2 × R.

Condition (A8) is inspired by the Trudinger-Moser inequality in the whole space

(see Lemma 2.3). Note that the growth (A8) allows f(x, s) to behave as e(s
2)α at
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infinity, which is the exponential critical growth for this class of problems, for more
details see [23, 24].

Let us now consider the subspace of H1(R2) defined by

W =
{
u ∈ H1(R2) :

∫
R2

V +(x)u2dx <∞
}

endowed with the norm

‖u‖ =
[ ∫

R2

(|∇u|2 + V +(x)u2)dx
]1/2

. (1.9)

By [27, Lemma 2.1], there exists a constant C > 0 such that∫
R2

(|∇u|2 + V +(x)u2)dx ≥ C
∫
R2

u2dx, for all u ∈W.

This inequality guarantees the embedding W ↪→ H1(R2) being continuous and
consequently W ↪→ Lt(R2) begin also continuous for all t ≥ 2. Moreover, W is a
Banach space with the norm introduced in (1.9). For each t ≥ 2, we consider

St := inf
u∈W\{0}

∫
R2(|∇u|2 + V +(x)|u|2)dx(∫

R2 |u|tdx
)2/t > 0, (1.10)

which is the best constant of the embedding W ↪→ Lt(R2). Recalling that G1 =
G−1(1), in addition to the hypotheses on V we assume the condition

(A9) ‖V −‖Lp0 (BR0
) < ΛSt0 , where t0 := 2p0/(p0 − 1) if 1 < p0 <∞, and t0 = 2

if p0 =∞ and Λ =
2|λ|Gp1
αpV∞

.

This number Λ is a kind of control for applying the fixed point theorem. Observe
that in Example (1.8), (A9) will satisfied choosing a positive δ appropriately.

We say that a function u : R2 → R is a weak solution of (1.1) if u ∈ H1(R2) and
for all ϕ ∈ C∞0 (RN ) it holds∫

R2

g2(u)∇u∇ϕdx+

∫
R2

g(u)g′(u)|∇u|2ϕdx+

∫
R2

V (x)uϕdx

=

∫
R2

f(x, u)ϕdx+ λ

∫
R2

|u|p−2uϕdx+

∫
R2

h(x)g(u)ϕdx.

(1.11)

Our main result is stated as follows.

Theorem 1.1. Suppose that (A1)–(A9) are satisfied and h ∈ Lq(RN ) for some
1 < q ≤ 2. Furthermore, assume that α ≤ 2 and p ≥ 2α, and for each λ < 0 there
exists δ0 > 0 such that ‖h‖q ≤ δ0. Then (1.1) has at least one weak solution.

Note that if h 6= 0 then the solution obtained is nonzero because g(0) = 1. For
the proof of the theorem, we adapt some arguments in [22]. However, the situation
here is more delicate because the exponential critical growth of f(x, s), and the
fact that we can not work with D1,2(R2) as in [22]. As the potential v(x) and the
nonlinear term f(x, s) can be discontinuous, the variational methods are not used
for treating this class of problems, and we believe that the fixed point technique is
more effective.

The outline of this article is as follows. The forthcoming section is the reformu-
lation of the problem and some preliminary results, including the Trudinger-Moser
inequality used in the fixed theorem. Section 3 is dedicated to the proof of our
main result.
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2. Preliminaries

In this section we obtain some technical results and establish the appropriate
framework to prove Theorem 1.1. In the definition of weak solution for (1.1) (see
(1.11)), we first face the problem that the integrals involving the function g, which,
depending on g, are not well defined for functions u ∈ H1(R2). To overcome this
difficulty, we follow the idea used in [25] (see also [9]), and consider the change of
variable

v = G(u) =

∫ u

0

g(s)ds.

From (A1), we have g(t) ≥ 1 for all t ∈ R. Thus, G is strictly increasing and hence
invertible. For an easy reference, we list below the main properties of the functions
g and G−1.

Lemma 2.1. Under conditions (A1)–(A3), we have the following properties:

(1) G−1 is increasing and G,G−1 are odd functions;
(2) 0 < [G−1(t)]′ = 1

g(G−1(t)) ≤ 1 = 1
g(0) for all t ∈ R;

(3) |G−1(t)| ≤ |t| for all t ∈ R;

(4) G−1(t)
α ≤ t

g(G−1(t)) ≤ G−1(t) for all t ≥ 0 and [G−1(t)]2

α ≤ G−1(t)t
g(G−1(t)) ≤

[G−1(t)]2 for all t ∈ R;

(5) |G
−1(t)|α−1

g(G−1(t)) ≤
1
β for all t ∈ R;

(6) |G−1(t)|α ≤ α
β |t| for all t ∈ R;

(7) if 1 ≤ α ≤ 2 then G−1(t)
g(G−1(t)) is nondecreasing for t ∈ R;

(8) if 1 ≤ α ≤ 2 then there exist C1, C2 > 0 such that

|g′(t)| ≤ C1 and g(t) ≤ C2 + (β + 1)|t| for all t ∈ R;

(9) if 1 ≤ α ≤ 2 then [G−1(t)]2α is convex.

(10) G−1(t)
t1/α

→ (αβ )1/α as t→ +∞;

(11) it holds that

|G−1(t)| ≥

{
G1|t|, |t| ≤ 1

G1|t|1/α, |t| ≥ 1.

The proof of the above lemma can be found in [22, 23], so we omit it here.
Using the change of variable v = G(u), a simple calculation shows that we can

transform (1.1) into the nonhomogeneous semilinear equation

−∆v + V (x)
G−1(v)

g(G−1(v))
=
f(x,G−1(v))

g(G−1(v))
+ λ
|G−1(v)|p−2G−1(v)

g(G−1(v))
+ h(x) (2.1)

in R2.
We say that v : RN → R is a weak solution of (2.1) if v ∈W and∫
R2

∇v∇wdx+

∫
R2

V (x)
G−1(v)

g(G−1(v))
wdx

=

∫
R2

f(x,G−1(v))

g(G−1(v))
wdx+ λ

∫
R2

|G−1(v)|p−2G−1(v)

g(G−1(v))
wdx+

∫
R2

h(x)wdx,

(2.2)

for all w ∈ W . The next lemma relates weak solutions of (2.1) to weak solutions
of (1.1).
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Lemma 2.2. If v ∈ W is a weak solution of (2.1), then u = G−1(v) is a weak
solution of (1.1).

Proof. First, since ∇u = 1
g(G−1(v))∇v, g(t) ≥ 1 for all t ∈ R and |u| = |G−1(v)| ≤

|v|, it follows that u ∈ H1(R2). Note that for each ϕ ∈ C∞0 (R2), the function
w := g(G−1(v))ϕ belongs to H1(R2). Indeed, we have

∇w = ϕ
g′(G−1(v))

g(G−1(v))
∇v + g(G−1(v))∇ϕ.

Setting K = supp(ϕ) and using properties (3) and (8) of Lemma 2.1 we obtain∫
RN
|∇w|2dx ≤ 2

∫
K
|ϕ|2 [g′(G−1(v))]2

[g(G−1(v)]2
|∇v|2dx+ 4C2

2

∫
K
|∇ϕ|2dx

+ 4(β + 1)2
∫
K
v2|∇ϕ|2dx

≤ 2C2
1‖ϕ‖2∞

∫
K
|∇v|2dx+ 4C2

2

∫
K
|∇ϕ|2dx+ 4(β + 1)2‖∇ϕ‖2∞‖v‖22,

and so |∇w| ∈ L2(R2). Moreover, according to item (8) of Lemma 2.1 and since
V + ∈ L∞loc(R2), we also have (V +)1/2w ∈ L2(R2). Therefore w ∈ W and taking
w = g(G−1(v))ϕ = g(u)ϕ in (2.2), it follows that (1.11) holds for all ϕ ∈ C∞0 (R2).
Hence, u = G−1(v) is a weak solution to (1.1). �

As a consequence of the previous lemma, to obtain weak solutions of (1.1), it
is sufficient to look for weak solutions for (2.1). Next, we recall a version of the
Trudinger-Moser inequality that holds in the whole space (see [4, 11]).

Lemma 2.3. If ς > 0 and u ∈ H1(R2), then∫
R2

(eςu
2

− 1)dx <∞. (2.3)

Moreover, if 0 < ς < 4π and ‖u‖2 ≤M , then there exists a constant C = C(ς,M) >
0 such that

sup
‖∇u‖2≤1

∫
R2

(eςu
2

− 1)dx ≤ C. (2.4)

In many arguments, we will need of the following lemma.

Lemma 2.4. Let ς > 0 and r ≥ 1. Then

(eςs
2

− 1)r ≤ erςs
2

− 1, for all s ∈ R.

To prove the above lemma we only need to apply the inequality (1 + t)r ≥ 1 + tr

with t = eςs
2 − 1 ≥ 0. As a consequence of Lemma 2.3 we establish an estimate

which will be essential for our argument.

Lemma 2.5. Suppose that (A4) holds. Let v, ϕ ∈ W and ς, µ > 0. If ‖v‖ ≤ M
and ςM2 < 4π then there exists a constant C = C(ς,M, µ) > 0 such that∫

R2

(eςv
2

− 1)|v|µ|ϕ|dx ≤ C‖v‖µ‖ϕ‖.

Proof. First, we choose q1 > 1 sufficiently close to 1 such that

q1ςM
2 < 4π and σ1 :=

2q1
q1 − 1

> max
{

2,
2

µ

}
.
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Thus, 1/q1 + 1/σ1 + 1/σ1 = 1 and applying the generalized Hölder inequality and
the embedding W ↪→ Ls(R2), for s ∈ [2,+∞), one obtains∫

R2

(eςv
2

− 1)|v|µ|ϕ|dx ≤
(∫

R2

(eq1ςv
2

− 1)dx
)1/q1

‖v‖µµσ1
‖ϕ‖σ1

≤ C1

(∫
R2

(eq1ςv
2

− 1)dx
)1/q1

‖v‖µ‖ϕ‖

≤ C1

(∫
R2

(e
q1ςM

2 v2

‖∇v‖22 − 1)dx
)1/q1

‖v‖µ‖ϕ‖.

Since q1ςM
2 < 4π, the lemma is proved because of the Trudinger-Moser inequality

(2.4). �

For the convenience of the reader, some basic notions and notation are repro-
duced below. Let X be a real Banach space. A nonempty subset X+ 6= {0} of X
is called an order cone if the following holds:

(i) X+ is closed and convex;
(ii) if u ∈ X+ and τ ≥ 0, then τu ∈ X+;

(iii) if u ∈ X+ and −u ∈ X+, then u = 0.

We observe that an order cone X+ naturally induces a partial order in X as
follows: x � y if and only if y − x ∈ X+, and (X,�) is called an ordered Banach
space. Moreover, if inf{x, y} and sup{x, y} exist for all x, y ∈ X with respect to �,
then we say that (X, ‖ · ‖) is a lattice. Furthermore, if ‖x±‖ ≤ ‖x‖ for all x ∈ X,
with x+ := sup{0, x} and x− := − inf{0, x} then (X, ‖ · ‖) is called a Banach
semilattice.

Special examples of Banach semilattices are the spaces Lq(RN ), W 1,q(RN ) and
D1,2(RN ), if one considers the natural partial order u � v when u ≤ v almost
everywhere in RN .

Let (X,�) and (X̃,C) be ordered Banach spaces. We say that an operator

G : X → X̃ is increasing if and only if for all x, y ∈ X, x � y implies that GxCGy.
A subset B of X has the fixed point property if every increasing operator S :

B → B has a fixed point.
We now present a version of the fixed point result due to Carl and Heikkilä [6,

Corollary 2.2], which we use for proving Theorem 1.1.

Lemma 2.6. Let X be a Banach semilattice which is reflexive. Then every closed
ball of X has the fixed point property.

For more details in terms of definitions and results about ordered Banach spaces,
we refer the reader to [6] and the references therein.

3. Proof of Theorem 1.1

We need to introduce some suitable operators to apply Lemma 2.6. First, we
consider the operator L : W →W ∗ defined by

〈L(v), ϕ〉 =

∫
R2

∇v∇ϕ+

∫
R2

V +(x)
G−1(v)

g(G−1(v))
ϕdx− λ

∫
R2

|G−1(v)|p−2G−1(v)

g(G−1(v))
ϕdx

−
∫
R2

h(x)ϕdx,
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for v, ϕ ∈ W , where W ∗ is the dual space of W and its norm is denoted by ‖ · ‖∗.
It is clear that for each v ∈W , L(v) is a linear mapping. Moreover, it follows from
Hölder’s inequality, items (2)-(3) of Lemma 2.1, and Sobolev’s embedding that

|〈L(v), ϕ〉| ≤
∫
R2

|∇v∇ϕ|dx+

∫
R2

V +(x)
|G−1(v)|
g(G−1(v))

|ϕ|dx

+ |λ|
∫
R2

|G−1(v)|p−1

g(G−1(v))
|ϕ|dx+

∫
R2

|h||ϕ|dx

≤ ‖v‖‖ϕ‖+
(∫

R2

V +(x)v2dx
)1/2(∫

R2

V +(x)ϕ2dx
)1/2

+ ‖v‖p‖ϕ‖p + ‖h‖q‖ϕ‖q′

≤
(

2‖v‖+
1

S
1/2
p

‖v‖p +
1

S
1/2
q′

‖h‖q
)
‖ϕ‖, for all ϕ ∈W,

which justifies that L(v) ∈W ∗.

Lemma 3.1. Under the hypothesis (A4), the operator L : W →W ∗ is invertible.

Proof. We must show that for every Ψ ∈ W ∗ there exists a unique v0 ∈ W such
that L(v0) = Ψ, i.e.,

〈L(v0), ϕ〉 =

∫
R2

∇v0∇ϕdx+

∫
R2

V +(x)
G−1(v0)

g(G−1(v0))
ϕdx

− λ
∫
R2

|G−1(v0)|p−2G−1(v0)

g(G−1(v0))
ϕdx−

∫
R2

h(x)ϕdx = 〈Ψ, ϕ〉,
(3.1)

for all ϕ ∈ W . This is equivalent to show that for each Ψ ∈ W ∗, the functional
I : W → R defined by

I(v) =
1

2

∫
R2

|∇v|2dx+
1

2

∫
R2

V +(x)[G−1(v)]2dx− λ

p

∫
R2

|G−1(v)|pdx

−
∫
R2

h(x)vdx− 〈Ψ, v〉

has a unique critical point. It is not difficult to verify that I is well-defined and
differentiable on W , where the derivative is given by

〈I ′(v), ϕ〉 =

∫
R2

∇v∇ϕdx+

∫
R2

V +(x)
G−1(v)

g(G−1(v))
ϕdx

− λ
∫
R2

|G−1(v)|p−2G−1(v)

g(G−1(v))
ϕdx−

∫
R2

h(x)ϕdx− 〈Ψ, ϕ〉,

for v, ϕ ∈W . First, we show that I is coercive. By Lemma 2.1-(11), (A4) and since
λ < 0, p ≥ 2α, we have

− λ

p

∫
R2

|G−1(v)|pdx ≥ |λ|G
p
1

p

∫
|v|≥R0

v2dx ≥ |λ|G
p
1

pV∞

∫
|v|≥R0

V +(x)v2dx (3.2)

and
1

2

∫
R2

V +(x)[G−1(v)]2dx ≥ 1

2

∫
|v|≤R0

V +(x)
[
G−1

( |v|
R0

)]2
dx

≥ G2
1

2R2
0

∫
|v|≤R0

V +(x)v2dx.

(3.3)
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In view of (1.7), we obtain

1

2

∫
R2

V +(x)[G−1(v)]2dx− λ

p

∫
R2

|G−1(v)|pdx ≥ |λ|G
p
1

pV∞

∫
R2

V +(x)v2dx (3.4)

and therefore

I(v) ≥ 1

2

∫
R2

|∇v|2dx+
|λ|Gp1
pV∞

∫
R2

V +(x)v2dx−
∫
R2

|h(x)||v|dx− ‖Ψ‖∗‖v‖

≥ |λ|G
p
1

pV∞
‖v‖2 − 1

S
1/2
q′

‖h‖q‖v‖ − ‖Ψ‖∗‖v‖,

which guarantees that the functional I is coercive.
On the other hand, it follows from Lemma 2.1-(9) that the functionals Φ(v) :=∫

R2 V
+(x)[G−1(v)]2dx and Φ̂(v) :=

∫
R2 |G−1(v)|pdx are convex and it is not hard

to see that Φ and Φ̂ are strongly continuous. Therefore, Φ and Φ̂ are weakly lower
semicontinuous. Consequently, if vn ⇀ v in W then

lim inf
n→∞

I(vn) ≥ lim inf
n→∞

1

2

∫
R2

|∇vn|2d + lim inf
n→∞

1

2

∫
RN

V +(x)[G−1(vn)]2dx

+ lim inf
n→∞

−λ
p

∫
R2

|G−1(vn)|pdx+ lim inf
n→∞

(
−
∫
RN

h(x)vndx

)
+ lim inf

n→∞

(
− 〈Ψ, vn〉

)
≥ I(v),

showing that I is weakly lower-semicontinuous in W . Since W is a Hilbert space,
there exists v0 ∈W such that

I(v0) = inf
v∈W

I(v).

Once I is differentiable, we have I ′(v0) = 0 and the strict convexity of I implies that
the critical point v0 is unique. Therefore, there exists a unique v0 ∈ W satisfying
(3.1) and the lemma is proved. �

At this point, we consider another operator T : W →W ∗, which is given by

〈T (v), ϕ〉 =

∫
R2

V −(x)
G−1(v)

g(G−1(v))
ϕdx+

∫
R2

f(x,G−1(v))

g(G−1(v))
ϕdx, v, ϕ ∈W.

It is clear that for each v ∈ W , T (v) is a linear mapping. The next result shows
that T is well defined and we obtain an estimate for the norm of T (v).

Lemma 3.2. Assume (A1)–(A6), (A8) and Let M > 0 be such that ς0
(
α
β

)2
M2 <

4π. Then there exist constants C3, C4 > 0 such that if ‖v‖ ≤M , then

|〈T (v), ϕ〉| ≤
(
S−1t0 ‖V

−‖Lp0 (BR0
)‖v‖+ C3‖v‖ρ + C4‖v‖µ

)
‖ϕ‖, for all ϕ ∈W.

Specifically,

‖T (v)‖∗ ≤ S−1t0 ‖V
−‖Lp0 (BR0

)‖v‖+ C3‖v‖ρ + C4‖v‖µ.

Proof. We consider here 1 < p0 <∞ and 1 < σ <∞. The cases p0 =∞ or σ =∞
are simpler and are treated similarly. Note that

1

p0
+

1

t0
+

1

t0
= 1 ⇔ t0 =

2p0
p0 − 1

> 2.
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Since V −(x) = 0 for |x| ≥ R0, using the generalized Hölder inequality together
with (1.10) and Lemma 2.1-(2),(3), one has that∣∣ ∫

R2

V −(x)
G−1(v)

g(G−1(v))
ϕdx

∣∣ ≤ 1

St0
‖V −‖Lp0 (BR0

)‖v‖‖ϕ‖. (3.5)

Analogously, we see that

1

σ
+
ρ

t1
+

1

t1
= 1 ⇔ t1 :=

σ(ρ+ 1)

σ − 1
> 2,

from which it follows that∣∣ ∫
R2

k(x)|v|ρϕdx
∣∣ ≤ ‖k‖σ‖v‖ρλ‖ϕ‖λ ≤ S−(ρ+1)/2

t1 ‖k‖σ‖v‖ρ‖ϕ‖. (3.6)

On the other hand, using Lemma 2.5 with ς = ς0
(
α
β

)2
yields∫

R2

(
eς0
(
α
β

)2
v2 − 1

)
|v|µ|ϕ|dx ≤ C‖v‖µ‖ϕ‖. (3.7)

With the condition (A8), the estimates (3.5)-(3.7) and Lemma 2.1-(6), we arrive at

|〈T (v), ϕ〉| ≤ 1

St0
‖V −‖Lp0 (BR0

)‖v‖‖ϕ‖+ C3‖k‖σ‖v‖ρ‖ϕ‖

+ C2

∫
R2

(
eς0[G

−1(v)]2α − 1
)
|G−1(v)|µ|ϕ|dx

≤ 1

St0
‖V −‖Lp0 (BR0

)‖v‖‖ϕ‖+ C3‖k‖σ‖v‖ρ‖ϕ‖

+ C2

∫
R2

(
eς0
(
α
β

)2
v2 − 1

)
|v|µ|ϕ|dx

≤
( 1

St0
‖V −‖Lp0 (BR0

)‖v‖+ C3‖k‖σ‖v‖ρ + C4‖v‖µ
)
‖ϕ‖

which proves the first estimate. The second is immediate. �

To apply Lemma 2.6, we consider the following partial order in W :

v1, v2 ∈W, v1 4 v2 ⇔ v1 ≤ v2 a.e. in R2. (3.8)

It is clear that (W,4) is an ordered Banach space and for all u, v ∈ W , there
exist sup{u, v} and inf{u, v} with respect to the order 4. Moreover, recalling that
v+ = sup{v, 0} and v− = − inf{v, 0}, we have that v+ and v− are the positive
and negative parts of v. Since |∇v±| ≤ |∇v| almost everywhere in R2, we see that
‖v±‖ ≤ ‖v‖. Consequently, (W,4) is a Banach semilattice which is reflexive. We
also observe that the dual space W ∗, endowed with the order

Φ1,Φ2 ∈W ∗,Φ1 C Φ2 ⇔ 〈Φ1, ϕ〉 ≤ 〈Φ2, ϕ〉, for all ϕ ∈W+, (3.9)

where W+ = {v ∈ W ; v ≥ 0 a.e. in R2} is also an ordered Banach space. Now, we
need to check the monotonicity of the operators T and L−1.

Lemma 3.3. T : (W,4)→ (W ∗,C) is an increasing operator.

Proof. Let v1, v2 ∈ W be such that v1 4 v2, i.e., v1 ≤ v2 a.e. in R2. By Lemma
2.1-(7) and (A7), we obtain

〈T (v1), ϕ〉 =

∫
R2

V −(x)
G−1(v1)

g(G−1(v1))
ϕdx+

∫
R2

f(x,G−1(v1))

g(G−1(v1))
ϕdx
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≤
∫
R2

V −(x)
G−1(v2)

g(G−1(v2))
ϕdx+

∫
R2

f(x,G−1(v2))

g(G−1(v2))
ϕdx

= 〈T (v2), ϕ〉

for all ϕ ∈W+ and this proves that T (v1) C T (v2). �

Lemma 3.4. The operator L−1 : (W ∗,C)→ (W,4) is increasing.

Proof. Let Φ1,Φ2 ∈W such that Φ1 C Φ2, that is,

〈Φ1, ϕ〉 ≤ 〈Φ2, ϕ〉, for all ϕ ∈W+.

Setting v1 = L−1(Φ1) and v2 = L−1(Φ2), for ϕ ∈ W+ one has 〈L(v1), ϕ〉 ≤
〈L(v2), ϕ〉 and thus

0 ≤
∫
R2

(∇v2 −∇v1)∇ϕdx+

∫
R2

V +(x)
[ G−1(v2)

g(G−1(v2))
− G−1(v1)

g(G−1(v1))

]
ϕdx

− λ
∫
R2

[ |G−1(v2)|q−2G−1(v2)

g(G−1(v2))
− |G

−1(v1)|q−2G−1(v1)

g(G−1(v1))

]
ϕdx.

Now, taking ϕ = (v2 − v1)− = max{v1 − v2, 0} ∈W+ and using Lemma 2.1-(9) we
reach

0 ≤ −
∫
R2

|∇(v2 − v1)−|2 +

∫
{v2<v1}

V +(x)
[ G−1(v2)

g(G−1(v2))
− G−1(v1)

g(G−1(v1))

]
(v1 − v2)dx

+

∫
{v2<v1}

V +(x)
[ |G−1(v2)|p−2G−1(v2)

g(G−1(v2))
− |G

−1(v1)|p−2G−1(v1)

g(G−1(v1))

]
(v1 − v2)dx

≤ −
∫
R2

|∇(v2 − v1)−|2dx

from which it follows that
∫
R2 |∇(v2 − v1)−|2dx = 0. So (v2 − v1)− = 0 and thus

v1 ≤ v2 a.e. in R2, i.e., L−1(Φ1) 4 L−1(Φ2). �

Now we define the operator S : W →W by S = L−1 ◦T and our goal is to show
that there exists a ball in W which is invariant by S. We will use the following
notation:

BW [0, R] = {v ∈W : ‖v‖ ≤ R}.

Lemma 3.5. Under the hypotheses of Theorem 1.1, there exists 0 < R1 ≤M and
δ0 > 0 such that if ‖h‖q ≤ δ0 then

S(BW [0, R1]) ⊂ BW [0, R1].

Proof. Let v ∈W and w = S(v) = L−1(T (v)). By Lemma 2.1-(4) and the estimates
(3.2)-(3.3), we have

〈L(w), w〉 =

∫
R2

|∇w|2 +

∫
R2

V +(x)
G−1(w)w

g(G−1(w))
dx

− λ
∫
R2

|G−1(w)|p−2G−1(w)w

g(G−1(w))
dx−

∫
R2

h(x)wdx

≥
∫
R2

|∇w|2dx+
1

α

[ ∫
R2

V +(x)[G−1(w)]2dx− λ
∫
R2

|G−1(w)|pdx
]

− ‖h‖q‖w‖q′
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≥ Λ‖w‖2 − 1

S
1/2
q′

‖h‖q‖w‖,

where Λ =
2|λ|Gp1
αpV∞

according to (A9). From this it follows that

Λ‖S(v)‖2 = Λ‖w‖2

≤ 〈L(w), w〉+
1

S
1/2
q′

‖h‖q‖w‖

≤ 〈T (v), S(v)〉+
1

S
1/2
q′

‖h‖q‖S(v)‖

≤
(
‖T (v)‖∗ +

1

S
1/2
q′

‖h‖q
)
‖S(v)‖.

Thus, if ‖v‖ ≤M then by Lemma 3.2 one has

‖S(v)‖ ≤ 1

Λ

( 1

St0
‖V −‖Lp0 (BR0

)‖v‖+ C3‖k‖σ‖v‖ρ + C4‖v‖µ +
1

S
1/2
q′

‖h‖q
)
.

Hence, if M ≥ R > 0 and ‖v‖ ≤ R, then

‖S(v)‖
R

≤ 1

Λ

( 1

St0
‖V −‖Lp0 (BR0

) + C3R
ρ−1 + C4R

µ−1 +
1

S
1/2
q′ R

‖h‖q
)
. (3.10)

Next, we choose M ≥ R1 > 0 sufficiently small so that

1

Λ

(
C3R

ρ−1
1 + C4R

µ−1
1

)
≤

1− Λ−1S−1t0 ‖V
−‖Lp0 (BR0

)

2
.

By considering

δ0 :=
S
1/2
q′ R1

(
1− Λ−1S−1t0 ‖V

−‖Lp0 (BR0
)

)
2

> 0

and taking R = R1 in (3.10), we deduce that if ‖h‖q ≤ δ0, then ‖S(v)‖
R1

≤ 1.

Therefore, S(BW [0, R1]) ⊂ BW [0, R1] and the proof is complete. �

Finally, let us conclude the proof of Theorem 1.1. From the definition of the
operator S and by invoking Lemmas 3.3 and 3.4, it follows that S is increasing. In
view of Lemma 3.5, BW [0, R] is invariant by S and by Lemma 2.6, BW [0, R] has
the fixed point property. Therefore, there exists v ∈ BW [0, R] such that S(v) = v.
Since S = L−1 ◦ T we have

〈L(v), w〉 = 〈T (v), w〉, for all w ∈W

and according to (2.2) v is a weak solution of Equation (2.1). Using now Lemma
2.2, we see that u = G−1(v) is a weak solution for (1.1) and Theorem 1.1 is proved.
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Pessoa - PB, Brazil
Email address: bruno@mat.ufpb.br

Diogo de S. Germano
Universidade Federal de Campina Grande, Unidade Académica de Matemática, CEP
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