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EXISTENCE OF NON-GLOBAL SOLUTIONS TO BI-HARMONIC
INHOMOGENEOUS NONLINEAR SCHRODINGER EQUATIONS
WITHOUT GAUGE INVARIANCE

TAREK SAANOUNI

ABSTRACT. This work shows the existence of non-global mass and energy solu-
tions to inhomogeneous nonlinear bi-harmonic Schrédinger problems without
gauge invariance.

1. INTRODUCTION

This note studies the initial valued problem for the inhomogeneous non-linear
fourth-order Schrodinger equation
iy + A%u = \Nz| T |ul?,

(1.1)
u(0, ) = vuy,

where u : (t,z) € R x RNV — C for some integer N > 1 is the wave function. The

source term satisfies 0 # A € C, p > 1, and 7 > 0. The datum satisfies v € R.

The fourth-order Schrodinger problem takes into account the role of small fourth-
order dispersion terms in the propagation of intense laser beams in a bulk medium
with a Kerr non-linearity [I3, [14]. It was also considered in [12] 22] ] to study
the stability of solitons in magnetic materials once the effective quasi particle mass
becomes infinite.

The inhomogeneous nonlinear Schrodinger equation is called non gauge
invariant because the source term N (u) := |z|~7|ulP satisfies

N(e®u) # e N(u), 6ecR—2nZ. (1.2)

Well-posedness issues of the inhomogeneous non-linear Schrodinger equation
with a gauge invariant source term

iuy + A%u = 42|77 |ulP ", (1.3)

were investigated by many authors in the previous few years. Indeed, a local theory
was developed in [I0] using contraction mapping argument via Strichartz inequal-
ities and revisited in [I5]. A small data global existence result was proved in [I1].
A sharp dichotomy of global versus non-global existence of solutions by using the
existence of ground states is given by the author in [19]. The energy scattering in
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the inter-critical regime was first proved by the author [I7) [I§] for radial data in
space dimensions N > 5 and revisited in [4] [7] for non-radial data and low space
dimensions. The existence of non-global solutions was investigated in [5] 6] for the
mass-critical regime with negative energy and by the author in [3] for the inter-
critical regime. In the energy critical regime, a local theory was developed recently
by the author [21I] 20], see also [2]. To the author knowledge, there is no work
dealing with the inhomogeneous bi-harmonic Shrodinger equation with non-gauge
invariance .

This note aims to present some differences between the gauge invariant problem
(1.1) and the non-gauge invariant one . Indeed, we prove the existence of non

global mass-solutions for 1 < p < 1+ == and the existence non global energy-

solutions for 1 < p < 1+ % with small data. These results are known to be
false for the gauge invariant problem . To the author knowledge, this work
is the first one dealing with the inhomogeneous nonlinear bi-harmonic Schrodinger
equation with non-gauge invariant source term .

The plan of this note is as follows. Section [2] contains the main results and some
useful inequalities. Sections presents the proof of the main results.

We denote the standard Lebesgue and Sobolev spaces and norms by

L =L"(RN), H?:={feL? AfeL?

e R N e N N e (R )

We define the ball of RV with center at the origin and radius R > 0 by B(R) :=
{x € RN, |z| < R}, and its complement by B¢(R) := {z € RY, x ¢ B(R)}. The
annulus of RY with radii 0 < R’ < Ris C(R,R) := {z e RN, R’ < |z| < R}. Also
x~ is a real number close to x such that > 2z~ and ' := r/(r — 1) is the Holder
conjugate of r > 1.

1/2

2. BACKGROUND AND MAIN RESULT

This section contains the main contribution of this note and some useful standard
estimates.

2.1. Preliminaries. Let us denote the free bi-harmonic Schrédinger kernel by
A%y = f_l(eit|'|4fu). (2.1)

where F is the Fourrier transform. Thanks to the Duhamel formula, solutions to
(1.1) are fix points of the integral operator

flu(®)) = A% g — i /t ellt=s)A (||~ |ul?) ds. (2.2)
0

If u resolves (|1.1)), then so does the family u, := g1 u(k*, k), Kk > 0. Moreover,
there is only one invariant Sobolev norm under the above dilatation, precisely
N 4-r71
4 -
P P e et
In contrast to (1.3]), the mass and energy are not conserved quantities. The above
problem (1.1)) is said to be

2(4—1)

mass-sub-critical if s, <0 p<p.:=1+ N

(2.3)
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2(4—1)
N—-4"
In , we take p¢ = oo if 1 < N < 4. For future convenience, we recall the
so-called Strichartz inequalities.

energy-sub-critical if s, <2 & p<p® =1+ (2.4)

Definition 2.1. A couple of real numbers (g, r) is said to be admissible if

1 1 4
7 2<q,r<oco and N(i—;):a

2<r< 2N
r
< N

Denote the set of admissible pairs by A. If I is a time slab, one denotes the
Strichartz spaces as
Q1) = m(q,r)EALq(Ia Lr).

Now we recall some Strichartz inequalities |16 [9].
Proposition 2.2. Let N > 1 and T > 0. Then,

(1) supgryen llullze @y < lluoll + infgmen lliu: + A? U||Lq (L)
(2) supgryen [18ulg o) S 1ol + liw + A%l , o, or all N > 3;

LE(W"
(3) supgryen llullze iy < lluollge +lnf(q,r)€AH'Lut+A UH #)

The existence of L? and energy solutions to (1.1)) follows as in [10].

Proposition 2.3. Let N > 1.
(1) If 0 < 7 < min{N,4}, 1 < p < p. and ug € L?, then there ewvist T =
TN 7p,|luoll > 0 and a unique local solution of (L.1), in the space
C([0,T], L*) N Q(0, T).

(2) If N > 3,0 < 7 < min{4, £}, max{1, 20— T)}<p<p and ug € H?,
there exist T := TN 1 p Juo|l ;2 > 0 and a unique local solution of .,
the space

c([o, 171, HQ) N(g,r)en L%(Wz’r)'

We recall the so-called weak solution to the Schrédinger problem (|1.1)).

Definition 2.4. For T > 0, a function u € L} ([0, T] x RY) is said a weak solution
of (L)) on [0,7) if for each v € C§°([0,T) x RY),

T
/ / u( —i0w + Av) dmdt:iu/ uov(0 dx—|—/\/ / || =7 u|Pv dx dt.
0 RN RN

(2.5)

From now on, we hide the time variable ¢ for simplicity, showing it only when
necessary.

2.2. Main results. The first contribution of this note is the non-global well-
posedness of (I.1]) in L2.

Theorem 2.5. Let N > 1,0 <7 <min{N,4} and 1 <p <1+
is ug € L? such that the unique mazimal solution u € C([0,T7),
v =1 1s non-global.

Then there

) of (1.1) with

4=7
~
L2

In view of the results stated in the above theorem, some comments are in order.
e The existence of the local solution is given by Proposition
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e In the case of a gauge invariant inhomogeneous source term, namely ((1.3)),
any mass-sub-critical solution is global. So, the above result makes an

essential difference between (1.1]) and (1.3]).

e The choice v = 1 is not necessary, indeed, in the proof we can pick v = —1
with some change in the choice of the datum.
e With standard method, Theorem [2.5| implies that limp+ ||u(t)| = oo.
e For the heat equation, the Fujita exponent p = 1+ 47TT gives the threshold
between the small data global existence and blow-up of solutions [§].
The second contribution of this note is the non-global well-posedness of ([L.1)) in
H?.
Theorem 2.6. Let N >3 and 7 < min{4, §'}. Take A\ =1 and max{1, w} <
p < p°. There exist v > 0 and ug € H? such that the unique mazimal solution

ue C([0,TF), H?) of (1.1) is non global.
In view of the above theorem, some comments are in order.

e The existence of the local solution is given by Proposition [2.3

e in the proof, we see that Theorem [2.6] holds for any v > 1y > 0. This gives
a blow-up result for small datum. This makes a difference with (1.3)), where
the global existence is known for small data.

e With standard method, Theorem implies that limp+ ||Au(t)]| = co.

2.3. Sketch of the proofs. The proof of Theorem is based on the two next
results.

Proposition 2.7. The solution given by Proposition is a weak solution to (1.1]).

Proposition 2.8. Letting 1 <p <1+ ‘FTT, there is a certain 0 # ug € L? such
that if u is a global weak solution to (L.1), and then u = 0.

Indeed, letting u € C([0,7F), L?) be a maximal solution to (L.I). If 7" = oo,
then by Proposition u is a global weak solution to . So, by Proposition
u = 0, which contradicts ug # 0. This completes the proof of Theorem [2.5]
The proof of Theorem is essentially based on Proposition and Lemma 4.1

3. NO GLOBAL MASS SOLUTIONS

In this section, we fix v = 1 and we prove Theorem [2.5] It is sufficient to establish

Propositions [2.7] and

3.1. Weak solutions. In this sub-section, we prove Proposition 2.7 Let v €
Cs°([0,T) x RY), for some T > 0 and u € C([0,T], L*(R™Y))NQ(0, T) be a solution
to (2.2). So, u € L}, .([0,7] x RY). By a density argument, we have
T
/ / eimQUO(—iﬁtv + A%)dr dt = i/ uo(x)v(0,x) du. (3.1)
0o JrN

RN

So, by (2.2), (2.5) and (3.1)), it is sufficient to prove that

T T
/ / w(—i0pv + A?v) do dt = )\/ / || "7 |ulPv dz dt; (3.2)
0 RN 0 RN
¢
w = fi)\/ eilt=9)A? (||~ 7 |ul?) ds. (3.3)
0
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With a density argument, we take
o] N :
un € C3°([0,T) x RY), hTan 1w — ullo,) = 0. (3.4)

Let also define the sequence
t )
Wy 1= —i)\/ elt=9)a (||~ |un|?) ds. (3.5)
0

Now, by Strichartz and Hoélder inequalities and taking account of [I0, Lemma
3.1], for some aq, @y > 0, we write
l|lwn, — wHL‘”([O,T),L2)
S Ml (lunl® = Tul?) lor 0,7
S Ml ™7 (P71 + [P (un = w)llar o) (3.6)
(T + %) (il g + Nl ) s — ullao.n

— 0, as n — oo.

Since wy, (0,-) = 0, the first term of the left-hand side of (3.2 reads

T T
—i/ / woyv dx dt = —ilim/ / wy,Opv do dit
0 JRN " Jo JRN

T (3.7)
= ilim/ Orw,v dx dt.
nJo JRN

Moreover, by Strichartz and Holder inequalities and taking account of [I0, Lemma
3.2], we write for some 1, f2 > 0,

- -1 —r—1
[Awn[Le(0,1),22) S [l[#] 7 [ual?™ [Vun| + 2|77 \unlpHLlT(Lz%)

(3.8)
S (T +17) (| Aunllaor) + [unlloer)”
So, wy, € C([0,T), H?) and we have the equality in C([0,T), H?2),
10w, = —A%w, + Nz| ™ un|P. (3.9)

Moreover, since 0 < 7 < N, by Holder inequality for supp(u,(0,-)) C B(R,),
! isA2 —T P
o) = 12 |6 (ol (e = 5)7) s
¢
itA2 -7 isA? -7
< 1€ (|2~ ua (0)P) || + ||/0 8 (|27 By lun P (t — 5)) ds||
S 2T up (O) + a7 O un P llor o) (3.10)
N
S el ™l g oy I O R
+ (T + T [|un 60 ) 10sn 0,0y
S Co+ (T + T ||un 650 190runllao,0)-
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Thus, u, € C§°([0,T) x RY) implies that w, € C*([0,T),L?) and (3.9) gives
w, € C([0,T), H?). So, (3.7) and (3.9) imply that

T T
fi/ / watvdxdt:hm/ / (= A%w,, + Az| 7w, |[P)v dz dt
0 JRN n Jo JRN
T
= —1im/ / wy A2 d dt (3.11)
mJo JrN

T
+)\lim// |z| ™7 Jup [Po dx dt.
mJo JRN

Furthermore, by Holder inequality via (3.6]), we have

T
‘/O /]RN(wn_UJ)AQ’UdJ?dt‘ ST”w"_wHL%(L?)HAQU”L%o(Lz) 0. (312)

Also, by Holder and Strichartz inequalities and arguing as previously, we have

T
|/ 2|77 (Junl? — |ufP)v da dt|
0

< 277 (Junl® = [ul) o 0,1 I lla0,m) (3.13)
S Ml =7 (lun” = [ul”) o 0,1y 0]l e0,)

a o -1 —1
< (T + 7% (Jun kg + ety lim — oo my ooz — 0.

So, by (3.11), (3.12)) and (3.13)), we obtain

T T T
—i/ / wowdrdt = —/ / wA?v dx dt—i—)\/ / |z| T u|Pv dx dt. (3.14)
o JrN o JrN 0o JrN
Then by (3.2) and (3.14) the proof is complete.

3.2. Vanishing solutions. This sub-section proves Proposition Let us define
some smooth functions:

1 17,
neCR(0,00)), 0<p<1, pe=qo 202k (3.15)
0, on [1,00)
Also we define ¢ € C§°([0,00)) such that
2 1 B(%
0<¢p<1,  sup ng p=4 0 " (3); (3.16)
{zeB(1)} é(x) 0, on B¢(1)
For R > 0, we define the cut-off functions
NR ‘= 77(?)’ ¢R = ¢(§)» YR = NROR. (3.17)
Assume that
R(ug) =0, wp € L' and ?R()\)/ S(up) dz < 0. (3.18)
RN

Without loss of generality, we assume that

R(A) >0 and / S(ug) dz < 0. (3.19)
RN
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For ¢ > max{1,3 — %}, let us denote
R4
Jr = Jr(p,q) = ?R()\/ / 2|77 Ju|Py da dt). (3.20)
0 B(R)
Since u is a global weak solution to (1.1)), by (2.5)), we have

R4
/ / u( =10, (vh) + A% (¥}h)) dx dt
0 RN

e (3.21)
:i/ uow}]%((),')der/\/ / || ™" |ulPy da dt.
RN 0 JRN
So, via , gives
R4
JR:%(/ uph%(0, ) dz) +%(/ / udy (V) da dt)
B(R) 0 B(R)
R4
+§R(/ / uAQ(w;g)dxdt)
0o JB(R)
(3.22)

R4
:/ Suo¢%(0,-)da:+/ / Sudy (V) da dt
B(R) 0 B(R)
R4
+ / RuA? (Y} da dt.
0 JB(R)

Now, by (3.19), for R >> 1, we have

R* R*
Jr < / / Sudy (V) da dt + / / RuA?(Y]) d dt
o JB(R) o JB(R)

R . R ) (3.23)
S0 [t Nowaldrdes [ [ o) dede

0 B(R) 0 B(R)
=Ji + Jh.

Using (3.15) and Holder inequality, because ¢ > p’, we write

R4
Jh <SR /R4 / | da dt
% YB(R)
T R4 i
< Rr‘*/ / 2|~ T/P|ulyk da dt
Z JB(R)
. i 1p, R 1
§R5‘4(/ / |x|*f|u|l’¢;gdzdt) =, R* x B(R)|'"*
R4 2
5 JB(R)

(4+N)(1-1)42 4 1 1P 1/p
SR (] 2] 7wl du dt)
& JB(R)

(3.24)
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Furthermore, with (3.16)) and (3.17)), we obtain
T

R4
— [ [ et de
0 B(R)

—4 R’ g—1 2 T q—2 ZT xT
SE [l [ (65 10201+ R AINARIN AN (329
+ 0% 1(A0) (2 + 0% 1A () IVe( )2 + 6 IVo(5)[*) dadt

R4
< R’4/ / |y ? dx dt.
0 C(£,R)

Since gp’ > 3, by (3.25)) via Holder inequality and arguing as in (3.24)), it follows
that

T R 1/p
J% < R<4+N><1—%>+;—4(/ / ||~ [u[Py%, da dt) : (3.26)
0o Jo(&.R) '
Now, by (:23), (3:24) and (B.26), we obtain
Jr g R(4+N)(17%)+%74J}1%/P. (327)
Since (4 + N)(1 — %) + 5 —4 <0 because p <1+ 457, then (3.27) implies that
1> lim Jp = m(x/ / \x|_7|u|pdmdt). (3.28)
R—o0 0 RN
Thus, |2|~7/Pu € LP([0,00) x RY) and so
. 1 9 2
RIRQJR_AEEOJR_O' (3.29)
So, (323) via (B:20) gives
Rlim Jr =0. (3.30)
— 0

Finally, (3.30) implies that © = 0 and the proof is complete.

4. NO GLOBAL ENERGY SOLUTIONS

This section proves Theorem The proof is reduced to the next Lemma via
Proposition 2.7]

Lemma 4.1. Letp > 1, v > 0, 0 < 7 < min{4, N} and an integer n > 1 + 3p’.
Take ug € Li,,(RY) such that R(ug) = 0 and u be a weak solution to (L.1) on

loc

[0,T:}). Then, there is C > 0 such that for any 0 < R < (T})Y/4,
iu/ upPp dr < CRN= . (4.1)
RN
Moreover, if for some 0 < b < min{N, %}, it holds

S(uo) < —|2["*xBq), (4.2)
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then, for any 0 < R < (T4,

R‘(ii )
fB(%) |z|~bon da

Furthermore, there is a vy > 0 such that

___ 4
TH<C R
v S OUNprpV s v > 1.

Proof. For some integer number n > 1 + 3p’, let us define

R4
I = L(R) ;:/ / |7 [P da dt,
0 B(R)

Jp = Jn(R) = / uoP' de.
B(R)

Taking account of (2.5, we write
R(ivn + 1)

—§R —1/ / udy (472) dxdt—i—/ / uA2 () dxdt)
B(R)

/ / Sudy (V) da dt + / RuA?(Y}) dz dt
B(R)

By (3.17) and n > p’, we have

R4
R // lulyit da dt
B(R)
R4
53—4// P da dt
B(R)

R4
"4// | /PP e dt.

So, with Holder inequality via , we write
(4) < R%“‘Ii/”l[&Rﬂ x B(R)|'"» < RN 4541/,

By (3.15)), (3.16)) and (3.17]), we have
(B)

R4
<[] wliap)ded
0 B(R)

2/\

(4.7)

(4.8)

R* €T x x
sact [Tl [ (6 8%+ oA GINAAR (a10

+ 3 AO) () + 0k A) () IVS(5)2 + 65 [Vo(E)I') dodt

R4
< R—4/ / |3 dx dt.
0 C(£,R)
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Since n > 3p’, by (4.10) via Holder inequality and arguing as in (4.9)), it follows
that

4
(4+N)(1-1)+Z -4 r =T, |P,/T 1/p
(B)< R P+ | TPt drdt) (4.11)
0 C(£,R)

So, (4.11)), (4.9) and (4.7)), via Young inequality give
—vSJ, = R(ivd,)
< CR(4+N)(1—%)+%—41-71L/,) — I,

1 g 1 (4.12)
< ?(CR(4+N)(1 )+ 4p o)+ 1, — I,
< RAFNAET -4

This proves (4.1). By (4.6) and (4.2), we obtain
-3J, = —/ Sugdp dx
RN
= —RN/ Sup(Rx)¢™ dx (4.13)
RN

> RNfb/ |z| 0™ da.
B(%)

Thus, (4.1) and (4.13) give
vRN-P / lz| 79" dx < —vSJ, = v / uodt dz < CRUNFTET W (4.14)
B(%) R

N

This proves (4.3). Now, there is a vy > 0 such that for any v > 1y, we have
TF < 16. Indeed, otherwise we take R = 2 in (4.3) and we obtain because b < N,
the contradiction

24+b+ﬁ—4p’
v<(Ci——
fB(%) |z|~b¢n da
gttt I —4p! (4.15)
Joy) 2170 de
< oty
So, taking v > 1y and 0 < R < (T;F)'/* < 2, we write by ([&.3),
o R4+b+p%1—4p’
— sy el da
RO+ I 4 (4.16)
- Of |z| =P dz
B(3)

< R

=C

14

Now, since b < %, (4.16) gives 4+ b+ ﬁ —4p’ < 0 and so

4
A—7 _,

- 4
TfF <y " =y et (4.17)

This establishes (4.4) and completes the proof. [
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