Electron. J. Differential Equations, Vol. 2024 (2024), No. 31, pp. 1-13.

Nodal solutions for nonlinear Schrodinger systems

Xue Zhou, Xiangqing Liu

Abstract:
In this article we consider the nonlinear Schrodinger system $$\displaylines{ - \Delta u_j + \lambda_j u_j = \sum_{i=1}^k \beta_{ij} u_i^2 u_j, \quad \hbox{in } \Omega, \cr u_j ( x ) = 0,\quad \hbox{on } \partial \Omega , \; j=1,\ldots,k , }$$ where \(\Omega\subset \mathbb{R}^N \) (\(N=2,3 \)) is a bounded smooth domain, \(\lambda_j> 0\), \(j=1,\dots,k\), \( \beta_{ij} \) are constants satisfying \(\beta_{jj}>0\), \(\beta_{ij}=\beta_{ji}\leq0 \) for \( 1\leq i< j\leq k\). The existence of sign-changing solutions is proved by the truncation method and the invariant sets of descending flow method.

Submitted December 9, 2023. Published April 24, 2024.
Math Subject Classifications: 35A15, 35B20, 35J10.
Key Words: Schrodinger system; sign-changing solutions; truncation method; method of invariant sets of descending flow.
DOI: 10.58997/ejde.2024.31

Show me the PDF file (388 KB), TEX file for this article.

  Xue Zhou
Department of Mathematics
Yunnan Normal University
Kunming 650221, China
email: niuzhoux@163.com
Xiangqing Liu
Department of Mathematics
Yunnan Normal University
Kunming 650221, China
email: lxq8u8@163.com

Return to the EJDE web page