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DYNAMICS OF TRAVELING WAVES FOR PREDATOR-PREY

SYSTEMS WITH ALLEE EFFECT AND TIME DELAY

YANG HUA, XIAOJIE LIN, JIANG LIU, HAIXIA LU

Abstract. This article aims to establish the existence of traveling waves for a

predator-prey system with Beddington-DeAngelis functional response, repro-

ductive Allee effect, and time delay. We investigate the existence of solutions
for a system with two special delay kernels by geometric singular perturbation

theory, invariant manifold theory, and Fredholm orthogonality theory. In ad-

dition, we discuss the asymptotic behaviors of traveling waves with the aid of
the asymptotic theory.

1. Introduction

The Allee effect was originally proposed by Warder Clyde Allee [2] to characterize
the correlation between the population density and per capita growth rate of the
population at low densities [27]. In recent decades, it has received considerable
attention and numerous related studies have been conducted [1, 19, 23, 29, 31, 34].
To investigate the impact of the reproductive Allee effect in prey growth, Dey et
al. [7] considered the predator-prey system with Beddington-DeAngelis functional
response and reproductive Allee effect,

NT = dNNyy + aN2(b−N)− dN − sNP

p+N + qP
,

PT = dPPyy +
esNP

p+N + qP
−mP,

(1.1)

where N(T, y) and P (T, y) denote the prey and predator densities at moment T
and location y, respectively, dN and dP denote the diffusion coefficients of the
prey and predator populations, the positive constants a, b, and d stand for the
intrinsic growth rate, threshold for positive growth, and intrinsic mortality rate,
the parameters s, p, and q represent the maximum predation rate, self-saturation
constant and predator mutual interference, e and m are the conversation coefficient
and the per capita natural death rate of the predator population.

Making the change of variables

u =
N

b
, v =

sP

bm
, t = mT, x =

√
m

dN
y,
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system (1.1) becomes dimensionless system

ut = uxx + σu2(1− u)− ηu− uv

α+ u+ βv
,

vt = δvxx +
γuv

α+ u+ βv
− v,

(1.2)

where α = p
b , β = qm

s , γ = es
m , σ = ab2

m , η = d
m , δ = dP

dN
are dimensionless param-

eters. Combining the shooting method discussed in Huang [15] and the invariant
manifold theory, Dey et al. [7] obtained the existence of traveling waves for system
(1.2) connecting from the predator free homogeneous steady-state to the coexisting
homogeneous steady-state.

The time delay is a kind of common nonlinearity, and numerous biological pro-
cesses involve delays [21, 24, 28, 32, 33]. In ecology, the prey cannot immediately
convert food into their own energy [3, 26]. Furthermore, the predator requires time
for digesting prey before further activities [13], and the reproduction of predator is
not instantaneous but mediated by some time delay required for gestation. Conse-
quently, it is meaningful and essential to consider the time delay in predator-prey
interaction.However, Dey et al. [7] did not consider the asymptotic behavior of
traveling waves for the system (1.2).

There are two frequently used time delays known as local delay (1.4) and nonlocal
delay (1.6). Britton [4] introduced a model for a single biological population in the
form of

ut = uxx + u (1 + au− (1 + a)(f ∗ u)) , (1.3)

where f is a given function and f ∗ u denotes a local convolution in the spatial
variable that can be written as

(f ∗ u)(x, t) =
∫ t

−∞
f(t− s)u(x, s)ds, (1.4)

which is a spatial average weighted according to distance from the original position.
The time delay (1.4) is called the local delay. The kernel f(t) is any integrable non-
negative function that satisfies∫ +∞

0

f(t)dt = 1 and tf(t) ∈ L1 ((0,∞),R) .

It is notable that the normalization assumption on f ensures that the uniform non-
negative steady-state solutions are unaffected by the delay. The two classical and
special kernels are defined by

f(t) =
1

τ
e−t/τ and f(t) =

t

τ2
e−t/τ , (1.5)

where τ > 0 is a small parameter. The former is called the local weak delay kernel
and the latter the local strong delay kernel.

To recognize the effect of moving time, a spatio-temporal average weighted to-
ward the current time and position had been studied. Subsequently, Britton [5]
provided a mathematical derivation of a modified model, which incorporates a non-
local convolution in space and time, taking the form

(f ∗ u)(x, t) =
∫ t

−∞

∫ +∞

−∞
f(x− y, t− s)u(y, s) dy ds. (1.6)
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The time delay (1.6) is called the nonlocal delay. The kernel f(x, t) is any integrable
non-negative function satisfying the normalization assumption∫ t

−∞

∫ +∞

−∞
f(x, t) dx dt = 1,

which ensures that the uniform non-negative steady-state solutions are unaffected
by the delay. The two classical and special kernels are defined by

f(x, t) =
1√
4πt

e−
x2

4t
1

τ
e−t/τ and f(x, t) =

1√
4πt

e−
x2

4t
t

τ2
e−t/τ , (1.7)

where the small parameter τ > 0 measures the time delay. The former is called the
nonlocal weak delay kernel and the latter the nonlocal strong delay kernel.

Traveling waves are useful in understanding the interaction of multiple species,
and many powerful study methods have been established. Among them, the geo-
metric singular perturbation theory developed by Fenichel [12] is an effective method
to prove the existence of traveling waves in evolution equations with small param-
eters. This theory has been applied to various equations, including Keller-Segel
systems [10, 25], FitzHugh-Nagumo equations [14, 20, 30], nonlinear Belousov-
Zhabotinskii system[11], Liénard equations [18], Camassa-Holm equations [9, 8],
etc.

Motivated by the aforementioned analysis, we incorporate time delay into the
system (1.2). To avoid excessive technicalities, we shall only consider the case of
time delay on prey in this paper. The predator-prey system with Beddington-
DeAngelis functional response, reproductive Allee effect, and time delay which we
study here is given as

ut = uxx + σu(f ∗ u) (1− (f ∗ u))− ηu− uv

α+ u+ βv
,

vt = δvxx +
γuv

α+ u+ βv
− v,

(1.8)

where the parameters are the same as those in system (1.2), and the term (f∗u)(x, t)
denotes time delay. When we ignore the time delay, system (1.8) is reduced to
system (1.2).

The goal of this article is to establish the existence of traveling waves for sys-
tem (1.8) with two cases of (f ∗ u)(x, t) as: local delay (1.4) and nonlocal delay
(1.6), where the delay kernels are chosen as (1.5) and (1.7), respectively. Further-
more, the asymptotic behavior of traveling waves for system (1.2) has also been
considered. It should be pointed out that the profile system of system (1.2) is four-
dimensional, while the profile system of system (1.8) with local delay kernels (1.5)
is six-dimensional, or eight-dimensional with nonlocal delay kernels (1.7). Conse-
quently, the shooting method employed by Dey et al. [7] does not apply to system
(1.8). Here we use the geometric singular perturbation theory and Fredholm or-
thogonality theory to solve this difficulty.

The article is organized as follows. Section 2 gives some preliminaries and intro-
duces the geometric singular perturbation theory. Section 3 and Section 4 respec-
tively focus on studying the existence of traveling waves for the system (1.8) with
local delay kernels (1.5) and nonlocal delay kernels (1.7) by the geometric singular
perturbation theory and the Fredholm orthogonality theory. Section 5 is to explore
the asymptotic behaviors of traveling waves with the method of the asymptotic
theory.
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2. Preliminaries

In this section, we provide some preliminaries and introduce the geometric sin-
gular perturbation theory [16, 17]. By taking the traveling wave transformation

(u, v)(x, t) = (U, V )(ξ), ξ = x+ ct, (2.1)

where the constant c > 0 is the wave speed, system (1.2) is transformed into

cU ′ = U ′′ + σU2(1− U)− ηU − UV

α+ U + βV
,

cV ′ = δV ′′ +
γUV

α+ U + βV
− V,

(2.2)

where ′ = d
dξ . System (2.2) is equivalent to the system

U ′ = X,

V ′ = Y,

X ′ = cX − σU2(1− U) + ηU +
UV

α+ U + βV
,

Y ′ =
1

δ

[
cY − γUV

α+ U + βV
+ V

]
.

(2.3)

According to the analysis presented in [7], for σ > 4η, it follows that the system
(2.3) has three equilibria

P0(0, 0, 0, 0), P1(u1, 0, 0, 0), and P2(u2, 0, 0, 0),

where

u1 =
σ +

√
σ2 − 4ση

2σ
> 0, u2 =

σ −
√
σ2 − 4ση

2σ
> 0.

Furthermore, under certain conditions, see [7] for more details, the system (2.3)
admits the fourth equilibrium

P∗(u∗, v∗, 0, 0),

where u∗ is a positive root of the cubic equation

σγβu3 − σγβu2 + (γβη + γ − 1)u− α = 0, (2.4)

and

v∗ =
γu∗ − u∗ − α

β
> 0.

Note that the equilibrium P1(u1, 0, 0, 0) and P∗(u∗, v∗, 0, 0) correspond to the preda-
tor free homogeneous steady-state E1(u1, 0) and the coexisting homogeneous steady-
state E∗(u∗, v∗) of the system (1.2).

For system (2.3), Dey et al. [7] obtained the existence of the heteroclinic orbit
that connects the equilibrium P1 and P∗ in the case E∗ is a stable homogeneous
steady-state, which can be characterized by the following lemma.

Lemma 2.1 ([7]). If c ≥ 2
√
δ( γu1

α+u1
− 1), then system (2.3) admits a heteroclinic

orbit Φξ(P ) = (U(ξ), V (ξ), X(ξ), Y (ξ)) with Φξ(P ) → P1(u1, 0, 0, 0) as ξ → −∞
and Φξ(P ) → P∗(u∗, v∗, 0, 0) as ξ → +∞.
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We now introduce the geometric singular perturbation theory, which ensures
the existence of invariant manifolds under certain conditions. With the use of
this approach, the higher-dimensional systems can be reduced to lower-dimensional
regular perturbation systems on these manifolds. This reduction greatly simplifies
the analysis of traveling waves in high-dimensional systems.

Lemma 2.2 ([16, 17]). Consider the system

x′(t) = f(x, y, ε),

y′(t) = εg(x, y, ε),
(2.5)

where (x, y) ∈ Rm × Rn (m,n ≥ 1), and the parameter ε satisfies 0 < ε ≪ 1.
The functions f and g are C∞ on the set V × I, where V ∈ Rm+n and I is an
open interval that includes 0. If the critical manifold M0 = {(x, y) ∈ Rm × Rn :
f(x, y, 0) = 0} is normally hyperbolic, i.e., the m ×m matrix (Dxf)(p, 0) of first
partial derivatives with respect to the fast variables x has no eigenvalues with zero
real part for all p ∈M0, then for 0 < ε≪ 1 and any 0 < r < +∞,

(i) there exists a slow manifold Mε that is diffeomorphic to M0, and Mε is
locally invariant under the flow of (2.5);

(ii) Mε is Cr in x, y, ε and can be given as a graph

Mε = {(x, y) : x = hε(y)},

for some Cr function hε(y);
(iii) there exists locally stable and unstable invariable manifolds W s

loc(Mε) and
Wu

loc(Mε) lying within O(ε) and being Cr diffeomorphic to W s
loc(M0) and

Wu
loc(M0).

3. Traveling waves for the system with local delay

This section focuses on studying the existence of traveling waves for the system
(1.8) with local delay (1.4) by the geometric singular perturbation theory and the
Fredholm orthogonality theory. We investigate the case of local strong delay kernel,
i.e., taking f(t) = t

τ2 e
−t/τ , the case of the local weak delay kernel can be discussed

by the same way.

3.1. Perturbation analysis with local delay. Substituting the traveling wave
transformation (2.1) into system (1.8), we have

cU ′ = U ′′ + σUW (1−W )− ηU − UV

α+ U + βV
,

cV ′ = δV ′′ +
γUV

α+ U + βV
− V,

(3.1)



6 Y. HUA, X. LIN, J. LIU, H. LU EJDE-2024/33

where ′ = d
dξ , and

W (ξ) =

∫ t

−∞

t− s

τ2
e−

t−s
τ U(x+ cs)ds

= −
∫ 0

+∞

z

τ2
e−

z
τ U(x+ ct− cz)dz

=

∫ +∞

0

z

τ2
e−

z
τ U(ξ − cz)dz

=

∫ +∞

0

t

τ2
e−t/τU(ξ − ct)dt.

(3.2)

Differentiating the equation (3.2) with respect to ξ, we obtain

dW

dξ
=

∫ +∞

0

t

τ2
e−t/τUξ(ξ − ct)dt

= −1

c

∫ +∞

0

t

τ2
e−t/τUt(ξ − ct)dt

= −1

c

∫ +∞

0

t

τ2
e−t/τdU

= −1

c

( t

τ2
e−t/τU(ξ − ct)

)∣∣∣+∞

0
+

1

c

∫ +∞

0

U(ξ − ct)d(
t

τ2
e−t/τ )

=
1

c

∫ +∞

0

U(ξ − ct)d(
t

τ2
e−t/τ )

=
1

cτ

(∫ +∞

0

1

τ
e−t/τU(ξ − ct)dt−

∫ +∞

0

t

τ2
e−t/τU(ξ − ct)dt

)
=

1

cτ
(ζ −W ),

(3.3)

where

ζ(ξ) =

∫ +∞

0

1

τ
e−t/τU(ξ − ct)dt. (3.4)

Differentiating equation (3.4) with respect to ξ, we obtain

dζ

dξ
=

∫ +∞

0

1

τ
e−t/τUξ(ξ − ct)dt

= −1

c

∫ +∞

0

1

τ
e−t/τUt(ξ − ct)dt

= −1

c

∫ +∞

0

1

τ
e−t/τdU

= − 1

cτ
e−t/τU(ξ − ct)

∣∣∣+∞

0
+

1

c

∫ +∞

0

Ud(
1

τ
e−t/τ )

=
1

cτ
U(ξ)− 1

cτ

∫ +∞

0

1

τ
e−t/τU(ξ − ct)dt

=
1

cτ
(U − ζ).

(3.5)
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By combining equations (3.3) and (3.5), system (3.1) can be reformulated as

cU ′ = U ′′ + σUW (1−W )− ηU − UV

α+ U + βV
,

cV ′ = δV ′′ +
γUV

α+ U + βV
− V,

cτW ′ = ζ −W,

cτζ ′ = U − ζ,

(3.6)

which can be further rewritten as a system of first order ODEs in R6

U ′ = X,

V ′ = Y,

X ′ = cX − σUW (1−W ) + ηU +
UV

α+ U + βV
,

Y ′ =
1

δ

[
cY − γUV

α+ U + βV
+ V

]
,

cτW ′ = ζ −W,

cτζ ′ = U − ζ,

(3.7)

where the small parameter τ denotes the time delay in the system (1.8). For small
τ > 0, system (3.7) is a slow system in which (W, ζ) are the fast variables and
(U, V,X, Y ) are the slow variables.

Let τ = 0, then the flow of the system (3.7) is constrained to the critical manifold

C0 = {(U, V,X, Y,W, ζ) ∈ R6 :W = ζ = U}. (3.8)

Now we study the normal hyperbolicity of the critical manifold C0. For a point
P ∈ C0, the matrix of the first partial derivatives with respect to the fast variables
(W, ζ) is

J1 =

(
−1/c 1/c
0 −1/c

)
. (3.9)

Thus according to Lemma 2.2, it follows that the critical manifold C0 is normally
hyperbolic. It indicates that there exists a slow manifold Cτ , O(τ) close and dif-
feomorphic to C0 for 0 < τ ≪ 1, which can be expressed as

Cτ =
{
(U, V,X, Y,W, ζ) ∈ R6 :W = U +ϖ1(U, V,X, Y )τ +O(τ2),

ζ = U +ϖ2(U, V,X, Y )τ +O(τ2)
}
,

where ϖi(U, V,X, Y ) (i = 1, 2) are two smooth functions defined on a compact
domain.

Substituting

W = U +ϖ1(U, V,X, Y )τ +O(τ2),

ζ = U +ϖ2(U, V,X, Y )τ +O(τ2),

into the system (3.7), we have

cτ(U ′ +ϖ′
1τ) = cτX +O(τ2) = (ϖ2 −ϖ1)τ +O(τ2),

cτ(U ′ +ϖ′
2τ) = cτX +O(τ2) = −ϖ2τ +O(τ2).
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Comparing the coefficients of τ , it follows that

ϖ1(U, V,X, Y ) = −2cX, and ϖ2(U, V,X, Y ) = −cX.

Then system (3.7) restricted to Cτ can be reformulated as

U ′ = X,

V ′ = Y,

X ′ = cX − σU(U − 2cXτ)(1− U + 2cXτ) + ηU +
UV

α+ U + βV
+O(τ2),

Y ′ =
1

δ

[
cY − γUV

α+ U + βV
+ V

]
,

(3.10)

which is a regular perturbation of the system (2.3). It is evident that the system
(3.10) is simplified to the system (2.3) when τ = 0.

3.2. Analysis by the Fredholm orthogonality theory. In this section, we shall
prove that the system (3.10) admits a heteroclinic orbit connecting the equilibrium
P1(u1, 0, 0, 0) to P∗(u∗, v∗, 0, 0) for 0 < τ ≪ 1.

Let (U0, V0, X0, Y0)(ξ) be the heteroclinic orbit of system (2.3) obtained in Lemma
2.1, connecting the equilibrium P1(u1, 0, 0, 0) to P∗(u∗, v∗, 0, 0). To solve the system
(3.10) for 0 < τ ≪ 1, we set

U = U0 + U1τ +O(τ2),

V = V0 + V1τ +O(τ2),

X = X0 +X1τ +O(τ2),

Y = Y0 + Y1τ +O(τ2).

(3.11)

Substituting the transformation (3.11) into the first and second equations of system
(3.10), and comparing the coefficient of τ , we have

U ′
1 = X1, and V ′

1 = Y1. (3.12)

Substituting the transformation (3.11) into the third equation of system (3.10), we
obtain

X ′ = X ′
0 +X ′

1τ +O(τ2)

= cX0 − U0(σU0 − σU2
0 − η) +

U0V0
α+ U0 + βV0

+X ′
1τ +O(τ2)

= cX0 − U0(σU0 − σU2
0 − η) +

[
(3σU2

0 − 2σU0 + η)U1 + cX1

+ 2cσU0X0(1− 2U0)
]
τ +

U0V0 + (U0V1 + V0U1)τ +O(τ2)

α+ U0 + βV0 + (U1 + βV1)τ +O(τ2)
+O(τ2),

i.e., [
α+ U0 + βV0 + (U1 + βV1)τ

]( U0V0
α+ U0 + βV0

+X ′
1τ
)
+O(τ2)

=
[
α+ U0 + βV0 + (U1 + βV1)τ

][
(3σU2

0 − 2σU0 + η)U1 + cX1

+ 2cσU0X0(1− 2U0)
]
τ + U0V0 + (U0V1 + V0U1)τ +O(τ2).
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Comparing the coefficient of τ , one has

X ′
1 =

[
3σU2

0 − 2σU0 + η +
αV0 + βV 2

0

(α+ U0 + βV0)2

]
U1 +

αU0 + U2
0

(α+ U0 + βV 2
0 )

2
V1

+ cX1 + 2cσU0X0(1− 2U0).

(3.13)

Substituting the transformation (3.11) into the fourth equation of system (3.10)
and comparing the coefficient of τ , we have

Y ′
1 = −γ

δ

αV0 + βV 2
0

(α+ U0 + βV0)2
U1 +

(1
δ
− γ

δ

αU0 + U2
0

(α+ U0 + βV0)2

)
V1 +

c

δ
Y1. (3.14)

Combining equations (3.12), (3.13) and (3.14), we obtain the following differential
equation system determining U1, V1, X1 and Y1,

dψ(ξ)

dξ
− P (ξ)ψ(ξ) = Q(ξ), (3.15)

where

ψ(ξ) =


U1(ξ)
V1(ξ)
X1(ξ)
Y1(ξ)

 ,

P (ξ) =


0 0 1 0
0 0 0 1

3σU2
0 − 2σU0 + η +

αV0+βV 2
0

(α+U0+βV0)2
αU0+U2

0

(α+U0+βV 2
0 )2

c 0

−γ
δ

αV0+βV 2
0

(α+U0+βV0)2
1
δ − γ

δ
αU0+U2

0

(α+U0+βV0)2
0 c

δ

 ,

Q(ξ) = (0, 0, 2cσU0X0(1− 2U0), 0)
T .

Next we proof that the system (3.15) admits a solution satisfying

(U1, V1, X1, Y1)(±∞) = 0.

Let

l =
d

dξ
− P (ξ). (3.16)

Denote L2 as the space of square integral functions, with inner production∫ +∞

−∞
(M(ξ), N(ξ))dξ,

where

M(ξ) = (U1(ξ), V1(ξ), X1(ξ), Y1(ξ))
T , N(ξ) = (U1(ξ), V1(ξ), X1(ξ), Y1(ξ))

T ,

and (·, ·) being the Euclidean inner product on R4. According to Fredholm or-
thogonality theory, we have that the system (3.15) will have a solution if and only
if ∫ +∞

−∞
(M(ξ), Q(ξ))dξ = 0,

for all functions M(ξ) ∈ R4 in the kernel of the adjoint of the operator l. It can be
readily verified that the adjoint operator l∗ is

l∗ = − d

dξ
− PT (ξ),
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where

PT (ξ) =


0 0 3σU2

0 − 2σU0 + η +
αV0+βV 2

0

(α+U0+βV0)2
−γ

δ
αV0+βV 2

0

(α+U0+βV0)2

0 0
αU0+U2

0

(α+U0+βV 2
0 )2

1
δ − γ

δ
αU0+U2

0

(α+U0+βV0)2

1 0 c 0
0 1 0 c

δ

 . (3.17)

To compute ker l∗, we need to find that all M(ξ) satisfying l∗M(ξ) = 0, i.e.,

dM(ξ)

dξ
= −PT (ξ)M(ξ). (3.18)

Then the persistence question reduces to the solvability of equation (3.18). It is
evident that the zero solution is a solution of the equation (3.18). Since the matrix
PT (ξ) is nonconstant, it is difficult to find the general solution of equation (3.18).
Nevertheless, we are only focusing on solutions that satisfyM(±∞) = 0, and in fact,
the sole such solution is the zero solution. Recall that (U0(ξ), V0(ξ), X0(ξ), Y0(ξ)) is
the solution of system (2.3) obtained in Lemma 2.1. Although we have no explicit
expression for it, we know that (U0(ξ), V0(ξ), X0(ξ), Y0(ξ)) tends to P1(u1, 0, 0, 0)
as ξ → −∞. Letting ξ → −∞, the matrix −PT finally becomes a constant matrix

0 0 3σu21 − 2σu1 + η 0
0 0 u1

α+u1

1
δ (1−

γu1

α+u1
)

1 0 c 0
0 1 0 c

δ

 (3.19)

The characteristic equation of the above matrix is

(λ2 − cλ− 3σu21 + 2σu1 − η)(δλ2 − cλ+
γu1
α+ u1

− 1) = 0. (3.20)

By direct computation, it can be found that the equation (3.20) has three posi-
tive real eigenvalues and one negative eigenvalue. Consequently, the sole solution
that satisfies M(−∞) = 0 is the zero solution. This implies that the Fredholm
orthogonality condition holds trivially∫ +∞

−∞
(M(ξ), Q(ξ))dξ =

∫ +∞

−∞
(0, Q(ξ))dξ = 0,

and the solutions of the system (3.15) exist, which satisfies

(U1, V1, X1, Y1)(±∞) = 0.

Therefore, for 0 < τ ≪ 1, the system (3.10) exists one heteroclinic orbit (3.11)
connecting the equilibrium P1(u1, 0, 0, 0) to P∗(u∗, v∗, 0, 0). This means that the
system (1.8) with local strong delay kernel admits a traveling wave, and we obtain
the following theorem.

Theorem 3.1. If c ≥ 2
√
δ( γu1

α+u1
− 1), then for any sufficiently small τ > 0,

the system (1.8) with local strong delay kernel admits a traveling wave (u, v)(x, t)=
(U, V )(ξ) connecting from the steady-state E1(u1, 0) to E∗(u∗, v∗), where ξ = x+ct.

Remark 3.2. The result for τ = 0 is presented in [7]. Theorem 3.1 indicates that
the traveling wave connecting from the steady-state E1(u1, 0) to E∗(u∗, v∗) still
exists for any sufficiently small τ > 0.
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4. Traveling waves for the system with nonlocal delay

This section focuses on studying the existence of traveling waves for the system
(1.8) with nonlocal delay (1.6) by the geometric singular perturbation theory and
the Fredholm orthogonality theory. We mainly consider the case of nonlocal strong

delay kernel, i.e., taking f(x, t) = 1√
4πt

e−
x2

4t
t
τ2 e

−t/τ , the case of the nonlocal weak

delay kernel can be studied similarly.

4.1. Perturbation analysis with nonlocal delay. We define

ϕ(x, t) =

∫ t

−∞

∫ +∞

−∞

1√
4π(t− s)

e−
(x−y)2

4(t−s)
t− s

τ2
e−

t−s
τ u(y, s) dy ds.

By a direct calculation, we have

∂ϕ

∂t
− ∂2ϕ

∂x2
=

1

τ
(κ− ϕ), (4.1)

where

κ(x, t) =

∫ t

−∞

∫ +∞

−∞

1√
4π(t− s)

e−
(x−y)2

4(t−s)
1

τ
e−

t−s
τ u(y, s) dy ds.

Similarly, it follows that

∂κ

∂t
− ∂2κ

∂x2
=

1

τ
(u− κ). (4.2)

Combining equations (4.1) and (4.2), we obtain

ϕtt = 2ϕtxx − ϕxxxx +
2

τ
(ϕxx − ϕt) +

1

τ2
(u− ϕ). (4.3)

Then system (1.8) can be reformulated as

ut = uxx + σuϕ(1− ϕ)− ηu− uv

α+ u+ βv
,

vt = δvxx +
γuv

α+ u+ βv
− v,

ϕtt = 2ϕtxx − ϕxxxx +
2

τ
(ϕxx − ϕt) +

1

τ2
(u− ϕ).

(4.4)

Introducing the traveling wave coordinate

(u, v, ϕ)(x, t) = (U, V, ϕ̄)(ξ), ξ = x+ ct,

where the constant c > 0 is the wave speed, the system (4.4) is transformed into

cU ′ = U ′′ + σUϕ̄(1− ϕ̄)− ηU − UV

α+ U + βV
,

cV ′ = δV ′′ +
γUV

α+ U + βV
− V,

ϕ̄′′′′ − 2cϕ̄′′′ + c2ϕ̄′′ − 2

τ
(ϕ̄′′ − cϕ̄′)− 1

τ2
(U − ϕ̄) = 0,

(4.5)
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which can be rewritten as the eight-dimensional system

U ′ = X,

V ′ = Y,

X ′ = cX − σUϕ̄(1− ϕ̄) + ηU +
UV

α+ U + βV
,

Y ′ =
1

δ

[
cY − γUV

α+ U + βV
+ V

]
,

ϕ̄′ = ϕ̄1,

ϕ̄′1 = ϕ̄2,

ϕ̄′2 = ϕ̄3,

ϕ̄′3 = 2cϕ̄3 − c2ϕ̄2 +
2

τ
(ϕ̄2 − cϕ̄1) +

1

τ2
(U − ϕ̄).

(4.6)

Set ε =
√
τ and define the new variables

Z = ϕ̄, Z1 = εϕ̄1, Z2 = ε2ϕ̄2, Z3 = ε3ϕ̄3,

then system (4.6) becomes

U ′ = X,

V ′ = Y,

X ′ = cX − σUZ(1− Z) + ηU +
UV

α+ U + βV
,

Y ′ =
1

δ

[
cY − γUV

α+ U + βV
+ V

]
,

εZ ′ = Z1,

εZ ′
1 = Z2,

εZ ′
2 = Z3,

εZ ′
3 = 2cεZ3 + (2− c2ε2)Z2 − 2cεZ1 + U − Z.

(4.7)

For small ε > 0, system (4.7) is a slow system in which (Z,Z1, Z2, Z3) are the fast
variables and (U, V,X, Y ) are the slow variables.

Let ε = 0, then system (4.7) is constrained to the critical manifold

S0 = {(U, V,X, Y, Z, Z1, Z2, Z3) ∈ R8 : Z = U,Z1 = Z2 = Z3 = 0}. (4.8)

For a point P ∈ S0, the matrix of the first partial derivatives with respect to the
fast variables (Z,Z1, Z2, Z3) is

J2 =


0 1 0 0
0 0 1 0
0 0 0 1
−1 0 2 0

 . (4.9)

A computation shows that the eigenvalues of the matrix J2 are −1,−1, 1, 1, hence
the critical manifold S0 is normally hyperbolic. According to Lemma 2.2, we obtain
that there exists a slow manifold Sε, O(ε) close and diffeomorphic to S0 for 0 <
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ε≪ 1, which can be expressed as

Sε =
{
(U, V,X, Y, Z, Z1, Z2, Z3) ∈ R8 :

Z = U + f1(U, V,X, Y )ε+ f2(U, V,X, Y )ε2 +O(ε3),

Z1 = g1(U, V,X, Y )ε+ g2(U, V,X, Y )ε2 +O(ε3),

Z2 = h1(U, V,X, Y )ε+ h2(U, V,X, Y )ε2 +O(ε3),

Z3 = r1(U, V,X, Y )ε+ r2(U, V,X, Y )ε2 +O(ε3)
}
,

(4.10)

where fi, gi, hi, ri (i = 1, 2) are smooth functions defined on a compact domain.
Substituting equation (4.10) into system (4.7), we have

εX + f ′1ε
2 + f ′2ε

3 +O(ε4) = g1ε+ g2ε
2 +O(ε3),

g′1ε
2 + g′2ε

3 +O(ε4) = h1ε+ h2ε
2 +O(ε3),

h′1ε
2 + h′2ε

3 +O(ε4) = r1ε+ r2ε
2 +O(ε3),

r′1ε
2 + r′2ε

3 +O(ε4) = (2h1 − f1)ε+ (2cr1 + 2h2 − 2cg1 − f2)ε
2 +O(ε3).

Comparing the coefficients of ε and ε2, one has

f1 = 0, f2 =
2UV

α+ U + βV
− 2(σU − σU2 − η)U,

h1 = 0, h2 = cX − (σU − σU2 − η)U +
UV

α+ U + βV
,

g1 = X, g2 = 0, r1 = 0, r2 = 0.

Thus system (4.7) restricted to Sε can be reformulated as

U ′ = X,

V ′ = Y,

X ′ = cX − σU(U + f2ε
2)(1− U − f2ε

2) + ηU +
UV

α+ U + βV
+O(ε3),

Y ′ =
1

δ
[cY − γUV

α+ U + βV
+ V ],

(4.11)

which is a regular perturbation of the system (2.3). It is evident that the system
(4.11) is simplified to system (2.3) when ε = 0.

4.2. Analysis by the Fredholm orthogonality theory. This section we prove
that system (4.11) admits a heteroclinic orbit connecting equilibrium P1(u1, 0, 0, 0)
to P∗(u∗, v∗, 0, 0) for 0 < ε≪ 1.

Let (U0, V0, X0, Y0)(ξ) be the heteroclinic orbit of system (2.3) obtained in Lemma
2.1, connecting the equilibrium P1(u1, 0, 0, 0) to P∗(u∗, v∗, 0, 0). To solve system
(4.11) for 0 < τ ≪ 1, we set

U = U0 + Ū1ε
2 +O(ε3),

V = V0 + V̄1ε
2 +O(ε3),

X = X0 + X̄1ε
2 +O(ε3),

Y = Y0 + Ȳ1ε
2 +O(ε3),

(4.12)
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Substituting the transformation (4.12) into system (4.11) and comparing the coef-
ficient of ε2, the differential equation system determining Ū1, V̄1, X̄1, Ȳ1 is

dψ̄(ξ)

dξ
− P̄ (ξ)ψ̄(ξ) = Q̄(ξ), (4.13)

where

ψ̄(ξ) =


Ū1(ξ)
V̄1(ξ)
X̄1(ξ)
Ȳ1(ξ)

 ,

P̄ (ξ) =


0 0 1 0
0 0 0 1

3σU2
0 − 2σU0 + η +

αV0+βV 2
0

(α+U0+βV0)2
αU0+U2

0

(α+U0+βV 2
0 )2

c 0

−γ
δ

αV0+βV 2
0

(α+U0+βV0)2
1
δ − γ

δ
αU0+U2

0

(α+U0+βV0)2
0 c

δ

 ,

Q̄(ξ) = (0, 0, σ(2U2
0 − U0)f2(U0, V0, X0, Y0), 0)

T .

By an analysis similar to the one in Section 3.2, it follows that system (4.11) admits
a heteroclinic orbit (4.12) connecting the equilibrium P1(u1, 0, 0, 0) to P∗(u∗, v∗, 0, 0)
for 0 < ε≪ 1. Therefore, the system (1.8) with nonlocal strong delay kernel admits
a traveling wave, and we obtain the following theorem.

Theorem 4.1. If c ≥ 2
√
δ( γu1

α+u1
− 1), then for any sufficiently small τ > 0, the

system (1.8) with nonlocal strong delay kernel admits a traveling wave (u, v)(x, t)=
(U, V )(ξ) connecting from the steady-state E1(u1, 0) to E∗(u∗, v∗), where ξ = x+ct.

5. Asymptotic behavior

This section focus on analyzing the asymptotic behaviors of traveling waves
for the system (1.2) with the method of the asymptotic theory [6]. Let φ(ξ) =
(u, v)(x, t) = (U, V )(ξ) be the traveling wave of system (1.2) satisfying the boundary
conditions

(U, V )(−∞) = E1(u1, 0), (U, V )(+∞) = E∗(u∗, v∗). (5.1)

Differentiating the system (2.2) with respect to ξ and denoting

φ′(ξ) = (U ′, V ′)(ξ) = (φ1, φ2)(ξ),

we have

cφ′
1 = φ′′

1 + (2σU − 3σU2 − η)φ1 −
(αV + βV 2)φ1 + (αU + U2)φ2

(α+ U + βV )2
,

cφ′
2 = δφ′′

2 + γ
(αV + βV 2)φ1 + (αU + U2)φ2

(α+ U + βV )2
− φ2.

(5.2)

Note that the traveling wave φ(ξ) satisfies the boundary conditions (5.1), hence the
limiting system of system (5.2) as ξ → −∞ is

cφ′
1− = φ′′

1− − (σu1 − 2η)φ1− − u1
α+ u1

φ2−,

cφ′
2− = δφ′′

2− + (
γu1
α+ u1

− 1)φ2−,
(5.3)
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which is equivalent to the system

φ′
1− = φ3−,

φ′
2− = φ4−,

φ′
3− = (σu1 − 2η)φ1− +

u1
α+ u1

φ2− + cφ3−,

φ′
4− =

1

δ

[
(1− γu1

α+ u1
)φ2− + cφ4−

]
.

(5.4)

The system (5.4) can be rewritten as

T ′
− = A1T−, (5.5)

where

T−(ξ) =


φ1−(ξ)
φ2−(ξ)
φ3−(ξ)
φ4−(ξ)

 , A1 =


0 0 1 0
0 0 0 1

σu1 − 2η u1

α+u1
c 0

0 1
δ (1−

γu1

α+u1
) 0 c

δ

 . (5.6)

The eigenvalues of the matrix A1 are

Λ1 =
c+

√
c2 + 4σu1 − 8η

2
, Λ2 =

c+
√
c2 +∆(u1)

2δ
,

Λ3 =
c−

√
c2 +∆(u1)

2δ
, Λ4 =

c−
√
c2 + 4σu1 − 8η

2
,

where ∆(u1) = 4δ(1− γu1

α+u1
). It is evident that Λi > 0 (i = 1, 2, 3), and Λ4 < 0 for

u1 =
σ+

√
σ2−4ση

2σ , σ > 4η, and c ≥ 2
√
δ( γu1

α+u1
− 1) > 0. The general solutions of

the system (5.5) can be expressed as

(φ1−, φ2−, φ3−, φ4−)
T (ξ) =

4∑
i=1

aiρie
Λiξ,

where ρi are the corresponding eigenvectors to the eigenvalues Λi (i = 1, 2, · · · , 4),
and ai (i = 1, 2, · · · , 4) are arbitrary constants. Since

(φ1−, φ2−, φ3−, φ4−)
T (−∞) = (0, 0, 0, 0),

we have a4 = 0 and

(φ1−, φ2−, φ3−, φ4−)
T (ξ) =

3∑
i=1

aiρie
Λiξ.

Therefore, we obtain the asymptotic behavior(
φ1−
φ2−

)
=

(∑3
i=1 µi(mi + o(1))eΛiξ∑3
i=1 µi(ni + o(1))eΛiξ

)
, ξ → −∞, (5.7)

where mi, ni (i = 1, 2, 3) are constants, and µi (i = 1, 2, 3) can not be zero simul-
taneously, see [6].

On the other hand, the limiting system of system (5.2) as ξ → +∞ is

cφ′
1+ = φ′′

1+ − (σu∗ −
2γ + 1

γ
k∗ − 2η)φ1+ +

βk∗ − 1

γ
φ2+,

cφ′
2+ = δφ′′

2+ + (γk∗ − k∗)φ1+ − βk∗φ2+,

(5.8)
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where

k∗ =
v∗
γu∗

=
(γ − 1)u∗ − α

γβu∗
> 0. (5.9)

Then system (5.8) is equivalent to

φ′
1+ = φ3+,

φ′
2+ = φ4+,

φ′
3+ = (σu∗ −

2γ + 1

γ
k∗ − 2η)φ1+ +

1− βk∗

γ
φ2+ + cφ3+,

φ′
4+ =

1

δ

[
(k∗ − γk∗)φ1+ + βk∗φ2+ + cφ4+

]
,

(5.10)

which can be reformulated as

T ′
+ = A2T+, (5.11)

where

T+(ξ) =


φ1+(ξ)
φ2+(ξ)
φ3+(ξ)
φ4+(ξ)

 , A2 =


0 0 1 0
0 0 0 1

σu∗ − 2γ+1
γ k∗ − 2η 1−βk∗

γ c 0
1−γ
δ k∗ β

δ k
∗ 0 c

δ

 . (5.12)

The general solutions of system (5.11) has the form

(φ1+, φ2+, φ3+, φ4+)
T (ξ) =

4∑
i=1

ãiρ̃ie
Λ̃iξ,

where ρ̃i are the corresponding eigenvectors to the eigenvalues Λ̃i (i = 1, 2, · · · , 4),
and ãi (i = 1, 2, · · · , 4) are arbitrary constants.

The characteristic equation of the matrix A2 is

Λ̃4 − (c+
c

δ
)Λ̃3 +K2Λ̃

2 +K1Λ̃ +K0 = 0,

where

K0 =
[
σβu∗ − (3β +

1

γ
)k∗ − 2βη + 1

]k∗
δ
,

K1 =
[
σu∗ + (β − 1

γ
− 2)k∗ − 2η

] c
δ
,

K2 = −σu∗ + (2 +
1

γ
− β

δ
)k∗ + 2η +

c2

δ
.

According to the Viete theorem, the equality (5.9) and u∗ is a positive root of the
cubic equation (2.4), we have

Λ̃1 + Λ̃2 + Λ̃3 + Λ̃4 = c+
c

δ
> 0,

Λ̃1Λ̃2Λ̃3Λ̃4 = K0 =
σβk∗

δu∗
∆(u∗),

where

∆(u∗) = (u∗)
2 − 2ηγ2β2 + 4γ2β − 3γβ + γ − 1

σγ2β2
u∗ +

(3γβ + 1)α

σγ2β2
.
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It is evident that Λ̃1Λ̃2Λ̃3Λ̃4 and ∆(u∗) have the same symbol. For simplicity, we
shall only consider the situation of ∆(u∗) < 0 here. The situation of ∆(u∗) ≥ 0 can
be discussed similarly.

When ∆(u∗) < 0, the distribution of eigenvalues involves four cases:

Case 1: Re(Λ̃1) = Re(Λ̃2) > 0, Λ̃3 < 0, Λ̃4 > 0, or Λ̃1 ≥ Λ̃2 ≥ Λ̃4 > 0, Λ̃3 < 0.
Since

(φ1+, φ2+, φ3+, φ4+)
T (+∞) = (0, 0, 0, 0), (5.13)

we have ã1 = ã2 = ã4 = 0 and (φ1+, φ2+, φ3+, φ4+)
T (ξ) = ã3ρ̃3e

Λ̃3ξ. Therefore, we
deduce the asymptotic behavior(

φ1+

φ2+

)
=

(
µ̃3(m̃3 + o(1))eΛ̃3ξ

µ̃3(ñ3 + o(1))eΛ̃3ξ

)
, ξ → +∞, (5.14)

where m̃3, ñ3 are two constants, and µ̃3 can not be zero simultaneously.

Case 2: Re(Λ̃1) = Re(Λ̃2) < 0, Λ̃3 < 0, Λ̃4 > 0, or Λ̃1 < Λ̃2 < Λ̃3 < 0, Λ̃4 > 0.
From condition (5.13), we obtain ã4 = 0 and

(φ1+, φ2+, φ3+, φ4+)
T (ξ) =

3∑
i=1

ãiρ̃ie
Λ̃iξ.

Thus, we achieve the asymptotic behavior(
φ1+

φ2+

)
=

(∑3
i=1 µ̃i(m̃i + o(1))eΛ̃iξ∑3
i=1 µ̃i(ñi + o(1))eΛ̃iξ

)
, ξ → +∞, (5.15)

where m̃i, ñi (i = 1, 2, 3) are constants, and µ̃i (i = 1, 2, 3) can not be zero simul-
taneously.

Case 3: Λ̃1 = Λ̃2 < 0, Λ̃3 < 0, Λ̃4 > 0. From condition (5.13), it follows that
ã4 = 0 and

(φ1+, φ2+, φ3+, φ4+)
T (ξ) =

2∑
i=1

ãiρ̃i{I + (A2 − Λ̃iI)ξ}eΛ̃iξ + ã3ρ̃3e
Λ̃3ξ.

Thus, we achieve the asymptotic behavior(
φ1+

φ2+

)
=

(
µ̃3(m̃3 + o(1))eΛ̃3ξ +

∑2
i=1 µ̃i{(m̃i + o(1)) + (m̃ii + o(1))ξ}eΛ̃iξ

µ̃3(ñ3 + o(1))eΛ̃3ξ +
∑2

i=1 µ̃i{(ñi + o(1)) + (ñii + o(1))ξ}eΛ̃iξ

)
,

as ξ → +∞, where m̃i, ñi, m̃ii, ñii (i = 1, 2, 3) are constants, and µ̃i (i = 1, 2, 3)
can not be zero simultaneously.

Case 4: Λ̃1 = Λ̃2 = Λ̃3 < 0, Λ̃4 > 0. By condition (5.13), one has ã4 = 0 and

(φ1+, φ2+, φ3+, φ4+)
T (ξ) =

3∑
i=1

ãiρ̃i{I + (A2 − Λ̃iI)ξ}eΛ̃iξ.

Consequently, we obtain the asymptotic behavior(
φ1+

φ2+

)
=

(∑3
i=1 µ̃i{(m̃i + o(1)) + (m̃ii + o(1))ξ}eΛ̃iξ∑3
i=1 µ̃i{(ñi + o(1)) + (ñii + o(1))ξ}eΛ̃iξ

)
, ξ → +∞, (5.16)

where m̃i, ñi, m̃ii, ñii (i = 1, 2, 3) are constants, and µ̃i (i = 1, 2, 3) can not be zero
simultaneously.

From equalities (5.7) and (5.14)-(5.16), we have the following result.



18 Y. HUA, X. LIN, J. LIU, H. LU EJDE-2024/33

Theorem 5.1. If c ≥ 2
√
δ( γu1

α+u1
− 1) and ∆(u∗) < 0, then there exist constants

R, R̄, L1, L̄1, L2, L̄2 such that system (1.2) admits a traveling wave φ(ξ) =
(u, v)(x, t) = (U, V )(ξ) with the following asymptotic properties:

φ(ξ) =

(
u1 + (R+ o(1))eΛiξ

(R̄+ o(1))eΛiξ

)
, ξ → −∞, (5.17)

where Λi can be Λ1,Λ2,Λ3.
For cases 1 and case 2, we have

φ(ξ) =

(
u∗ − (L1 + o(1))eΛ̃jξ

v∗ − (L2 + o(1))eΛ̃jξ

)
, ξ → +∞, (5.18)

where for case 1, Λ̃j is Λ̃3, and for case 2, Λ̃j can be one of Λ̃1, Λ̃2, Λ̃3.
For cases 3 and case 4, we have

φ(ξ) =

(
u∗ − ((L1 + o(1))eΛ̃jξ + (L̄1 + o(1))ξeΛ̃1ξ)

v∗ − ((L2 + o(1))eΛ̃jξ + (L̄2 + o(1))ξeΛ̃1ξ)

)
, ξ → +∞, (5.19)

where for case 3, Λ̃j can be one of Λ̃1, Λ̃3, and for case 4, Λ̃j is Λ̃1.

The asymptotic behaviors of traveling waves for the system (1.8) with local delay
kernels (1.5) or nonlocal delay kernels (1.7) can be investigated similarly.
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