Electronic Journal of Differential Equations, Vol. 2024 (2024), No. 46, pp. 1–5. ISSN: 1072-6691. URL: https://ejde.math.txstate.edu, https://ejde.math.unt.edu DOI: 10.58997/ejde.2024.46

SUFFICIENT CONDITIONS FOR THE EXISTENCE OF INTERIOR POINTS FOR POSITIVE CONES

MOHAMMED SAID EL KHANNOUSSI, ABDERRAHIM ZERTITI

Abstract. Using partial ordering methods we give a sufficient condition for a positive cone to have nonempty interior.

1. INTRODUCTION

Let $(E, \|\cdot\|_E)$ be a real Banach space and P be a nonempty closed convex set in E . P is called a cone if it satisfies the following two conditions:

(i) $x \in P$ and $\lambda \geq 0$ imply $\lambda x \in P$,

(ii) $x \in P$ and $-x \in P$ implies $x = \theta$, where θ denotes the zero element in E.

A cone P is said to be generating (or reproducing) if $E = P - P$, i.e., every element $x \in E$ can be represented in the form $x = u - v$ where $u, v \in P$.

A cone P is called solid if there exists an element u_0 which belongs to the interior of the cone P , that is, there exists positive constant r such that

 $B(u_0, r) = \{x \in E : ||u_0 - x|| \le r\} \subset P.$

A cone P defines a linear ordering in E by

 $x \leq y$ if and only if $y - x \in P$.

A cone P is said to be normal if there exists a constant $N > 0$ such that

$$
\theta \leq x \leq y \implies ||x|| \leq N ||y||, \quad x, y \in P.
$$

We denote by u_0 some fixed non-zero element of P. Our main result reads as follows.

Theorem 1.1. If u_0 be a non-zero element of P such that for any $x \in E$ there exists positive constant $\alpha_x > 0$ such that $x \leq \alpha_x u_0$, then u_0 belongs to the interior of the cone P . That is, there exists positive constant r such that

$$
B(u_0, r) = \{x \in E : ||u_0 - x|| \le r\} \subset P.
$$

In Section [3](#page-2-0) we introduce the u_0 -norm and the space E_{u_0} , where u_0 is a given nonzero element of P. It is well-known that if P is a solid cone and $u_0 \in \tilde{P}$, then $E = E_{u_0}$. In this paper we shall study the converse statement and give an improvement and generalization of [\[2,](#page-4-0) Theorem 1.5.1].

²⁰²⁰ Mathematics Subject Classification. 54F05, 47L07, 46B40.

Key words and phrases. Positive cone; solid cone; interior points; u_0 -norm;

Baire Hausdorf's Theorem.

[©]2024. This work is licensed under a CC BY 4.0 license.

Submitted November 3, 2023. Published August 21, 2024.

2. Proof of Theorem [1.1](#page-0-0)

To prove Theorem [1.1](#page-0-0) we establish the following two lemmas. The first one is based on [\[2,](#page-4-0) Lemma 1.4.2].

Lemma 2.1. Let u_0 be a non-zero element of P such that for any $x \in E$ there exists positive constant $\alpha_x > 0$ satisfying $x \leq \alpha_x u_0$. Then a constant $\tau > 0$ can be found such that for any $x \in E$ there exists positive constant $\beta(x) > 0$ such that $x \leq \beta(x)u_0$ and $\|\beta(x)u_0\| \leq \tau \|x\|.$

Proof. It is clear that $E = \bigcup_{n=1}^{\infty} E_n$, where

$$
E_n = \{x \in E : \text{there is } \beta(x) > 0 \text{ such that } x \leq \beta(x)u_0 \text{ and } ||\beta(x)u_0|| \leq n||x||\},\
$$

for $n = 1, 2, 3, \ldots$. By the Baire-Hausdorff's Theorem (that is, a nonempty complete metric space is a second Baire set), there exist positive integer $n_1, x_0 \in E$ and $R > r > 0$ satisfying

$$
B_0 = \{ x \in E : r < \|x - x_0\| < R \} \subset \overline{E_{n_1}}.
$$

Let $\beta_0 > 0$ and n_2 be a positive integer such that $-x_0 \leq \beta_0 u_0$, and $\|\beta_0 u_0\| \leq$ $n_2||x_0||$. Let $B = \{x \in E : r < ||x|| < R\}$, and choose an integer n_3 satisfying

$$
n_3 > n_1 + \frac{1}{r}(n_1 + n_2) ||x_0||.
$$

In what follows, we prove that $B \subset \overline{E_{n_3}}$. Indeed, for any $x \in B$, we have $y =$ $x_0 + x \in B_0$, then there exists a sequence $\{x_i\} \subset E_{n_1}$ such that $x_i \to y$ as $i \to \infty$. Clearly, we can assume that $x_i \in B_0$ for $i = 1, 2, 3, \ldots$. Take constants $\beta_i > 0$ such that $x_i \leq \beta_i u_0$ and $\|\beta_i u_0\| \leq n_1 \|x_i\|$. Then we obtain $x_i - x_0 \leq (\beta_i + \beta_0) u_0$ and

$$
\begin{aligned} ||(\beta_i + \beta_0)u_0|| \le n_1 ||x_i|| + n_2 ||x_0|| \\ &\le (n_1 + n_2) ||x_0|| + n_1 ||x_i - x_0|| \\ &\le \left[(n_1 + n_2) \frac{||x_0||}{r} + n_1 \right] ||x_i - x_0|| \\ &\le n_3 ||x_i - x_0||. \end{aligned}
$$

from which it follows that $x_i - x_0 \in E_{n_3}$ for $n = 1, 2, 3, \ldots$. From the fact that $x_i - x_0 \to y - x_0$ as $i \to \infty$ we obtain $x \in E_{n_3}$. Therefore $B \subset E_{n_3}$.

Clearly, from $x \in \overline{E_{n_3}}$, we can easily prove that $tx \in \overline{E_{n_3}}$, for all $t \geq 0$. Consequently, $E = E_{n_3}$.

Finally, we show that $E = E_{3n_3}$. Taking $x \in E$ such that $x \neq \theta$, then there exists $x_1 \in E_{n_3}$ satisfying

$$
||x - x_1|| < \frac{1}{2}||x||.
$$

Since $x_1 \in E_{n_3}$, there exists $\beta_1 > 0$ such that

$$
x_1 \le \beta_1 u_0, \quad \|\beta_1 u_0\| \le n_3 \|x_1\|.
$$

Similarly, there exist $x_2 \in E_{n_3}$ and $\beta_2 > 0$ such that

$$
||x - x_1 - x_2|| < \frac{1}{2^2} ||x||
$$
, $x_2 \le \beta_2 u_0$, $||\beta_2 u_0|| \le n_3 ||x_2||$.

Inductively, we find sequences $\{x_k\} \subset E_{n_3}$ and $\{\beta_k\} > 0, k = 1, 2, \ldots$, satisfying

$$
||x - x_1 - x_2 - \cdots - x_k|| < \frac{1}{2^k} ||x||
$$
, $x_k \le \beta_k u_0$, and $||\beta_k u_0|| \le n_3 ||x_k||$,

for $k = 1, 2, 3, \ldots$.

Clearly, $x = \sum_{k=1}^{\infty} x_k$ and

$$
||x_k|| \le ||x - \sum_{i=1}^{k-1} x_i|| + ||x - \sum_{i=1}^{k} x_i|| < \frac{3||x||}{2^k}
$$
 $k = 1, 2, ...$

From which it follows that

$$
\sum_{k=1}^{\infty} \|\beta_k u_0\| \le n_3 \sum_{k=1}^{\infty} \|x_k\| \le 3n_3 \|x\| < \infty.
$$

Consequently the series $\sum_{k=1}^{\infty} \beta_k$ converges to some constant $\beta > 0$. Clearly

$$
x = \sum_{k=1}^{\infty} x_k \le \sum_{k=1}^{\infty} \beta_k u_0 = \beta u_0,
$$

and

$$
\|\beta u_0\| \le \sum_{k=1}^{\infty} \|\beta_k u_0\| \le 3n_3 \|x\|.
$$

h implies that $E = E_{3n_3}$.

Therefore, $x \in E_{3n_3}$, which implies that $E = E_{3n_3}$

$$
\Box
$$

As a consequence of the previous lemma we have.

Lemma 2.2. Let u_0 be a non-zero element of P such that for each $x \in E$ there exists positive constant $\alpha_x > 0$ satisfying $x \leq \alpha_x u_0$. Then there is a constant $\beta > 0$, not depending on x, such that for every $x \in E$ satisfying $||x|| \leq 1$ we have $x \leq \beta u_0$.

Proof. By using Lemma [2.1,](#page-1-0) for every $x \in E$ satisfying $||x|| \le 1$ there exists positive constant $\beta(x) > 0$ such that $x \leq \beta(x)u_0$ and $\|\beta(x)u_0\| \leq \tau \|x\| \leq \tau$. Then for all constant $\beta > \frac{\tau}{\|u_0\|}$ we have $x \leq \beta u_0$. \Box

Proof of Theorem [1.1.](#page-0-0) By Lemma [2.2](#page-2-1) there is a constant $\beta > 0$ such that for every $x \in E$ satisfying $||x|| \leq 1$ we have $x \leq \beta u_0$. By taking $r = \frac{1}{\beta}$ we have for every $x \in E$ satisfying $||x|| \leq 1$, $u_0 - rx \geq 0$. Taking an element $x \in E$ $(x \neq u_0)$ such that $||u_0 - x|| \leq r$, we obtain

$$
x = u_0 - (u_0 - x)
$$

= $u_0 - r \frac{||u_0 - x||}{r} \frac{u_0 - x}{||u_0 - x||} \ge 0.$

Consequently $x \in P$, which completes the proof. □

3. SPACE E_{u_0}

In what follows, we suppose that P is a cone in E and let u_0 be a non-zero element of P. We define the space E_{u_0} and u_0 -norm as follows (see [\[7\]](#page-4-1)),

$$
E_{u_0} = \{x \in E : \text{there exists } \lambda > 0 \text{ such that } -\lambda u_0 \le x \le \lambda u_0\},
$$

$$
||x||_{u_0} = \inf\{\lambda > 0 : -\lambda u_0 \le x \le \lambda u_0\}, \quad x \in E_{u_0}.
$$

It is easy to see that E_{u_0} is a normed linear space with the norm $\|\cdot\|_{u_0}$. Then $\|x\|_{u_0}$ is called a u_0 -norm of $x \in E_{u_0}$ (see [\[7\]](#page-4-1) for more details). The following theorem can be found in [\[2,](#page-4-0) Theorem 1.5.1]

Theorem 3.1. If P is a normal cone, then:

- (i) The space E_{u_0} is a Banach space.
- (ii) $P_{u_0} = P \cap E_{u_0}$ is a normal solid cone in space E_{u_0} and

$$
\tilde{P}_{u_0} = \{ x \in E_{u_0} : \text{there exists } \tau > 0 \text{ such that } x \ge \tau u_0 \}
$$

= $\{ x \in E : \text{there exists } \lambda > \tau > 0 \text{ such that } u_0 \le x \le \lambda u_0 \}.$

Remark 3.2. If $x \in E$ and there exists positive constant $\alpha_x > 0$ such that $x \leq$ $\alpha_x u_0$, then from the inequality $-x \leq \alpha_{-x} u_0$, for some $\alpha_{-x} > 0$ one has $-\alpha_{-x} u_0 \leq$ $x \leq \alpha_x u_0$. Then $x \in E_{u_0}$ and thus $E = E_{u_0}$.

Theorem 3.3. A necessary and sufficient condition for a cone P to be solid is that $E = E_{u_0}.$

Proof. Suppose that $E = E_{u_0}$ then for any $x \in E$ there exists $\lambda > 0$ such that $x \leq \lambda u_0$ hence by Theorem [3.1,](#page-2-2) $u_0 \in \tilde{P}$ and thus P is a solid cone.

Conversely, suppose that $u_0 \in \check{P}$, then there exists positive constant $r > 0$ such that $B(u_0, r) = \{x \in E : ||u_0 - x|| \le r\} \subset P$. For each $x \in E$, $(x \ne 0)$, we have $u_0 \pm \frac{r}{\|x\|}x \in P$ and then $-\frac{\|x\|}{r}$ $\frac{x\|}{r}u_0 \leq x \leq \frac{\|x\|}{r}$ $\frac{x_{\parallel}}{r}u_0$. Therefore, $x \in E_{u_0}$ and $E = E_{u_0}.$. □

In what follows, we assume that P is a normal cone.

Theorem 3.4. If P is a solid cone, then $u_0 \in \tilde{P}$ if and only if the u_0 -norm $\|\cdot\|_{u_0}$ is equivalent to the original norm ∥ · ∥.

Proof. Suppose that $u_0 \in \tilde{P}$, then there exists positive constant $r > 0$ such that $B(u_0, r) = \{x \in E : ||u_0 - x|| \le r\} \subset P$. For each $x \in E$, $(x \ne 0)$, we have $-\frac{\|x\|}{r}$ $\frac{x}{r}u_0 \leq x \leq \frac{||x||}{r}$ $\frac{x_{\parallel}}{r}u_0$. Then

$$
||x||_{u_0} \leq \frac{1}{r}||x||, \quad x \in E.
$$

On the other hand, for each $x \in E_{u_0}$, we have $-\alpha u_0 \leq x \leq \alpha u_0$, where $\alpha = ||x||_{u_0}$, and then $0 \le x + \alpha u_0 \le 2\alpha u_0$. Thus, by the normality of P, we obtain

$$
||x + \alpha u_0|| \le 2\alpha N ||u_0||,
$$

where N is the normal constant of P , which implies that

$$
||x|| \le ||x + \alpha u_0|| + || - \alpha u_0|| \le M||x||_{u_0},
$$

where $M = (2N + 1) ||u_0||$. Consequently, the u_0 -norm $|| \cdot ||_{u_0}$ is equivalent to the original norm ∥ · ∥.

Conversely, suppose that for any $x \in E$ there exist two positive constants c and C satisfying

$$
c||x||_{u_0} \le ||x|| \le C||x||_{u_0}
$$

then it is easy to show that $E = E_{u_0}$, and then by Theorem [3.3,](#page-3-0) $u_0 \in \mathring{P}$. \Box

Remark 3.5. Theorem [3.3](#page-3-0) does not assume P to be normal.

Remark 3.6. It is well-known that if P is a solid cone and $u_0 \in \tilde{P}$, then $E = E_{u_0}$ and the u_0 -norm $\|\cdot\|_{u_0}$ is equivalent to the original norm $\|\cdot\|$. But here we have studied the converse statement and then our work improves and generalizes [\[2,](#page-4-0) Theorem 1.5.1].

REFERENCES

- [1] H. Amann; Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.
- [2] D. Guo, V. Lakshmikantham; Nonlinear Problems in Abstract Cones, Academic Press, New York,1988.
- [3] D. Guo, Y. Cho, Z. Jiang, Partial Ordering Methods in Nonlinear Problems, Nova Science Publishers, New York, 2004.
- [4] M. S. El Khannoussi, A. Zertiti; *Bounds for the spectral radius of positive operators*, Electronic Journal of Differential Equations, 2022 (2022), no. 29 1-7.
- [5] M.S. El Khannoussi, A. Zertiti; Topological methods in the study of positive solutions for operator equations in ordered Banach spaces. Electronic Journal of Differential Equations, 2016 (2016) no. 171, 1-13.
- [6] M. A. Krasnosel'skii, P. P. Zabreiko; Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin, 1984.
- [7] M. A. Krasnosel'skii; Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
- [8] M. G. Krein, M. Rutman; Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl., 10 (1962), 1-128.

Mohammed Said El Khannoussi

UNIVERSITÉ ABDELMALEK ESSAADI, FACULTÉ DES SCIENCES, DÉPARTEMENT DE MATHÉMATIQUES, BP 2121, TÉTOUAN, MOROCCO

Email address: said 774@hotmail.com

Abderrahim Zertiti

UNIVERSITÉ ABDELMALEK ESSAADI, FACULTÉ DES SCIENCES, DÉPARTEMENT DE MATHÉMATIQUES, BP 2121, TÉTOUAN, MOROCCO

 $Email \;address\colon\thinspace\texttt{abdzertiti@hotmail.fr}$