Electronic Journal of Differential Equations, Vol. 2024 (2024), No. 46, pp. 1–5. ISSN: 1072-6691. URL: https://ejde.math.txstate.edu, https://ejde.math.unt.edu DOI: 10.58997/ejde.2024.46

SUFFICIENT CONDITIONS FOR THE EXISTENCE OF INTERIOR POINTS FOR POSITIVE CONES

MOHAMMED SAID EL KHANNOUSSI, ABDERRAHIM ZERTITI

ABSTRACT. Using partial ordering methods we give a sufficient condition for a positive cone to have nonempty interior.

1. INTRODUCTION

Let $(E, \|\cdot\|_E)$ be a real Banach space and P be a nonempty closed convex set in E. P is called a cone if it satisfies the following two conditions:

(i) $x \in P$ and $\lambda \ge 0$ imply $\lambda x \in P$,

(ii) $x \in P$ and $-x \in P$ implies $x = \theta$, where θ denotes the zero element in E.

A cone P is said to be generating (or reproducing) if E = P - P, i.e., every element $x \in E$ can be represented in the form x = u - v where $u, v \in P$.

A cone P is called solid if there exists an element u_0 which belongs to the interior of the cone P, that is, there exists positive constant r such that

 $B(u_0, r) = \{ x \in E : ||u_0 - x|| \le r \} \subset P.$

A cone P defines a linear ordering in E by

 $x \leq y$ if and only if $y - x \in P$.

A cone P is said to be normal if there exists a constant N > 0 such that

 $\theta \le x \le y \implies ||x|| \le N ||y||, \quad x, y \in P.$

We denote by u_0 some fixed non-zero element of P. Our main result reads as follows.

Theorem 1.1. If u_0 be a non-zero element of P such that for any $x \in E$ there exists positive constant $\alpha_x > 0$ such that $x \leq \alpha_x u_0$, then u_0 belongs to the interior of the cone P. That is, there exists positive constant r such that

$$B(u_0, r) = \{x \in E : ||u_0 - x|| \le r\} \subset P.$$

In Section 3 we introduce the u_0 -norm and the space E_{u_0} , where u_0 is a given nonzero element of P. It is well-known that if P is a solid cone and $u_0 \in \mathring{P}$, then $E = E_{u_0}$. In this paper we shall study the converse statement and give an improvement and generalization of [2, Theorem 1.5.1].

²⁰²⁰ Mathematics Subject Classification. 54F05, 47L07, 46B40.

Key words and phrases. Positive cone; solid cone; interior points; u_0 -norm;

Baire Hausdorf's Theorem.

 $[\]textcircled{O}2024.$ This work is licensed under a CC BY 4.0 license.

Submitted November 3, 2023. Published August 21, 2024.

2. Proof of Theorem 1.1

To prove Theorem 1.1 we establish the following two lemmas. The first one is based on [2, Lemma 1.4.2].

Lemma 2.1. Let u_0 be a non-zero element of P such that for any $x \in E$ there exists positive constant $\alpha_x > 0$ satisfying $x \leq \alpha_x u_0$. Then a constant $\tau > 0$ can be found such that for any $x \in E$ there exists positive constant $\beta(x) > 0$ such that $x \leq \beta(x)u_0$ and $\|\beta(x)u_0\| \leq \tau \|x\|$.

Proof. It is clear that $E = \bigcup_{n=1}^{\infty} E_n$, where

$$E_n = \{x \in E : \text{there is } \beta(x) > 0 \text{ such that } x \leq \beta(x)u_0 \text{ and } \|\beta(x)u_0\| \leq n\|x\|\},\$$

for n = 1, 2, 3, ... By the Baire-Hausdorff's Theorem (that is, a nonempty complete metric space is a second Baire set), there exist positive integer $n_1, x_0 \in E$ and R > r > 0 satisfying

$$B_0 = \{ x \in E : r < \| x - x_0 \| < R \} \subset \overline{E_{n_1}}.$$

Let $\beta_0 > 0$ and n_2 be a positive integer such that $-x_0 \leq \beta_0 u_0$, and $\|\beta_0 u_0\| \leq n_2 \|x_0\|$. Let $B = \{x \in E : r < \|x\| < R\}$, and choose an integer n_3 satisfying

$$n_3 > n_1 + \frac{1}{r}(n_1 + n_2) ||x_0||.$$

In what follows, we prove that $B \subset \overline{E_{n_3}}$. Indeed, for any $x \in B$, we have $y = x_0 + x \in B_0$, then there exists a sequence $\{x_i\} \subset E_{n_1}$ such that $x_i \to y$ as $i \to \infty$. Clearly, we can assume that $x_i \in B_0$ for $i = 1, 2, 3, \ldots$. Take constants $\beta_i > 0$ such that $x_i \leq \beta_i u_0$ and $\|\beta_i u_0\| \leq n_1 \|x_i\|$. Then we obtain $x_i - x_0 \leq (\beta_i + \beta_0)u_0$ and

$$\begin{aligned} \|(\beta_i + \beta_0)u_0\| &\leq n_1 \|x_i\| + n_2 \|x_0\| \\ &\leq (n_1 + n_2) \|x_0\| + n_1 \|x_i - x_0\| \\ &\leq \left[(n_1 + n_2) \frac{\|x_0\|}{r} + n_1 \right] \|x_i - x_0\| \\ &\leq n_3 \|x_i - x_0\|. \end{aligned}$$

from which it follows that $x_i - x_0 \in E_{n_3}$ for $n = 1, 2, 3, \ldots$ From the fact that $x_i - x_0 \to y - x_0$ as $i \to \infty$ we obtain $x \in \overline{E_{n_3}}$. Therefore $B \subset \overline{E_{n_3}}$.

Clearly, from $x \in \overline{E_{n_3}}$, we can easily prove that $tx \in \overline{E_{n_3}}$, for all $t \ge 0$. Consequently, $E = \overline{E_{n_3}}$.

Finally, we show that $E = E_{3n_3}$. Taking $x \in E$ such that $x \neq \theta$, then there exists $x_1 \in E_{n_3}$ satisfying

$$||x - x_1|| < \frac{1}{2} ||x||.$$

Since $x_1 \in E_{n_3}$, there exists $\beta_1 > 0$ such that

$$x_1 \le \beta_1 u_0, \quad \|\beta_1 u_0\| \le n_3 \|x_1\|.$$

Similarly, there exist $x_2 \in E_{n_3}$ and $\beta_2 > 0$ such that

$$||x - x_1 - x_2|| < \frac{1}{2^2} ||x||, \quad x_2 \le \beta_2 u_0, \quad ||\beta_2 u_0|| \le n_3 ||x_2||.$$

Inductively, we find sequences $\{x_k\} \subset E_{n_3}$ and $\{\beta_k\} > 0, k = 1, 2, \dots$, satisfying

$$||x - x_1 - x_2 - \dots - x_k|| < \frac{1}{2^k} ||x||, \quad x_k \le \beta_k u_0, \text{ and } ||\beta_k u_0|| \le n_3 ||x_k||,$$

EJDE-2024/46

for $k = 1, 2, 3, \dots$ Clearly, $x = \sum_{k=1}^{\infty} x_k$ and

$$||x_k|| \le ||x - \sum_{i=1}^{k-1} x_i|| + ||x - \sum_{i=1}^k x_i|| < \frac{3||x||}{2^k} \quad k = 1, 2, \dots$$

From which it follows that

$$\sum_{k=1}^{\infty} \|\beta_k u_0\| \le n_3 \sum_{k=1}^{\infty} \|x_k\| \le 3n_3 \|x\| < \infty.$$

Consequently the series $\sum_{k=1}^{\infty} \beta_k$ converges to some constant $\beta > 0$. Clearly

$$x = \sum_{k=1}^{\infty} x_k \le \sum_{k=1}^{\infty} \beta_k u_0 = \beta u_0,$$

and

$$\|\beta u_0\| \le \sum_{k=1}^{\infty} \|\beta_k u_0\| \le 3n_3 \|x\|.$$

Therefore, $x \in E_{3n_3}$, which implies that $E = E_{3n_3}$.

$$\square$$

As a consequence of the previous lemma we have.

Lemma 2.2. Let u_0 be a non-zero element of P such that for each $x \in E$ there exists positive constant $\alpha_x > 0$ satisfying $x \leq \alpha_x u_0$. Then there is a constant $\beta > 0$, not depending on x, such that for every $x \in E$ satisfying $||x|| \leq 1$ we have $x \leq \beta u_0$.

Proof. By using Lemma 2.1, for every $x \in E$ satisfying $||x|| \leq 1$ there exists positive constant $\beta(x) > 0$ such that $x \leq \beta(x)u_0$ and $\|\beta(x)u_0\| \leq \tau \|x\| \leq \tau$. Then for all constant $\beta > \frac{\tau}{\|u_0\|}$ we have $x \leq \beta u_0$.

Proof of Theorem 1.1. By Lemma 2.2 there is a constant $\beta > 0$ such that for every $x \in E$ satisfying $||x|| \leq 1$ we have $x \leq \beta u_0$. By taking $r = \frac{1}{\beta}$ we have for every $x \in E$ satisfying $||x|| \leq 1$, $u_0 - rx \geq 0$. Taking an element $x \in E$ $(x \neq u_0)$ such that $||u_0 - x|| \leq r$, we obtain

$$x = u_0 - (u_0 - x)$$

= $u_0 - r \frac{\|u_0 - x\|}{r} \frac{\|u_0 - x\|}{\|u_0 - x\|} \ge 0.$

Consequently $x \in P$, which completes the proof.

3. Space E_{u_0}

In what follows, we suppose that P is a cone in E and let u_0 be a non-zero element of P. We define the space E_{u_0} and u_0 -norm as follows (see [7]),

$$E_{u_0} = \{ x \in E : \text{there exists } \lambda > 0 \text{ such that } -\lambda u_0 \le x \le \lambda u_0 \}, \\ \|x\|_{u_0} = \inf\{\lambda > 0 : -\lambda u_0 \le x \le \lambda u_0 \}, \quad x \in E_{u_0}.$$

It is easy to see that E_{u_0} is a normed linear space with the norm $\|\cdot\|_{u_0}$. Then $\|x\|_{u_0}$ is called a u_0 -norm of $x \in E_{u_0}$ (see [7] for more details). The following theorem can be found in [2, Theorem 1.5.1]

Theorem 3.1. If P is a normal cone, then:

- (i) The space E_{u_0} is a Banach space.
- (ii) $P_{u_0} = P \cap E_{u_0}$ is a normal solid cone in space E_{u_0} and

$$\dot{P}_{u_0} = \{ x \in E_{u_0} : \text{there exists } \tau > 0 \text{ such that } x \ge \tau u_0 \}$$
$$= \{ x \in E : \text{there exists } \lambda > \tau > 0 \text{ such that} \tau u_0 \le x \le \lambda u_0 \}$$

Remark 3.2. If $x \in E$ and there exists positive constant $\alpha_x > 0$ such that $x \leq \alpha_x u_0$, then from the inequality $-x \leq \alpha_{-x} u_0$, for some $\alpha_{-x} > 0$ one has $-\alpha_{-x} u_0 \leq x \leq \alpha_x u_0$. Then $x \in E_{u_0}$ and thus $E = E_{u_0}$.

Theorem 3.3. A necessary and sufficient condition for a cone P to be solid is that $E = E_{u_0}$.

Proof. Suppose that $E = E_{u_0}$ then for any $x \in E$ there exists $\lambda > 0$ such that $x \leq \lambda u_0$ hence by Theorem 3.1, $u_0 \in \mathring{P}$ and thus P is a solid cone.

Conversely, suppose that $u_0 \in \mathring{P}$, then there exists positive constant r > 0 such that $B(u_0, r) = \{x \in E : ||u_0 - x|| \le r\} \subset P$. For each $x \in E$, $(x \neq 0)$, we have $u_0 \pm \frac{r}{||x||} x \in P$ and then $-\frac{||x||}{r} u_0 \le x \le \frac{||x||}{r} u_0$. Therefore, $x \in E_{u_0}$ and $E = E_{u_0}$.

In what follows, we assume that P is a normal cone.

Theorem 3.4. If P is a solid cone, then $u_0 \in \mathring{P}$ if and only if the u_0 -norm $\|\cdot\|_{u_0}$ is equivalent to the original norm $\|\cdot\|$.

Proof. Suppose that $u_0 \in \mathring{P}$, then there exists positive constant r > 0 such that $B(u_0, r) = \{x \in E : ||u_0 - x|| \le r\} \subset P$. For each $x \in E$, $(x \ne 0)$, we have $-\frac{||x||}{r}u_0 \le x \le \frac{||x||}{r}u_0$. Then

$$||x||_{u_0} \le \frac{1}{r} ||x||, \quad x \in E.$$

On the other hand, for each $x \in E_{u_0}$, we have $-\alpha u_0 \leq x \leq \alpha u_0$, where $\alpha = ||x||_{u_0}$, and then $0 \leq x + \alpha u_0 \leq 2\alpha u_0$. Thus, by the normality of P, we obtain

$$\|x + \alpha u_0\| \le 2\alpha N \|u_0\|,$$

where N is the normal constant of P, which implies that

$$||x|| \le ||x + \alpha u_0|| + || - \alpha u_0|| \le M ||x||_{u_0},$$

where $M = (2N+1) \|u_0\|$. Consequently, the u_0 -norm $\|\cdot\|_{u_0}$ is equivalent to the original norm $\|\cdot\|$.

Conversely, suppose that for any $x \in E$ there exist two positive constants c and C satisfying

$$c\|x\|_{u_0} \le \|x\| \le C\|x\|_{u_0}$$

then it is easy to show that $E = E_{u_0}$, and then by Theorem 3.3, $u_0 \in \mathring{P}$.

Remark 3.5. Theorem 3.3 does not assume P to be normal.

Remark 3.6. It is well-known that if P is a solid cone and $u_0 \in P$, then $E = E_{u_0}$ and the u_0 -norm $\|\cdot\|_{u_0}$ is equivalent to the original norm $\|\cdot\|$. But here we have studied the converse statement and then our work improves and generalizes [2, Theorem 1.5.1].

4

References

- H. Amann; Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.
- [2] D. Guo, V. Lakshmikantham; Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
- [3] D. Guo, Y. Cho, Z. Jiang, Partial Ordering Methods in Nonlinear Problems, Nova Science Publishers, New York, 2004.
- [4] M. S. El Khannoussi, A. Zertiti; Bounds for the spectral radius of positive operators, Electronic Journal of Differential Equations, 2022 (2022), no. 29 1-7.
- [5] M.S. El Khannoussi, A. Zertiti; Topological methods in the study of positive solutions for operator equations in ordered Banach spaces. Electronic Journal of Differential Equations, 2016 (2016) no. 171, 1-13.
- [6] M. A. Krasnosel'skii, P. P. Zabreiko; Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin, 1984.
- [7] M. A. Krasnosel'skii; Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
- [8] M. G. Krein, M. Rutman; Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl., 10 (1962), 1-128.

Mohammed Said El Khannoussi

UNIVERSITÉ ABDELMALEK ESSAADI, FACULTÉ DES SCIENCES, DÉPARTEMENT DE MATHÉMATIQUES, BP 2121, TÉTOUAN, MOROCCO

Email address: said_774@hotmail.com

Abderrahim Zertiti

UNIVERSITÉ ABDELMALEK ESSAADI, FACULTÉ DES SCIENCES, DÉPARTEMENT DE MATHÉMATIQUES, BP 2121, TÉTOUAN, MOROCCO

Email address: abdzertiti@hotmail.fr