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LOCAL BIFURCATION STRUCTURE AND STABILITY OF THE

MEAN CURVATURE EQUATION IN THE STATIC SPACETIME

SIYU GAO, QINGBO LIU, YINGXIN SUN

Abstract. We consider the curvature equation in the static spacetime,

div
( f(x)∇u√

1− f2(x)|∇u|2
)
+

∇u∇f(x)√
1− f2(x)|∇u|2

= λNH in Ω,

where Ω is a bounded domain in RN , N ≥ 1; the function H gives the mean
curvature. We investigate the local bifurcation structure and stability of the

solutions to this equation.

1. Introduction and main results

We consider a domain Ω ⊆ RN , where N is greater than or equal to 1. Let f be
a smooth positive function on Ω. Consider the N+1-dimensional product manifold
M = I × Ω equipped with the Lorentzian metric

g = −f2(x) dt2 + dx2.

In [22, Lemma 12.37], it was established that M is static with respect to ∂t/f . For
each u ∈ C2(Ω), let M = {(x, u) : x ∈ Ω, u ∈ C2(Ω)}. A spacetime M is termed
static in relation to an observer field Q if Q is irrotational and if there exists a
smooth positive function such that fQ is a Killing vector field. Then, (M, g) = U
represents an N -dimensional hypersurface in M at time t, which can be depicted
by the graph of t = u. U is referred to as spacelike if |∇u| < 1/f in Ω (see [20]).
We define U as being weakly spacelike if |∇u| ≤ 1/f , i.e., if it is in Ω. Given
the mean curvature H for a spacelike graph U , Problem (1.1) has implications for
classical relativity [4] and cosmology research [5, 19, 21].

For the case in which f is constantly equal to 1, Calabi [9] explored the properties
of maximal surfaces and demonstrated that when N ≤ 4, equation (1.2) allows
only linear solutions. Cheng and Yau [10] further investigated maximal surfaces,
extending Calabi’s findings to all dimensions, and proposed the Bernstein theorem.
For cases in which f is constantly equal to 1, Treibergs [24] provided significant
results for entire surfaces with a constant mean curvature. For cases in which f
equals 1, Bartnik and Simon [4] considered the Dirichlet problem for equation (1.2)
with surfaces of bounded mean curvature.
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The authors of [6, 11] used critical point theory and topological degree arguments
to explore the nonexistence, existence, and multiplicity of positive solutions for f ≡
1 in bounded domains. In [13], the authors investigated the nonexistence, existence,
and multiplicity of positive radial solutions of equation (1.2) with NH = −λf(x, s)
on the unit ball via the bifurcation method. This work was later extended to
general domains in [14, 16]. The author in [18] studied the existence and uniqueness
of classical solutions, the multiplicity of strong solutions, and the symmetry of
positive solutions. The global structure of the positive solutions for this problem
was also delineated. For more research results on the mean curvature equation, see
references [7, 8, 17, 15] and their cited literature.

In [1], the stability of hypersurfaces with a constant mean curvature was studied
through the calculus of variations. The relationship between stability and constant
mean curvature was presented under the condition that the hypersurface is compact.
In [2], the stability of hypersurfaces with constant mean curvature in Riemannian
manifolds was studied. Barros, Brasil, and Caminha [3] investigated stability issues
concerning the generalized Robertson-Walker spacetime. In this work, we investi-
gate the local bifurcation structure and stability of the mean curvature equation in
static the spacetime.

We consider the following 0-Dirichlet problem involving the mean curvature op-
erator in Minkowski space:

−div
( f2(x)∇u√

1− f2(x)|∇u|2
)
= −λNf(x)H(x, u) in Ω,

u = 0 on ∂Ω.

(1.1)

Here, λ is a nonnegative parameter representing the strength of the mean curvature
function, the real-valued function H gives the mean curvature, Ω is a C2,α bounded
domain in RN with N ≥ 1 for some α > 0, and f ∈ C0,α(Ω × [−d, d]), where d is
the diameter of Ω.

Using the equation

div
( f(x)∇u√

1− f2(x)|∇u|2
)
+

∇u∇f(x)√
1− f2(x)|∇u|2

= NH, (1.2)

we can derive that

− div
( f2(x)∇u√

1− f2(x)|∇u|2
)
= −div

(
f(x) · f(x)∇u√

1− f2(x)|∇u|2
)

= −f(x) div
( f(x)∇u√

1− f2(x)|∇u|2
)
− f(x)

∇u∇f(x)√
1− f2(x)|∇u|2

= −Nf(x)H.

From [18], we have

div
( f2(x)∇u√

1− f2(x)|∇u|2
)
= Nf(x)H.

This equation is equivalent to (1.2). Next, we present the main theorem.

Theorem 1.1. Suppose that H is C3 with respect to its second argument and that
H0 ∈ (0,+∞). Then, all the solutions of problem (1.1) near (λ1/H0, 0) can be
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expressed as (λ(s), sφ1+ sz(s)) for s in an open interval (−δ, δ), where δ > 0, such
that λ(0) = λ1/H0 and

λ′(0) = −
− λ1

H0
N

∫
Ω
f(x)Huu(x, 0)φ

3
1 dx

2H0

∫
Ω
f(x)φ2

1 dx
.

Here, z : (−δ, δ) → Z is a C2 function that satisfies z(0) = 0. Additionally, if
Huu(x, 0) is exactly zero on Ω, then we obtain

λ′′(0) = −
− λ1

H0
N

∫
Ω
f(x)Huuu(x, 0)φ

4
1dx

3H0

∫
Ω
f(x)φ2

1dx
,

where Huuu(x, 0) denotes the third derivative of H with respect to its second variable
at 0.

By Theorem 1.1, we can deduce the following stability result.

Theorem 1.2. Let λ1/H0 be a bifurcation point for the equation F (λ, u) = 0 in a
Banach space X , and assume that 0 is a simple eigenvalue of the linearized operator
Fu(λ1/H0, 0). Suppose further that Huu(x, 0) ≡ 0 in Ω and that Huuu(x, 0) ̸= 0 in
Ω. Then, the stability of the solutions u(s) near the bifurcation point (λ1/H0, 0) is
determined as follows:

(1) If Huuu(x, 0) > 0 in Ω, then the solutions are asymptotically linearly stable,
i.e., λ′′(0) > 0.

(2) If Huuu(x, 0) < 0 in Ω, then the solutions are asymptotically linearly un-
stable, i.e., λ′′(0) < 0.

This article is organized as follows. Section 2 discusses the local bifurcation
structure of the solution set of equation (1.1). Section 3 presents the stability
results near the bifurcation point.

2. Local bifurcation structure

In this section, we provide the proof of Theorem 1.1. Consider the set X defined
as

X = {u ∈ C1(Ω) : u = 0 on ∂Ω}
with the norm ∥u∥ := ∥f(x)∇u∥∞. Let φ1 be a positive eigenfunction correspond-
ing to λ1 with ∥φ1∥ = 1. Let X0 be a closed subspace of X such that

X = X1 ⊕X0,

where X1 = span{φ1}. By applying the Hahn–Banach theorem, we can find a
linear continuous functional l ∈ X∗ satisfying

l(φ1) = 1 and X0 = {u ∈ X : l(u) = 0}.

Proof of Theorem 1.1. Define X = {u ∈ C2(Ω) : u = 0, on ∂Ω}, Y = C(Ω).
Consider the function defined by

F (λ, u) = div
( f2(x)∇u√

1− f2(x)|∇u|2
)
− λNf(x)H(x, u).

Since H0 ∈ (0,+∞) and H(x, 0) = 0 holds for any x ∈ Ω, we have

F (λ, 0) = div
( f2(x)∇0√

1− f2(x)|∇0|2
)
− λNf(x)H(x, 0) = 0
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(a) Transcritical bifurcation

(b) Supercritical pitchfork (c) Subcritical pitchfork

Figure 1. Bifurcation diagrams of Theorem 1.1

for any λ. The partial derivative of F (λ, u) with respect to λ is

Fλ(λ, u) = −Nf(x)H(x, u).

According to [18], we have

lim
t→0+

NH(x, t)

t
= −H0.

This holds because H is a function with third-order continuous derivatives with
respect to its second variable, and F is C3 with respect to u in some small neigh-
borhood V ⊂ X of 0.

By calculation, we obtain

Fu(λ, 0)[φ1] = div(f2(x)∇φ1) + λf(x)H0φ1,

Fu(
λ1

H0
, 0)[φ] = div(f2(x)∇φ) +

λ1

H0
f(x)H0φ,

where φ ∈ X . The function φ1 is a positive eigenfunction corresponding to the
principal eigenvalue λ1 of the linearized problem associated with equation (1.1).
Specifically, φ1 is a solution of Fu(λ1/H0, 0)[φ] = 0. Then, we have

div(f2(x)∇φ1) +
λ1

H0
f(x)H0φ1 = 0.
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Since φ1 is a nontrivial solution, it follows that φ1 ̸= 0 and φ2
1 ≥ 0. Hence, the

integral
∫
Ω
φ2
1 dx > 0. Thus, the kernel space is

N
(
Fu(

λ1

H0
, 0)

)
= span{φ1}.

The codimension of the image space is

R
(
Fu(

λ1

H0
, 0)

)
=

{
v ∈ Y :

∫
Ω

vφ1 dx = 0
}
.

Therefore,

dimN
(
Fu(

λ1

H0
, 0)

)
= codimR

(
Fu(

λ1

H0
, 0)

)
= 1. (2.1)

Clearly, F is C1 with respect to λ, and Fλu exists and remains continuous in a
small neighborhood of (λ1/H0, 0). From the calculations, we obtain

Fλu(
λ1

H0
, 0)[φ1] = fH0φ1, (2.2)

Fuu(
λ1

H0
, 0)[φ1]

2 = − λ1

H0
NfHuu(x, 0)φ

2
1

and

Fuuu(
λ1

H0
, 0)[φ1]

3 = − λ1

H0
NfHuuu(x, 0)φ

3
1.

Combining this with H0 > 0, we obtain

H0

∫
Ω

φ2
1 dx ̸= 0.

Thus, ∫
Ω

fH0φ
2
1 dx ̸= 0.

This leads to the conclusion that

Fλu(λ1/H0, 0)[φ1] ̸∈ R(Fu(λ1/H0, 0)). (2.3)

By applying [16], we deduce that all the solutions near (λ1/H0, 0) for problem
(1.1) can be expressed as (λ(s), sφ1+sz(s)), where s belongs to the interval (−δ, δ)
for some positive value of δ, and that they satisfy the conditions λ(0) = λ1/H0 and
z(0) = 0.

We rescale φ1 so that ∫
Ω

φ2
1 dx = 1. (2.4)

Then, we define the linear functional

l(u) =

∫
Ω

uφ1 dx (2.5)

and

N (l) = R(Fu(
λ1

H0
, 0)).

Furthermore, by employing formula (4.5) derived in [23], we can deduce that

λ′(0) = −
⟨l, Fuu(

λ1

H0
, 0)[φ1]

2⟩
2⟨l, Fλu(

λ1

H0
, 0)[φ1]⟩

.
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Subsequently,

⟨l, Fuu(
λ1

H0
, 0)[φ1]

2⟩ =
∫
Ω

Fuu(
λ1

H0
, 0)[φ1]

2φ1 dx

= − λ1

H0
N

∫
Ω

f(x)Huu(x, 0)φ
3
1 dx

(2.6)

and

2⟨l, Fλu(
λ1

H0
, 0)[φ1]⟩ = 2

∫
Ω

Fλu(
λ1

H0
, 0)[φ1]φ1 dx

= 2H0

∫
Ω

f(x)φ2
1 dx.

(2.7)

From (2.6) and (2.7), we obtain

λ′(0) = −
⟨l, Fuu(

λ1

H0
, 0)[φ1]

2⟩
2⟨l, Fλu(

λ1

H0
, 0)[φ1]⟩

= −
− λ1

H0
N

∫
Ω
f(x)Huu(x, 0)φ

3
1 dx

2H0

∫
Ω
f(x)φ2

1 dx
.

If Huu(x, 0) ≡ 0 in Ω, using [23, (4.6)], we deduce that

λ′′(0) = −
⟨l, Fuuu(

λ1

H0
, 0)[φ1]

3⟩
3⟨l, Fλu(

λ1

H0
, 0)[φ1]⟩

,

where

⟨l, Fuuu(
λ1

H0
, 0)[φ1]

3⟩ =
∫
Ω

Fuuu(
λ1

H0
, 0)[φ1]

3φ1 dx

= − λ1

H0
N

∫
Ω

f(x)Huuu(x, 0)φ
4
1 dx

and

3⟨l, Fλu(
λ1

H0
, 0)[φ1]⟩ = 3

∫
Ω

Fλu(
λ1

H0
, 0)[φ1]φ1 dx

= 3H0

∫
Ω

f(x)φ2
1 dx.

Thus,

λ′′(0) = −
⟨l, Fuuu(

λ1

H0
, 0)[φ1]

3⟩
3⟨l, Fλu(

λ1

H0
, 0)[φ1]⟩

= −
− λ1

H0
N

∫
Ω
f(x)Huuu(x, 0)φ

4
1 dx

3H0

∫
Ω
f(x)φ2

1 dx
.

(2.8)

We observe that λ′(0) ̸= 0 if Huu(x, 0) ̸= 0 in Ω. This indicates the occurrence of
a transcritical bifurcation, characterized by λ′(0) ̸= 0 (see Figure 1). If Huu(x, 0) ≡
0 in Ω but Huuu(x, 0) ̸= 0 in Ω, it follows that λ′(0) = 0 and λ′′(0) ̸= 0, implying
a pitchfork bifurcation, characterized by λ′′(0) ̸= 0. Specifically, if λ′′(0) > 0,
a supercritical pitchfork bifurcation occurs. If λ′′(0) < 0, a subcritical pitchfork
bifurcation occurs (see Figure 1). Hence, the desired conclusions are obtained. □
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3. Stability properties

In this section, we provide the formal stability results near the bifurcation point.
The stability properties are obtained via the exchange of stability theorem presented
in [12], which is our fundamental tool.

Theorem 3.1 (Crandall-Rabinowitz). Let X and Y be real Banach spaces, and
let K : X → Y be two bounded linear operators. Assume that F : R × X → Y
is C2 near (λ∗, 0) ∈ R ×X with F (λ, 0) = 0 for a sufficiently small |λ∗ − λ|. Let
T = Fu(λ∗, 0). If β = 0 is a Fλu(λ∗, 0)-simple eigenvalue of operator T and a
K-simple eigenvalue of T , then there locally exists a curve (λ(s), u(s)) ∈ R × X
such that

(λ(0), u(0)) = (λ∗, 0) and F (λ(s), u(s)) = 0.

Moreover, if F (λ, u) = 0 with u ̸= 0 and (λ, u) near (λ∗, 0), then

(λ, u) = (λ(s), u(s)) for some s ̸= 0.

Furthermore, there are eigenvalues β(s) and βtriv(λ) ∈ R with eigenvectors φ(s)
and φtriv(λ) ∈ X such that

Fu(λ(s), u(s))φ(s) = β(s)Kφ(s),

Fu(λ, 0)φtriv(λ) = βtriv(λ)Kφtriv(λ),

with

β(0) = βtriv(λ∗) = 0, φ(0) = φtriv(λ∗) = φ∗.

Each curve is C1 if F is C2. Then,

dβtriv(λ)

dλ
|λ=λ∗ ̸= 0, lim

s→0,β(s)̸=0

sλ′(s)

β(s)
= − 1

β′
triv(λ∗)

.

By Theorem 3.1, we obtain the following formula, which is convenient to be used.

Proposition 3.2. Under the assumption of Theorem 3.1, we have that

lim
s→0,β(s)̸=0

sλ′(s)

β(s)

l(Fλu(
λ1

H0
, 0)φ1)

l(Kφ1)
= −1,

where l ∈ X∗ satisfies N (l) = R(Fu(λ1/H0, 0)), with X∗ being the dual space of
X. In particular, if K = Fλu(λ1/H0, 0), then

lim
s→0,β(s)̸=0

sλ′(s)

β(s)
= −1,

and β′
triv(λ1/H0) = 1.

Proof. By differentiating Fu(λ, 0)φtriv(λ) = βtriv(λ)Kφtriv(λ), we have

Fλu(λ, 0)φtriv(λ) + Fu(λ, 0)φ
′
triv(λ) = βtriv(λ)Kφ′

triv(λ) + β′
triv(λ)Kφtriv(λ).

Taking λ = λ1/H0, we can obtain

Fλu

( λ1

H0
, 0
)
φ1 + Fu

( λ1

H0
, 0
)
φ′
triv

( λ1

H0

)
= β′

triv

( λ1

H0

)
Kφ1. (3.1)

Since β = 0 is an Fλu(λ1/H0, 0)-simple eigenvalue of operator Fu(λ1/H0, 0), we
have

Fλu

( λ1

H0
, 0
)
φ1 ̸∈ R

(
Fu

( λ1

H0
, 0
))

.
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By taking l on both sides of equation (3.1) and using the fact that

N (l) = R(Fu(
λ1

H0
, 0)),

we obtain that

l
(
Fλu

( λ1

H0
, 0
)
φ1

)
= β′

triv

( λ1

H0

)
l(Kφ1).

It can be deduced that l(Kφ1) ̸= 0; consequently,

β′
triv

( λ1

H0

)
=

l
(
Fλu

(
λ1

H0
, 0
)
φ1

)
l(Kφ1)

,

which yields the desired formula. □

Before providing the stability result (in the linearized sense) for (1.1) near
the bifurcation point, we review the concept of stability. The operator equation
F (λ, x) = 0 represents the equilibrium form of the evolution equation

dx

dt
= F (λ, x). (3.2)

Suppose that F (λ0, x0) = 0. If all the eigenvalues of Fx(λ0, x0) are negative, then
x0 is called an asymptotically linearly stable solution of (3.2). On the other hand,
if a positive eigenvalue of Fx(λ0, x0) exists, then x0 is called an unstable solution
of (3.2).

Proof of Theorem 1.2. Let X be a Banach space. From equations (2.1) and (2.3),
it can be inferred that 0 is a simple eigenvalue of Fu(λ1/H0, 0) := T . Let φ1

represent the eigenfunction corresponding to the eigenvalue 0 with ∥φ1∥ = 1. We
denote T = Fu(λ1/H0, 0) and K = Fλu(λ1/H0, 0).

According to Theorem 3.1, we have

K[φ1] = Fλ(λ, u)
∣∣
(λ,u)=(λ1/H0,0)

[φ1].

Thus, we obtain
K[φ1] = −Nf(x)H(x, 0)φ1.

Next, we need to verify whether 0 is a simple eigenvalue of K. Consider the eigen-
value problem

K[φ1] = −Nf(x)H(x, 0)φ1 = 0.

This implies that φ1 satisfies f(x)H(x, 0)φ1 = 0. For nonzero φ1, this can only
hold if f(x)H(x, 0) = 0. However, since f(x) ̸= 0 and H(x, 0) ̸= 0, φ1 must be zero,
which contradicts our assumption. This indicates that K[φ1] /∈ R(T ). Therefore,
0 is a K-simple eigenvalue of Fu(λ1/H0, 0).

According to Theorem 3.1, there exist eigenvalues β(s) and βtriv(λ) ∈ R and
eigenvectors ϕ1(s) and ϕtriv(λ) in the vector space X such that

Fu(λ(s), u(s))ϕ1(s) = β(s)Fλu(λ1/H0, 0)ϕ1(s),

Fu(λ, 0)ϕtriv(λ) = βtriv(λ)Fλu(λ1/H0, 0)ϕtriv(λ)

with
β(0) = βtriv(λ1/H0) = 0, ϕ1(0) = ϕtriv(λ1/H0) = φ1.

Each curve is C1 if F belongs to C2; then,

dβtriv(λ)

dλ

∣∣
λ=λ1/H0

̸= 0, lim
s→0,β(s) ̸=0

sλ′(s)

β(s)
= − 1

β′
triv(λ1/H0)

.
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By (2.2) and (2.5), we obtain

l
(
Fλu

( λ1

H0
, 0
)
φ1

)
=

∫
Ω

Fλu

( λ1

H0
, 0
)
φ1 · φ1 dx.

From (2.4), we have

l
(
Fλu

( λ1

H0
, 0
)
φ1

)
= fH0

∫
Ω

φ2
1 dx = fH0 · 1 = fH0 > 0.

This suggests that if β(s) > 0 (β(s) < 0), u(s) is (formally) unstable (stable).
By Proposition 3.2, we can deduce that

lim
s→0

sλ′(s)

β(s)
= −1.

If Huu(x, 0) ≡ 0 in Ω but Huuu(x, 0) ̸= 0 in Ω, it has been demonstrated that
λ′(0) = 0. We can write

λ′(s) = sλ′′(0) +O(s2).

Thus, we see that

lim
s→0

s2λ′′(0) +O(s3)

β(s)
= −1.

Furthermore, it can be observed that

lim
s→0

λ′′(0)
β(s)
s2

= −1.

We therefore have

lim
s→0

β(s)

s2
= −λ′′(0). (3.3)

If λ′′(0) > 0, we can conclude from (3.3) that for small values of |s|, β(s) is negative.
On the other hand, if λ′′(0) < 0, we can conclude from (3.3) that for small values
of |s|, β(s) is positive.

Therefore, when Huuu(x, 0) > 0 in Ω, we have λ′′(0) > 0 along the nontrivial
bifurcating curve passing through (λ1/H0, 0), indicating asymptotic linear stability
of the nontrivial solutions. Similarly, when Huuu(x, 0) < 0 in Ω, we have λ′′(0) < 0
along the nontrivial bifurcating curve passing through (λ1/H0, 0), indicating the
asymptotic linear instability of the nontrivial solutions. □
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