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MASSERA TYPE THEOREMS FOR ABSTRACT

NON-AUTONOMOUS EVOLUTION EQUATIONS

LAN-LING ZHENG, HUI-SHENG DING

Abstract. We establish two fixed point theorems for affine maps in Banach

spaces, with weaker assumptions than those in the literature. Then we estab-
lish some Massera type results for abstract linear evolution equations without

assuming the existence of bounded solutions, which is an indispensable condi-
tion in the classical Massera theorem and in the earlier literature. As appli-

cation, we present an existence result on periodic mild solutions to abstract

nonautonomous semilinear evolution equations.

1. Introduction

Let X be a Banach space. Our aim is to investigate the existence of periodic
mild solutions to the nonautonomous evolution equations

u′(t) = A(t)u(t) + g(t), t ≥ 0, (1.1)

and
u′(t) = A(t)u(t) + f(t, u(t)), t ≥ 0 (1.2)

onX. g and f satisfy conditions specified later, and {A(t)}t≥0 satisfies the following
assumptions:

(A1) D(A(t)) = D ⊂ X for all t ≥ 0 and A(t) is not necessarily densely defined,
i.e., D = X is not necessarily true;

(A2) there exist M ≥ 1 and ω ∈ R such that (ω,+∞) ⊂ ρ(A(t)) for every t ≥ 0
and

∥
k∏

j=1

(λI −A(tj))
−1∥ ≤ M

(λ− ω)k

for every λ > ω and every finite sequence {tj}kj=1 with 0 ≤ t1 ≤ t2 ≤ · · · ≤
tk, where k = 1, 2, . . . ;

(A3) the mapping t 7→ A(t)x is continuously differentiable in X for every x ∈ D;
(A4) A(t+ 1) = A(t) for every t ≥ 0.

The existence of periodic solutions to (1.1), (1.2) and their variants has been
of great interest for many authors (cf. [1, 3, 4, 5, 7, 9, 8, 11, 12, 13, 14, 18, 19]).
To establish the existence of periodic solutions to (1.2), one of the key steps is to
consider first the existence of periodic solutions to the linear equation (1.1). It is
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well-known that to find an initial value x0 ∈ X for a 1-periodic mild solution of
(1.1), one only needs to solve the equation

x0 = P (x0),

where

P : X → X;x 7→ U(1, 0)x+

∫ 1

0

U(1, τ)g(τ)dτ

stands for the Poincaré mapping and {U(t, s)}t≥s≥0 is the evolution system gener-
ated by {A(t)}t≥0. Now the problem is transformed into a fixed point problem of
the Poincaré mapping, an affine map.

For fixed point theorems of Poincaré mapping, one of the celebrated result is by
Chow and Hale [2] who proved that P has a fixed point if the range R(I −U(1, 0))
is closed and there exists z0 ∈ X such that supn∈N ∥Pnz0∥ < +∞. Recently,
Zubelevich [20] made an important progress and got the result that P has a fixed
point if X is reflexive and supn∈N ∥Pnz0∥ < +∞ for some z0 ∈ X. So, Zubelevich
removed the closedness of R(I − U(1, 0)) in the case of X being reflexive. Very
recently, Ezzinbi and Taoudi [6] also established several interesting results in this
direction on locally convex spaces and ordered Banach spaces. It is needed to note
that the boundedness of {Pnz0} is a key assumption in all the above literature.
As one will see, in this paper, this key assumption is weakened, i.e., we establish
two fixed point theorems for Poincaré mapping, where {Pnz0} is not necessarily
bounded for some z0 ∈ X. Moreover, we give two examples, which satisfy our
weakened assumptions but not the boundedness condition in the earlier literature
[2, 20] (see Section 2).

Based on our new fixed point theorems for Poincaré mapping, we discuss the
existence of periodic solutions to (1.1) and obtain two Massera type theorems for
(1.1). It is interesting to note that in our Massera type results, the existence of
bounded solutions is not presupposed as in the classical Massera theorem. In fact,
to the best of our knowledge, of all the latest Massera type results up until now, the
existence of bounded solutions is an indispensable assumption (see, e.g., [6, 7, 9, 10]
for some recent Massera type results). Moreover, compared with other type results
on the existence of periodic solutions for (1.1), our Massera type theorems also
have some improvements to some extent. For example, our Massera type theorems
do not need the assumptions ω < 0 and Meω < 1 in [15]. As application of our
Massera type theorems, in the last part of this paper, we establish an existence
result on periodic mild solutions to (1.2).

Throughout this paper, we denote by R the set of real numbers, by R+ the
set of non-negative real numbers, by C the set of complex numbers, by N the set
of positive integers, by Lp([a, b], X) (Lp

loc(R+, X)) the space of all (locally) pth
integrable functions, by C(R+, X) the space of all continuous functions from R+ to
X, and P1(R+, X) the space of all 1-periodic functions from R+ to X.

2. Two fixed point theorems for affine maps

We first present a fixed point theorem, where the boundedness assumption in
the classical results by Chow and Hale is weakened.

Theorem 2.1. Let X be a Banach space, B : X → X be a bounded linear operator,
z ∈ X and P : X → X;x 7→ Bx + z. Assume that the range R(I − B) is closed
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and there exists x0 ∈ X such that

lim
n→+∞

∥P
nx0

n
∥ = 0. (2.1)

Then P has a fixed point x ∈ X.

Proof. Our proof starts with the observation that P has a fixed point if z ∈ R(I −
B). Let xn = 1

n

∑n
k=1 P

kx0 for every n ∈ N, then by a direct calculation, we have

lim
n→+∞

(I −B)xn = lim
n→+∞

[(I − P )xn + z]

= lim
n→+∞

1

n
[Px0 − Pn+1x0] + z = z.

Combining this with R(I −B) is closed, we conclude that z ∈ R(I −B). □

Remark 2.2. In the case of R(I −B) = X, the conclusion holds without assump-
tion (2.1). Moreover, Chow and Hale [2] obtained the same conclusion of Theorem
2.1 under the condition supn∈N ∥Pnx0∥ < +∞, which implies that (2.1) holds.
However, the converse is not necessarily true. In fact, let

B : l2 → l2; (x1, x2, . . . , xk, . . . ) 7→
(
0,

4
√
2x1,

4

√
3

2
x2, . . . ,

4

√
k + 1

k
xk, . . .

)
,

and

P : l2 → l2; (x1, x2, . . . , xk, . . . ) 7→ B(x1, x2, . . . , xk, . . . ) + (1, 0, 0, . . . ).

By a direct calculation, we obtain that there exists x0 = (1, 0, 0, . . . ) ∈ l2 such that

sup
n∈N

∥Pnx0∥ ≥ sup
n∈N

4
√
n+ 1 = +∞

and

0 ≤ lim
n→+∞

∥P
nx0

n
∥ ≤ lim

n→+∞

(n+ 1)
3
4

n
= 0.

If X have some special properties, then the condition that R(I − B) is closed
can be removed.

Theorem 2.3. Let X be a Banach space, B : X → X be a bounded linear operator,
z ∈ X and P : X → X;x 7→ Bx+ z. Assume that there exists x0 ∈ X such that

sup
n∈N

∥ 1
n

n∑
k=1

P kx0∥ < +∞, lim
n→+∞

∥P
nx0

n
∥ = 0, (2.2)

and one of the following conditions holds:

(i) X is reflexive;
(ii) there exists a separable Banach space Y such that X is the dual space of Y

and B∗Y ⊂ Y , where B∗ is the dual operator of B and Y is considered as
a subspace of Y ∗∗.

Then P has a fixed point x ∈ X. Moreover,

∥x∥ ≤ sup
n∈N

∥ 1
n

n∑
k=1

P kx0∥. (2.3)
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Proof. Firstly, we prove case (i). Let xn = 1
n

n∑
k=1

P kx0 for n ∈ N. There exist

{xnj} ⊂ {xn} and x ∈ X such that xnj
converges weakly to x by using (2.2) and

condition (i). So, for every x∗ ∈ X∗

lim
j→+∞

⟨x∗, Pxnj − Px⟩ = lim
j→+∞

⟨x∗, Bxnj
−Bx⟩

= lim
j→+∞

⟨B∗x∗, xnj
− x⟩ = 0,

which means that Pxnj converges weakly to Px. On the other hand, by (2.2) and
a direct calculation, we have

lim
j→+∞

Pxnj
− xnj

= lim
j→+∞

1

nj

[
Px0 − Pnj+1x0

]
= 0, (2.4)

where 0 is the zero member of X. Therefore,

0 ≤ lim
j→+∞

|⟨x∗, Pxnj − x⟩|

≤ lim
j→+∞

(
|⟨x∗, Pxnj

− xnj
⟩|+ |⟨x∗, xnj

− x⟩|
)
= 0

for every x∗ ∈ X∗, which means that Pxnj converges weakly to x. From this and
Pxnj

converges weakly to Px, we obtain Px = x. In addition, (2.3) is obvious if
x = 0. When x ̸= 0, we know that there exists x∗ ∈ X∗ such that ∥x∗∥ = 1 and
< x∗, x >= ∥x∥. So

∥x∥ = ⟨x∗, x⟩
= ⟨x∗, x− xnj

⟩+ ⟨x∗, xnj
⟩

≤ ⟨x∗, x− xnj
⟩+ ∥x∗∥∥xnj

∥

= ⟨x∗, x− xnj ⟩+ ∥ 1

nj

nj∑
k=1

P kx0∥

≤ ⟨x∗, x− xnj
⟩+ sup

n∈N
∥ 1
n

n∑
k=1

P kx0∥

for every j ∈ N. Combining this with xnj
converges weakly to x, we obtain

∥x∥ ≤ lim
j→+∞

[
⟨x∗, x− xnj

⟩+ sup
n∈N

∥ 1
n

n∑
k=1

P kx0∥
]
= sup

n∈N
∥ 1
n

n∑
k=1

P kx0∥.

Now, we prove case (ii). Let xn = 1
n

n∑
k=1

P kx0 for n ∈ N. We conclude from

(2.2) and condition (ii) that there exist {xnj
} ⊂ {xn} and x ∈ X such that xnj

weak∗-convergent to x, hence that

lim
j→+∞

⟨Pxnj − Px, y⟩ = lim
j→+∞

⟨Bxnj −Bx, y⟩

= lim
j→+∞

⟨xnj
− x,B∗y⟩ = 0

for every y ∈ Y , which means that Pxnj
weak∗-convergent to Px. Furthermore,

we obtain {Pxnj − xnj} weakly∗-convergent to 0 by (2.4). Then

0 ≤ lim
j→+∞

|⟨Pxnj
− x, y⟩|

≤ lim
j→+∞

(
|⟨Pxnj − xnj , y⟩|+ |⟨xnj − x, y⟩|

)
= 0
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for every y ∈ Y , which means that Pxnj
weak∗-convergent to x. From this and

Pxnj weak∗-convergent to Px, we have Px = x. Moreover, since xnj is weak∗-
convergent to x,

|⟨x, y⟩| = lim
j→+∞

|⟨xnj , y⟩| ≤ lim sup
j→+∞

∥xnj∥∥y∥ = lim sup
j→+∞

∥xnj∥ ≤ sup
n∈N

∥xn∥

for every y ∈ Y with ∥y∥ = 1. Therefore,

∥x∥ ≤ sup
n∈N

∥xn∥ = sup
n∈N

∥ 1
n

n∑
k=1

P kx0∥.

Hence, the conclusion is valid. □

Zubelevich [20] obtained the conclusion of the above theorem assuming that
supn∈N ∥Pnx0∥ < +∞ and X is reflexive. We note that supn∈N ∥Pnx0∥ < +∞
implies

sup
n∈N

∥ 1
n

n∑
k=1

P kx0∥ < +∞ and lim
n→+∞

∥P
nx0

n
∥ = 0.

However, the converse is not necessarily true. For example, let

P : l2 → l2; (x1, x2, . . . , xk, . . . ) 7→
(
0,

4
√
2x1,

4

√
3

2
x2, . . . ,

4

√
k + 1

k
xk, . . .

)
.

It is easy to see that P is a bounded linear operator and there exists x0 = (1, 0, . . . ) ∈
l2 such that

sup
n∈N

∥Pnx0∥ = sup
n∈N

4
√
n+ 1 = +∞,

lim
n→+∞

∥P
nx0

n
∥ = lim

n→+∞

4
√
n+ 1

n
= 0,

sup
n∈N

∥ 1
n

n∑
k=1

P kx0∥ ≤ sup
n∈N

(n+ 1)
3
4

n
≤ 2.

3. Massera type theorems for linear evolution equations

In this section, we consider the existence of 1-periodic mild solutions to (1.1)
with the help of our new fixed point theorems for affine maps. Throughout this
section, we assume that g ∈ P1(R+, X) ∩ L1

loc(R+, X). Next, we first recall the
following definitions and results which are taken from [15, 17, 16].

Proposition 3.1 ([17]). Assume that {A(t)}t≥0 satisfies conditions (A1)–(A3) and

t0 > 0. If z ∈ D and h ∈ L1([0, t0], X), then the limit

u(t) := lim
λ→0+

(
Uλ(t, 0)z +

∫ [ t
λ ]λ

0

Uλ(t, r)h(r)dr
)

(3.1)

exists uniformly for t ∈ [0, t0], and u is a continuous function on [0, t0], where

Uλ(t, 0) =

[ t
λ ]∏

j=1

(I − λA(jλ))
−1

for every t ∈ [0, t0] and λ > 0.

The following theorem can be derived from (A1)–(A4) and Proposition 3.1 (see
also [15, 16]).
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Proposition 3.2. Assume that {A(t)}t≥0 satisfies conditions (A1)–(A3). Then
the limit

U(t, s)z = lim
λ→0+

Uλ(t, s)z

exists for every z ∈ D and (t, s) ∈ △, where

Uλ(t, s) =

[ t
λ ]∏

j=[ sλ ]+1

(I − λA(jλ))−1

and △ = {(t, s)|t ≥ s ≥ 0}. Also, the families {U(t, s)}t≥s≥0 and {Uλ(t, s)}t≥s≥0

satisfy the following properties:

(i) Uλ(t, t)z = z and Uλ(t, r)Uλ(r, s)z = Uλ(t, s)z for every z ∈ D, λ > 0 and
t ≥ r ≥ s ≥ 0;

(ii) for every λ > 0 and (t, s) ∈ △,

∥Uλ(t, s)∥ ≤ M
( 1

1− λw

) t−s
λ +1

; (3.2)

(iii) U(t, s) : D → D is a bounded linear operator for every (t, s) ∈ △;
(iv) U(t, t)z = z and U(t, r)U(r, s)z = U(t, s)z for every z ∈ D and t ≥ r ≥

s ≥ 0;
(v) for every z ∈ D and (t, s) ∈ △,

∥U(t, s)z∥ ≤ Meω(t−s)∥z∥; (3.3)

(vi) for every h ∈ L1
loc(R+, X) and (t, s) ∈ △,

U(t, s) lim
λ→0+

∫ s

0

Uλ(s, r)h(r)dr = lim
λ→0+

∫ s

0

Uλ(t, r)h(r)dr. (3.4)

(vii) for every h ∈ L1
loc(R+, X) and t ≥ 0,

lim
λ→0+

∫ [ t
λ ]λ

0

Uλ(t, r)h(r)dr = lim
λ→0+

∫ t

0

Uλ(t, r)h(r)dr; (3.5)

In addition, if {A(t)}t≥0 satisfies the condition (A4), then

(viii) for every z ∈ D, k ∈ N and (t, s) ∈ △,

U 1
k
(t+ 1, s+ 1)z = U 1

k
(t, s)z; (3.6)

(ix) for every z ∈ D and (t, s) ∈ △,

U(t+ 1, s+ 1)z = U(t, s)z. (3.7)

Definition 3.3 ([15]). A continuous function u : [0,+∞) → D is called a mild
solution of (1.2) if u satisfies

u(t) = U(t, s)u(s) + lim
λ→0+

∫ t

s

Uλ(t, r)f(r, u(r))dr

for every (t, s) ∈ △. Then, a continuous function u : [0,+∞) → D is called a mild
solution of (1.1) if u satisfies

u(t) = U(t, s)u(s) + lim
λ→0+

∫ t

s

Uλ(t, r)g(r)dr (3.8)

for every (t, s) ∈ △.
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Remark 3.4. Let g ∈ L1
loc(R+, X). By Proposition 3.1 and (3.5), we note that u

is continuous if u satisfies (3.8).

Remark 3.5. Let t0 > 0. According to [17, Theorem 4.2], if g ∈ W 1,1([0, t0], X),
x ∈ D, and A(0)x+ g(0) ∈ D, then

u : [0, t0] → D; t 7→ U(t, 0)x+ lim
λ→0+

∫ t

0

Uλ(t, r)g(r)dr

is a classical solution to (1.1) on [0, t0], where

W 1,1([0, t0], X) =
{
u ∈ L1([0, t0], X) : u(t) = u0 +

∫ t

0

v(s)ds for some u0 ∈ X

and v ∈ L1([0, t0], X), t ∈ [0, t0]
}
.

Using Theorems 2.1 and 2.3, we obtain the following results.

Theorem 3.6. Assume that there exists a mild solution u0 of (1.1) such that

lim
n→+∞

∥u0(n)

n
∥ = 0

and R(I −U(1, 0)) is closed, where I is the identity map and R(I −U(1, 0)) is the
range of I − U(1, 0). Then (1.1) has a 1-periodic mild solution u satisfying

∥u∥ ≤ Me|ω|
(
∥u(0)∥+

∫ 1

0

∥g(σ)∥dσ
)

(3.9)

Furthermore, the 1-periodic mild solution of (1.1) is unique if

lim
t→+∞

∥U(t, 0)x∥ = 0 for every x ∈ D with sup
t≥0

∥U(t, 0)x∥ < +∞. (3.10)

Proof. Let

P : D → D;x 7→ U(1, 0)x+ lim
λ→0+

∫ 1

0

Uλ(1, r)g(r)dr.

Take X = D, B = U(1, 0), z = limλ→0+
∫ 1

0
Uλ(1, r)g(r)dr, and x0 = u0(0) in

Theorem 2.1. Note that P k(x0) = u0(k) for every k ∈ N. By Theorem 2.1, P has
a fixed point x ∈ D. Let

u : [0,+∞) → X; t 7→ U(t, 0)x+ lim
λ→0+

∫ t

0

Uλ(t, r)g(r)dr. (3.11)

By using (3.4), Remark 3.4 and (iv) in Proposition 3.1, we have

U(t, s)u(s) + lim
λ→0+

∫ t

s

Uλ(t, r)g(r)dr

= U(t, s)

[
U(s, 0)x+ lim

λ→0+

∫ s

0

Uλ(s, r)g(r)dr

]
+ lim

λ→0+

∫ t

s

Uλ(t, r)g(r)dr

= U(t, 0)x+ U(t, s) lim
λ→0+

∫ s

0

Uλ(s, r)g(r)dr + lim
λ→0+

∫ t

s

Uλ(t, r)g(r)dr

= U(t, 0)x+ lim
λ→0+

∫ s

0

Uλ(t, r)g(r)dr + lim
λ→0+

∫ t

s

Uλ(t, r)g(r)dr

= U(t, 0)x+ lim
λ→0+

∫ t

0

Uλ(t, r)g(r)dr = u(t)
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for every (t, s) ∈ △, which means that u is a mild solution to (1.1). Moreover, by
g ∈ P1(R+, X), (3.4), (3.6), (3.7) and (iv) in Proposition 3.2, we have

u(t) = U(t, 0)x+ lim
λ→0+

∫ t

0

Uλ(t, r)g(r)dr

= U(t, 0)Px+ lim
k→+∞

∫ t

0

U 1
k
(t, r)g(r)dr

= U(t, 0)
[
U(1, 0)x+ lim

λ→0+

∫ 1

0

Uλ(1, r)g(r)dr
]

+ lim
k→+∞

∫ t

0

U 1
k
(t+ 1, r + 1)g(r + 1)dr

= U(t+ 1, 1)
[
U(1, 0)x+ lim

λ→0+

∫ 1

0

Uλ(1, r)g(r)dr
]

+ lim
k→+∞

∫ t+1

1

U 1
k
(t+ 1, r)g(r)dr

= U(t+ 1, 0)x+ lim
λ→0+

∫ 1

0

Uλ(t+ 1, r)g(r)dr + lim
λ→0+

∫ t+1

1

Uλ(t+ 1, τ)g(τ)dτ

= U(t+ 1, 0)x+ lim
λ→0+

∫ t+1

0

Uλ(t+ 1, r)g(r)dr = u(t+ 1)

for every t ≥ 0, which means that u is 1-periodic. In addition, let u1 and u2 be two
1-periodic mild solutions to (1.1). Note that u1(0)− u2(0) ∈ D and

sup
t≥0

∥U(t, 0)(u1(0)− u2(0))∥ = sup
t≥0

∥u1(t)− u2(t)∥ < +∞.

So, limt→+∞ ∥u1(t) − u2(t)∥ = limt→+∞ ∥U(t, 0)(u1(0) − u2(0))∥ = 0 by (3.10).
Combining this with u1−u2 ∈ P1(R+, X), we obtain u1 = u2. Thus, the 1-periodic
mild solution to (1.1) is unique. Furthermore, we obtain (3.9) by using (3.2) and
(3.3). □

Theorem 3.7. Assume that there exists a mild solution u0 of (1.1) such that

sup
n∈N

∥ 1
n

n∑
k=1

u0(k)∥ < +∞, lim
n→+∞

∥u0(n)

n
∥ = 0,

and one of the following conditions holds:

(i) X is reflexive;
(ii) there exists a separable Banach space Y such that D is the dual space of Y

and U∗(1, 0)Y ⊂ Y , where U∗(1, 0) is the dual operator of U(1, 0) and Y is
considered as a subspace of Y ∗∗.

Then (1.1) has a 1-periodic mild solution u satisfying

∥u∥ ≤ Me|ω|
(
sup
n∈N

∥ 1
n

n∑
k=1

u0(k)∥+
∫ 1

0

∥g(σ)∥dσ
)
. (3.12)

Furthermore, the 1-periodic mild solution of (1.1) is unique if (3.10) holds.

Proof. By using Theorem 2.3, similar to the proof of Theorem 3.6, one can show
that (1.1) has a 1-periodic mild solution u given by (3.11) and u satisfies (3.9). In
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addition, according to (2.3), we have

∥u(0)∥ = ∥x∥ ≤ sup
n∈N

∥ 1
n

n∑
k=1

P k(x0)∥ = sup
n∈N

∥ 1
n

n∑
k=1

u0(k)∥.

Combining this with (3.9), we obtain (3.12). □

4. Application to semilinear evolution equations

Next, we establish the existence of 1-periodic mild solutions for (1.2) by our
Massera type results obtained in the previous section. For convenience, we list
some assumptions:

(A5) f(·, x) ∈ P1(R+, X) ∩ L1
loc(R+, X) for every x ∈ X;

(A6) there exist ϱ > 0 and L > 0 such that

∥f(t, x1)− f(t, x2)∥ ≤ L∥x1 − x2∥
for every t ≥ 0 and x1, x2 ∈ X with ∥x1∥, ∥x2∥ ≤ ϱ.

From now on, we denote γ =
∫ 1

0
∥f(σ,0)∥dσ.

Theorem 4.1. Assume that

(a) there exists α > 0 with

Me|ω|(α+ 1) < min
{ 1

L
,

ϱ

ϱL+ γ

}
(4.1)

such that (1.1) has a mild solution ug
0 satisfies

sup
n∈N

∥ 1
n

n∑
k=1

ug
0(k)∥ ≤ α

∫ 1

0

∥g(σ)∥dσ and lim
n→+∞

∥u
g
0(n)

n
∥ = 0 (4.2)

for every g ∈ P1(R+, X) ∩ L1
loc(R+, X);

(b) limt→+∞ ∥U(t, 0)x∥ = 0 for every x ∈ D with sup
t≥0

∥U(t, 0)x∥ < +∞;

(c) one of the following conditions holds:
(i) X is reflexive;
(ii) there exists a separable Banach space Y such that D is the dual space

of Y and U∗(1, 0)Y ⊂ Y , where U∗(1, 0) is the dual operator of U(1, 0)
and Y is considered as a subspace of Y ∗∗.

Then (1.2) has a 1-periodic mild solution u.

Proof. Let Bϱ = {v ∈ P1(R+, X) ∩ C(R+, X)| supt∈R+ ∥v(t)∥ ≤ ϱ} and

T : Bϱ → Bϱ; v 7→ uv,

where uv is the 1-periodic mild solution of (1.1) with g = f(·, v(·)) by Theorem 3.7.

Step 1. We show that Tv ∈ Bϱ for every v ∈ Bϱ. Let v ∈ Bϱ. Then we know from
Theorem 3.7 that (1.1) has a unique 1-periodic mild solution uv satisfying

∥uv∥ ≤ Me|ω|
[
sup
n∈N

∥ 1
n

n∑
k=1

ug
0(k)∥+

∫ 1

0

∥g(σ)∥dσ
]
,

Combining this with (4.2), (A5) and (A6), we obtain

∥uv∥ ≤ Me|ω|(α+ 1)

∫ 1

0

∥f(σ, v(σ))∥dσ,



10 L.-L. ZHENG, H.-S. DING EJDE-2024/35

≤ Me|ω|(α+ 1)
(
L sup

t∈R+

∥v(t)∥+
∫ 1

0

∥f(σ,0)∥dσ
)

≤ Me|ω|(α+ 1)(Lϱ+ γ) ≤ ϱ.

So, Tv = uv ∈ Bϱ by (4.1).

Step 2.We show that T is a contraction. Let v1, v2 ∈ Bϱ. Then

∥Tv1 − Tv2∥ = sup
t∈R+

∥uv1(t)− uv2(t)∥

= sup
t∈[0,1]

∥U(t, 0)(uv1(0)− uv2(0))

+ lim
λ→0+

∫ t

0

Uλ(t, r)(f(r, v1(r))− (f(r, v2(r)))dr∥

≤ Me|ω|(α+ 1)L sup
t∈R+

∥v1(t)− v2(t)∥

≤ Me|ω|(α+ 1)L∥v1 − v2∥,

where uv1and uv2 are the corresponding 1-periodic mild solution to (1.1) with g1 =
f(·, v1(·)) and g2 = f(·, v2(·)), respectively. By (4.1), we conclude that T is a
contraction. So T has a unique fixed point u ∈ Bϱ, i.e.,

u(t) = U(t, s)u(s) + lim
λ→0+

∫ t

s

Uλ(t, τ)f(τ, u(τ))dτ, t ≥ s ≥ 0,

which is a 1-periodic mild solution for (1.2). □
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[18] N. T. Thành; Massera criterion for periodic solutions of differential equations with piecewise

constant argument, J. Math. Anal. Appl., 302 (2005), no. 2, 256-268.

[19] M. Zitane; Periodic solutions for non-autonomous neutral functional differential equations
with finite delay, Acta Math. Vietnam., 42 (2017), no. 3, 533-550.

[20] O. Zubelevich; A note on theorem of Massera, Regul. Chaotic Dyn., 11 (2006), no. 4, 475-481.

Lan-Ling Zheng

School of Mathematics and Statistics, Jiangxi Normal University, Nanchang, Jiangxi
330022, China

Email address: 202150000054@jxnu.edu.cn

Hui-Sheng Ding (corresponding author)

School of Mathematics and Statistics, Jiangxi Normal University, Nanchang, Jiangxi

330022, China
Email address: dinghs@mail.ustc.edu.cn


	1. Introduction
	2. Two fixed point theorems for affine maps
	3. Massera type theorems for linear evolution equations
	4. Application to semilinear evolution equations
	Acknowledgments

	References

