A BIHARMONIC EQUATION WITH DISCONTINUOUS NONLINEARITIES

EDUARDO ARIAS, MARCO CALAHORRANO, ALFONSO CASTRO

Abstract. We study the biharmonic equation with discontinuous nonlinearity and homogeneous Dirichlet type boundary conditions

$$
\begin{gather*}
\Delta^{2} u=H(u-a) q(u) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{1}\\
\frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where Δ is the Laplace operator, $a>0, H$ denotes the Heaviside function, q is a continuous function, and Ω is a bounded domain in \mathbb{R}^{N} with $N \geq 3$.

Adapting the method introduced by Ambrosetti and Badiale (The Dual Variational Principle), which is a modification of Clarke and Ekeland's Dual Action Principle, we prove the existence of nontrivial solutions to 1. This method provides a differentiable functional whose critical points yield solutions to (1) despite the discontinuity of $H(s-a) q(s)$ at $s=a$.

Considering Ω of class $\mathcal{C}^{4, \gamma}$ for some $\gamma \in(0,1)$, and the function q constrained under certain conditions, we show the existence of two non-trivial solutions. Furthermore, we prove that the free boundary set $\Omega_{a}=\{x \in \Omega$: $u(x)=a\}$ has measure zero when u is a minimizer of the action functional.

1. Introduction

The main objective of this work is to study the existence of solutions to the PDE

$$
\begin{gather*}
\Delta^{2} u=H(u-a) q(u) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{1.1}\\
\frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where Δ is the Laplace operator, $a>0, H$ denotes the Heaviside function, $q \in \mathcal{C}(\mathbb{R})$, and Ω is a domain of \mathbb{R}^{N} with $N \geq 3$.

The action functional associated with 1.1 is given by

$$
\begin{equation*}
J(u)=\int_{\Omega}\left((\Delta u)^{2}-Q(u)\right) d \mathbf{x} \quad \forall u \in H_{0}^{2}(\Omega) \tag{1.2}
\end{equation*}
$$

[^0]where $Q(t):=\int_{0}^{t} H(s-a) q(s) d \boldsymbol{s}$, and $H_{0}^{2}(\Omega)$ denotes de Sobolev space of square integrable functions having square integrable first and second order partial derivatives and vanishing in $\partial \Omega$ together with its first order partial derivatives. Since H is not continuous at $s=a, Q$ need not be differentiable at $s=a$, and, therefore, J need not be differentiable. We bypass this difficulty using the Dual Variational Principle introduced by Ambrosetti and Badiale (1989) which yields a differentiable functional even when Q is not continuous.

2. Preliminaries

Throughout this article we assume that q is a continuous function and that

$$
\begin{gather*}
q(s) \geq 0 \text { for all } s \geq 0, q \text { is non-decreasing; } \tag{2.1}\\
q(s) \leq \alpha|s|+c_{0}, \text { with } 0<\alpha<\mu_{1} \text { and } c_{0} \text { a constant, } \tag{2.2}
\end{gather*}
$$

where μ_{1} is the first eigenvalue of the biharmonic operator with homogeneous Dirichlet boundary conditions.

Let us consider the multivalued function \hat{q} defined by

$$
\hat{q}(s):= \begin{cases}q(s) & \text { if } s>a \\ {[0, q(a)]} & \text { if } s=a \\ 0 & \text { if } s<a\end{cases}
$$

Definition 2.1. A function $u: \Omega \rightarrow \mathbb{R}$ is called a multi valued solution of the PDE (1) if $u \in H_{0}^{2}(\Omega) \cap H^{4}(\Omega)$ and u satisfies

$$
\Delta^{2} u \in \hat{q}(u), \quad \text { a.e. in } \Omega
$$

Definition 2.2. Let u a solution of (1). The set

$$
\Omega_{a}=\{x \in \Omega: u(x)=a\}
$$

is called the free boundary.
Letting $p(s)=H(s-a) q(s)$, we rewrite (1) as

$$
\begin{gather*}
\Delta^{2} u=p(u) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{2.3}\\
\frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

Definition 2.3. A function $u: \Omega \rightarrow \mathbb{R}$ is called a solution to the PDE 2.3) if $u \in H_{0}^{2}(\Omega) \cap H^{4}(\Omega)$ and u satisfies

$$
\Delta^{2} u=p(u) \quad \text { a.e. in } \Omega
$$

Let us define $p_{m}(s):=p(s)+m s$. Note that, for $m>0$, the function p_{m} is strictly increasing and 2.3 is equivalent to

$$
\begin{gather*}
\Delta^{2} u+m u=p_{m}(u) \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega \tag{2.4}\\
\frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

Let us consider the multivalued function \hat{p} defined by

$$
\hat{p}(s):= \begin{cases}p_{m}(s) & \text { if } s \neq a \\ {[m a, m a+q(a)]} & \text { if } s=a\end{cases}
$$

where $b=q(a)$.
Let p^{*} denote the generalized inverse of \hat{p} given by

$$
p^{*}(w)=s \Longleftrightarrow w \in \hat{p}(s) .
$$

Remark 2.4. The function p^{*} is a continuous though \hat{p} is a multivalued function, and

$$
p^{*}(w)=a \Longleftrightarrow m a \leq w \leq p_{m}(a)=m a+q(a) .
$$

Defining $P^{*}(w):=\int_{0}^{w} p^{*}(s) d \boldsymbol{s}$, we see that $P^{*} \in \mathcal{C}^{1}(\mathbb{R})$. Also, from 2.2,

$$
\begin{equation*}
\frac{w}{m+\alpha}-\frac{c_{0}+q(a)}{m} \leq p^{*}(w) \leq \frac{w}{m} \quad \text { for all } w \in \mathbb{R} \tag{2.5}
\end{equation*}
$$

From the above inequalities we obtain

$$
\begin{gather*}
P^{*}(w) \geq \frac{1}{2} \frac{w^{2}}{m+\alpha}-\frac{c_{0}+q(a)}{m}|w| \quad \text { for all } w \in \mathbb{R} \tag{2.6}\\
P^{*}(w) \leq \frac{w^{2}}{2 m} \quad \text { for all } w \in \mathbb{R} \tag{2.7}
\end{gather*}
$$

Assuming that Ω of class \mathcal{C}^{2}, for every $w \in L^{2}(\Omega)$ the problem

$$
\begin{gathered}
\left(\Delta^{2}+m\right) v=w \quad \text { in } \Omega \\
v=0 \quad \text { on } \partial \Omega \\
\frac{\partial v}{\partial n}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

has a unique weak solution $v \in H_{0}^{2}(\Omega) \cap H^{4}(\Omega)$. Defining $v=G(w)$, elliptic regularity theory implies that G is a continuous linear operator from $L^{2}(\Omega)$ into $\left.H_{0}^{2}(\Omega) \cap H^{4}(\Omega)\right)$. Moreover,

$$
\begin{equation*}
\int_{\Omega} w(x) G(w)(x) d x \leq \frac{1}{m+\mu_{1}} \int_{\Omega} w^{2}(x) d x \tag{2.8}
\end{equation*}
$$

Next we define $f: L^{2}(\Omega) \rightarrow \mathbb{R}$ by

$$
f(w):=\int_{\Omega}\left(P^{*}(w)-\frac{1}{2} w G(w)\right) d \mathbf{x}
$$

Since P^{*} is a differentiable function, $f \in \mathcal{C}^{1}\left(L^{2}(\Omega)\right)$.

3. Main Results

Lemma 3.1. If $w \in L^{2}(\Omega)$ is a critical point of f, then $u:=G(w)$ is a solution to (2.3) in the sense that $u \in H_{0}^{2}(\Omega) \cap H^{4}(\Omega)$ and $\Delta^{2} u=p(u)$ a.e. in Ω.

Proof. Let $w \in L^{2}(\Omega)$ be such that $f^{\prime}(w)=0$, then $p^{*}(w)=G(w)$ a.e. in Ω. Hence $u:=G(w) \in H_{0}^{2}(\Omega) \cap H^{4}(\Omega)$ and satisfies $\left(\Delta^{2}+m\right) u=w$. This implies that $p^{*}(w)=u$ a.e. in Ω, and from the definition of p^{*} we obtain that $w \in \hat{p}(u)$, and hence

$$
\Delta^{2} u+m u \in \hat{p}(u) \quad \text { a.e. in } \Omega .
$$

For $x \in \Omega \backslash \Omega_{a}$, i.e., when $u(x) \neq a$ we have $\hat{p}(u(x))=m u(x)+p(u(x))$ and then $\Delta^{2} u(x)=p(u(x))$ a.e. $x \in \Omega \backslash \Omega_{a}$.

Since u is constant a.e. in $\Omega_{a}, \Delta^{2} u=0$ a.e. in Ω_{a}. Therefore,

$$
\Delta^{2} u+p_{m}(u(x))=m u(x)+H(0) q(a)=m a \quad \text { a.e. in } \Omega
$$

Thus $\Delta^{2} u=p(u)$ a.e. in Ω_{a}. These show that u is a solution of 2.3 .

Next we apply the direct method of the calculus of variations to prove the existence of a solution 2.3).
Theorem 3.2 (First existence theorem). There exists $w_{0} \in L^{2}(\Omega)$ such that

$$
f\left(w_{0}\right)=\min _{w \in L^{2}(\Omega)} f(w)
$$

Fixing $u_{0}:=G\left(w_{0}\right)$, where u_{0} is a solution of (2.3), the set

$$
\Omega_{a}=\left\{x \in \Omega: u_{0}(x)=a\right\}
$$

has zero measure.
Proof. For $w \in L^{2}(\Omega)$, from (2.8) and 2.6,

$$
\begin{equation*}
f(w) \geq \frac{1}{2}\left[\frac{1}{m+\alpha}-\frac{1}{m+\mu_{1}}\right]\|w\|_{L^{2}(\Omega)}^{2}-C\|w\|_{L^{2}(\Omega)} \tag{3.1}
\end{equation*}
$$

The hypothesis $0<\alpha<\mu_{1}$ and the inequality (3.1) implies

$$
\begin{equation*}
\lim _{\|u\|_{L^{2}(\Omega)} \rightarrow+\infty} f(u)=+\infty \tag{3.2}
\end{equation*}
$$

That is, f is coercive. Let $\hat{m}=\inf _{w \in L^{2}(\Omega)} f(w)$. From the coercivity of f, we have $\hat{m}>-\infty$. This and the compactness of G imply that f attains its global minimum at some w_{0}. Let $u_{0}=G\left(w_{0}\right)$ be a solution of (2.3).

Let χ denote the characteristic function of Ω_{a}. This results in

$$
\begin{aligned}
\frac{d}{d \varepsilon} f\left(w_{0}+\varepsilon \chi\right) & =\int_{\Omega}\left(p^{*}\left(w_{0}+\varepsilon \chi\right)-\varepsilon G(\chi)-G\left(w_{0}\right)\right) \chi d \mathbf{x} \\
& =\int_{\Omega_{a}} p^{*}\left(w_{0}+\varepsilon \chi\right) d \mathbf{x}-\varepsilon \int_{\Omega} \chi G(\chi) d \mathbf{x}-\int_{\Omega_{a}} u_{0} d \mathbf{x}
\end{aligned}
$$

for every $\varepsilon \in \mathbb{R}$. From $G\left(w_{0}\right)=u_{0}$ and $\Delta^{2} u_{0}=0$ a.e. in Ω_{a}, it follows that $w_{0}=m a$ a.e. in Ω_{a}. Hence, taking $0<\varepsilon<b$, one finds that

$$
m a \leq w_{0}+\varepsilon \chi \leq m a+b=m a+q(a)
$$

a.e. in Ω_{a}. Then $p^{*}\left(w_{0}(x)+\varepsilon \chi(x)\right)=a$ a.e. in Ω_{a} and

$$
\int_{\Omega_{a}} p^{*}\left(w_{0}+\varepsilon \chi\right) d \mathbf{x}=\int_{\Omega_{a}} a d \mathbf{x}=a\left|\Omega_{a}\right|=\int_{\Omega_{a}} u_{0} d \mathbf{x}
$$

Since $\chi \in L^{2}(\Omega)$ by the definition of G there exists $z \in H_{0}^{2}(\Omega) \cap H^{4}(\Omega)$ such that $z=G(\chi)$, it follows that

$$
(G(\chi) \mid \chi)=\int_{\Omega}\left(z \Delta^{2} z+m z^{2}\right) d \mathbf{x}
$$

The above equalities imply

$$
\frac{d}{d \varepsilon} f\left(w_{0}+\varepsilon \chi\right)=-\varepsilon\left(\int_{\Omega}(\Delta z)^{2} d \mathbf{x}+m\|z\|_{L^{2}(\Omega)}^{2}\right) .
$$

If $\left|\Omega_{a}\right|>0$, it follows that

$$
\frac{d}{d \varepsilon} f\left(w_{0}+\varepsilon \chi\right)<0
$$

a contradiction, because w_{0} is the global minimum of f.
We note that the last arguments of the proof are valid for any local minimum of f. The next lemma and Lemma 3.5 prove that the graph f satisfies the geometric hypotheses of the Mountain-Pass theorem.

Lemma 3.3. For each $a>0$ and $m>0$, there exists $\epsilon>0$ and $\gamma>0$ such that if $\|u\|_{L^{2}(\Omega)} \leq \epsilon$ then $f(u) \geq \gamma\|u\|_{L^{2}(\Omega)}^{2}$. Hence f attains a strict local minimum at $u=0$.

Proof. Let $\alpha_{1} \in\left(\alpha, \mu_{1}\right)$. Since $p^{*}(s)=m s$ for all $s \in(-\infty, a], P^{*}(s)=\frac{s^{2}}{2 m}$ for any $s \in(-\infty, m a]$. Also, from (2.2), there exists $c_{1} \geq m a$ such that

$$
\begin{equation*}
P^{*}(s) \geq \frac{1}{2\left(m+\alpha_{1}\right)} s^{2} \quad \text { for } s \geq c_{1} \tag{3.3}
\end{equation*}
$$

For $v \in L^{2}(\Omega) \backslash\{0\}$, let $W=\left\{x \in \Omega ; m a \leq v(x) \leq c_{1}\right\}, v_{1}=\chi_{\Omega \backslash W} v$ and $v_{2}=\chi_{W} v$, where χ_{S} denotes the characteristic function of the set S. Thus,

$$
\begin{equation*}
\int_{\Omega} P^{*}\left(v_{1}\right) d x \geq \frac{1}{2\left(m+\alpha_{1}\right)} \int_{\Omega} v_{1}^{2}(x) d x \tag{3.4}
\end{equation*}
$$

Letting $|W|$ denote the Lebesgue measure of the set W, we have

$$
\begin{equation*}
|W| \leq \frac{\left\|v_{2}\right\|_{L^{2}(\Omega)}^{2}}{m^{2} a^{2}}=\frac{\left\|v_{2}\right\|_{L^{2}(W)}^{2}}{m^{2} a^{2}} \tag{3.5}
\end{equation*}
$$

Since $p^{*}(m a)=a$, for $s \in\left[m a, c_{1}\right]$ we have $P^{*}(s) \geq \frac{a}{2 c_{1}} s^{2}$. Therefore

$$
\begin{equation*}
\frac{a}{2 c_{1}} \int_{W} v_{2}^{2}(x) d x \leq \int_{W} P^{*}\left(v_{2}(x)\right) d x \leq \frac{c_{1}^{2}}{2 m}|W| \leq \frac{c_{1}^{2}}{2 m^{3} a^{2}} \int_{W} v_{2}^{2}(x) d x \tag{3.6}
\end{equation*}
$$

From the definition of μ_{1}, we have $\int_{\Omega} G\left(v_{1}\right) v_{1} d x \leq \frac{1}{m+\mu_{1}} \int_{\Omega} v_{1}^{2} d x$. By regularity properties of elliptic operators, there exist $p>2$ and $K>0$ such that

$$
\begin{equation*}
\|G(u)\|_{L^{p}(\Omega)} \leq K(p)\|u\|_{L^{2}(\Omega)} \quad \text { for all } u \in L^{2}(\Omega) \tag{3.7}
\end{equation*}
$$

Hence, for $i=1,2$, see (3.5),

$$
\begin{align*}
\int_{\Omega} v_{2}(x) G\left(v_{i}(x)\right) d x & =\int_{W} v_{2}(x) G\left(v_{i}(x)\right) d x \\
& \leq\left\|v_{2}\right\|_{L^{2}(\Omega)}\left(\int_{W}\left(G\left(v_{i}\right)\right)^{2}(x) d x\right)^{1 / 2} \\
& \leq\left\|v_{2}\right\|_{L^{2}(\Omega)}\left(\int_{W}\left(G\left(v_{i}\right)\right)^{p}(x) d x\right)^{1 / p}|W|^{(p-2) / 2 p} \tag{3.8}\\
& \leq K(p)\left\|v_{2}\right\|_{L^{2}(\Omega)}\left\|v_{i}\right\|_{L^{2}(\Omega)}|W|^{(p-2) / 2 p} \\
& \leq \frac{K(p)}{(m a)^{(p-2) / p}}\left\|v_{2}\right\|_{L^{2}(\Omega)}^{2(p-1) / p}\left\|v_{i}\right\|_{L^{2}(\Omega)}
\end{align*}
$$

Therefore,

$$
\begin{align*}
& \int_{\Omega} v(x) G(v(x)) d x \\
& =\int_{\Omega}\left(v_{1} G\left(v_{1}\right)+v_{2} G\left(v_{1}\right)+v_{1} G\left(v_{2}\right)+v_{2} G\left(v_{2}\right)\right) d x \\
& \leq \frac{1}{m+\mu_{1}}\left\|v_{1}\right\|_{L^{2}(\Omega)}^{2}+\int_{\Omega}\left(2 v_{2} G\left(v_{1}\right)+v_{2} G\left(v_{2}\right)\right) d x \\
& =\frac{1}{m+\mu_{1}}\left\|v_{1}\right\|_{L^{2}(\Omega)}^{2}+\int_{W}\left(2 v_{2} G\left(v_{1}\right)+v_{2} G\left(v_{2}\right)\right) d x \tag{3.9}\\
& \leq \frac{1}{m+\mu_{1}}\left\|v_{1}\right\|_{L^{2}(\Omega)}^{2} \\
& \quad+\frac{K(p)}{(m a)^{(p-2) / p}}\left\|v_{2}\right\|_{L^{2}(\Omega)}^{2(p-1) / p}\left(2\left\|v_{1}\right\|_{L^{2}(\Omega)}+\left\|v_{2}\right\|_{L^{2}(\Omega)}\right) \\
& \leq \frac{1}{m+\mu_{1}}\left\|v_{1}\right\|_{L^{2}(\Omega)}^{2}+C\left\|v_{2}\right\|_{L^{2}(\Omega)}^{2(p-1) / p}\left(\left\|v_{1}\right\|_{L^{2}(\Omega)}+\left\|v_{2}\right\|_{L^{2}(\Omega)}\right)
\end{align*}
$$

with $C>0$ independent of v. Combining (3.4), (3.6), and (3.9), we have

$$
\begin{align*}
f(v)= & \int_{\Omega}\left[P^{*}(v(x))-\frac{1}{2} v(x) G(v(x))\right] d x \\
\geq & \frac{1}{2\left(m+\alpha_{1}\right)}\left\|v_{1}\right\|_{L^{2}(\Omega)}^{2}+\frac{a}{2 c_{1}}\left\|v_{2}\right\|_{L^{2}(\Omega)}^{2}-\frac{1}{2\left(m+\mu_{1}\right)}\left\|v_{1}\right\|_{L^{2}(\Omega)}^{2} \\
& -C\left\|v_{2}\right\|_{L^{2}(\Omega) / p}^{2(p-1)}\left(\left\|v_{1}\right\|_{L^{2}(\Omega)}+\left\|v_{2}\right\|_{L^{2}(\Omega)}\right) \\
\geq & \frac{\mu_{1}-\alpha_{1}}{4\left(m+\alpha_{1}\right)\left(m+\mu_{1}\right)}\left\|v_{1}\right\|_{L^{2}(\Omega)}^{2}+\frac{a}{2 c_{1}}\left\|v_{2}\right\|_{L^{2}(\Omega)}^{2} \tag{3.10}\\
& -C\left\|v_{2}\right\|_{L^{2}(\Omega) / p}^{2(p-1) /}\left(\left\|v_{1}\right\|_{L^{2}(\Omega)}+\left\|v_{2}\right\|_{L^{2}(\Omega)}\right) \\
\geq & \gamma_{1}\|v\|_{L^{2}(\Omega)}^{2}-2 C\|v\|_{L^{2}(\Omega)}^{1+2(p-1) / p} \\
\geq & \gamma_{1}\|v\|_{L^{2}(\Omega)}^{2}\left(1-\frac{2 C}{\gamma_{1}}\|v\|_{L^{2}(\Omega)}^{(3 p-2) / p}\right)
\end{align*}
$$

where

$$
\gamma_{1}=\min \left\{\frac{\mu_{1}-\alpha_{1}}{4\left(m+\alpha_{1}\right)\left(m+\mu_{1}\right)}, \frac{a}{2 c_{1}}\right\} .
$$

Since $p>2,(3 p-2) / p>0$. Hence taking $\epsilon=\left(\gamma_{1} /(4 C)\right)^{p /(3 p-2)}$ and $\gamma=\gamma_{1} / 2$, the lemma is proven.

The next lemmas show that, under suitable conditions on Ω and an appropriate relationship between a and $q(a), f$ possesses a pair of non-trivial critical points: a negative global minimum and a positive Mountain-Pass critical point.

Definition 3.4. Let U be a domain in $\mathbb{R}^{N}, k \in \mathbb{N}, \gamma \in[0,1)$, and $\varepsilon>0$. We say that U is ε-close in $\mathcal{C}^{k, \gamma}$-sense to the unit ball B if there exists a surjective mapping $g \in \mathcal{C}^{k, \gamma}(\bar{B} ; \bar{U})$ such that

$$
\|g-I d\|_{\mathcal{C}^{k, \gamma}(\bar{B} ; \bar{U})} \leq \varepsilon
$$

In 2020 Grunau and Sweers 13 show that there is $\varepsilon_{N}>0$ such that if Ω is ε-close in $\mathcal{C}^{4, \gamma}$-sense to the unitary ball B with $\varepsilon<\varepsilon_{N}$, then the first eigenfunction φ_{1} for
the first eigenvalue μ_{1} of

$$
\begin{gathered}
\Delta^{2} \varphi=\mu \varphi \quad \text { in } \Omega \\
\varphi=0 \quad \text { on } \partial \Omega \\
\frac{\partial \varphi}{\partial n}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

is unique (up to normalization), and $\varphi_{1}>0$ in Ω.
Lemma 3.5. Let Ω be ε-close in $\mathcal{C}^{k, \gamma}$-sense to the unit ball B. If

$$
\begin{equation*}
\frac{q(a)}{a}=\frac{b}{a}>2 \mu_{1} \frac{\left\|\varphi_{1}\right\|_{L^{1}(\Omega)}}{\left\|\varphi_{1}\right\|_{L^{2}(\Omega)}^{2}} \tag{3.11}
\end{equation*}
$$

then $f\left(b \varphi_{1}\right)<0$.
Proof. Since $0<b \varphi_{1}(x) \leq b$ and $p^{*}(w) \leq a$, for $0 \leq w \leq b$, it follows that

$$
\begin{aligned}
f\left(b \varphi_{1}\right) & =\int_{\Omega} P^{*}\left(b \varphi_{1}\right) d \mathbf{x}-\frac{1}{2} b^{2} \int_{\Omega} G\left(\varphi_{1}\right) \varphi_{1} d \mathbf{x} \\
& \leq b a\left\|\varphi_{1}\right\|_{L^{1}(\Omega)}-\frac{b^{2}}{2 \mu_{1}}\left\|\varphi_{1}\right\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

This and (3.11) imply $f\left(b \varphi_{1}\right)<0$.
Finally, we prove that f satisfies a weak form of (PS) condition.
Lemma 3.6. Let $\left\{w_{k}\right\}_{k \in \mathbb{N}}$ in $L^{2}(\Omega)$ be such that $\left\{f^{\prime}\left(w_{k}\right)\right\}_{k \in \mathbb{N}}$ converges to 0 and $\left\{f\left(w_{k}\right)\right\}_{k \in \mathbb{N}}$ converges to a real number c, then there exists $w \in L^{2}(\Omega)$ with $f(w)=$ $c, f^{\prime}(w)=0$, and $w_{k} \rightharpoonup w$.

Proof. The coercivity of the functional f implies, up to subsequences, the existence of $w \in L^{2}(\Omega)$ such that $w_{n} \rightharpoonup w$ in $L^{2}(\Omega)$. From $f^{\prime}\left(w_{k}\right) \rightarrow 0$ and the compactness of G, it follows that $G\left(w_{n}\right) \rightarrow v:=G(w)$, strongly in $L^{2}(\Omega)$, and a.e. in Ω. Let $\Gamma=\{x \in \Omega: v(x)=a\}$ and $\Omega_{1}=\Omega \backslash \Gamma$.

Let us begin studying the convergence in Ω_{1}. Since $p \in \mathcal{C}(\mathbb{R} \backslash\{a\})$ and $p^{*}\left(w_{k}\right) \rightarrow v$ a.e. in Ω, hence $w_{k} \rightarrow p(v)$ a.e. in Ω_{1}. Clearly, $|w| \leq C_{1}\left|p^{*}(w)\right|+C_{2}$; this and the convergence of $\left\{p^{*}\left(w_{k}\right)\right\}_{k \in \mathbb{N}}$ in $L^{2}(\Omega)$ imply that there exists $h \in L^{2}(\Omega)$ such that $\left|w_{k}\right| \leq h$ for every $k \in \mathbb{N}$. Applying the Lebesgue dominated convergence theorem: $w_{k} \rightarrow p(v)$ a.e. in $L^{2}\left(\Omega_{1}\right)$. From the uniqueness of the weak limit, one infers that $w=p(v)$ in $L^{2}\left(\Omega_{1}\right)$. Since p^{*} is asymptotically linear, it follows that

$$
\begin{equation*}
p^{*}\left(w_{k}\right) \rightarrow p^{*}(w) \text { in } L^{2}\left(\Omega_{1}\right), \quad \text { and } \quad \int_{\Omega_{1}} P^{*}\left(w_{k}\right) d \mathbf{x} \rightarrow \int_{\Omega_{1}} P^{*}(w) d \mathbf{x} \tag{3.12}
\end{equation*}
$$

On the other hand, for a.e. $x \in \Gamma$, one has $w(x)=m v(x)=m a$ and hence $p^{*}(w(x))=p^{*}(m a)=a=v(x)$. This jointly with 3.12 imply $p^{*}(w)=v$, which in turn $f^{\prime}(w) v=0$, hence $f^{\prime}(w)=0$. In a similar way, from 3.12) and the definition of $P^{*}(s)$ for $s \in[m a, m a+b]$, one finds that

$$
\int_{\Omega} P^{*}\left(w_{k}\right) d \mathbf{x} \rightarrow \int_{\Omega} P^{*}(w) d \mathbf{x}
$$

Letting $c=\int_{\Omega}\left[P^{*}(w)-\frac{1}{2} w G(w)\right] d \mathbf{x}$ it follows that $f(w)=c$, which completes the proof.

Theorem 3.7. Assume that the domain Ω is ε-close in $\mathcal{C}^{k, \gamma}$-sense to the unit ball B. Suppose that 2.1, 2.2, and (3.11 hold. Then the problem 2.3 has two distinct solutions $u_{0} \neq u_{1}$, and one of these solutions, obtained through the minimizer, has a free boundary set of measure zero.

Proof. Let w_{0} be the global minimum of f given by Theorem 3.2. By Lemma 3.5 , $f\left(w_{0}\right)<0$. Hence $w_{0} \neq 0$ and $u_{0}=G\left(w_{0}\right)$ is a non-trivial solution of (2.3) and the free boundary $\Omega_{a}\left(u_{0}\right)=\left\{x \in \Omega: u_{0}(x)=a\right\}$ has zero measure.

Taking $\rho=\epsilon / 2>0$ and $\beta=\gamma \epsilon / 2>0$ in Lemma3.3 we see that $f(u) \geq \beta>0$ for $\|u\|_{L^{2}(\Omega)}=\rho>0$. This Lemmas 3.5, and 3.6 allow us to apply the Mountain-Pass Theorem (see [5]), yielding a second non-trivial critical point w_{1}, with $f\left(w_{1}\right) \geq$ $\beta>0$. Hence $u_{1}=G\left(w_{1}\right) \neq 0$ is a second non-trivial solution of 2.3). Since $f\left(w_{0}\right)<0<f\left(w_{1}\right), w_{0} \neq w_{1}$ and as a consequence $u_{0} \neq u_{1}$.

Finally, the zero measure of $\Omega_{a}\left(u_{0}\right)$ follows from the fact that u_{0} minimizes f over all functions with zero measure on the set $\Omega_{a}\left(u_{0}\right)$, as proven in Theorem 3.2. However, it is possible for the free boundary of u_{1} to have positive measure.

Therefore, by Lemma 3.1, problem (2.3) has two different solutions $u_{0} \neq u_{1}$, with the free boundary of u_{0} having zero measure.

Acknowledgments. We would like to thank the Escuela Politécnica Nacional for providing financial support through the proyecto semilla PIS-17-01 during the development of this work.

References

[1] A. Ambrosetti; Critical points and nonlinear variational problems, Société Mathématique de France, Mémoire (49), Supplément au Bulletin de la S.M.F., Tome 120, (2), 1992.
[2] A. Ambrosetti, M. Badiale; The dual variational principle and elliptic problems with discontinuous nonlinearities, Journal of Mathematical Analysis and Applications, 140 (2) (1989), 363-373.
[3] A. Ambrosetti, A. Malchiodi; Nonlinear analysis and semilinear elliptic problems, Cambridge University Press, 2007.
[4] A. Ambrosetti, G. Prodi; A primer of nonlinear analysis, Cambridge University Press, 1995.
[5] A. Ambrosetti, P. Rabinowitz; Dual variational methods in critical point theory and applications, Journal of Functional Analysis, 14 (4) (1973), 349-381.
[6] D. Arcoya, M. Calahorrano; Some discontinuous problems with a quasilinear operator, Journal of Mathematical Analysis and Applications, 187 (3) (1994), 1059-1072.
[7] M. Calahorrano, J. Mayorga; Un problema discontinuo con operador cuasilineal, Revista Colombiana de Matemáticas, 35 (2001), 1-11.
[8] K.-C. Chang; Variational methods for non-differentiable functionals and their applications to partial differential equations, Journal of Mathematical Analysis and Applications, 80 (1) (1981), 102-129.
[9] D. G. Costa, J. V. A. Gonçalves; Critical point theory for nondifferentiable functionals and applications, Journal of Mathematical Analysis and Applications, 153 (2) (1990), 470-485.
[10] F. Gazzola, H.-C. Grunau, G. Sweers; Polyharmonic boundary value problems: positivity preserving and nonlinear higher order elliptic equations in bounded domains, Springer Science \& Business Media, 2010.
[11] N. Ghoussoub, D. Preiss; A general mountain pass principle for locating and classifying critical points, Annales de l'IHP Analyse Non Linéaire, 6 (5) (1989), 321-330.
[12] H.-C. Grunau, G. Sweers; The maximum principle and positive principal eigenfunctions for polyharmonic equations, Reaction diffusion systems (Trieste, 1995), 163-182, Lecture Notes in Pure and Appl. Math., 194, Dekker, New York, 1998.
[13] H.-C. Grunau, G. Sweers; The maximum principle and positive principal eigenfunctions for polyharmonic equations, Reaction diffusion systems, CRC Press, https://doi.org/10.1201/9781003072195, 2020.
[14] A. Szulkin; Ljusternik-Schnirelmann theory on C^{1}-manifolds, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 5 (2) (1988), 119-139.

Eduardo Arias
Departamento de Matemática, Escuela Politécnica Nacional, Quito PO-Box 17-01-2759, Ecuador

Email address: marcelo.arias@epn.edu.ec, eduardo.arias.94@outlook.es
Marco Calahorrano
Departmento de Matemática, Escuela Politécnica Nacional, Quito PO-Box 17-01-2759, Ecuador

Email address: marco.calahorrano@epn.edu.ec
Alfonso Castro
Department of Mathematics, Harvey Mudd College, Claremont, CA 91711, USA
Email address: castro@g.hmc.edu

[^0]: 2020 Mathematics Subject Classification. 31B30, 35J60, 35J65, 58E05
 Key words and phrases. Biharmonic equation; nonlinear discontinuity; critical point; dual variational principle; free boundary problem.
 (C)2024. This work is licensed under a CC BY 4.0 license.

 Submitted October 15, 2022. Published February 6, 2024.

