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POSITIVE SOLUTION FOR NONLINEAR ELLIPTIC

EQUATIONS ON SYMMETRIC DOMAINS

LUIZ F. O. FARIA, MARCELO MONTENEGRO

Abstract. We show the existence of a positive solution for the Schrödinger
quasilinear equation with variable exponents above the critical regime. For

that matter, we show an embedding into an Orlicz space of functions modeled

over radially symmetric domains. Then we use a Galerkin method combined
with a fixed-point argument to obtain a solution.

1. Introduction

Our aim is to find positive radially symmetric solutions u(r), r = |x|, for the
equation

−∆pu+ up−1 = λa(r)uq(r)−1 + uθ(r)−1 in D, (1.1)

where the exponents θ(r) and q(r) are functions satisfying

1 < q(r) < p < N, (1.2)

θ(r) =
pN

N − p
+ h(r), (1.3)

λ > 0 is a parameter and a(r), h(r), θ(r), q(r) are positive radially symmetric con-
tinuous functions, and D ⊆ RN , N ≥ 2, is an open symmetric set centered at the
origin (that is, if x ∈ D, then |x| ∈ D). The domain D may be a ball, an annu-
lus, RN or RN minus a ball. Here 1 < p < N and ∆p = div(|∇u|p−2∇u) is the
so-called p-Laplacian. Equation (1.1) is sometimes called quasilinear Schrödinger
equation. Including the case p = 2, it was studied in many papers see for instance
[1, 2, 4, 7, 8, 9, 10, 11, 12, 13, 17, 18, 19, 21, 23, 24, 28, 31, 33, 42, 45, 44]. Because
θ(r) > pN/(N − p) we say that (1.1) is in the supercritical range in the sense of
Sobolev embedding, see Remark 1.5 below.

Throughout this article h is a function with the following properties:

h : [0,∞) → [0,∞) is continuous, and h(0) = 0; (1.4)

there are constants β > 2 and c > 0 such that h(r) ≤ c| log r|−β for r near 0;
(1.5)

there is a constant c > 0 such that h(r) ≤ c

|1− r|
for r close to 1. (1.6)
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We denote by W 1,p
r (D) the closed subspace of W 1,p(D) composed by radially sym-

metric functions on D, i.e.,

W 1,p
r (D) = {u ∈W 1,p(D) : u = u(r), r = |x|}, (1.7)

endowed with the standard norm

∥u∥W 1,p(D) =
(∫

D

(|∇u|p + |u|p)dx
)1/p

. (1.8)

Theorem 1.1. Let θ(r) = p∗ + h(r), p∗ = pN/(N − p), and h satisfy (1.4)–(1.6).
Then

sup
{∫

RN

|u(x)|θ(r)dx : u ∈W 1,p
r (RN ), ∥u∥W 1,p(RN ) = 1

}
<∞. (1.9)

By the conditions on h(r) and the decay of u(r), the integrals are well defined

and nonsingular. We denote byW 1,p
0,r (D) the closed subspace ofW 1,p

0 (D) composed
by radially symmetric functions on D, i.e.,

W 1,p
0,r (D) = {u ∈W 1,p

0 (D) : u = u(r), r = |x|}, (1.10)

endowed with the norm (1.8). The continuity of the embedding into the Orlicz
space reads as follows, see [20, 39] or Section 2 below.

Corollary 1.2. Let θ(r) = p∗+h(r) with h ∈ L∞
+ (RN ) satisfying (1.4)–(1.6). Then

the following embedding is continuous

W 1,p
r (RN ) ↪→ Lθ(r)(RN ). (1.11)

In what follows, we consider an equation more general than (1.1). Let f :
RN ×R → R be a continuous function, radially symmetric in the first variable and
satisfying the growth condition

0 ≤ f(r, t)t ≤ b1t
θ(r) for every r ∈ R and t ≥ 0, (1.12)

where b1 > 0 is a constant, θ(r) = p∗+h(r), with h ∈ L∞
+ (RN ) satisfying (1.4)–(1.5)

(see also (2.3) below), and p∗ = pN/(N − p).
Wyhen D is a bounded domain, we deal with the problem

−∆pu+ up−1 = λa(r)uq(r)−1 + f(r, u) in D

u > 0 in D

u = 0 on ∂D.

(1.13)

Note that D encompasses balls and an annulus centered at the origin, in which we
have the following result.

Theorem 1.3. If λ > 0 is a constant, q and a are radially symmetric continu-

ous functions, such that 1 < q− ≤ q(r) ≤ q+ < p, q−, q+ ∈ R, a ∈ L
p

p−q(r) (RN ),
a(r) > 0 in RN , r = |x|, f : RN × R → R is a continuous function satisfying
(1.12). Then there exists λ∗ > 0 such that for every λ ∈ (0, λ∗) problem (1.13)

possesses at least one positive radially symmetric solution uλ ∈W 1,p
0 (D). Further-

more, ∥uλ∥W 1,p
0 (D) → 0 as λ→ 0+.
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Let BR ⊆ RN be the open ball with radius R centered at the origin. (For R = 0
we have B0 = ∅.) We study the problem

−∆pu+ up−1 = λa(r)uq(r)−1 + f(r, u) in RN\BR

u > 0 in RN\BR

u = 0 on ∂(RN\BR).

(1.14)

Note that RN\BR admits the whole space RN and exterior domains such as RN\BR.
The next result applies to exterior domains RN\BR and the whole space RN .

Theorem 1.4. If λ > 0 is a constant, q and a are radially symmetric continuous

functions, such that 1 < q− ≤ q(r) ≤ q+ < p, q−, q+ ∈ R, a ∈ L
p

p−q(r) (RN ),
a(r) > 0 in RN , r = |x|, and f : RN × R → R is a continuous function satisfying
(1.12). Then there exists λ∗ > 0 such that for every λ ∈ (0, λ∗) problem (1.14)

possesses at least one positive radially symmetric solution uλ ∈ W 1,p
0 (RN\BR).

Furthermore, ∥uλ∥W 1,p
0 (RN\BR) → 0 as λ→ 0+.

Remark 1.5. The Sobolev embedding with θ(r) ≤ pN/(N − p) can be found in
[15]. In such cases we say that f in (1.12) or equations (1.13)–(1.14) are subcritical
if θ(r) < pN/(N − p) and critical when θ(r) = pN/(N − p). The equations studied
in this article have the supercritical term f related to θ(r) > pN/(N − p). About
this matter we prove the boundedness of the Sobolev constant in Theorem 1.1 and
the embedding stated as Corollary 1.2.

Equation (1.13) and Theorem 1.3 are associated with the existence of a positive
solution on domains D which can be balls or an annulus. Other equations in the
supercritical range were treated in [7, 23] when D is a ball. Problems on D being an
annulus and f with critical growth are studied in [11, 12], non-radial solutions were
studied in [16], and uniqueness questions in [17, 18, 42, 45]. With respect to (1.14),
when D is an exterior domain RN\BR or the whole RN we prove Theorem 1.4. The
equation with subcritical nonlinearity was treated in the seminal article [13] on a
domain like RN\BR. The critical case was addressed in [2] and on exterior domains
without symmetry in [33]. The p-Laplacian equation on an exterior domain was
studied in [21] by ODE methods, and with a supercritical f in [28] by means of
variational methods. Equations with Neumann condition on the inner boundary
∂BR were investigated in [1, 24, 31, 44] and symmetry issues were analyzed in [36].
The problem in RN was studied in [8] for a p-Laplacian equation with critical f ,
see also [3, 14]. The supercritical case was treated in [10, 19, 9]. The equations
considered in this article also correspond to the concave-convex problems of [4].

The outline of this article is as follows. Section 2 presents some preliminary re-
sults about extension of Sobolev functions, Brouwer theorem, comparison principles
and function spaces with variable exponents. Sometimes in the paper we pass from
the domain D to the whole RN in order to stress that the estimates are independent
of D and since we are keeping in mind the use of Corollary 1.2. In Section 3 we
prove of Theorem 1.1 and Corollary 1.2 by means of integral estimates which are
nonsingular and well defined because of the conditions on h(r) and the polynomial
decay of u(r). In Section 4 we present the Lipschitz approximate functions of f
that will be useful for solving the approximated equation in Section 5 with the aid
of a Galerkin type scheme. In doing so we use a Schauder basis. In the limit the
solution of those approximate equations tend to a solution of the original equation



4 L. F. O. FARIA, M. MONTENEGRO EJDE-2024/41

(1.13) on a ball. We apply the Palais principle to show that the solution is radi-
ally symmetric. We prove Theorems 1.3 and 1.4 in Sections 6 and 7, respectively.
Obtaining a positive solution in RN is done by means of a diagonal argument that
allows us to let R approach ∞.

2. Preliminaries

From now on, when a function defined in D is radially symmetric, for conve-
nience, we will use the same notation to represent the function on x or r = |x|.

2.1. Extension. Let u ∈W 1,p
0 (D). In what follows, we denote by ũ the canonical

extension of u by 0 outside D, that is,

ũ(x) =

{
u(x) if x ∈ D,

0 if x ∈ RN \D.
(2.1)

It is well known that u ∈W 1,p
0 (D) implies ũ ∈W 1,p(RN ) (see e.g. [15, Proposition

9.18]).

2.2. Brouwer Theorem. The following lemma is a generalization of the classical
Brouwer fixed point theorem found in Kesavan [32], the proof is performed in [6].
We denote ⟨·, ·⟩1/2 the Euclidean inner product with its induced norm and | · |m is
any other norm.

Lemma 2.1. Let F : (Rm, | · |m) → (Rm, | · |m) be a continuous function such that
⟨F (ξ), ξ⟩ ≥ 0 for every ξ ∈ Rm with |ξ|m = ϑ for some ϑ > 0, and | · |m is any

norm. Then, there exists z0 in the closed ball B
m

ϑ (0) := {z ∈ Rm; |z|m ≤ ϑ} such
that F (z0) = 0.

2.3. Comparison principle. Assume that D is a bounded domain in RN with
C2 boundary ∂D. Next we present a subtle adaptations of the results achieved in
[26, Theorems 3 and 5] for a non-autonomous function.

We present a couple of comparison principles for a subsolution and for a super-
solution of the problem

−∆pu+ |u|p−2u = g(x, u) in D

u = 0 on ∂D,
(2.2)

where g : R → R is a continuous function.
We say that u1 ∈W 1,p(D) is a subsolution of (2.2) if u1 ≤ 0 on ∂D and∫

D

(|∇u1|p−2∇u1∇φ+ |u1|p−2u1φ)dx ≤
∫
D

g(x, u1)φdx

for all φ ∈ W 1,p
0 (D) with φ ≥ 0 in D provided the integral

∫
D
g(x, u1)φdx exists.

We say that u2 ∈ W 1,p(D) is a supersolution of (2.2) if the reversed inequalities

are satisfied with u2 in place of u1 for all φ ∈W 1,p
0 (D) with φ ≥ 0 in D.

The next comparison results are particular cases of the ones achieved in [27,
Theorems 3 and 5].

Proposition 2.2. Let g : D×R → R be a continuous function such that g(x, t)/tp−1

is decreasing for t > 0. Assume that u1 and u2 are a positive subsolution and a
positive supersolution of problem (2.2), respectively. If u2(x) > u1(x) = 0 for all
x ∈ ∂D, ui ∈ C1,α(D) with some α ∈ (0, 1), ∆pui ∈ L∞(D), for i, j = 1, 2, then
u2 ≥ u1 in D.
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Whenever u1 and u2 satisfy the homogeneous Dirichlet boundary condition we
can state the following result.

Proposition 2.3. Let g : R → R be a continuous function such that g(x, t)/tp−1

is decreasing for t > 0. Assume that u1, u2 ∈ C1,α
0 (D), with some α ∈ (0, 1), are

a positive subsolution and a positive supersolution of problem (2.2), respectively. If
∆pui ∈ L∞(D), for i, j = 1, 2, u1/u2 ∈ L∞(D) and u2/u1 ∈ L∞(D), then u2 ≥ u1
in D.

2.4. Function spaces with variable exponents. In the sequel we display some
results of the Lebesgue spaces with variable exponents (see [20, 25, 39] for more
details). Let D be an open domain in RN , 1 < p < N and p∗ = pN/(N−p). Define

L∞
+ (D) = {y : y ∈ L∞(D), inf

x∈D
y(x) > 1}. (2.3)

For each y ∈ L∞
+ (D), we define

y− = y−(D) = inf
x∈D

y(x), y+ = y+(D) = sup
x∈D

y(x).

For y ∈ L∞
+ (D), the space

Ly(x) =
{
u : is real measurable,

∫
D

|u(x)|y(x)dx ≤ ∞
}

(2.4)

is equipped with a Banach norm

∥u∥y(x) = inf
{
σ > 0 :

∫
D

|u(x)
σ

|y(x)dx ≤ 1
}
.

And Ly(x) is called Orlicz space (see also Musielak-Orlicz spaces in [20, 39]) and
∥ · ∥y(x) is the Luxemburg norm.

Proposition 2.4. Let u ∈ Ly(x)(D) and ∥u∥y(x) = λ.

If λ ≥ 1, then λy− ≤
∫
D

|u(x)|y(x)dx ≤ λy+ .

If λ ≤ 1, then λy+ ≤
∫
D

|u(x)|y(x)dx ≤ λy− .

Proposition 2.5. The conjugate space of Ly(x)(D) is Lyo(x)(D), where 1/y(x) +
1/yo(x) = 1. Furthermore, for u ∈ Ly(x)(D), v ∈ Lyo(x)(D), we have the inequality∣∣ ∫

D

u(x)v(x)dx
∣∣ ≤ 2∥u∥y(x)∥v∥yo(x).

Proposition 2.6. Let D be an open bounded domain in RN with the cone property.
If y ∈ L∞

+ (D) satisfies

y(x) ≤ y+ < p∗ for all x ∈ D,

then the following embedding is compact

W 1,p(D) ↪→ Ly(x)(D).
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3. Proof of Theorem 1.1

Let u : RN → R be a radial function and v : [0,∞) → R such that u(x) = v(r)
for all x ∈ RN . For convenience, we will keep the same notation u for both cases,
i.e. u(x) = v(r) = u(r). It is well-known that (see e.g. [29])∫

RN

u(x)dx = ωN

∫ ∞

0

u(r)rN−1dr, where ωN =
2πN/2

Γ(N/2)
.

Thus, if u ∈W 1,p
0,r (RN ) we can write

∥u∥W 1,p(RN ) =
(
ωN

∫ ∞

0

(|Du′|p + |u|p)rN−1dr
)1/2

. (3.1)

Let C∞
0 (RN ) be the space of infinitely differentiable functions with compact sup-

port. We denote by C∞
0,r(RN ) the subspace of C∞

0 (RN ) of radially symmetric
functions.

Lemma 3.1. Let u ∈W 1,p
0,r (RN ). Then

|u(r)| ≤ Cmin
{ 1

r(N−p)/p
,

1

r(N−1)/p

}
∥u∥W 1,p(RN ). (3.2)

Proof. If ϕ ∈ C∞
0,r(RN ), then

|ϕ(r)| ≤
∣∣ ∫ ∞

r

ϕ′(s)ds
∣∣

≤
∫ ∞

r

∣∣ϕ′(s)s(N−1)/p 1

s(N−1)/p
ds
∣∣

≤
(∫ ∞

r

|ϕ′(s)|psN−1ds
)1/p(∫ ∞

r

1

s
N−1
p−1

ds
) p−1

p

≤
(∫ ∞

r

(|ϕ′(s)|p + |ϕ(s)|p)sN−1ds
)1/p(∫ ∞

r

1

s
N−1
p−1

ds
) p−1

p

≤ 1

ω
1/p
N

( p− 1

N − p

) p−1
p 1

r(N−p)/p
∥ϕ∥W 1,p(RN ).

(3.3)

On the other hand,

(ϕ(r))p = −p
∫ ∞

r

ϕ′(s)ϕ(s)p−1ds

≤ p

∫ ∞

r

|ϕ′(s)||ϕ(s)|p−1sN−1 1

sN−1
ds

≤ p

rN−1

∫ ∞

r

(
|ϕ′(s)|p

p
+

|ϕ(s)|p

p/(p− 1)
)sN−1ds

≤ 1

ωN
max{1, p− 1} 1

rN−1
∥ϕ∥p

W 1,p(RN )
.

Thus, we arrive at

|ϕ(r)| ≤ C
1

r(N−1)/p
∥ϕ∥W 1,p(RN ). (3.4)

Since C∞
0,r(RN ) is dense in W 1,p

0,r (RN ), we obtain (3.2). □
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Proof of Theorem 1.1. Let u ∈ W 1,p
0,r (RN ) with ∥u∥W 1,p(RN ) = 1. Let ρ ∈ (0, 1) to

be chosen later on, we can write

1

wp

∫
RN

|u(r)|p
∗+h(r)dx

=

∫ ρ

0

|u(r)|p
∗+h(r)rN−1dr︸ ︷︷ ︸
I

+

∫ 1

ρ

|u(r)|p
∗+h(r)rN−1dr︸ ︷︷ ︸
J

+

∫ ∞

1

|u(r)|p
∗+h(r)rN−1dr︸ ︷︷ ︸
K

.

We estimate I, J,K in 3 steps. In the first two steps we use ideas similar to those
in [23, Theorem 2.1].

Step 1. Estimate of I.

I =

∫ ρ

0

|u(r)|p
∗+h(r)rN−1dr

≤
∫ ρ

0

|u(r)|p
∗
(|u(r)|h(r) − 1)rN−1dr +

∫ 1

0

|u(r)|p
∗
rN−1dr

≤
∫ ρ

0

|u(r)|p
∗
(|u(r)|h(r) − 1)rN−1dr + CN,p,

where CN,p is the constant in the Sobolev constant embedding

W 1,p(RN ) ↪→ Lp∗
(RN ).

By Lemma (3.1), we have∫ ρ

0

|u(r)|p
∗
(|u(r)|h(r) − 1)rN−1dr ≤ C

∫ ρ

0

1

r(N−p)p∗/p

( 1

r(N−p)h(r)/p
− 1

)
rN−1dr

= C

∫ ρ

0

1

r

(
exp[

−(N − p)h(r)

p
log r]− 1

)
dr

≤ Cd
N − p

p

∫ ρ

0

h(r)
| log r|
r

dr <∞,

whence the above inequality follows from (1.5).

Step 2. Estimate of J . By (1.6) and Lemma (3.1), we obtain

J =

∫ 1

ρ

|u(r)|p
∗+h(r)rN−1dr

≤ C

∫ 1

ρ

1

r
(N−p)

p (p∗+h(r))
rN−1dr

= C

∫ 1

ρ

1

r1+
N−p

p h(r)
dr

= −C
∫ 0

1−ρ

1

(1− s)1+
N−p

p h(1−s)
ds

≤ C

∫ 1−ρ

0

1

(1− s)1+
N−p

p
c
s

ds

= C

∫ 1−ρ

0

1

exp (1 + N−p
p

c
s ) log(1− s)

ds <∞.
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Step 3. Estimate of K. The third integral K can be bounded with the aid of (1.4)
and Lemma 3.1. Indeed

K =

∫ ∞

1

|u(r)|p
∗+h(r)rN−1dr

≤ C

∫ ∞

1

r−
N−1

p (p∗+h(r))+(N−1)dr

≤ C

∫ ∞

1

r−
N−1

p p∗+(N−1)dr

= C

∫ ∞

1

r−p(N−1)/(N−p)dr <∞.

(3.5)

From the previous steps, we infer (1.9). The proof of Theorem 1.1 is complete. □

Proof of Corollary 1.2. Notice that θ(r) = p∗ + h(r) belongs to L∞
+ (RN ) since

θ(r) ≥ p∗ > 1. Define the space

Lp∗+h(r) =
{
u : RN → R : real measurable,

∫
RN

|u(r)|p
∗+h(r)dx ≤ ∞

}
equipped with the norm

∥u∥p∗+h(r) = inf
{
σ > 0 :

∫
RN

|u(r)
σ

|p
∗+h(r)dx ≤ 1

}
.

Taking that u ∈ W 1,p
r (RN ) with ∥u∥W 1,p

r (RN ) = 1. Theorem 1.1 yields that there

exists C such that ∫
RN

|u(r)|p
∗+h(r)dx ≤ C <∞,

where C does not depend on u. By Proposition 2.4, we obtain

∥u∥Lp∗+h(r) ≤ C0 = max{Cp−, Cp+}.

Thus,

∥u∥Lp∗+h(r) ≤ C0∥u∥W 1,p
r (RN ),

for every u ∈W 1,p
r (RN ). □

4. Approximate functions

The continuous function f satisfying (1.12) can be approximated by Lipschitz
functions fk : RN × R → R defined by

fk(r, s) =



−k[G(r,−k − 1
k )−G(r,−k)], if s ≤ −k

−k[G(r, s− 1
k )−G(r, s)], if − k ≤ s ≤ − 1

k

k2s[G(r,− 2
k )−G(r,− 1

k )], if − 1
k ≤ s ≤ 0

k2s[G(r, 2k )−G(r, 1k )], if 0 ≤ s ≤ 1
k

k[G(r, s+ 1
k )−G(r, s)], if 1

k ≤ s ≤ k

k[G(r, k + 1
k )−G(r, k)], if s ≥ k,

(4.1)

where G(r, s) =
∫ s

0
f(r, ζ)dζ, Gs = f and G(r, 0)=0.

The following approximation result was proved in [41] and it uses the explicit
expression of the sequence (4.1).
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Lemma 4.1. Let f : RN × R → R be a continuous function such that sf(r, s) ≥ 0
for every s ∈ R. Then there exists a sequence fk : RN × R → R of continuous
functions satisfying

(i) sfk(r, s) ≥ 0 for every s ∈ R;
(ii) for each k ∈ N there is a continuous function ck(r) such that

|fk(r, ξ)− fk(r, η)| ≤ ck(r)|ξ − η|
for every ξ, η ∈ R;

(iii) fk converges uniformly to f in bounded sets.

The following result gives the growth behavior to the sequence of functions ck(·),
and the proof can be found in [7, Proposition 5].

Lemma 4.2. One can choose the sequence of Lipschitz constants ck(·), defined in
Lemma 4.1, satisfying the following estimates

ck(r) ≤ Ck sup
t

{
|f(r, t)|; t ∈ [−k − 1

k
, k +

1

k
]
}
, ∀r ∈ [0, R], (4.2)

where the constant C does not depend on neither r nor k.

A similar version of the next lemma was presented in [7, Lemma 2]. However,
since here we can deal with unbounded domains, a slight different statement is
needed and deserves a proof.

Lemma 4.3. Let f : RN × R → R be a continuous function satisfying (1.12) for
every s ∈ R. Then the sequence (fk) of Lemma 4.1 satisfies

(i) for all k ∈ N, 0 ≤ sfk(r, s) ≤ K1|s|θ(r) for every |s| ≥ 1/k;
(ii) for all k ∈ N, 0 ≤ sfk(r, s) ≤ K1

1
kp−−1 |s| for every |s| ≤ 1/k,

where C1 is a positive constant independent of k.

Proof. In this proof the constant b1 is the one of (1.12). According to the definition
(2.3),

p− = inf
r≥0

θ(r) and p+ = sup
r≥0

θ(r).

Step 1. Suppose that −k ≤ s ≤ −1/k. By the mean value theorem, there exists
η ∈ (s− 1

k , s) such that

fk(r, s) = −k[G(r, s− 1

k
)−G(r, s)] = −kGs(r, η)(s−

1

k
− s) = f(r, η),

sfk(r, s) = sf(r, η).

Since s− 1
k < η < s < 0 and f(r, η) < 0, we have sf(r, η) ≤ ηf(r, η). Therefore,

0 ≤ sfk(r, s) ≤ ηf(r, η)

≤ b1|η|θ(r) ≤ b1|s−
1

k
|θ(r)

≤ b1(|s|+
1

k
)θ(r)

≤ b1(2|s|)θ(r)

≤ b12
p+ |s|θ(r).
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Step 2. Assume 1
k ≤ s ≤ k. By the mean value theorem, there exists η ∈ (s, s+ 1

k )
such that

fk(r, s) = k[G(r, s+
1

k
)−G(r, s)] = kGs(r, η)(s+

1

k
− s) = f(r, η),

sfk(r, s) = sf(r, η).

Since 0 < s < η < s+ 1
k and f(r, η) > 0, we have sf(r, η) ≤ ηf(r, η). Therefore,

0 ≤ sfk(r, s) ≤ ηf(r, η) ≤ b1|η|θ(r) ≤ b1|s+
1

k
|θ(r) ≤ b12

p+ |s|θ(r).

Step 3. Suppose that |s| ≥ k, then

fk(r, s) =

{
−k[G(r,−k − 1

k )−G(r,−k)], if s ≤ −k
k[G(r, k + 1

k )−G(r, k)], if s ≥ k.
(4.3)

If s ≤ −k, again by the mean value theorem, there exists η ∈ (−k − 1
k ,−k) such

that

fk(r, s) = k[G(r,−k − 1

k
)−G(r,−k)] = −kGs(r, η)(−k −

1

k
− (−k)) = f(r, η),

sfk(r, s) = sf(r, η).

Since −k − 1
k < η < −k < 0 and k < |η| < k + 1

k , we conclude that

0 ≤ sfk(r, s) =
s

η
ηf(r, η)

≤ |s|
|η|
b1|η|θ(r) = b1|s||η|θ(r)−1

≤ b1|s|(k +
1

k
)θ(r)−1

≤ b1|s|(|s|+
1

k
)θ(r)−1

≤ b1|s|(2|s|)θ(r)−1

≤ b12
p+ |s|θ(r).

(4.4)

If s ≥ k, by the mean value theorem, there exists η ∈ (k, k + 1
k ) such that

fk(r, s) = k[G(r, k +
1

k
)−G(r, k)] = kGs(r, η)(k +

1

k
− k) = f(r, η).

By using similar computations as for (4.4) one has

0 ≤ sfk(r, s) = sf(r, η) =
s

η
ηf(r, η) ≤ |s|

|η|
b1|η|θ(r) ≤ b12

p+ |s|θ(r).

Step 4. Assume − 1
k ≤ s ≤ 1

k . Then

fk(r, s) =

{
k2s[G(r,−2/)−G(r,−1/k)], if − 1/k ≤ s ≤ 0

k2s[G(r, 2/k)−G(r, 1/k)], if 0 ≤ s ≤ 1/k.

If −1/k ≤ s ≤ 0, by the mean value theorem, there exists η ∈ (−2/k,−1/k) such
that

fk(r, s) = k2s[G(r,−2

k
)−G(r,−1

k
)] = k2sGs(r, η)(−

2

k
− (−1

k
)) = −ksf(r, η).



EJDE-2024/41 ELLIPTIC EQUATIONS ON SYMMETRIC DOMAINS 11

Therefore

0 ≤ sfk(r, s) = −ks2f(r, η) = −k s
2

η
ηf(r, η)

≤ k
s2

|η|
ηf(r, η) ≤ b1k|s|2|η|θ(r)−1

≤ b1k|s|2(
2

k
)θ(r)−1

≤ b1
2θ(r)−1

kp−−2
|s|2

≤ b12
p+

1

kp−−1
|s|.

(4.5)

If 0 ≤ s ≤ 1/k, by the mean value theorem, there exists η ∈ (1/k, 2/k) such that

fk(r, s) = k2s[G(r,
2

k
)−G(r,

1

k
)] = k2sGs(r, η)(

2

k
− 1

k
) = ksf(r, η).

Using similar computations as for (4.5) one obtains

0 ≤ sfk(r, s) = ks2f(r, η) = k
s2

|η|
ηf(r, η) ≤ b12

p+
1

kp−−1
|s|.

The proof of the lemma follows by taking K1 = b12
p+ , where b1 is given in (1.12).

□

5. Approximate equation

Let D ⊆ RN be an open, bounded and symmetric set centered at the origin. We
say that u ∈W 1,p

0 (D) is a solution of (1.13) if u(x) > 0 in D and∫
D

|∇u|p−2∇u∇ϕdx+

∫
D

|u|p−2uϕdx = λ

∫
D

a(x)|u|q(r)−2uϕdx+

∫
D

f(r, u)ϕdx,

for all ϕ ∈W 1,p
0 (D).

We will employ the following auxiliary problem in our reasoning later.

−∆pu+ |u|p−2u = λa(x)|u|q(r)−2u+ fn(r, u) +
φ

n
in D

u > 0 in D

u(x) = 0 on ∂D,

(5.1)

with n > 0 a integer number, φ > 0 is a fixed function such that φ ∈ L∞(RN ) ∩
Lp′

(RN ) and fn is given by Lemmas 4.1 and 4.3.

Lemma 5.1. There exists λ∗ > 0 and n∗ ∈ N such that (5.1) has a solution
un ∈ C1

0 (D) such that ∂un/∂ν < 0 on ∂D for every λ ∈ (0, λ∗) and n ≥ n∗.
Furthermore,

∥un∥W 1,p(D) ≤ ϑ,

where ϑ does not depend on n.

Proof. Let B = {w1, w2, . . . , wn, . . . } be a Schauder basis (see [15] for details) for

the Banach space (W 1,p
0,r (D), ∥ · ∥W 1,p(D)). For each positive integer m, let

Wm = [w1, w2, . . . , wm]
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be the m-dimensional subspace of W 1,p
0,r (D) generated by {w1, w2, . . . , wm} with

norm induced from W 1,p
0,r (D). Let ξ = (ξ1, . . . , ξm) ∈ Rm, notice that

|ξ|m :=
∥∥ m∑

j=1

ξjwj

∥∥
W 1,p(D)

(5.2)

defines a norm in Rm (see [5] for the details).
Using the above notation, we can identify the spaces (Wm, ∥ · ∥W 1,p(D)) and

(Rm, | · |m) by the isometric linear transformation

u =

m∑
j=1

ξjwj ∈Wm 7→ ξ = (ξ1, . . . , ξm) ∈ Rm. (5.3)

Define the function F : Rm → Rm such that

F (ξ) = (F1(ξ), F2(ξ), . . . , Fm(ξ)),

where ξ = (ξ1, ξ2, . . . , ξm) ∈ Rm,

Fj(ξ) =

∫
D

|∇u|p−2∇u∇wjdx+

∫
D

|u|p−2uwjdx− λ

∫
D

a(x)(u+)
q(r)−1wjdx

−
∫
D

fn(r, u+)wjdx− 1

n

∫
D

φwjdx,

j = 1, 2, . . . ,m, and u =
∑m

i=1 ξiwi ∈Wm. Therefore,

⟨F (ξ), ξ⟩ =
∫
D

|∇u|pdx+

∫
D

|u|pdx− λ

∫
D

a(x)(u+)
q(r)dx

−
∫
D

fn(r, u+)u+dx− 1

n

∫
D

φudx,

(5.4)

where u+ = max{u, 0}, u− = u+ − u.
For a given u ∈Wm we define

D+
n = {x ∈ D : |u(r)| ≥ 1

n
}, D−

n = {x ∈ D : |u(r)| < 1

n
}.

Thus, we can write (5.4) as

⟨F (ξ), ξ⟩ = ⟨F (ξ), ξ⟩P + ⟨F (ξ), ξ⟩N ,
where

⟨F (ξ), ξ⟩P =

∫
D+

n

|∇u|pdx+

∫
D+

n

|u|pdx− λ

∫
D+

n

a(x)(u+)
q(r)dx

−
∫
D+

n

fn(r, u+)u+dx− 1

n

∫
D+

n

φudx

and

⟨F (ξ), ξ⟩N =

∫
D−

n

|∇u|pdx+

∫
D−

n

|u|pdx− λ

∫
D−

n

a(x)(u+)
q(r)dx

−
∫
D−

n

fn(r, u+)u+dx− 1

n

∫
D−

n

φudx.

Now we consider
|ξ|m = ∥u∥W 1,p

0 (D) = ϑ (5.5)

for some 0 < ϑ ≤ 1 to be chose later. Step 1. Since the embedding W 1,p(RN ) ⊂
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Lτ (RN ) is continuous for all p ≤ τ ≤ p∗ (see [15, Corollary 9.11]), we have∫
D+

n

|a(r)|(u+)q(r)dx ≤ C∥a∥Lp/(p−q(x))(RN )∥ũ∥
q−
W 1,p(RN )

≤ C1

2
∥ũ∥q−

W 1,p(RN )
. (5.6)

By Lemma 4.3 and Corollary 1.2, we obtain∫
D+

n

fn(r, u+)u+dx ≤ K1

∫
D+

n

|u+|θ(r)dx ≤ C2∥ũ∥p−
W 1,p(RN )

. (5.7)

Since φ ∈ Lp′
(RN ), we have∫

D+
n

φudx ≤ ∥φ∥Lp′ (RN )∥ũ∥Lp(RN ) ≤
C3

2
∥ũ∥W 1,p(RN ). (5.8)

It follows from (5.6), (5.7) and (5.8) that

⟨F (ξ), ξ⟩P ≥
∫
D+

n

|∇u|pdx+

∫
D+

n

|u|pdx− λ
C1

2
∥ũ∥q−

W 1,p(RN )

− C2∥ũ∥p−
W 1,p(RN )

− C3

2n
∥ũ∥W 1,p(RN ).

(5.9)

Step 2. In a similarly way, we obtain∫
D−

n

|a(x)|(u+)qdx ≤ C1

2
∥ũ∥q−

W 1,p(RN )
. (5.10)

By Lemma 4.3, we obtain∫
D−

n

fn(r, u+)u+dx ≤ K1
1

np−−1

∫
D−

n

|u+|dx

≤ K1
1

np−−1

(∫
D−

n

dx
) 1

p′
(∫

RN

|ũ|pdx
)1/p

≤ K1|D|1/p
′ 1

np−−1
∥ũ∥W 1,p(RN ).

(5.11)

Also we have ∫
D−

n

φudx ≤ C3

2
∥ũ∥W 1,p(RN ). (5.12)

It follows from (5.10), (5.11) and (5.12) that

⟨F (ξ), ξ⟩N ≥
∫
D−

n

|∇u|pdx+

∫
D−

n

|u|pdx− λ
C1

2
∥ũ∥q−

W 1,p(RN )

−K1|D|1/p
′ 1

np−−1
∥ũ∥W 1,p(RN ) −

C3

2n
∥ũ∥W 1,p(RN ).

(5.13)

Using that ∥u∥pW 1,p(D) = ∥ũ∥p
W 1,p(RN )

= ∥∇ũ∥p
LN (RN )

+ ∥ũ∥p
LN (RN )

, inequalities

(5.9) and (5.13) imply

⟨F (ξ), ξ⟩ ≥ ∥ũ∥p
W 1,p(RN )

− λC1∥ũ∥q−W 1,p(RN )
− C2∥ũ∥p−

W 1,p(RN )

−
(
K1|D|1/p

′ 1

np−−1
+
C3

n

)
∥ũ∥W 1,p(RN ).

(5.14)

Since |ξ|m = ∥ũ∥W 1,p(RN ) = ϑ, we have

⟨F (ξ), ξ⟩ ≥ ϑp − λC1ϑ
q− − C2ϑ

p− −
(K1|D|1/p′

np−−1
+
C3

n

)
ϑ.
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If ϑ is such that

ϑ ≤ 1

(2C2)
1

p−−p

,

then ϑp − C2ϑ
p− ≥ ϑp

2 . Thus, choosing

ϑ := min
{ 1

(2C2)
1

p−−p

, 1
}
, (5.15)

we obtain

⟨F (ξ), ξ⟩ ≥ ϑp

2
− λC1ϑ

q− −
(K1|D|1/p′

np−−1
+
C3

n

)
ϑ.

We define ς := ϑp

2 − λC1ϑ
q− . If we choose

λ∗ :=
ϑp−q−

4C1
> 0,

then ς > ϑp

4 for all 0 < λ < λ∗. We choose n∗ ∈ N such that(K1|D|1/p′

np−−1
+
C3

n

)
ϑ <

ς

2

for every n ≥ n∗. Notice that n∗ depends on the domain D. Since ξ ∈ Rm is such
that |ξ|m = ϑ, then for λ < λ∗ and n ≥ n∗ we obtain

⟨F (ξ), ξ⟩ ≥ ς

2
> 0. (5.16)

Since fn is a Lipschitz function (for each n ∈ N), it easy to see that F : Rm → Rm

is a continuous function. Thus, for each λ < λ∗ and n > n∗ fixed, Lemma 2.1
ensure the existence of y ∈ Rm with |y|m ≤ ϑ and such that F (y) = 0. In other
words, there exists um ∈Wm satisfying

∥um∥W 1,p(D) ≤ ϑ, (5.17)

and such that∫
D

|∇um|p−2∇um∇wdx+

∫
D

|um|p−2umw dx

= λ

∫
D

a(x)(um+)
q(x)−1wdx+

∫
D

fn(r, um+)wdx+
1

n

∫
D

φw dx,

(5.18)

for all w ∈Wm.

Remark 5.2. It is important to mention that ϑ, given in (5.15), does not depend
on the domain D, m nor n. For this matter, Corollary 1.2 plays an important role.

SinceWm ⊂W 1,p
0,r (D) for all m ∈ N, and ϑ does not depend on m, then (um)m∈N

is a bounded sequence in W 1,p
0 (D). Therefore, for some subsequence, there exists

u ∈W 1,p
0 (D) such that

um ⇀ u weakly in W 1,p
0,r (D), (5.19)

um → u in Ls(D), p ≤ s < p∗, (5.20)

um → u, a.e. in , D. (5.21)

Thus,

∥u∥W 1,p(D) ≤ lim inf
m→∞

∥um∥W 1,p(D) ≤ ϑ. (5.22)
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Now we claim that

um → u in W 1,p
0,r (D). (5.23)

Indeed, using that B = {w1, w2, . . . , wn, . . . } is a Schauder basis of W 1,p
0,r (D), for

every u ∈ W 1,p
0,r (D) there exists a unique sequence (αn)n≥1 in R such that u =∑∞

j=1 αjwj , so that

ψm :=

m∑
j=1

αjwj → u in W 1,p
0,r (D) as m→ ∞. (5.24)

Using w = (um − ψm) ∈Wm as test function in (5.18), we obtain∫
D

|∇um|p−2∇um∇(um − ψm)dx+

∫
D

|um|p−2um(um − ψm)dx

= λ

∫
D

a(x)(um+)
q(x)−1(um − ψm)dx+

∫
D

fn(r, um+)(um − ψm)dx

+
1

n

∫
D

φ(um − ψm)dx.

(5.25)

It is easy to see that∫
D

(
|um|p−1 + |λa(x)(um+)

q(x)−1|+ 1

n
|φ|

)
|um − ψm|dx

≤
(
∥un∥p−1

Lp(D) + λ∥a∥Lp/(p−q(x))(D)∥un∥
q−−1
Lp(D) +

1

n
∥φ∥Lp′ (D)

)
∥um − ψm∥Lp(D).

(5.26)
By Lemma 4.3, one has∫

D

[fn(r, um+)]
θ(r)

θ(r)−1 dx =

∫
D+

n

[fn(r, um+)]
θ(r)

θ(r)−1 dx+

∫
D−

n

[fn(r, um+)]
θ(r)

θ(r)−1 dx,∫
D+

n

[fn(r, um+)]
θ(r)

θ(r)−1 dx ≤ (max{K1, 1})p
∗
∫
D+

n

|um+|θ(r)dx

≤ (max{K1, 1})p
∗
∫
D

|um+|θ(r)dx

≤ K2∥um∥W 1,p(D)∫
D−

n

[fn(r, um+)]
θ(r)

θ(r)−1 dx ≤ (max{K1, 1})p
∗ 1

np∗−2

∫
D−

n

|um+|θ(r)dx

≤ (max{K1, 1})p
∗
|D|.

Since ∥um∥W 1,p(D) ≤ ϑ, by the estimates above, we obtain∫
D

[fn(r, um+)]
θ(r)

θ(r)−1 dx ≤ C, (5.27)

where C does not depend on m. Hence fn(r, um+) is bounded in L
θ(r)

θ(r)−1 (D).
Applying Corollary 1.2, (5.24) and (5.27) we conclude that

lim
m→∞

∫
D

fn(r, um+)(um − ψm)dx = 0. (5.28)
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Notice that∫
D

fn(r, um+)(um − ψm)dx ≤ C̃∥um − ψm∥θ(r)

≤ ˜̃C∥um − ψm∥W 1,p(D) → 0 as m→ ∞.

(5.29)

By (5.17) and (5.24), we obtain

lim
m→∞

∫
D

|∇um|p−2∇um∇(u− ψm)dx = 0. (5.30)

By (5.25), (5.26), (5.28) and (5.30), we obtain

lim
m→∞

∫
D

|∇um|p−2∇um∇(um − u)dx = 0. (5.31)

It is sufficient to apply the (S+)− property of −∆p (see, e.g., [38, Proposition 3.5.])
to obtain (5.23).

For every m ≥ k we obtain∫
D

|∇um|p−2∇um∇wkdx+

∫
D

|um|p−2umwkdx

= λ

∫
D

a(x)(um+)
q(x)−1wkdx+

∫
D

fn(r, um+)wkdx+
1

n

∫
D

φwkdx,

(5.32)

for all wk ∈Wk.
It follows from (5.23) that∫

D

|∇u|p−2∇u∇wkdx+

∫
D

|u|p−2uwkdx

= λ

∫
D

a(x)(u+)
q(x)−1wkdx+

∫
D

fn(r, u+)wkdx+
1

n

∫
D

φwkdx,

(5.33)

for all wk ∈Wk. Since [Wk]k∈N is dense in W 1,p
0,r (D) we conclude that∫

D

|∇u|p−2∇u∇wdx+

∫
D

|u|p−2uw dx

= λ

∫
D

a(x)(u+)
q(x)−1wdx+

∫
D

fn(r, u+)w dx+
1

n

∫
D

φw dx,

(5.34)

for all w ∈W 1,p
0,r (D).

Before concluding, we will check that u satisfy (5.34) for all w ∈ W 1,p
0 (D).

Indeed, we will use a symmetric critical principle of Palais [40] in Banach spaces
developed in [22].

Let O(N) be the subgroup of isometries g :W 1,p
0 (D) →W 1,p

0 (D) corresponding
to all rotations, that is, O(N) is the orthogonal group of dimensionN . The subspace

of W 1,p
0 (D) consisting of radially symmetric functions, O(N)-invariant, is given by

W 1,p
0,r (D) = {u ∈W 1,p

0 (D) : g(u) = u, for all g ∈ O(N)}, see (1.10).

Let u ∈W 1,p
0,r (D) satisfying (5.34). Define Φ(u) ∈W 1,p

0 (D)∗ (the dual space) by

(Φ(u), w) =

∫
D

|∇u|p−2∇u∇wdx+

∫
D

|u|p−2uw dx

− λ

∫
D

a(x)(u+)
q(x)−1wdx−

∫
D

fn(r, u+)wdx− 1

n

∫
D

φw dx.

(5.35)
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By (5.34), we have that

(Φ(u), w) = 0, w ∈W 1,p
0,r (D),

and Φ(u) is invariant under the action of O(N). By [22], we can infer that Φ(u) ≡ 0.

In other words, u satisfy (5.34) for all w ∈W 1,p
0 (D), i.e.∫

D

|∇u|p−2∇u∇wdx+

∫
D

|u|p−2uw dx

= λ

∫
D

a(x)(u+)
q(x)−1wdx+

∫
D

fn(r, u+)wdx+
1

n

∫
D

φw dx,

(5.36)

for all w ∈W 1,p
0 (D).

Furthermore, u ≥ 0 in D. In fact, since u− ∈ W 1,p
0 (D) then from (5.36) we

obtain

−∥u−∥pW 1,p(D) =

∫
D

|∇u|p−2∇u∇u−dx+

∫
D

|u|p−2uu−dx

= λ

∫
D

a(x)(u+)
q(x)−1u−dx+

∫
D

fn(r, u+)u−dx+
1

n

∫
D

φu−dx ≥ 0.

Then u− ≡ 0 a.e. in D, whence u ≥ 0 a.e. in D. Moreover, u ̸≡ 0 is valid due
to φ

n > 0 in D. Applying the strong maximum principle [43] we obtain u > 0
in D and ∂u/∂ν < 0 on ∂D. By Lemma 4.1 and [34, Theorem 7.1] we conclude
that u ∈ L∞(D). Thus, [35, Theorem 1] ensure the regularity up to the boundary
u ∈ C1,β(D), for some β ∈ (0, 1). Therefore, we conclude that proof of the lemma
taking un = u. □

6. Proof of Theorem 1.3

For the proof of Theorem 1.3 we need the following result.

Lemma 6.1. For each constant b > 0, the problem

−∆pu+ up−1 = buq(r)−1 in D

u > 0 in D

u = 0 on ∂D,

(6.1)

where D is a bounded domain in RN with C2 boundary ∂D, admits a solution
u0 ∈ C1,β(D) such that ∂u0/∂ν < 0 on ∂D.

Proof. This result is more or less standard, but we will sketch the proof. Given a
constant b > 0, we define the functional I :W 1,p

0 (D) → R by

I(u) =
1

p

∫
D

|∇u|pdx+
1

p

∫
D

|u|pdx− b

∫
D

1

q(r)
(u+)q(r)dx for all u ∈W 1,p

0 (D),

where u+ = max{0, u}. Notice that I is of class C1. Using the Sobolev embedding,
Proposition 2.4 and Proposition 2.6, we have the estimate

I(u) ≥ 1

p
∥u∥pW 1,p(D) − c(∥u∥q+W 1,p(D) + ∥u∥q−W 1,p(D)) for all u ∈W 1,p

0 (D),

with a constant c > 0. Since p > q+ ≥ q− > 1, I is bounded from below and
coercive. Considering that the first two terms in the expression of I are convex and
continuous on W 1,p

0 (D) and the embedding of W 1,p
0 (D) into Lq(r)(D) is compact,
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we infer that I is sequentially weakly lower semi-continuous. Therefore, there exists
u0 ∈W 1,p

0 (D) such that
I(u0) = inf

u∈W 1,p
0 (D)

I(u)

(see, e.g., [37, Theorems 1.1, 1.2]). Hence u0 is a critical point of I that reads as∫
D

|∇u0|p−2∇u0∇vdx+

∫
D

|u0|p−2u0vdx = b

∫
D

(u+0 )
q(r)−1vdx (6.2)

for all v ∈W 1,p
0 (D). Since the variable exponent q(r) is subcritical, we obtain with

standard bootstrap arguments that u0 ∈ C1,β(D).
It remains to justify that u0 > 0. Inserting v = −u−0 = −max{0,−u0} in (6.2)

leads to u−0 = 0, so u0 ≥ 0 in D. We observe that the condition 1 < q− ≤ q+ < p
ensures that I(tu) < 0 provided u ̸= 0 and t > 0 is sufficiently small, which implies
that u0 ̸= 0. Finally, we can verify that the strong maximum principle applies in
the case of equation (6.2). We conclude that u0 > 0 in D, so u0 is a (weak) solution
of problem (6.1). Applying the Hopf boundary point lemma we obtain ∂u0/∂ν < 0
on ∂D. □

Proof of Theorem 1.3. First we show that (1.13) has a positive solution. For each
n ∈ N we know, by Lemma 5.1, that equation (5.1) has a (weak) solution un ∈
W 1,p

0,r (D) ∩ C1,β(D), thus∫
D

|∇un|p−2∇un∇wdx+

∫
D

|un|p−2unw dx

= λ

∫
D

a(x)(un)
q(x)−1wdx+

∫
D

fn(r, un)wdx+
1

n

∫
D

φw dx,

(6.3)

for all w ∈W 1,p
0 (D).

By (5.22) we have

∥un∥W 1,p(D) ≤ ϑ ≤ 1, ∀n ∈ N, (6.4)

and ϑ does not depend on n (indeed, see Remark 5.2). Thus, for a subsequence

again relabeled as (un), there exists u ∈W 1,p
0 (D) such that

un ⇀ u weakly in W 1,p
0 (D) as n→ ∞. (6.5)

Since un → u a.e. in D, by the uniform convergence of Lemma 4.1 (ii) we have

fn(·, un(·)) → f(·, u(·)) a.e. in D. (6.6)

By Lemma 4.3, one has∫
D

[fn(r, un)]
θ(r)

θ(r)−1 dx =

∫
D+

n

[fn(r, un)]
θ(r)

θ(r)−1 dx+

∫
D−

n

[fn(r, un)]
θ(r)

θ(r)−1 dx,∫
D+

n

[fn(r, un)]
θ(r)

θ(r)−1 dx ≤ (max{K1, 1})p
∗
∫
D+

n

|un|θ(r)dx

≤ (max{K1, 1})p
∗
∫
D

|un|θ(r)dx

≤ K2∥un∥p
∗

W 1,p(D),∫
D−

n

[fn(r, un)]
θ(r)

θ(r)−1 dx ≤ (max{K1, 1})p
∗ 1

np∗−2

∫
D−

n

|un|θ(r)dx

≤ (max{K1, 1})p
∗
|D|.
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Since ∥un∥W 1,p(D) ≤ ϑ, by the estimates before, we obtain∫
D

[fn(r, un)]
θ(r)

θ(r)−1 dx ≤ C,

where C does not depend on n. Hence fn(r, un) is bounded in L
θ(r)

θ(r)−1 (D) and by
similar arguments like [30, Theorem 13.44] leads to

fn(r, un)⇀ f(r, u) weakly in L
θ(r)

θ(r)−1 (D). (6.7)

By (6.5), (6.7) and Proposition 2.6, we can pass to the limit in (6.3) to obtain∫
D

|∇u|p−2∇u∇wdx+
∫
D

|un|p−2uw dx = λ

∫
D

a(x)(u)q(x)−1wdx+

∫
D

f(r, u)wdx,

(6.8)

for all w ∈W 1,p
0 (D). Thus, u is a solution of (1.13).

We need to prove that the limit function u does not vanish. For this matter, fix
a positive constant λ ∈ (0, λ∗) such that

λ∗ =
ϑ2−q−

4C1
(6.9)

was given in Lemma 5.1. Since a > 0 is a continuous function, define

aτ = inf
D
a(r).

Then, according to Lemma 6.1, there exists a positive solution uλ,R of

−∆pu+ up−1 = λaτu
q(r)−1 in D

u > 0 in D

u = 0 on ∂D.

Let un be a positive solution of problem (5.1) obtained by Lemma 5.1. We observe
that uλ/un, un/uλ ∈ L∞(D) because uλ,R and un are positive functions belonging

to C1,β
0 (D) and satisfying ∂un/∂ν < 0, ∂uλ,R/∂ν < 0 on ∂D. Hence we are able to

apply Proposition 2.3 with u1 = uλ,R, u2 = un, g(r, t) = λaτ t
q(r). Notice that

λtq(r) + fn(r, t) +
ϕ

n
≥ λaτ t

q(r) = g(r, t).

Hence, u1 and u2 are a positive subsolution and a positive supersolution of problem
(6.1), respectively. In this way, by Proposition 2.3 we see that un ≥ uλ,R > 0 in
D for every n ≥ 1. Therefore, in the limit as n → ∞ we obtain that u ≥ uλ,R a.e.
in D. Thus, by letting to the limit, we conclude that u is a positive solution of
problem (1.13).

The solution we just found is being written as uλ with explicit dependence on
λ. We will deduce that ∥uλ∥W 1,p(D) → 0 as λ → 0. Fix the pair (λ, uλ), where
λ ∈ (0, λ∗) and uλ is the corresponding solution of problem (1.13),given by the
previous steps. Using w = uλ as a test function in (6.8) and recalling (2.1), we
obtain
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∫
RN

|∇ũλ|pdx+

∫
RN

ũpλdx =

∫
D

|∇uλ|pdx+

∫
D

upλdx

= λ

∫
D

a(r)u
q(r)
λ dx+

∫
D

f(r, uλ)uλdx

= λ

∫
RN

a(r)ũ
q(r)
λ dx+

∫
RN

f(r, ũλ)ũλdx

≤ λC1∥ũλ∥q−W 1,p(RN )
+ C2∥ũλ∥p−

W 1,p(RN )
,

(6.10)

where C1, C2 are given in (5.6), (5.7), respectively. Since ũλ ̸= 0, from (6.10), we
have the estimate

∥ũλ∥p−q−
W 1,p(RN )

(1− C2∥ũλ∥p−−2

W 1,p(RN )
) ≤ λC1. (6.11)

Combining (5.22), (6.4), we obtain

∥ũλ∥p−−2

W 1,p(RN )
≤ 1

2C2
.

Thus,
∥uλ∥W 1,p(D) = ∥ũλ∥W 1,p(RN ) ≤ (2λC1)

1/(p−q−). (6.12)

We conclude that ∥uλ∥W 1,p(RN ) → 0 as λ → 0. The proof of the theorem is
complete. □

7. Proof of Theorem 1.4

Let R > 0. In what follows, we denote Bn = Bn(0) the open ball centered at
the origin and of radius n ∈ N, for some n > R. The space W 1,p(Bn) is equipped
with the norm

∥u∥2,n =
(∫

Bn

(
|∇u|p + |u|p

)
dx

)1/p

.

Proof of Theorem 1.4. Applying Theorem 1.3 with D = Bn\BR (and n > R), we

obtain a positive solution un ∈W 1,p
0 (Bn) ∩ C1,β(Bn) of the problem

−∆pu+ up−1 = λa(r)uq(r)−1 + f(r, u) in Bn

u > 0 in Bn

u = 0 on ∂Bn,

(7.1)

Again, (5.22) and (6.12) show the uniform boundedness of the sequence (un)n>R

in W 1,p
0 (Bn), that is, defining

ϑ̃ = min
{
ϑ, (2λC1)

1/(p−q−)
}

we obtain
∥un∥2,n ≤ ϑ̃ for all n ∈ N. (7.2)

Fix m ∈ N. If n ≥ m > R, by (7.2) we have

∥un∥2,m ≤ ∥un∥2,n ≤ ϑ̃. (7.3)

Therefore, for a subsequence if necessary, there exists u ∈W 1,p(Bm) such that

un ⇀ u in W 1,p(Bm),

un → u for a.e. x ∈ Bm,

un → u in Lp(Bm),
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un ⇀ u in Lθ(r)/(θ(r)−1)(Bm),

un ⇀ u in Lq(r)−1(Bm), as n→ ∞.

Recalling that un > 0 in Bm, by the above convergences, we infer that u is a
nonnegative solution of the problem

−∆pu+ up−1 = λa(r)uq(r)−1 + f(r, u) in Bm, u ≥ 0texton∂Bm.

By a diagonal argument we obtain a subsequence of (ũn) and a function u ∈
W 1,p(RN ) such that

ũn ⇀ u in W 1,p(RN ),

ũn → u for a.e. x ∈ RN ,

ũn ⇀ u in Lθ(r)/(θ(r)−1)(RN ),

ũn ⇀ u in Lq(r)−1(RN ) as n→ ∞.

(7.4)

Indeed, fix φ ∈ C∞
0 (RN ), let m ∈ N such that supp(φ) ⊂ Bm. For n large enough,

we have ∫
RN

|∇ũn|p−2∇ũn∇φdx =

∫
Bm

|∇ũn|p−2∇ũn∇φdx

→
∫
Bm

|∇u|p−2∇u∇φdx =

∫
RN

|∇u|p−2∇u∇φdx,∫
RN

|ũn|p−2ũnφdx =

∫
Bm

|ũn|p−2ũnφdx

→
∫
Bm

|u|p−2uφdx =

∫
RN

|u|p−2uφdx,∫
RN

a(x)(ũn)
q(x)−1φdx =

∫
Bm

a(x)(ũn)
q(x)−1φdx

→
∫
Bm

a(x)uq(x)−1φdx =

∫
RN

a(x)uq(x)−1φdx,∫
RN

f(x, ũn)φdx =

∫
Bm

f(x, ũn)φdx

→
∫
Bm

f(x, u)φdx =

∫
RN

f(x, u)φdx.

Since C∞
0 (RN ) is dense in W 1,p(RN ), these convergence properties ensure that

u is a weak solution of problem (1.14).
The next step is to show that the limit function u does not vanish in RN . Fix

λ ∈ (0, λ∗), with λ∗ satisfying (6.9). Lemma 6.1 provides a solution uλ,m of the
problem

−∆pu+ up−1 = λaτu
q(r)−1 in Bm

u > 0 in Bm

u = 0 on ∂Bm.

Since λa(r)tq(r)−1 + f(r, t) ≥ λtq(r)−1 for all x ∈ RN and t > 0, we can apply
Proposition 2.2 to the functions uλ,m and ũn with n ≥ m, in place of u1 = uλ,m



22 L. F. O. FARIA, M. MONTENEGRO EJDE-2024/41

and u2 = ũn, respectively, which renders ũn ≥ uλ,m in Bm for every n ≥ m. This
enables us to deduce that uλ := u ≥ uλ,m in Bm, so

uλ(x) > 0 a.e. x ∈ RN ,

since m was arbitrarily chosen.
Furthermore, since ũn converges weakly to u in W 1,p(RN ), we obtain

∥∇ũn∥Lp(RN ) + ∥ũn∥Lp(RN ) = ∥ũn∥2,n ≤ ϑ̃.

By means of (7.2), according to the iteration process, we can check that uλ ∈
W 1,p(RN ), and ∥uλ∥W 1,p(RN ) → 0 as λ→ 0, see also (6.10), (6.11), (6.12). □
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