EXISTENCE OF SEMI-NODAL SOLUTIONS FOR ELLIPTIC SYSTEMS RELATED TO GROSS-PITAEVSKII EQUATIONS

JOÃO PABLO PINHEIRO DA SILVA, EDCARLOS DOMINGOS DA SILVA
Communicated by Claudianor O. Alves

Abstract

In this work we consider existence of semi-nodal solutions, i.e., solutions of the form (u, v) with $u>0$ and $v^{ \pm}:=\max \{0, \pm v\} \not \equiv 0$ for a class of elliptic systems related to the Gross-Pitaevskii equation.

1. Introduction

This work concerns the elliptic system

$$
\begin{gather*}
-\Delta u=\lambda_{1} u+\mu_{1}|u|^{2 p-2} u+\beta|u|^{p-2} u|v|^{q}, \quad \text { in } \Omega \\
-\Delta v=\lambda_{2} v+\mu_{2}|v|^{2 q-2} v+\beta|u|^{p}|v|^{q-2} v, \quad \text { in } \Omega \tag{1.1}\\
u=v=0, \quad \text { on } \partial \Omega
\end{gather*}
$$

For $p=q=2$ the cubic system (1.1) arises in mathematical models for various physics problems, especially in nonlinear optics and Bose-Einstein condensation, see [14, 17. In those works present information on the physical significance of noncubic nonlinearities and on the existence and multiplicity of solutions. Furthermore, when $\lambda_{i}<0$, system (1.1) comes from the study of solitary wave solutions of the coupled Gross-Pitaevskii equations,

$$
\begin{gather*}
-i \frac{\partial}{\partial t} \Phi_{1}=\Delta \Phi_{1}+\mu_{1}\left|\Phi_{1}\right|^{2} \Phi_{2}+\beta \Phi_{2}^{2} \Phi_{1}, \quad x \in \Omega, t>0 \\
-i \frac{\partial}{\partial t} \Phi_{2}=\Delta \Phi_{2}+\mu_{2}\left|\Phi_{2}\right|^{2} \Phi_{1}+\beta \Phi_{1}^{2} \Phi_{2}, \quad x \in \Omega, t>0 \tag{1.2}\\
\Phi_{j}=\Phi_{j}(x, t) \in \mathbb{C}, \quad j=1,2 \\
\Phi_{j}(x, t)=0, \quad x \in \partial \Omega, t>0, j=1,2
\end{gather*}
$$

When $\Phi_{1}(x, t)=e^{-i \lambda_{1} t} u$ and $\Phi_{2}(x, t)=e^{-i \lambda_{2} t} v$, system (1.2) reduces to 1.1). In the Kerr-like photorefractive media, the solution Φ_{j} represents the $j^{\text {th }}$ element of the beam (see [2]). The self-focusing in the $j^{\text {th }}$ component of the beam is related to the positive constant μ_{j}, whereas the coupling constant $\beta>0$ signifies the interaction between the two beam components. When $\mu_{j}=0$, the self-focusing

[^0]has been suppressed, and this type of situation is also relevant in optics (see for example [15, 16, 20]). The problem denoted by system (1.2) is also encountered in the Hartree-Fock theory for a binary mixture of Bose-Einstein condensates in two different hyperfine states $|1\rangle$ and $|2\rangle$ (see for example [13]). In this context, each Φ_{j} represents the corresponding condensate amplitude, while μ_{j} and β denote the intra and interspecies scattering lengths. The self-interactions of the single state $|j\rangle$ are represented by the sign of μ_{j}, with $\mu_{j}>0$ indicating the focusing case and $\mu_{j}<0$ corresponding to the defocusing case. When the intraspecies scattering length μ_{j} is zero, it means that the interaction between particles of the same species is extremely weak or nonexistent (see for example [22]). In addition, the sign of β plays a crucial role in determining whether the interactions between states $|1\rangle$ and $|2\rangle$ are attractive or repulsive. Specifically, if $\beta>0$, the interactions are attractive, while $\beta<0$ implies that the interactions are repulsive. This feature is important in understanding the competition between different states and can have a significant impact on the behavior of the system as a whole.

Recently, there has been growing interest in studying systems of the form 1.1 that are related to the system $\sqrt{1.2}$ in the cubic case $p=q=2$. This is evidenced by the increasing number of research papers published on the topic, among which we highlight [1, 3, 8, 9, 10, 18, 19, 21, 25] and references therein. On this subject, we also refer the interested reader to [23].

In this work, we investigate the existence of semi-nodal solutions for system (1.1), that is, solutions where $u>0$ in Ω and $v^{ \pm}:=\max \{0, \pm v\} \not \equiv 0$ in Ω, which has also received attention in recent studies, in particular, we are interested in the case where $\mu_{1}=\mu_{2}=0$ and $p+q<2^{*}, \beta>0$ and $N \leq 5$. Clapp and Soares [11] dealt with the case where $p=q<2^{*} / 2=N /(N-2), \lambda_{j}=-1, \mu_{j}=0$ and $\Omega=\mathbb{R}^{N}$ with $N \geq 4$, among other results, they showed the existence of semi-nodal solutions subject to the mentioned conditions. Chen, Lin \& Zou [5, 6] dealt with the case $p=q=2, \lambda_{j}<0, \mu_{j}>0, \beta>0$, and $\Omega \subset \mathbb{R}^{N}$ bounded with $N \in\{1,2,3\}$, they showed existence and multiplicity results of nodal solutions for (1.1). In (7), the same authors provided the existence of semi-nodal solutions for (1.1) for the critical case $p=q=2^{*} / 2$ with $\Omega \subset \mathbb{R}^{N}$ bounded, $N \geq 6, \mu_{j}>0, \lambda_{j} \in\left(0, \lambda_{1}(\Omega)\right)$ and $\beta<0$, here $\lambda_{1}(\Omega)$ is the first eigenvalue of $\left(-\Delta, H_{0}^{1}(\Omega)\right)$. In this work, we are interested in the case where $\mu_{j}=0, \lambda_{j}<\lambda_{1}(\Omega), \beta>0, p>1, q>2$ with $p+q<2^{*}$. In particular, $3<p+q<2^{*}$ which implies that $3<2^{*}$. Hence our main result applies only for the cases $N \in\{3,4,5\}$ where $p+q<2^{*}$. Furthermore, assuming that $N \in\{1,2\}$, it suffices that $p>1$ and $q>2$ because $2^{*}=+\infty$. For the sake of convenience, we will change the notation of system (1.1) to this case, more specifically, we will consider the system

$$
\begin{gather*}
-\Delta u=\lambda u+\xi u^{p-1}|v|^{q}, \quad \text { in } \Omega \\
-\Delta v=\mu v+\tau u^{p}|v|^{q-2} v, \quad \text { in } \Omega \tag{1.3}\\
u=v=0, \quad \text { on } \partial \Omega \\
u>0, \quad v^{ \pm} \not \equiv 0 \quad \text { in } \Omega .
\end{gather*}
$$

Our main result reads as follows.
Theorem 1.1. Assume that $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain, $p>1, q>2$ with $p+q<2^{*}=2 N /(N-2)$ for $N \in\{3,4,5\}$, and $p+q<+\infty$ for $N \in\{1,2\}$,
$\lambda, \mu<\lambda_{1}(\Omega)$, where $\lambda_{1}(\Omega)$ is the first eigenvalue of $\left(-\Delta, H_{0}^{1}(\Omega)\right)$. Then there exists a pair of solution $u, v \in C^{2}(\bar{\Omega})$ to (1.3).

Our approach is based on minimization arguments presented in [4, 24] with the necessary technical modifications. The main difficulties in our approach are to avoid semi-trivial solutions (i.e. solution of the form $(u, 0)$ or $(0, v))$ and to construct Palais-Smale sequence that converges to the infimum of the functional associated with system 2.21 restricted to a certain subset of the Nehari manifold.

2. Main Result

To present our main result, we use the following notation: $\mathcal{H}:=H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$, $\|u\|_{\lambda}^{2}:=\|u\|^{2}-\lambda|u|_{2}^{2}$, and $\|v\|_{\mu}^{2}:=\|v\|^{2}-\mu|v|_{2}^{2}$, where $\|f\|:=\left(\int_{\Omega}|\nabla f|^{2} d x\right)^{1 / 2}$ is the norm of $H_{0}^{1}(\Omega)$, we will write $|f|_{s}$ as the norm of $L^{s}(\Omega)$ and $f^{ \pm}(x):=$ $\max \{0, \pm f(x)\}$. Given the condition $\lambda, \mu<\lambda_{1}(\Omega)$, we see that there exists $C_{\lambda \mu}:=$ $C_{\lambda \mu}\left(\lambda_{1}(\Omega)\right)$ such that
$C_{\lambda \mu}\|u\| \leq\|u\|_{\lambda} \leq C_{\lambda \mu}^{-1}\|u\| \quad$ and $\quad C_{\lambda \mu}\|v\| \leq\|v\|_{\mu} \leq C_{\lambda \mu}^{-1}\|v\| \quad$ for all $u, v \in H_{0}^{1}(\Omega)$
To obtain solutions for system (1.3), we define the functional $I_{\lambda \mu} \in C^{1}(\mathcal{H}, \mathbb{R})$ given by

$$
I_{\lambda \mu}(u, v)=\frac{1}{2}\|u\|_{\lambda}^{2}+\frac{1}{2}\|v\|_{\mu}^{2}-\frac{1}{p+q} \int_{\Omega}|u|^{p}|v|^{q} d x
$$

Here we shall follow same ideas from [4] which allows us to minimize the functional $I_{\lambda \mu}$ over the following subsets of the Nehari manifold

$$
\begin{gathered}
\mathcal{N}_{\lambda}:=\left\{(u, v) \in \mathcal{H}: I_{\lambda \mu}^{\prime}(u, v)(u, 0)=0, u \not \equiv 0, v \not \equiv 0\right\} \\
\mathcal{N}_{\mu}^{ \pm}:=\left\{(u, v) \in \mathcal{H}: I_{\lambda \mu}^{\prime}(u, v)\left(0, v^{ \pm}\right)=0, u \not \equiv 0, v^{ \pm} \not \equiv 0\right\} \\
\mathcal{M}_{\lambda \mu}:=\mathcal{N}_{\lambda} \cap \mathcal{N}_{\mu}^{+} \cap \mathcal{N}_{\mu}^{-}
\end{gathered}
$$

The following result is of fundamental importance for constructing a Palais-Smale sequence at the level where we obtain solutions to our problem. This approach is based on an idea presented in the work [24].

Lemma 2.1. Let $(u, v) \in \mathcal{M}_{\lambda \mu}$ and $z, w \in H_{0}^{1}(\Omega) \backslash\{0\}$ then for all $\delta>0$ there are unique positive numbers $t=t(\delta), r=r(\delta)$, and $s=s(\delta)$ such that

$$
\left(t(u-\delta z), r(v-\delta w)^{+}-s(v-\delta w)^{-}\right) \in \mathcal{M}_{\lambda \mu}
$$

Moreover if $\|z\|,\|w\| \leq 1$ and $\|u\|,\|v\| \leq M_{1}$, then there are constants $M_{0}=$ $M_{0}\left(p, q, \lambda, \mu, \lambda_{1}(\Omega), \Omega, M_{1}, N\right)>0$, and $C_{i}=C_{i}\left(p, q, \lambda, \mu, \lambda_{1}(\Omega), \Omega, M_{1}, N\right)>0$ such that

$$
\begin{gather*}
\left|t^{\prime}(0)\right|,\left|r^{\prime}(0)\right|,\left|s^{\prime}(0)\right| \in\left[0, C_{2}\right] \quad \text { and } \quad|t(0)|,|r(0)|,|s(0)| \in\left[C_{1}, C_{2}\right] \tag{2.2}\\
\|u\|,\left\|v^{ \pm}\right\| \geq M_{0} \tag{2.3}
\end{gather*}
$$

Proof. Firstly, we mention that $(\phi, \varphi) \in \mathcal{M}_{\lambda \mu}$ if and only if

$$
\|\phi\|_{\lambda}^{2}=\frac{p}{p+q} \int|\phi|^{p}|\varphi|^{q} d x \quad \text { and } \quad\left\|\varphi^{ \pm}\right\|_{\mu}^{2}=\frac{q}{p+q} \int|\phi|^{p}\left|\varphi^{ \pm}\right| d x
$$

Therefore, for each $\left(t(u-\delta z), r(v-\delta w)^{+}-s(v-\delta w)^{-}\right) \in \mathcal{M}_{\lambda \mu}$, we obtain that

$$
\begin{gather*}
\|t(u-\delta z)\|_{\lambda}^{2}=\frac{p}{p+q} \int|t(u-\delta z)|^{p}\left|r(v-\delta w)^{+}-s(v-\delta w)^{-}\right|^{q} d x \\
\left\|r(v-\delta w)^{+}\right\|_{\mu}^{2}=\frac{q}{p+q} \int|t(u-\delta z)|^{p}\left|r(v-\delta w)^{+}\right| d x \tag{2.4}\\
\left\|s(v-\delta w)^{-}\right\|_{\mu}^{2}=\frac{q}{p+q} \int|t(u-\delta z)|^{p}\left|s(v-\delta w)^{-}\right| d x
\end{gather*}
$$

To make the presentation clear, we define the following functions:

$$
\begin{gathered}
f_{1}(\delta)=\|u-\delta z\|_{\lambda}^{2}, \quad f_{2}(\delta)=\int_{\Omega}|u-\delta z|^{p}\left[(v-\delta w)^{+}\right]^{q} \\
f_{3}(\delta)=\int_{\Omega}|u-\delta z|^{p}\left[(v-\delta w)^{-}\right]^{q}, \quad f_{4}(\delta)=\left\|(v-\delta w)^{+}\right\|_{\mu}^{2} \\
f_{5}(\delta)=\left\|(v-\delta w)^{-}\right\|_{\mu}^{2}
\end{gathered}
$$

It follows from (2.4) that $t(\delta), r(\delta)$, and $s(\delta)$ are precisely the solutions for the system

$$
\begin{gather*}
t^{2} f_{1}(\delta)=\frac{p}{p+q} t^{p} r^{q} f_{2}(\delta)+\frac{p}{p+q} t^{p} s^{q} f_{3}(\delta) \tag{2.5}\\
r^{2} f_{4}(\delta)=\frac{q}{p+q} t^{p} r^{q} f_{2}(\delta) \tag{2.6}\\
s^{2} f_{5}(\delta)=\frac{q}{p+q} t^{p} s^{q} f_{3}(\delta) \tag{2.7}
\end{gather*}
$$

Here we observe that the solution $t(\delta)$ is given explicitly by

$$
\begin{equation*}
t(\delta)=\left(1+\frac{p}{q}\right)^{\frac{1}{p+q-2}}\left[f_{1}(\delta)\right]^{-\frac{q-2}{2(p+q-2)}}\left\{\frac{\left[f_{4}(\delta)\right]^{\frac{q}{q-2}}}{\left[f_{2}(\delta)\right]^{\frac{2}{q-2}}}+\frac{\left[f_{5}(\delta)\right]^{\frac{q}{q-2}}}{\left[f_{3}(\delta)\right]^{\frac{2}{q-2}}}\right\}^{\frac{q-2}{2(p+q-2)}} . \tag{2.8}
\end{equation*}
$$

Recall that

$$
\begin{gathered}
f_{1}(0)=\|u\|_{\lambda}^{2}, \quad f_{2}(0)=\int_{\Omega}|u|^{p}\left|v^{+}\right|^{q}=\frac{p+q}{q}\left\|v^{+}\right\|_{\mu}^{2} \\
f_{3}(0)=\int_{\Omega}|u|^{p}\left|v^{-}\right|^{q}=\frac{p+q}{q}\left\|v^{-}\right\|_{\mu}^{2}, \quad f_{4}(0)=\left\|v^{+}\right\|_{\mu}^{2} \\
f_{5}(0)=\left\|v^{-}\right\|_{\mu}^{2}
\end{gathered}
$$

Here we used that $(u, v) \in \mathcal{M}_{\lambda \mu}$ to determine the values of $f_{2}(0)$ and $f_{3}(0)$. Since $0<\mu<\lambda_{1}(\Omega), H_{0}^{1}(\Omega) \hookrightarrow L^{p}(\Omega)$, and $H_{0}^{1}(\Omega) \hookrightarrow L^{q}(\Omega)$ by Hölder inequality's there exists $C_{p q}=C_{p q}(\Omega)>0$ such that

$$
\begin{equation*}
\left(1-\frac{\mu}{\lambda_{1}(\Omega)}\right)\left\|v^{ \pm}\right\|^{2} \leq\left\|v^{ \pm}\right\|_{\mu}^{2}=\frac{q}{p+q} \int_{\Omega}|u|^{p}\left|v^{ \pm}\right|^{q} \leq C_{p q}\|u\|^{p}\left\|v^{ \pm}\right\|^{q} \tag{2.9}
\end{equation*}
$$

Since $q>2$ and $\|u\|,\|v\| \leq M_{1}$, expression 2.9) yields a constant $M_{0}>0$ such that $\|u\|,\left\|v^{ \pm}\right\|^{2} \geq M_{0}$, hence 2.3 is proved. As $\|u\|,\left\|v^{ \pm}\right\| \in\left[M_{0}, M_{1}\right]$, we easily see from the expressions of $f_{i}(0)$ that there exist $K_{1}=K_{1}\left(a, b, p, q, \lambda, \mu, \lambda_{1}(\Omega), M_{1}, N\right)>$ 0 and $K_{2}=K_{2}\left(a, b, p, q, \lambda, \mu, \lambda_{1}(\Omega), M_{1}, N\right)>0$ such that

$$
\begin{equation*}
K_{1} \leq f_{i}(0) \leq K_{2}, \quad 1 \leq i \leq 5 \tag{2.10}
\end{equation*}
$$

A standard calculation shows that

$$
f_{1}^{\prime}(0)=-\left(\int_{\Omega} \nabla u \nabla z-\lambda u z\right), \quad f_{2}^{\prime}(0)=-p \int_{\Omega}|u|^{p-2} u z\left|v^{+}\right|^{q}-q \int|u|^{p}\left|v^{+}\right|^{q-1} w
$$

$$
\begin{gathered}
f_{3}^{\prime}(0)=-p \int_{\Omega}|u|^{p-2} u z\left|v^{-}\right|^{q}-q \int|u|^{p}\left|v^{-}\right|^{q-1} w \\
f_{4}^{\prime}(0)=-\int_{\Omega} \nabla v^{+} \nabla w-\mu \int v^{+} w, \quad f_{5}^{\prime}(0)=-\int_{\Omega} \nabla v^{-} \nabla w-\mu \int v^{-} w
\end{gathered}
$$

It is important to observe that $\|z\|,\|w\| \leq 1$ and $\|u\|,\|v\| \leq M_{1}$. By the Sobolev embedding theorems, there exists a constant $K_{3}=K_{3}\left(p, q, \lambda, \mu, \lambda_{1}(\Omega), M_{1}, N\right)>0$ such that

$$
\begin{equation*}
\left|f_{i}^{\prime}(0)\right| \leq K_{3}, \quad 1 \leq i \leq 5 \tag{2.11}
\end{equation*}
$$

From the explicit expression of $t(\delta)$ given by in 2.8 it follows that for a certain $\Psi \in C^{1}\left(\mathbb{R}_{+}^{5}\right)$ (and $\Psi \notin C^{1}\left(\overline{\mathbb{R}_{+}^{5}}\right)$) we can write $t(\delta)=\Psi\left(f_{1}(\delta), \ldots, f_{5}(\delta)\right)$. Therefore $t^{\prime}(0)=\sum f_{i}^{\prime}(0) \Psi_{x_{i}}\left(f_{1}(0), \ldots, f_{5}(0)\right)$, and from this equality, together with 2.10) and (2.11) we conclude that there exist $C_{i}=C_{i}\left(p, q, \lambda, \mu, \lambda_{1}(\Omega), \Omega, M_{1}, N\right)>0$ such that $\left|t^{\prime}(0)\right| \leq C_{2}$ and $C_{1} \leq t(0) \leq C_{2}$. The other inequalities can be derived from combining the last estimates with 2.6 and 2.7).

The following proposition shows the existence of a Palais-Smale sequence that converges to the infimum of $I_{\lambda \mu}$ over $\mathcal{M}_{\lambda \mu}$. Notice also that $p+q>2$ and

$$
\begin{equation*}
I_{\lambda \mu}(u, v)=\left(\frac{1}{2}-\frac{1}{p+q}\right)\left(\|u\|_{\lambda}^{2}+\|v\|_{\mu}^{2}\right) \quad \text { for all }(u, v) \in \mathcal{M}_{\lambda \mu} \tag{2.12}
\end{equation*}
$$

Hence, $\inf _{(u, v) \in \mathcal{M}_{\lambda \mu}} I_{\lambda \mu}(u, v)>-\infty$. In what follows, we will use the notation $\|(\varphi, \phi)\|:=\|\varphi\|+\|\phi\|$ for all $\varphi, \phi \in H_{0}^{1}(\Omega)$.
Proposition 2.2. Let $c_{\lambda \mu}:=\inf _{(u, v) \in \mathcal{M}_{\lambda \mu}} I_{\lambda \mu}(u, v)$. Then there exists a sequence $\left(u_{n}, v_{n}\right) \in \mathcal{M}_{\lambda \mu}$ such that

$$
I_{\lambda \mu}\left(u_{n}, v_{n}\right) \rightarrow c_{\lambda \mu} \quad \text { and } \quad I_{\lambda \mu}^{\prime}\left(u_{n}, v_{n}\right) \rightarrow 0
$$

Moreover, there exist $M_{0}, M_{1}>0$ such that $\left\|u_{n}\right\|,\left\|v_{n}^{ \pm}\right\| \in\left[M_{0}, M_{1}\right]$ for all $n \in \mathbb{N}$.
Proof. By applying the Ekeland's variational principle [12, we construct a sequence $\left(u_{n}, v_{n}\right) \in \mathcal{M}_{\lambda \mu}$ such that

$$
\begin{gather*}
I_{\lambda \mu}\left(u_{n}, v_{n}\right) \rightarrow c_{\lambda \mu} \\
I_{\lambda \mu}\left(u_{n}, v_{n}\right)<I_{\lambda \mu}(\varphi, \phi)+\frac{1}{n}\left\|\left(u_{n}-u, v_{n}-v\right)\right\|, \quad \forall(\varphi, \phi) \in \mathcal{M}_{\lambda \mu} \tag{2.13}
\end{gather*}
$$

As $\left(u_{n}, v_{n}\right) \in \mathcal{M}_{\lambda \mu}$, then $\left\|u_{n}\right\|_{\lambda}^{2}+\left\|v_{n}\right\|_{\mu}^{2}=\int_{\Omega}\left|u_{n}\right|^{p}\left|v_{n}\right|^{q}$ which leads us to

$$
\begin{aligned}
\frac{p+q-1}{2(p+q)}\left(\left\|u_{n}\right\|_{\lambda}^{2}+\left\|v_{n}\right\|_{\mu}^{2}\right) & =\frac{1}{2}\left(\left\|u_{n}\right\|_{\lambda}^{2}+\left\|v_{n}\right\|_{\mu}^{2}\right)-\frac{1}{p+q} \int_{\Omega}\left|u_{n}\right|^{p}\left|v_{n}\right|^{q} \\
& =I_{\lambda \mu}\left(u_{n}, v_{n}\right)=c_{\lambda \mu}+o_{n}(1)
\end{aligned}
$$

The above expression and (2.1) gives us

$$
2 C_{\lambda \mu}\left(\left\|u_{n}\right\|^{2}+\left\|v_{n}\right\|^{2}\right) \leq\left(\left\|u_{n}\right\|_{\lambda}^{2}+\left\|v_{n}\right\|_{\mu}^{2}\right)=\frac{2(p+q) c_{\lambda \mu}}{p+q-1}+o_{n}(1)
$$

therefore $\left(u_{n}, v_{n}\right)$ is a bounded sequence, i.e, there exists $M_{1}>0$ such that

$$
\begin{equation*}
\left\|\left(u_{n}, v_{n}\right)\right\| \leq M_{1} \quad \text { for all } n \in \mathbb{N} \tag{2.14}
\end{equation*}
$$

By the Riesz Representation Theorem, it follows that for every fixed $n \in \mathbb{N}$ there exist $z_{n}, w_{n} \in H_{0}^{1}(\Omega)$ such that $\left(z_{n}, w_{n}\right) \cong I_{\lambda \mu}^{\prime}\left(u_{n}, v_{n}\right) /\left\|I_{\lambda \mu}^{\prime}\left(u_{n}, v_{n}\right)\right\|$; moreover

$$
\begin{equation*}
\left\|\left(z_{n}, w_{n}\right)\right\|=1 \quad \text { and } \quad I_{\lambda \mu}^{\prime}\left(u_{n}, v_{n}\right)\left(z_{n}, w_{n}\right)=\left\|I_{\lambda \mu}^{\prime}\left(u_{n}, v_{n}\right)\right\| \tag{2.15}
\end{equation*}
$$

From now on, we will assume that $n \in \mathbb{N}$ is fixed. Let $t(\delta):=t_{n}(\delta), r(\delta):=$ $r_{n}(\delta), s(\delta):=s_{n}(\delta)$ be given as stated in Lemma 2.1 and $u:=u_{n}, v:=v_{n}, z:=z_{n}$, $w:=w_{n}$ we will define $(u(\delta), v(\delta)):=\left(u_{n}(\delta), v_{n}(\delta)\right)$ by

$$
(u(\delta), v(\delta)):=\left(t(\delta)[u-\delta z], \quad r(\delta)[v-\delta w]^{+}-s(\delta)[v-\delta w]^{-}\right) \in \mathcal{M}_{\lambda \mu}
$$

Recall also that $I_{\lambda \mu} \in C^{1}(\mathcal{H}, \mathbb{R})$, where $\mathcal{H}=H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$. Setting $R(X-Y):=$ $I_{\lambda \mu}(X)-I_{\lambda \mu}(Y)-I_{\lambda \mu}^{\prime}(X)(X-Y)$ for any $X, Y \in \mathcal{H}$, we have $\lim _{X \rightarrow Y}(R(X-$ $Y) /\|X-Y\|)=0$. Since $\lim _{\delta \rightarrow 0^{+}}(u(\delta), v(\delta))=(u, v)$, it is not difficult to see that $(\|u(\delta)-u\|+\|v(\delta)-v\|) / \delta \rightarrow\left\|t^{\prime}(0) u-z\right\|+\left\|r^{\prime}(0) v^{+}-s^{\prime}(0) v^{-}-w\right\|$ as $\delta \rightarrow 0^{+}$. Therefore, $o(\delta):=R(u(\delta)-u, v(\delta)-v)$ satisfies $o(\delta) / \delta \rightarrow 0$ as $\delta \rightarrow 0^{+}$and

$$
\begin{equation*}
I_{\lambda \mu}(u(\delta), v(\delta))=I_{\lambda \mu}(u, v)+I_{\lambda \mu}^{\prime}(u(\delta), v(\delta))(u(\delta)-u, v(\delta)-v)+o(\delta) \tag{2.16}
\end{equation*}
$$

setting $T_{\delta}(\varphi, \phi):=I_{\lambda \mu}^{\prime}(u(\delta), v(\delta))(\varphi, \phi)$, by 2.13) and 2.16 we have

$$
\begin{aligned}
& \frac{1}{n}\|u(\delta)-u, v(\delta)-v\| \\
& \geq I_{\lambda \mu}(u, v)-I_{\lambda \mu}(u(\delta), v(\delta)) \\
& =T_{\delta}(u-u(\delta), v-v(\delta))+o(\delta)= \\
& =(1-t(\delta)) T_{\delta}(u-\delta z, 0)+T_{\delta}(u, 0)-T_{\delta}(u-\delta z, 0) \\
& \quad+(1-r(\delta)) T_{\delta}\left(0,\left[v_{n}-\delta w\right]^{+}\right)+T_{\delta}\left(0, v^{+}\right)-T_{\delta}\left(0,[v-\delta w]^{+}\right) \\
& \quad-(1-s(\delta)) T_{\delta}\left(0,[v-\delta w]^{-}\right)-T_{\delta}\left(0, v^{-}\right)+T_{\delta}\left(0,[v-\delta w]^{-}\right)+o(\delta) \\
& =(1-t(\delta)) T_{\delta}(u-\delta z, 0)+(1-r(\delta)) T_{\delta}\left(0,[v-\delta w]^{+}\right) \\
& \quad-(1-s(\delta)) T_{\delta}\left(0,[v-\delta w]^{-}\right)+\delta T_{\delta}(z, w)+o(\delta) .
\end{aligned}
$$

As a consequence,

$$
\begin{aligned}
\frac{1}{n}\left\|\frac{u(\delta)-u}{\delta}, \frac{v(\delta)-v}{\delta}\right\| \geq & \left(\frac{1-t(\delta)}{\delta}\right) T_{\delta}(u-\delta z, 0)+\left(\frac{1-r(\delta)}{\delta}\right) T_{\delta}\left(0,[v-\delta w]^{+}\right) \\
& -\left(\frac{1-s(\delta)}{\delta}\right) T_{\delta}\left(0,[v-\delta w]^{-}\right)+T_{\delta}(z, w)+\frac{o(\delta)}{\delta}
\end{aligned}
$$

Given that $\lim _{\delta \rightarrow 0^{+}} t(\delta)=\lim _{\delta \rightarrow 0^{+}} r(\delta)=\lim _{\delta \rightarrow 0^{+}} s(\delta)=1$, taking the limit as $\delta \rightarrow 0^{+}$, the above inequality gives us

$$
\begin{align*}
& \frac{1}{n}\left\|t^{\prime}(0) u-z, r^{\prime}(0) v^{+}-s^{\prime}(0) v^{-}-w\right\| \\
& \geq-t^{\prime}(0) T_{0}(u, 0)-r^{\prime}(0) T_{0}\left(0, v^{+}\right)+s^{\prime}(0) T_{0}\left(0, v^{-}\right)+T_{0}(z, w) \tag{2.17}\\
& =-t^{\prime}(0) T_{0}(u, 0)-r^{\prime}(0) T_{0}\left(0, v^{+}\right)+s^{\prime}(0) T_{0}\left(0, v^{-}\right)+T_{0}(z, w)
\end{align*}
$$

Since $(u, v) \in \mathcal{M}_{\lambda \mu}$, it follows that $T_{0}(u, 0)=T_{0}\left(0, v^{+}\right)=T_{0}\left(0, v^{-}\right)=0$; therefore, from 2.17 and 2.15 we conclude that

$$
\begin{align*}
\frac{\left|t^{\prime}(0)\right|+\left|r^{\prime}(0)\right|+\left|s^{\prime}(0)\right|}{n}(\|u, v\|+\|z, w\|) & \geq T_{0}(z, w) \\
& =I_{\lambda \mu}^{\prime}(u, v)(z, w) \tag{2.18}\\
& =\left\|I_{\lambda \mu}^{\prime}(u, v)\right\| .
\end{align*}
$$

By Lemma 2.1 there exists $C_{2}>0$ (that does not depend on the index n) such that $\left|t^{\prime}(0)\right|+\left|r^{\prime}(0)\right|+\left|s^{\prime}(0)\right| \leq 3 C_{2}$. From (2.18, 2.14) and 2.15 we obtain $\left\|I_{\lambda \mu}^{\prime}\left(u_{n}, v_{n}\right)\right\| \leq 3\left(2 M_{1}+1\right) C_{2} / n$. The existence of the constant $M_{0}>0$ is guaranteed by Lemma 2.1. This completes the proof.

Proof of Theorem 1.1. Firstly, we deal with the case $N \in\{3,4,5\}$. Let $\left(u_{n}, v_{n}\right)$ the sequence obtained in Proposition 2.2 by 2.12, $\left\|u_{n}\right\|,\left\|v_{n}^{ \pm}\right\| \in\left[M_{0}, M_{1}\right], M_{0}>0$ and $\lambda, \mu<\lambda_{1}(\Omega)$, we can deduce that $c_{\lambda \mu}>0$. It follows from the boundedness of u_{n}, v_{n} in $H_{0}^{1}(\Omega)$ that there exists $u_{0}, v_{0} \in H_{0}^{1}(\Omega)$ such that, up to a subsequence, $u_{n} \rightharpoonup u_{0}$ and $v_{n} \rightharpoonup v_{0}$ weakly in $H_{0}^{1}(\Omega)$. Since $I_{\lambda \mu}^{\prime}\left(u_{n}, v_{n}\right) \rightarrow 0$ and $\left(v_{n}^{ \pm}-v_{0}^{ \pm}\right)$is bounded in $H_{0}^{1}(\Omega)$, it follows that

$$
\begin{equation*}
\left\|v_{n}^{ \pm}\right\|_{\mu}^{2}-\int_{\Omega}\left(\nabla v_{n} \nabla v_{0}^{ \pm}-\mu v_{n} v_{0}^{ \pm}\right)-\Gamma_{n}=I_{\lambda \mu}^{\prime}\left(u_{n}, v_{n}\right)\left(0, v_{n}^{ \pm}-v_{0}^{ \pm}\right) \rightarrow 0 \tag{2.19}
\end{equation*}
$$

where

$$
\Gamma_{n}:=\frac{q}{p+q} \int_{\Omega}\left|u_{n}\right|^{p} \|\left. v_{n}^{ \pm}\right|^{q-2} v_{n}^{ \pm}\left(v_{n}^{ \pm}-v_{0}^{ \pm}\right) d x
$$

Then Hölder's inequality gives us

$$
\begin{equation*}
\left.\left.\left.\left|\int_{\Omega}\right| u_{n}\right|^{p}| | v_{n}^{ \pm}\right|^{q-2} v_{n}^{ \pm}\left(v_{n}^{ \pm}-v_{0}^{ \pm}\right) d x\left|\leq\left|u_{n}\right|_{p+q}^{p}\right| v_{n}^{ \pm}\right|_{p+q} ^{q-1}\left|v_{n}^{ \pm}-v_{0}^{ \pm}\right|_{p+q} \tag{2.20}
\end{equation*}
$$

Since $2<p+q<2^{*}$, it follows that $H_{0}^{1}(\Omega) \hookrightarrow L^{p+q}(\Omega)$ is a compact embedding; therefore $v_{n} \rightharpoonup v_{0}$ weakly in $H_{0}^{1}(\Omega)$ imply that $\left|v_{n}^{ \pm}-v_{0}^{ \pm}\right|_{p+q} \rightarrow 0$, which combined with the boundedness of u_{n}, v_{n} in $H_{0}^{1}(\Omega)$ and 2.20 gives us $\Gamma_{n} \rightarrow 0$. As

$$
\int_{\Omega}\left(\nabla v_{n} \nabla v_{0}^{ \pm}-\mu v_{n} v_{0}^{ \pm}\right) d x \rightarrow\left\|v_{0}^{ \pm}\right\|_{\mu}^{2}
$$

from (2.19) we obtain $\left\|v_{n}^{ \pm}\right\|_{\mu}^{2} \rightarrow\left\|v_{0}^{ \pm}\right\|_{\mu}^{2}$. Since $v_{n}^{ \pm} \rightarrow v_{0}^{ \pm}$strongly in $L^{2}(\Omega)$ it follows that $\left\|v_{n}^{ \pm}\right\|^{2} \rightarrow\left\|v_{0}^{ \pm}\right\|^{2}$ and therefore $v_{n}^{ \pm} \rightarrow v_{0}^{ \pm}$strongly in $H_{0}^{1}(\Omega)$. In a completely analogous manner, we can conclude that $u_{n} \rightarrow u_{0}$ strongly in $H_{0}^{1}(\Omega)$. It follows from Proposition 2.2 that $I_{\lambda \mu}\left(u_{0}, v_{0}\right)=c_{\lambda \mu}, I_{\lambda \mu}^{\prime}\left(u_{0}, v_{0}\right)=0$ and $\left\|u_{0}\right\|>0$ and $\left\|v_{0}^{ \pm}\right\|>0$. Notice also that we can replaced u_{n} by $\left|u_{n}\right|$ and still have $I_{\lambda \mu}\left(\left|u_{n}\right|, v_{n}\right) \rightarrow c_{\lambda \mu}$. Without loss of generality we assume that $u_{n} \geq 0$ which implies that $u_{0} \geq 0$. Since $I_{\lambda \mu}^{\prime}\left(u_{0}, v_{0}\right)=0$ we deduce that u_{0}, v_{0} are the weak solutions of the system

$$
\begin{gather*}
-\Delta u_{0}=\lambda u_{0}+\frac{p}{p+q}\left|u_{0}\right|^{p-2} u_{0}\left|v_{0}\right|^{q}, \quad \text { in } \Omega, \\
-\Delta v_{0}=\mu v_{0}+\frac{q}{p+q}\left|u_{0}\right|^{p}\left|v_{0}\right|^{q-2} v_{0}, \quad \text { in } \Omega, \tag{2.21}\\
u_{0}=v_{0}=0, \quad \text { on } \partial \Omega, \\
u_{0} \geq 0, \quad v_{0}^{ \pm} \not \equiv 0 \quad \text { in } \Omega .
\end{gather*}
$$

It follows from the standard theory of elliptic regularity and a bootstrap argument that $u_{0}, v_{0} \in C^{2}(\bar{\Omega})$. Furthermore, by using that $-\Delta u_{0} \geq 0$ in Ω and $\left\|u_{0}\right\|>0$, the Strong Maximum Principle implies that $u_{0}>0$ in Ω. Once again by using that $p+q>2$, there exist $t, s>0$ satisfying

$$
\left(\frac{p}{p+q}\right) \frac{1}{t^{p-2} s^{q}}=\xi \quad \text { and } \quad\left(\frac{q}{p+q}\right) \frac{1}{t^{p} s^{q-2}}=\tau
$$

It is easy to verify that $u=t u_{0}$ and $v=s v_{0}$ satisfy (1.3). The cases $N=1,2$ with $p+q<+\infty$ follows in a similar way by using that $H_{0}^{1}(\Omega) \hookrightarrow L^{q}(\Omega)$ is a compact embedding for each $q \geq 1$.
Acknowledgements. E. D. da Silva was partially supported by CNPq grants $309026 / 2020-2$. The authors would like to express their sincere gratitude to the referees for their carefully reading the manuscript and valuable suggestions.

References

[1] A. Ambrosetti, E. Colorado; Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. (2) 75 (2007), no. 1, 67-82.
[2] N. Akhmediev, A. Ankiewicz; Partially coherent solitons on a finite background, Phys. Rev. Lett., 82 (1999), 2661-2664.
[3] T. Bartsch, N. Dancer, Z-Q, Wang; A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differential Equations 37 (2010), no. 3-4, 345-361.
[4] G. Cerami, S. Solimini, M. Struwe; Some existence results for superlinear elliptic boundary value problems involving critical exponents. J. Funct. Anal. 69 (1986), no. 3, 289-306.
[5] Z. Chen, C-S. Lin, W. Zou; Multiple sign-changing and semi-nodal solutions for coupled Schrödinger equations. J. Differential Equations 255 (2013), no. 11, 4289-4311.
[6] Z. Chen, C.-S. Lin, W. Zou; Infinitely many sign-changing and semi-nodal solutions for a nonlinear Schrödinger system. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 15 (2016), 859-897
[7] Z. Chen, C.-S. Lin, W. Zou; Sign-changing solutions and phase separation for an elliptic system with critical exponent. Comm. Partial Differential Equations 39 (2014), no. 10, 18271859.
[8] Z. Chen, C.-S. Lin, W. Zou; Infinitely many sign-changing and semi-nodal solutions for a nonlinear Schrödinger system. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 15 (2016), 859-897.
[9] Z. Chen, C.-S. Lin, W. Zou; Multiple sign-changing and semi-nodal solutions for coupled Schrödinger equations. J. Differential Equations 255 (2013), no. 11, 4289-4311.
[10] Z. Chen, W. Zou; An optimal constant for the existence of least energy solutions of a coupled Schrödinger system. Calc. Var. Partial Differential Equations 48 (2013), no. 3-4, 695-711.
[11] M. Clapp, M. Soares; Energy estimates for seminodal solutions to an elliptic system with mixed couplings. NoDEA Nonlinear Differential Equations Appl. 30 (2023), no. 1, Paper No. 11, 33 pp.
[12] I. Ekeland; On the variational principle, J. Anal. Appl. 17 (1974), 324-353.
[13] B. Esry, C. Greene, J. Burke, J. Bohn; Hartree-Fock theory for double condesates, Phys. Rev. Lett., 78 (1997), 3594-3597.
[14] D. J. Frantzeskakis; Dark solitons in atomic Bose-Einstein condesates: From theory to experiments. J. Phys. A (2010) 43:213001.
[15] V. N. Ginzburg, A. A. Kochetkov, A. K. Potemkin, E.A. Khazanov; Suppression of smallscale self-focusing of high-power laser beams due to their self-filtration during propagation in free space Quantum Electron. 48 (2018) 325.
[16] E. Khazanov, V. Ginzburg, A. Kochetkov; Self-Focusing Suppression in Ultrahigh-Intensity Lasers, 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Hong Kong, China, 2018, pp. 1-2.
[17] Y. S. Kivshar, B. Luther-Davies; Dark optical solitons: physics and applications. Physics Reports (1998) 298:81-197.
[18] T.-C. Lin, J. Wei; Ground state of N coupled nonlinear Schrödinger equations in $\mathbb{R}^{n}, n \leq 3$. Comm. Math. Phys. 255 (2005), no. 3, 629-653.
[19] Z. Liu, Z.-Q. Wang; Multiple bound states of nonlinear Schrödinger systems. Comm. Math. Phys. 282 (2008), no. 3, 721-731.
[20] S. G. Lukishova, Y. V. Senatsky, N. E. Bykovsky, A. S. Scheulin; Beam Shaping and Suppression of Self-focusing in High-Peak-Power Nd:Glass Laser Systems Part of the book series: Topics in Applied Physics (TAP, volume 114, Chapter 8) DOI: 10.1007/978-0-387-34727-1_8
[21] L. A. Maia, E. Montefusco, B. Pellacci; Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differential Equations 229 (2006), no. 2, 743-767.
[22] C. Pethick, H. Smith; Bose-Einstein Condensation in Dilute Gases (2nd ed.). Cambridge: Cambridge University Press (2008).
[23] B. Sirakov; Least energy solitary waves for a system of nonlinear Schrödinger equations in \mathbb{R}^{n}. Comm. Math. Phys. 271 (2007), no. 1, 199-221.
[24] G. Tarantello; On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Lineaire 9 (1992), no. 3, 281-304.
[25] J. Wei, T. Weth; Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Ration. Mech. Anal. 190 (2008), no. 1, 83-106.

João Pablo Pinheiro da Silva
Departamento de Matemática, Universidade Federal do Pará, Belem, Brazil
Email address: jpabloufpa@gmail.com
Edcarlos Domingos da Silva
Departamento de Matemática, Universidade de Federal de Goiás, Goiánia, GO, 74690900, Brazil

Email address: edcarlos@ufg.br

[^0]: 2020 Mathematics Subject Classification. 35J47, 35J50.
 Key words and phrases. Elliptic systems; variational methods; semi-nodal solutions; Gross-Pitaevskii equation.
 (C)2024. This work is licensed under a CC BY 4.0 license.

 Submitted June 10, 2023. Published April 25, 2024.

