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PERIODIC SOLUTIONS IN DISTRIBUTION FOR STOCHASTIC

LATTICE DIFFERENTIAL EQUATIONS

YUE GAO, XUE YANG

Abstract. In this article, we consider stochastic lattice differential equations

(SLDEs) in the weighted space l2ρ of infinite sequences. We establish the well-
posedness of solutions and prove the existence of periodic solutions in distri-

bution. An example is given to illustrate the validity of our results.

1. Introduction

Lattice differential equations have been extensively studied because the variety
of applications in image processing, traffic flow analysis, virus propagation, pattern
formation, and so on. For the dynamics of deterministic lattice differential equa-
tions, we refer the reader to [2, 6, 13, 24] and references therein. Compared to
deterministic systems, stochastic lattice systems not only exhibit discrete spatial
characteristics but also account for the influence of random environments. This en-
ables SLDEs to better reveal objective phenomena. For this reasing, SLDEs have
attracted extensive attention; see [3, 4, 8, 14, 15, 26].

The concept of periodic solutions plays a crucial role in studying the long-term
behavior of random dynamical systems simulated by stochastic differential equa-
tions. Since the ground breaking work of Poincaré in [21, 22, 23], periodic solutions
have been the subject of research for over a century. In the past decade, many
works have been devoted to study periodicity of SDEs. For the existence of pe-
riodic solutions for finite-dimensional stochastic systems, we refer the reader to
[5, 9, 10, 11, 12, 16, 17, 18, 28].

Similar to the case of finite-dimensional systems, a crucial question is: Under
what conditions do SLDEs in weighted space l2ρ have the desired periodicity? In
this article, we focus on asymptotic behavior and attempt to address this issue.
Despite the increasing interest in treating SLDEs, the available results in this re-
gard still scarce. There are two main difficulties. First, because the disturbance
from noise, the sample paths of the solutions cannot maintain periodicity. In ad-
dition, rigorous convergence analysis is required to ensure the well-posedness of
solutions of infinite-dimensional systems. To this end, we consider a weaker period-
icity, so-called periodic solutions in distribution. In this paper, we first discuss the
well-posedness of SLDEs. Inspired by [5, 12], we provide sufficient conditions for

2020 Mathematics Subject Classification. 34C25, 34C27, 37H10.
Key words and phrases. Periodic solutions; stochastic lattice differential equations;

weighted spaces.
©2024. This work is licensed under a CC BY 4.0 license.

Submitted September 9, 2023. Published March 21, 2024.
1



2 Y. GAO, X. YANG EJDE-2024/25

the existence of periodic solutions in distribution for general SLDSs in a weighted
space of infinite sequences. Furthermore, we provide an illustrative example to
demonstrate the simplicity of our conditions via Lyapunov method.

The rest of this article is organized as follows. In Section 2, we give some
preliminaries. We introduce the notation and definitions of related concepts. In
addition, we discuss the well-posedness of SLDEs. In Section 3, we first give a priori
estimate to ensure the rationality of the assumptions. Then, we prove the existence
of periodic solutions in distribution. In Section 4, we illustrate our main result by
an example.

2. Preliminaries

Basic notation. First, we introduce a weighted space of infinite sequences. Let
ρ : Z → (0,M0] ⊂ R+ and p ≥ 1 be a real number. For each i ∈ Z, we define
ρ(i) = ρi and

lpρ =
{
u = (ui)i∈Z;

∞∑
i=1

ρi|ui|p < ∞
}

with the norm ∥u∥ρ,p =
(∑∞

i=1 ρi|ui|p
)1/p

for u ∈ lpρ. If p = 2, we denote ∥u∥ρ,2 =

∥u∥ρ. For u, v ∈ l2ρ, we denote the inner product in l2ρ as ⟨u, v⟩, where ⟨u, v⟩ =∑
i∈Z ρiuivi. The space Lp(Ω, l2ρ) consists of all l

2
ρ-valued random variables ξ such

that E∥ξ∥pρ =
∫
Ω
∥ξ∥pρdP < ∞. For a given l2ρ-valued random variable ξ, we denote

by P ◦ [ξ]−1 the distribution of ξ on l2ρ. Let B(l2ρ) be the Borel set of space l2ρ.

For z ∈ l2ρ, we use zT to denote the transpose of z. Let P(l2ρ) be the set of Borel

probability measures on l2ρ. Denote by Jf the Jacobian matrix of function f with

respect to x ∈ Rd. We define

∥h∥∞ = sup
x∈l2ρ

|h(x)|,

∥h∥L = sup
{ |h(x)− h(y)|

∥x− y∥ρ
;x, y ∈ l2ρ, x ̸= y

}
,

∥h∥BL = max{∥h∥∞, ∥h∥L},

dBL(µ1, µ2) = sup
∥h∥BL≤1

∣∣ ∫ hd(µ1 − µ2)
∣∣

for all Lipschitz continuous real-valued functions h(x) on l2ρ and all µ1, µ2 ∈ P(l2ρ).

Well-posedness of SLDEs. Let (Ω,F , {Ft}t≥0, P ) be a complete probability
space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is increas-
ing, right continuous and F0 contains all P -null sets). The first component u(t)
satisfies the SLDE

dui(t) = [ν(ui+1(t)− 2ui(t) + ui−1(t))− λui(t) + fi(u(t)) + gi(t)]dt

+ σi(t, u(t))dWi(t),
(2.1)

where i ∈ Z, ui ∈ R, ν, and λ are positive constants. We assume that (fi)i∈Z are
smooth functions, (gi(t))i∈Z, (σi(t))i∈Z ∈ l2ρ are continuous with respect to t ∈ R+,
and {Wi(t) : i ∈ Z} are independent one-dimensional Brownian motions.

For u ∈ l2ρ, let A, B, and B∗ be linear operators from l2ρ to l2ρ as follows:

(Bu)i = ui+1 − ui, (B∗u)i = ui−1 − ui,
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and (Au)i = −ui+1 + 2ui − ui−1. Then we have A = BB∗ = B∗B and ⟨B∗u, v⟩ =
⟨u,Bv⟩ for all u, v ∈ l2ρ. Therefore, ⟨Au, u⟩ ≥ 0 for all u ∈ l2ρ. Let ei denote the
element having 1 at position i and all the other components 0. We define

W (t) =
∑
i∈Z

Wi(t)e
i, f(u(t)) = (fi(u(t)))i∈Z,

g(t) = (gi(t))i∈Z, σ(t, u(t)) = (σ̃ij(t, u(t)))i,j∈Z,

where

σ̃ij =

{
σi, i = j,

0, i ̸= j.

Then we can rewrite (2.1) as

du(t) = [−νAu(t)− λu(t) + f(u(t)) + g(t)]dt+ σ(t, u(t))dW (t). (2.2)

Note that (2.2) can be interpreted as an integral equation

u(t) = u0 +

∫ t

0

[−νAu(s)− λu(s) + f(u(s)) + g(s)]ds+

∫ t

0

σ(s, u(s))dW (s) (2.3)

with initial value u0 := u(0).
We make the following assumptions on the coefficients of the above SLDE.

Assumption 2.1. For every i ∈ Z, t ∈ [0,∞), and u, v ∈ l2ρ, there exists positive
constants L and K such that

∥f(u)− f(v)∥2ρ ≤ L∥u− v∥2ρ, ∥f(u)∥2ρ ≤ K(1 + ∥u∥2ρ),
∥σ(t, u)− σ(t, v)∥2ρ ≤ L∥u− v∥2ρ, ∥σ(t, u)∥2ρ ≤ K(1 + ∥u∥2ρ).

Next, we prove the existence and uniqueness of solutions to SLDEs.

Theorem 2.2. Let T > 0, and suppose that Assumptions 2.1 holds. Then (2.3)
admits a unique solution u(t) ∈ L2(Ω, C([0, T ], l2ρ)) with initial value u(0) = u0 ∈
L2(Ω, l2ρ).

Proof. Step 1. We show uniqueness. Assume that u(t) and ũ(t) are two solution
of system (2.3) with initial value u0 ∈ l2ρ. Then we have

u(t)− ũ(t) =

∫ t

0

[−νA(u(s)− ũ(s))− λu(s) + λũ(s))

+ f(u(s))− f(ũ(s))]ds+

∫ t

0

[σ(s, u(s))− σ(s, ũ(s))]dW (s).

Hence, by Itô isometry and Assumption 2.1, we have

E∥u(t)− ũ(t)∥2ρ

= E∥
∫ t

0

[−νA(u(s)− ũ(s))− λ(u(s)− ũ(s)) + f(u(s))− f(ũ(s))]ds

+

∫ t

0

[σ(s, u(s))− σ(s, ũ(s))]dW (s)∥2ρ

≤ 2tE
∫ t

0

∥ − νA(u(s)− ũ(s))− λ(u(s)− ũ(s)) + f(u(s))− f(ũ(s))∥2ρds

+ 2E
∫ t

0

∥σ(s, u(s))− σ(s, ũ(s))∥2ρds
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≤ 6tE
∫ t

0

∥ − νA(u(s)− ũ(s))∥2ρds+ 6tE
∫ t

0

λ2∥u(s)− ũ(s)∥2ρds

+ 6tE
∫ t

0

∥f(u(s))− f(ũ(s))∥2ρds+ 2E
∫ t

0

∥σ(s, u(s))− σ(s, ũ(s))∥2ρds.

Note that

∥νA(u(s)− ũ(s))∥2ρ

=
∑
i∈Z

ρi

(
ν2

∑
i∈Z

[(ui+1(s)− ũi+1(s))− 2(ui(s)− ũi(s)) + (ui−1(s)− ũi−1(s))]
2
)

≤ 18ν2∥u(s)− ũ(s)∥2ρ.
So,

E∥u(t)− ũ(t)∥2ρ ≤ [6t(18ν2 + λ2 + L) + 2L]E
∫ t∧ξ

0

∥u(s)− ũ(s)∥2ρds.

By Grownwall’s inequality, we obtain

E∥u(t)− ũ(t)∥2ρ = 0.

This means that P{u(t) = ũ(t)} = 1 for all t ≥ 0.

Step 2. We claim that (2.3) admits a solution. Let u0(t) = u0. For each n =
1, 2, . . . , we define the Picard iterations

un(t) = u0 +

∫ t

0

[−νAun−1(s)− λun−1(s) + f(un−1(s)) + g(s)]ds

+

∫ t

0

σ(s, un−1(s))dW (s).

(2.4)

Hence

E[∥un(t)− un−1(t)∥2ρ]

= E[∥
∫ t

0

[−νAun−1(s)− λun−1(s) + f(un−1(s)) + g(s)

− (−νAun−2(s)− λun−2(s) + f(un−2(s)) + g(s))]ds

+

∫ t

0

[σ(s, un−1(s))− σ(s, un−2(s))]dW (s)∥2ρ]

≤ 2tE[
∫ t

0

∥ − νA(un−1(s)− un−2(s))− λ(un−1(s)− un−2(s))

+ f(un−1(s))− f(un−2(s)))∥2ρds] + 2E
∫ t

0

∥σ(s, un−1(s))− σ(s, un−2(s))∥2ρds

≤ 6tE[
∫ t

0

∥ − νA(un−1(s)− un−2(s))∥2ρ + ∥ − λ(un−1(s)− un−2(s))∥2ρ

+ ∥f(un−1(s))− f(un−2(s))∥2ρds] + 2E
∫ t

0

∥σ(s, un−1(s))− σ(s, un−2(s))∥2ρds

≤ [6t(18ν2 + λ2 + L) + 2L]E
∫ t

0

∥un−1(s)− un−2(s)∥2ρds.

In addition,

E[∥u1(t)− u0(t)∥2ρ]
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= E[∥
∫ t

0

[−νAu0(s)− λu0(s) + f(u0(s)) + g(s)]ds+

∫ t

0

σ(s, u0(s))dW (s)∥2ρ]

≤ 8tE
∫ t

0

[∥ − νAu0(s)∥2ρ + ∥λu0(s)∥2ρ + ∥f(u0(s))∥2ρ + ∥g(s)∥2ρ]ds

+ 2E
∫ t

0

∥σ(s, u0(s))∥2ρds

≤ 8tE
∫ t

0

[18ν2∥u0(s)∥2ρ]ds+ 8tE
∫ t

0

λ2∥u0(s)∥2ρds+ 8tE
∫ t

0

K(1 + ∥u0(s)∥2ρ)ds

+ 8K1t
2 + 2E

∫ t

0

K(1 + ∥u0(s)∥2ρ)ds

≤ [8t2(18ν2 + λ2 +K) + 2Kt]E∥u0(s)∥2ρ + 8(K +K1)t
2 + 2Kt,

where K1 = maxs∈[0,T ] ∥g(s)∥2ρ. Then there exists a positive constant C1 < ∞ such
that

E∥u1(t)− u0(t)∥2ρ ≤ C1t,

where C1 only depends on ν, λ,K,K1, T . By induction, there exists a positive
constant C2 such that for any n ≥ 0, t ∈ [0, T ], we have

E∥un(t)− un−1(t)∥2ρ ≤ Cn
2 t

n

n!
,

where C2 only depends on ν, λ, K, K1, T, L and C2 ≥ max{C1, 6T (18ν
2 + λ2 +

L) + 2L}. In addition,

E
(

sup
0≤t≤T

∥un(t)− un−1(t)∥2ρ
)

≤ [6T (18ν2 + λ2 + L) + 2L]E
∫ T

0

∥un−1(s)− un−2(s)∥2ρds

≤ C2

∫ T

0

Cn−1
2 sn−1

(n− 1)!
ds

=
C2T

n

n!
.

By Chebyshev’s inequality, we obtain

P
{

sup
0≤t≤T

∥un(t)− un−1(t)∥ ≥ 1

2n
}
≤ (4C2T )

n

n!
.

Note that
∑∞

n=1
(4C2T )n

n! < ∞. Hence by Borel-Cantelli’s lemma, for almost all
ω ∈ Ω, there exists an integer constant n0 such that

sup
0≤t≤T

∥un(t)− un−1(t)∥2ρ ≤ 1

2n

for n ≥ n0. Consequently, un(t) converges to u(t) as n → ∞ uniformly in t ∈ [0, T ]
for almost all ω. Note also that

E∥un(t)∥2ρ = E∥u0 +

∫ t

0

[−νAun−1(s)− λun−1(s) + f(un−1(s)) + g(s)]ds

+

∫ t

0

σ(s, un−1(s))dW (s)∥2ρ
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≤ 3E∥u0∥2ρ + [12T (18ν2 + λ2 +K) + 3K]E
∫ t

0

∥un−1(s)∥2ρds

+ 12KT 2 + 12K1T
2 + 3KT.

From this inequality, for all k ≥ 1, we have

max
1≤n≤k

E∥un(t)∥2ρ

≤ 3E∥u0∥2ρ + [12T (18ν2 + λ2 +K) + 3K]E
∫ t

0

max
1≤n≤k

∥un−1∥2ρds

+ 12KT 2 + 12K1T
2 + 3KT

≤ 3E∥u0∥2ρ + [12T (18ν2 + λ2 +K) + 3K]E
∫ t

0

[∥u0∥2ρ + max
1≤n≤k

∥un∥2ρ]ds

+ 12KT 2 + 12K1T
2 + 3KT

≤ 3E∥u0∥2ρ + 12KT 2 + 12K1T
2 + 3KT + [12T (18ν2 + λ2 +K) + 3KT ]E∥u0∥2ρ

+ [12T (18ν2 + λ2 +K) + 3K]

∫ t

0

[ max
1≤n≤k

E∥un∥2ρ]ds.

Let K3 = 12KT 2+12K1T
2+3KT +[12T (18ν2+λ2+K)+3+3KT ]E∥u0∥2ρ. Then

by Gronwall’s inequality, it holds that

max
1≤n≤k

E∥un(t)∥2ρ ≤ K3e
12T 2(18ν2+λ2+K)+3KT .

So, we have

E∥un(t)∥2ρ ≤ K3e
12T 2(18ν2+λ2+K)+3KT ,

for t ∈ [0, T ], n ≥ 1, which implies that E∥u(t)∥2ρ < ∞ for t ∈ [0, T ].

We proceed to prove that u(t) satisfies system (2.4) with u0 ∈ l2ρ × S. It is not
difficult to verify that

E[∥
∫ t

0

[−νA(un(s)− u(s))− λ(un(s)− u(s)) + (f(un(s))− f(u(s)))]ds

+

∫ t

0

σ(s, un(s))− σ(s, u(s))dW (s)∥2ρ]

≤ [6T (18ν2 + λ2 + L) + 2L]E
∫ t

0

∥un(s)− u(s)∥2ρds

→ 0, as n → ∞.

Hence u(t) satisfies (2.3). □

The proof of Theorem 2.2 is inspired by proofs of [19, Theorem 3.1] and [27,
Theorem 3.1].

3. Existence of periodic solutions

In this section, we establish the criterion for the existence of the periodic solution
in distribution of (2.3) in l2ρ. First, we give the definition for the periodic solution
in distribution.

Definition 3.1. A solution u(t) of (2.3) is said to be a θ-periodic solution in
distribution if for any t ∈ R+, u(t) satisfies the following conditions:

(i) P ◦ [u(t)]−1 = P ◦ [(u(t+ θ))]−1;
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(ii) there exists W (t) such that u(t+ θ) is a solution of the equation

du(t) = [−νAu(t)− λu(t) + f(u(t)) + g(t)]dt+ σ(t, u)dW (t),

where W (t) has the same distribution with W (t).

Definition 3.2. A sequence of probability measures µn ∈ P(l2ρ) is said to be weakly

convergent to a probability measure µ ∈ P(l2ρ), if∫
l2ρ

f(x)µn(dx) →
∫
l2ρ

f(x)µ(dx) as n → ∞,

where f(x) is any continuous bounded function on l2ρ.

Definition 3.3. A sequence of l2ρ-valued stochastic processes {Xn(t)} is said to be

convergent in distribution to an l2ρ-valued stochastic process X(t) if the distribution

of {Xn(t)} converges weakly to the distribution of X(t) for all t ∈ R+.

Next, we estimate the p-th moment of the solution u(t).

Lemma 3.4. Let p > 2 and ξ ∈ Lp(Ω, l2ρ). Suppose that Assumption 2.1 holds.
Then for all t ∈ [0, T ],

E( sup
0≤s≤t

∥u(t)∥pρ) ≤ (1 + 3p−1E∥u0∥pρ)eat,

where

a = max
{
(12T )p−1[3p−1(2 + 2p)νp + λp + 2

p
2−1Kp/2]

+ 3p−12
p
2−1

(p(p− 1)

2

)p/2
T

p−2
2 , (2

p
2−1Kp/2 +K1)(12T )

p−1

+ 3p−12
p
2−1

(p(p− 1)

2

)p/2
T

p−2
2

}
.

Proof. Note that

∥ − νAu(s)∥pρ =
∑
i∈Z

ρi[ν
p(ui+1(s)− 2ui(s) + ui−1(s))

p]

≤ 3p−1νp
∑
i∈Z

[|ui+1(s)|p + 2p|ui(s)|p + |ui−1(s)|p]

≤ 3p−1(2 + 2p)νp∥u(s)∥pρ.

(3.1)

By Hölder inequality, [20, Theorem 1.7.2], Assumption 2.1, and (3.1), we obtain

E
(

sup
0≤s≤t

∥u(t)∥pρ
)

= E
(

sup
0≤s≤t

∥u0 +

∫ s

0

[−νAu(s)− λu(s) + f(u(s)) + g(r)]dr

+

∫ s

0

σ(r, u(r))dW (r)∥pρ
)

≤ 3p−1E∥u0∥pρ + (12t)p−1E[
∫ t

0

∥ − νAu(s)− λu(s) + f(u(s)) + g(s)∥pρds]

+ 3p−1E
(

sup
0≤s≤t

∥
∫ s

0

σ(r, u(r))dW (r)∥pρ
)
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≤ 3p−1E∥u0∥pρ + (12t)p−1[E
∫ t

0

∥ − νAu(s)∥pρds+ E
∫ t

0

∥ − λu(s)∥pρds

+ E
∫ t

0

∥f(u(s))∥pρds+ E
∫ t

0

∥g(s)∥pρds]

+ 3p−1
(p(p− 1)

2

)p/2
T

p−2
2 3p−1E

∫ t

0

∥σ(s, u(s))∥pρds

≤ 3p−1E∥u0∥pρ + (12T )p−1[3p−1(2 + 2p)νp + λp + 2
p
2−1Kp/2]E

∫ t

0

∥u(t)∥pρds

+ (12T )p−12
p
2−1Kp/2t+ (12T )p−1K1t

+ 3p−12
p
2−1

(p(p− 1)

2

)p/2
T

p−2
2 Kp/2E

∫ t

0

(1 + E∥u(s)∥2ρ)ds

≤ 3p−1E∥u0∥pρ + a

∫ t

0

(1 + E∥u(s)∥pρ)ds,

where

a = max
{
(12T )p−1[3p−1(2 + 2p)νp + λp + 2

p
2−1Kp/2]

+ 3p−12
p
2−1

(p(p− 1)

2

)p/2
T

p−2
2 , (2

p
2−1Kp/2 +K1)(12T )

p−1

+ 3p−12
p
2−1

(p(p− 1)

2

)p/2
T

p−2
2

}
.

Hence

1 + E
(

sup
0≤s≤t

∥u(t)∥pρ
)
≤ 1 + 3p−1E∥u0∥pρ + a

∫ t

0

[
1 + E

(
sup

0≤r≤s
∥u(r)∥pρ

)]
ds.

It follows from Gronwall’s inequality that

1 + E
(

sup
0≤s≤t

∥u(t)∥pρ
)
≤ (1 + 3p−1E∥u0∥pρ)eat

for t ∈ [0, T ]. Therefore, we obtain

E
(

sup
0≤s≤t

∥u(t)∥pρ
)
≤ (1 + 3p−1E∥u0∥pρ)eat

for t ∈ [0, T ]. □

For (2.3), we make the following assumptions.

Assumption 3.5. Suppose that all the time-dependent coefficient functions are
θ-periodic in t ∈ R+; that is, for all t ∈ R+, i ∈ Z, u ∈ l2ρ

gi(t+ θ) = gi(t), σi(t+ θ, u) = σi(t, u).

Assumption 3.6. For some p > 2 and n = 0, 1, 2, . . . , there exists a positive
constant C independent of n such that

E∥u(nθ)∥pρ ≤ C.

Assumption 3.7. The distribution P ◦ [u(t)]−1 with respect to u(t) satisfies

lim
k→∞

1

nk + 1

nk∑
m=0

dBL(P ◦ [u((m+ 1)θ)]−1, P ◦ [u(mθ)]−1) = 0,
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where {nk} is a sequence of integers tending to +∞.

Lemma 3.4 ensures that Assumption 3.6 is reasonable. In Section 4, we give an
example to verify Assumptions 3.6 and 3.7.

Definition 3.8. A family of random variables H in L1(Ω, l2ρ) is uniformly inte-
grable, if it satisfies

sup
ξ∈H

∫
∥ξ∥ρ≥M

∥ξ∥ρdP → 0 as M → ∞.

Theorem 3.9. Suppose that Assumptions 2.1-3.7 hold. Then there exists a θ-
periodic solution in distribution of (2.3).

Proof. Let γk be a random variable independent of W (t) and u(0, ω) such that

P{γk = Nθ} =
1

k + 1
, N = 0, 1, . . . , k,

for each k ∈ Z+. We define a sequence of stochastic processes

vk(t) = u(t+ γk),

vk(0) = u(γk).

Then vk(t) is a weak solution of (2.3). In fact, for C ∈ B(l2ρ) and t ∈ R+, we define

W (t) = W (t+ γk)−W (γk),

where W (t) has the same distribution with W (t). Hence we obtain

u(t+ γk)

= u(0) +

∫ γk

0

[−νAu(s)− λu(s) + f(u(s)) + g(s)]ds+

∫ γk

0

σ(s, u(s))dW (s)

+

∫ t+γk

γk

[−νAu(s)− λu(s) + f(u(s)) + g(s)]ds+

∫ t+γk

γk

σ(s, u(s))dW (s)

= u(γk) +

∫ t+γk

γk

[−νAu(s)− λu(s) + f(u(s)) + g(s)]ds+

∫ t+γk

γk

σ(s, u(s))dW (s)

= u(γk) +

∫ t

0

[−νAu(s+ γk)− λu(s+ γk) + f(u(s+ γk))

+ g(s+ γk)]ds+

∫ t

0

σ(s+ γk, u(s+ γk))dW (s).

From the construction of vk(t) and the independence of γk, we have

P{vk(t) ∈ A} = P{u(t+ γk) ∈ A}
= P{u(t+ γk) ∈ A|γk = 0}P{γk = 0}
+ P{u(t+ γk) ∈ A|γk = θ}P{γk = θ}+ . . .

+ P{u(t+ γk) ∈ A|γk = kθ}P{γk = kθ}

=
1

k + 1

k∑
N=0

P{u(t+Nθ) ∈ A}

(3.2)
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for each A ∈ B(l2ρ). From (3.2), Assumption 3.6, and Chebyshev’s inequality, it
follows that uniformly in k,

P{∥vk(0, ω)∥ρ > R} =
1

k + 1

k∑
N=0

P{∥u(Nθ)∥ρ > R}

≤ 1

k + 1

k∑
N=0

E∥u(Nθ)∥2ρ
R2

→ 0 as R → ∞.

So, vk(0, ω) satisfies conditions of [7, Theorem 7.2]. According to Skorohod theorem

[25, p 13] in another probability space (Ω̃, F̃ , P̃ ), there exists a sequence ṽk(0, ω̃)
(k = 0, 1, . . . ) with the same distribution as vk(0, ω). Furthermore, there exists a
subsequence ṽnk

(0, ω̃) that converges to ṽ(0, ω̃) in probability. We can construct
l2ρ-valued random variables v(0, ω) and vnk

(0, ω) on (Ω,F , P ) with the same distri-
bution as ṽ(0, ω̃) and ṽnk

(0, ω̃), respectively. From Assumption 3.6, we have

E∥ṽnk
(0, ω̃)∥pρ = E∥vnk

(0, ω)∥pρ ≤ C < ∞.

for some p > 2. By [1, Proposition 2.5.7], ∥ṽnk
(0, ω̃)∥2ρ is uniformly integrable. It

follows from [1, Theorem 2.5.9] that for every ε > 0, there exists a δ > 0 such that
for any A ∈ F with P (A) ≤ δ, we have supξ∈H

∫
A
∥ṽnk

(0, ω̃)∥2ρdP ≤ ε. According
to Vitali’s convergence theorem, we have

E∥ṽnk
(0, ω̃)− ṽ(0, ω̃)∥2ρ → 0 as nk → ∞.

Let ṽnk
(t) be the solution of the equation

du(t) = [−νAu(t)− λu(t) + f(u(t)) + g(t)]dt+ σ(t, u(t))dW (t),

with initial condition ṽnk
(0, ω̃) = ṽnk

(ω̃) on the probability space (Ω̃, F̃ , P̃ ). By
Cauchy-Schwarz’s inequality, Itô’s isometry, and Assumption 2.1, we obtain

E∥ṽnk
(t)− ṽ(t)∥2ρ

≤ 3E∥ṽnk
(0, ω̃)− ṽ(0, ω̃)∥2ρ + [9t(18ν2 + λ2 + L) + 3L]E

∫ t

0

∥ṽnk
(s)− ṽ(s)∥2ρds.

By Gronwall’s inequality, we have

E∥ṽnk
(t)− ṽ(t)∥2ρ ≤ 3E∥ṽnk

(0, ω̃)− ṽ(0, ω̃)∥2ρe9t
2(18ν2+λ2+L)+3Lt → 0

as nk → ∞. It follows from the uniqueness of weak solution that

P ◦ [vnk
(t)]−1 = P ◦ [ṽnk

(t)]−1 → P ◦ [ṽ(t)]−1 (3.3)

uniformly on [0, θ]. In addition, v(0, ω) on (Ω,F , P ) has the same distribution as

ṽ(0, ω) on (Ω̃, F̃ , P̃ ). From the uniqueness of the weak solution of (2.3), v(t) admits
the same distribution with ṽ(t). By (3.3), (3.2) and Assumption 3.7, we derive

dBL(P ◦ [v(θ)]−1, P ◦ [v(0)]−1)

= lim
k→∞

dBL(P ◦ [vnk
(θ)]−1, P ◦ [vnk

(0)]−1)

= lim
k→∞

sup
∥φ∥BL≤1

(∫
l2ρ

φdP ◦ [vnk
(θ)]−1 −

∫
l2ρ

φdP ◦ [vnk
(0)]−1

)
= lim

k→∞
sup

∥φ∥BL≤1

(∫
Ω

φ(vnk
(θ))dP −

∫
Ω

φ(vnk
(0))dP

)
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= lim
k→∞

sup
∥φ∥BL≤1

( 1

nk + 1

nk∑
N=0

∫
Ω

[φ(u((N + 1)θ))− φ(u(Nθ))]dP
)

= lim
k→∞

1

nk + 1

nk∑
N=0

dBL(P ◦ [u((N + 1)θ)]−1, P ◦ [u(Nθ)]−1) = 0.

That is to say, v(θ) has the same distribution as v(0).
We define z(t) : R+ → l2ρ by

z(t) = v(t− ntθ),

where nt = max{n ∈ N|nθ < t}. Hence, z(t) is a θ-periodic solution in distribution
of (2.3). □

4. Applications

It is worth noting that Lyapunov’s method can also be applied to prove the
existence of periodic solution in distribution.

Example 4.1. Consider the equation of motion of Hooke’s law in l2ρ:

dui(t) = [ν(ui+1(t)− 2ui(t) + ui−1(t))− λui(t)]dt+ σi(t, u(t))dWi(t), (4.1)

where λ > 0 is a constant. Suppose that Assumption 2.1 holds. Here −λui de-
scribes the strength of negative feedback, where λ > 2L. We make the following
assumptions:

(A1) ρ(i) ≤ c0ρ(i ± 1), for all i ∈ Z, where c0 is a positive constant with c0 <
1 + λ−2L

2ν .
(A2) there exists a positive constant c1 such that

(2νc0 − 2ν − λ)∥u∥4ρ + ∥u∥2ρ|σ(t, u)|2 + |⟨u, σ(t, u)⟩|2 ≤ −c1∥u∥4ρ
for all u ∈ l2ρ, t ∈ R+.

(A3) For all u, v ∈ l2ρ, t ∈ R+, there exists a constant c2 such that

∞∑
i=1

JT
σi
(t, u)Jσi(t, v) ≤ −c2I

where c2 > 2(2c0ν − 2ν − λ)/3.

Then (4.1) admits a periodic solution in distribution.
We define f(t, u) = ∥u∥4ρ. By (A1) and (A2), we have

Lf(t, u)

= ft(t, u) + ⟨fu(t, u),−νAu− λu⟩+ 1

2
trace(σT (t, u)fuu(t, u)σ(t, u))

≤ 4ν∥u∥2ρ
∑
i∈Z

ρiui(ui+1 − 2ui + ui−1)− 4λ∥u∥4ρ + 2∥u∥2ρ|σ(t, u)|2 + 4|⟨u, σ(t, u)⟩|2

≤ 4ν∥u∥2ρ
∑
i∈Z

ρiui(c0ui − 2ui + c0ui)− 4λ∥u∥4ρ + 2∥u∥2ρ|σ(t, u)|2 + 4|⟨u, σ(t, u)⟩|2

= 4(2νc0 − 2ν − λ)∥u∥4ρ + 2∥u∥2ρ|σ(t, u)|2 + 4|⟨u, σ(t, u)⟩|2

≤ −4c1∥u∥4ρ.
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So, we have

E[f(t, uξ(t))] = E[f(0, ξ)] + E
∫ t

0

Lif(s, u(s))ds

≤ E[f(0, ξ)]− 4c1

∫ t

0

E[f(s, u(s))]ds.

It follows from Gronwall’s inequality that for all E∥ξ∥4ρ < ∞, and t ∈ R+, that

E∥uξ(t)∥4ρ ≤ E[f(t, uξ(t))] ≤ E[f(0, ξ)]e−4c1t.

Therefore, Assumption 3.6 is fulfilled. Furthermore, by (A1),

Lf(t, u− v)

= ft(t, u− v) + ⟨fu(t, u− v),−νA(u− v)− λ(u− v)⟩

+
1

2
trace[(σ(t, u)− σ(t, v))T fuu(t, u− v)(σ(t, u)− σ(t, v))]

= 4ν∥u− v∥2ρ
∑
i∈Z

ρi(ui − vi)[(ui+1 − vi+1)− 2(ui − vi) + (ui−1 − vi−1)]

− 4λ∥u− v∥4ρ + 6∥u− v∥2ρ(u− v)T
[ ∞∑

i=1

(∫ 1

0

JT
σi
(t, v + s(u− v))ds

)
×
(∫ 1

0

JT
σi
(t, v + s(u− v))ds

)]
(u− v)

≤ 4ν(2c0 − 2)∥u− v∥4ρ − 4λ∥u− v∥4ρ

+ 6∥u− v∥2ρ(u− v)T
[ ∞∑

i=1

(∫ 1

0

JT
σi
(t, v + s(u− v))ds

)
×
(∫ 1

0

JT
σi
(t, v + s(u− v))ds

)]
(u− v)

= [4(2c0ν − 2ν − λ)− 6c2] ∥u− v∥4ρ.

Let c3 = 4(2c0ν − 2ν − λ) − 6c2. For any given ξ, η ∈ L2(Ω, l2ρ), applying Itô’s

formula to f(t, uξ(t)− uη(t))e
−c3t, we obtain

E[f(t, uξ(t)− uη(t))e
−c3t] = E[f(0, ξ − η)] +

∫ t

0

−c3e
−c3sE[f(s, uξ(s)− uη(s))]ds

+

∫ t

0

e−c3sE[Lif(s, uξ(s)− uη(s))]ds

≤ E[f(0, ξ − η)].

Hence E[f(t, uξ(t) − uη(t))] ≤ E[f(0, ξ − η)]ec3t for each t ∈ R+. In addition, for
each t ∈ R+, there exists k ∈ N such that t ∈ [kθ, kθ + θ]. By Assumption 2.1 and
[20, Theorem 1.7.1], we have

E∥uξ(t)− uη(t)∥4ρ

≤ 27E∥uξ(kθ)− uη(kθ)∥4ρ + 27t3E
∫ t

kθ

∥ − νA(uξ(s)− uη(s))− λ(uξ(s)− uη(s))

+ f(uξ(s))− f(uη(s))∥4ρds+ 972TE
∫ t

kθ

∥σ(s, uξ(s))− σ(s, uη(s))∥4ρds
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≤ 27E∥uξ(kθ)− uη(kθ)∥4 + (9T )3E
∫ t

kθ

∥ − νA(uξ(s)− uη(s))∥4ρds

+ (9T )3E
∫ t

kθ

∥ − λ(uξ(s)− uη(s))∥4ρds+ (9T )3E
∫ t

kθ

∥f(uξ(s))− f(uη(s))∥4ρds

+ 972TE
∫ t

kθ

∥σ(s, uξ(s))− σ(s, uη(s))∥4ρds

= 27E∥uξ(kθ)− uη(kθ)∥4 + 486(9T )3ν4
∫ t

kθ

E∥uξ(s)− uη(s))∥4ρds

+ (9T )3λ4

∫ t

kθ

E∥uξ(s)− uη(s))∥4ρds+ (9T )3L2

∫ t

kθ

E∥uξ(s)− uη(s))∥4ρds

+ 972TL2

∫ t

kθ

E∥uξ(s)− uη(s))∥4ρds

= 27E∥uξ(kθ)− uη(kθ)∥4ρ + c4

∫ t

kθ

E∥uξ(kθ)− uη(kθ)∥4ρds,

where c4 := (9T )3(486ν4 + λ4 + L2}) + 972L2T . Applying Gronwall’s inequality,
we have

E∥uξ(t)− uη(t)∥4ρ ≤ 27E∥uξ(kθ)− uη(kθ)∥4ρec4T

≤ 27ec4TE[f(kθ, uξ(kθ)− uη(kθ))]

≤ 27ec4T+c3kθE[f(0, ξ − η)]

= φ(kθ)E∥ξ − η∥2ρ,

(4.2)

where φ(t) := 27ec4T+c3kθ. Note that c3 < 0, we have limk→∞ φ(kθ) = 0. Hence,
there exists a k0 > 0 such that supk>k0

φ(kθ) < 1. By the contraction mapping

fixed point theorem, there exists a unique fixed point ξ∗ ∈ L4(Ω, l4ρ) such that
uξ∗(kθ) = ξ∗ for any k > k0. Thus,

lim
n→∞

1

n+ 1

n∑
k=0

dBL(P ◦ [uξ∗((k + 1)θ)]−1, P ◦ [uξ∗(kθ)]
−1)

= lim
n→∞

1

n+ 1

( k0∑
k=0

dBL(P ◦ [uξ∗((k + 1)θ)]−1, P ◦ [uξ∗(kθ)]
−1)

+

n∑
k=k0

dBL(P ◦ [uξ∗((k + 1)θ)]−1, P ◦ [uξ∗(kθ)]
−1)

)
= 0

Hence Assumption 3.7 is satisfied. Therefore, (4.1) admits a periodic solution in
distribution.
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