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DEEP LEARNING METHOD FOR FINDING EIGENPAIRS IN
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Abstract. Solving the eigenvalue problem for differential equations in inho-
mogeneous media poses a significant challenge across diverse scientific fields.

While classical finite difference methods and finite element methods have pro-

duced numerous outcomes, they heavily rely on discretizing the computational
domain, which can introduce complexities and limitations. In this study, we

present an unsupervised neural network approach tailored for finding eigen-

pairs in Sturm-Liouville eigenvalue problems within inhomogeneous media.
Our method introduces eigenvalues as trainable parameters, crafts a novel cost

function, incorporates an adaptive hyper-parameter tuning strategy, and se-
quentially trains the eigenpairs. The simplicity, accuracy, and interpretability

of our approach significantly expand its applicability across various domains.

The method we present in this paper can easily tackle boundary value condi-
tions with derivatives, resulting in orthogonal eigenfunctions. This is a very

important advantage of deep learning methods that has not yet been noticed.

Quantitative estimation of eigenpairs is given for the Sturm-Liouville eigen-
value problems. Furthermore, we extend the proposed methodology to tackle

two-dimensional cases, periodic scenarios, demonstrating its versatility and

broad potential.

1. Introduction

The Sturm-Liouville eigenvalue problem holds substantial significance across a
diverse range of fields. It can be demonstrated that there are an infinite number of
eigenvalues, each with a unique eigenfunction, and that these eigenfunctions form
an orthonormal basis within a specific Hilbert space of functions. The adaptability
of the Sturm-Liouville equation to various boundary value conditions allows for the
precise representation of specific physical phenomena. For example, in the con-
text of heat equations, Dirichlet conditions maintain a consistent temperature at
the rod’s extremities, while Neumann conditions simulate insulating environments
with no heat transfer and negligible temperature gradients at the ends. Further-
more, more comprehensive boundary value conditions, such as the Robin condition,
accommodate partially insulated boundaries.

In practical applications, it is also crucial to compute multiple orthogonal eigen-
vectors of the Sturm-Liouville eigenvalue problem. For instance, in the construction
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of a suitable Lyapunov function, there are instances where the need for several mu-
tually orthogonal minimal eigenvectors arises, see [4]. Therefore, the quest for mul-
tiple minimal eigenpairs (i.e., eigenvalues and eigenvectors) for the Sturm-Liouville
eigenvalue problem remains an enduring research pursuit.

Classical numerical methods employed in the quest for eigenpairs include finite
difference methods [1, 17] and finite element methods [2]. The finite difference
method, characterized by its simplicity and ease of comprehension, is a popular
choice. However, it also exhibits inherent limitations. For instance, in the case
of Sturm-Liouville eigenvalue problems with derivative boundary value conditions,
such as Neumann boundary and Robin boundary, the finite difference approxima-
tion of the differential operator may not preserve self-adjointness. Consequently, the
resulting eigenvectors are not orthogonal to each other, which contradicts the nature
of Sturm-Liouville differential operators being self-adjoint and having orthogonal
eigenvectors. The finite element method offers high computational accuracy and
wide applicability. However, it requires manual specification of appropriate finite
element units prior to computation, and its effectiveness is often reliant on indi-
vidual expertise. It is a more complex method and may not be user-friendly for
non-experts. Furthermore, it is worth noting that both finite difference methods and
finite element methods yield numerical solutions, which lack analytical expressions
and cannot be readily used for operations such as differentiation. Their applicabil-
ity is relatively limited in situations requiring analytical expressions. The search
for effective analytical approximations remains a significant scientific challenge.

In recent years, deep learning methods have rapidly advanced and integrated into
diverse aspects of people’s lives. Within the study of differential equations, their
exceptional strengths and capabilities stand out. Chen et al. [6] proposed Neural
ODE, which approximate the right-hand side function of differential equations us-
ing deep neural networks, achieving remarkable results. Currently, the most widely
used approach is to approximate the solutions of differential equations using deep
neural networks, with advantages like increased applicability, ease of understanding,
and the ability to perform differentiable operations. Raissi et al. [19] introduced
a deep learning framework known as ’Physics-informed neural networks’ (PINN).
Within this innovative framework, the physical equations themselves are seamlessly
integrated into the network as constraints, thereby enabling the solution of partial
differential equations (PDEs) without the necessity of a dataset. Pang et al. [18]
proposed a fractional PINN (fPINN), addressing the challenge of automatic differen-
tiation being unsuitable for fractional operators. Yang et al. [20] further advanced
the field by developing a novel class of physics-informed generative adversarial net-
works, which effectively tackle forward, inverse, and mixed stochastic problems in
a unified manner, relying on a limited number of scattered measurements. Lu et
al. [16] have presented a Python library, named DeepXDE, specifically designed
for PINNs. This library serves dual purposes: As an educational tool for classroom
use and as a research tool for addressing computational science and engineering
challenges.

For specific mathematical problems, such as identifying Hamiltonian systems,
Mattheakis et al. [7] developed a Hamiltonian neural network (HNN) with the pri-
mary aim of conserving the symplectic structure of the Hamiltonian system. This
allows for more accurate learning and prediction of the dynamic behavior of the
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system. Jin et al. [13] have developed symplectic networks (SympNets) to effec-
tively learn the symplectic flow within Hamiltonian systems. Moreover, they [12]
have also proposed Poisson neural networks (PNNs) which are specifically designed
to learn Poisson systems and accurately capture the trajectories of autonomous sys-
tems, all derived directly from data. Lu et al. [15] proposed DeepONet, which has
demonstrated its efficacy as a powerful tool for handling nonlinear operators using
supervised data-driven methods. What’s even more thrilling is the potential that
emerges from merging DeepONet with the physics encoded by PINNs. This union
opens up the possibility of achieving precise, real-time predictions in many fields
with extrapolation capabilities. Zang et al. [21] presented an adversarial neural net-
work rooted in partial differential equation weak solutions, offering a pathway for
tackling high-dimensional partial differential equations. For further advancements
related to physics-informed machine learning, we highly recommend delving into
the comprehensive review article [14] for a deeper understanding.

The application of deep learning techniques in addressing eigenvalue problems
has witnessed significant advancements. PINN, owing to its ease of implementation
and ability to maintain the self-adjointness of the operator throughout the compu-
tational process, has been employed by scholars to identify orthogonal eigenpairs.
Jin et al. [9] used PINN to solve the quantum problems related to finite wells, mul-
tiple finite wells, and hydrogen atom eigenvalues, and introduced a strong bound-
ary value condition. However, their investigation was limited to one-dimensional
homogeneous media under the Dirichlet boundary value condition. Holliday et
al. [8] extended Jin’s algorithm to quantum billiard eigenvalue problems, success-
fully identifying the eigenvalues and eigenfunctions of the stationary Schrödinger
differential equation with Dirichlet boundary value conditions in two-dimensional
domains. Ben-Shuaul et al. [5] have effectively employed PINN techniques to tackle
the problem of finding the smallest eigenpairs for one-dimensional Sturm-Liouville
boundary value problems. The strength of their approach lies in its ability to simul-
taneously identify multiple eigenpairs. However, their method, which incorporates
the Rayleigh quotient for eigenvalue calculation, can be challenging for non-experts
and may yield lower precision results. Additionally, their focus is specifically on
scenarios involving the Laplace operator as the differential operator, disregarding in-
homogeneous cases. Furthermore, their framework is limited to Dirichlet boundary
value condition and does not account for derivative boundary situations. Unlike the
Dirichlet boundary, the discrete matrix corresponding to the Sturm-Liouville differ-
ential operator under derivative boundaries is not self-adjoint when using classical
numerical methods. This aspect underscores the advantages of leveraging neural
networks for addressing such problems.

In this article, we consider how to find the smallest eigenpairs using deep learn-
ing methods. We introduce eigenvalues as trainable parameters, construct a novel
cost function, add an adaptive hyper-parameter tuning strategy, and enhance the
speed and accuracy of training by sequentially training eigenpairs. This setup al-
lows us to compute a more extensive set of smallest orthogonal eigenpairs. By
utilizing a weighted inner product space and adaptive hyper-parameters, we tackle
the Sturm-Liouville eigenvalue problem under varying boundary value conditions in
inhomogeneous media. The simplicity, accuracy, and interpretability of our method
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significantly broaden the applicability of the proposed approach. Quantitative esti-
mation of eigenpairs is given for the Sturm-Liouville eigenvalue problems. Further-
more, we extend the proposed method to two-dimensional cases, periodic scenarios.

The organization of this paper is as follows. In Section 2, we introduce the prob-
lem model, construct a novel cost function, and present our algorithm. In Section
3, we give a quantitative estimation of eigenpairs. In Section 4, we compare our ap-
proach with previous algorithms, including state-of-the-art deep learning methods
and classical numerical techniques. Section 5 presents extensive numerical exper-
iments that demonstrate the efficiency and accuracy of our method in addressing
the eigenvalue problem under various boundary conditions. Finally, in Section 6,
we conclude the paper by summarizing our key findings and contributions.

2. Model problem

In this article, we aim to find the M smallest eigenvalues and eigenfunctions of
the general Sturm-Liouville eigenvalue problems

(p(x)φ′(x))′ + λσ(x)φ(x) = 0, (2.1)

with homogeneous boundary value conditions

a1φ
′(0)− b1φ(0) = 0, a2φ

′(π) + b2φ(π) = 0, a2i + b2i ̸= 0, i = 1, 2, (2.2)

where p ∈ C1((0, π),R+) and σ ∈ C((0, π),R+), λ is the eigenvalue and φ ∈
C2((0, π),R) is the corresponding eigenfunction. In some instances, p and σ are
elastic coefficent and rock density coefficient respectively, see [3]. By a change of

variable x→ z given by z =
∫ x

0

√
σ(s)
p(s) ds, equation (2.1) leads to

(ρ(z)φ′(z))′ + λρ(z)φ(z) = 0, (2.3)

where ρ(z) =
√
σ(z)p(z) is the impedance function.

The mathematical theoretical results for the Sturm-Liouville eigenvalue problems
(2.1) or (2.3) are relatively abundant. Let Ω = (0, π). Define the Sturm-Liouville
operator in inhomogeneous media by

L[φ] := − (p(x)φ′(x))′

σ(x)
= λφ, in Ω. (2.4)

Define the weighted inner product by

(φ,ψ)σ :=

∫
Ω

φψ∗σdx, φ, ψ ∈ L2(Ω, σdx),

which induces the L2 norm ∥ · ∥σ. Note that when σ ≡ 1 on Ω, ∥ · ∥σ reduces to be
the standard L2 norm, which is denoted by ∥ · ∥. It is well known that L is a self-
adjoint operator, the eigenvectors of L construct an orthonormal basis (φk)k∈N+ of
L2((0, π), σdx):

L[φk] = λkφk, k = 1, 2, . . . , (2.5)

where (λk)k∈N is increasingly approach to +∞ as k → +∞.
Finding analytical expressions for the eigenpairs of Sturm-Liouville problems in

inhomogeneous media is highly challenging, so the deep learning solution we de-
signed can only be compared with the classical numerical method. Using deep
learning methods to solve eigenvalue problems offers numerous advantages. One
such advantage is that the resulting neural network solutions are semi-analytical,
meaning they are differentiable. The method is also simple, practical, and easily
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extensible, making it highly accessible to non-experts. Personally, one of the great-
est benefits I have found is that for derivative boundary value cases, the neural
network solutions obtained through this dimension-free approach are self-adjoint,
aligning with the original problem. In contrast, classical numerical methods, such
as finite difference method, often yield approximate solutions that do not satisfy
self-adjointness, leading to numerical eigenfunctions that are not orthogonal, see
[1].

Using neural networks to find the eigenpairs of {λk, φk} in inhomogeneous me-
dia only requires starting with the problem itself. We gradually learn eigenpairs,
starting from smaller values of k and progressing to larger ones. Inspired by the
PINN, we integrate the equation equalities, boundary value conditions, normaliza-
tion of eigenfunctions, and orthogonality among distinct eigenfunctions into the loss
function. This approach ensures the feasibility and practical implementation of our
method. Specifically, we introduce a parameterized form of the k-th eigenfunction,
denoted by φθk . In this context, θk functions as the primary training parame-
ter. Moreover, within our comprehensive framework, we incorporate the eigenvalue
λk as an additional parameter that undergoes training alongside θk. For each k,
when φθk learns the expected target through training, λk will also be automati-
cally updated with the network to the eigenvalue corresponding to the eigenfunction
network φθk . This design greatly reduces the complexity of the network and the
difficulty of calculation, so that we only need to pay attention to the training of the
eigenfunction network, and do not need to design an additional network to train
the eigenvalue.

To optimize the neural network φθk with respect to its parameter θk, we define
the loss function

J(θk, λk) = αJeq(θk, λk) + βJbdry(θk) + γJnor(θk) + δkJorth(θk), (2.6)

where α, β, γ, δk are hyper-parameters that control the relative importance of each
term. The individual terms are as follows:

Jeq(θk, λk) = ∥L[φθk ]− λkφθk∥2σ (2.7)

enforces the constraints imposed by the equation.

Jbdry(θk) =
∣∣B[φθk ]

∣∣2 (2.8)

accounts for the constraints imposed by the boundary value conditions.

Jnor(θk) =

(
∥φθk∥2σ − 1

)2
∥φθk∥2σ

, (2.9)

is responsible for the normalization of the eigenfunction in the weight space. The
denominator is included to prevent the norm of the eigenfunction from vanishing
during the computation of higher eigenvalues.

Jorth(θk) =

k−1∑
j=1

∣∣(φθk , φθj )σ
∣∣2, (2.10)

ensures orthogonality of the current eigenfunction with respect to previously com-
puted eigenfunctions in the weight space.

Under this framework, the choice of δk is crucial for accurately computing higher-
order eigenvalues λk. When the epoch is less than half of the total number of
epochs, we set δk equal to 10 · λk−1 to ensure that the eigenvalues can correctly
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approach the desired values. However, when the epoch exceeds half of the total,
we set δk to 1 to reduce the weight of the orthogonality term, thereby facilitating
better computation of the loss associated with the equation term. Note that both
the divisor of the third term and the addition of the δk are specially designed for
obtaining the higher eigenpairs. For details of the process, see Algorithm 1.

Algorithm 1 Deep learning method for finding M eigenpairs

1: for k = 1 to M do
2: Set total number of epochs Nepochs

3: Define hyper-parameters α, β, γ, λ0
4: Initialize neural network φθk with parameters θk and λk = λk−1

5: for epoch = 1 to Nepochs do

6: if epoch <
Nepochs

2 then
7: Set δk = 10 · λk−1

8: else
9: Set δk = 1

10: end if
11: Compute loss function J(θk, λk) using Eq. (2.6)
12: Compute gradients of J(θk, λk) with respect to θk and λk
13: Update θk and λk using gradient descent optimizer
14: if convergence criterion is met then
15: Break the loop
16: end if
17: end for
18: Output optimized parameters θk and eigenvalue λk
19: end for

In the individual terms of cost function, Jeq(θk, λk) is calculated by

∥L[φθk ]− λkφθk∥2σ =
1

Nk

Nk∑
j=1

σ
(
x(j)r

)(
L[φθk ](x

(j)
r )− λkφθk(x

(j)
r )

)2

, (2.11)

where {x(j)r } are sets of inner points sampled uniformly in the entire domain Ω.
The weight norm ∥ · ∥σ and weight inner product in Jnor and Jorth are calculated
by the mid-point integral method. Indeed, our framework is applicable not only to
1-dimensional cases but also to 2-dimensional cases, as well as periodic scenarios.
For the 1D case, the weight inner product is calculated by the mid-point integral
method:

(φθk , φθj )σ = h

N−1∑
m=0

σ(x
(m)
h )φθk(x

(m)
h )φθj (x

(m)
h ) (2.12)

where {x(m)
h |x(m)

h = h/2 + m · h} are sets of integral points with h = π/N . The
boundary value conditions for the eigenfunction φ are defined by

B[φ] = [a1φ
′(0)− b1φ(0), a2φ

′(π) + b2φ(π)]. (2.13)

In the experiments, the eigenfunction network φθk is set as a fully connected
neural network with 4 hidden layers, each consisting of 32 neurons. Silu is used
as the activation function. During training, we utilize the Adam optimizer to
update the parameters of the neural network, with the initial learning rate of 0.01,
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which drops by 10% every 1000 epoch. A total of 50, 000 epochs are set, ensuring
sufficient time for network convergence. This computation is performed using the
backpropagation algorithm implemented in PyTorch, a deep learning framework
that facilitates automatic gradient computation.

3. Quantitative estimation of eigenpairs

We consider the Sturm-Liouville eigenvalue problem:

(ρ(x)φ′(x))′ + λρ(x)φ(x) = 0, (3.1)

with homogeneous boundary value conditions

a1φ
′(0)− b1φ(0) = 0, a2φ

′(π) + b2φ(π) = 0, a2i + b2i ̸= 0, i = 1, 2. (3.2)

The boundary value conditions are divided into 6 cases:

(1) Dirichlet boundary value condition:
a1 = 0, b1 > 0,a2 = 0, b2 > 0;

(2) Neumann boundary value condition:
a1 > 0, b1 = 0, a2 > 0, b2 = 0;

(3) Dirichlet-Neumann boundary value condition:
a1 = 0, b1 > 0, a2 > 0, b2 = 0 or a1 > 0, b1 = 0, a2 = 0, b2 > 0;

(4) Mixed boundary value conditions I:
a1 = 0, b1 > 0, a2 > 0, b2 ̸= 0 or a1 > 0, b1 ̸= 0, a2 = 0, b2 > 0;

(5) Mixed boundary value conditions II:
a1 > 0, b1 = 0, a2 > 0, b2 ̸= 0 or a1 > 0, b1 ̸= 0, a2 > 0, b2 = 0;

(6) General boundary value condition:
a1 > 0, b1 ̸= 0, a2 > 0, b2 ̸= 0.

Assume that ρ(x) ∈ H2((0, π),R+). Let z(x) =
√
ρ(x)φ(x), then the above equa-

tion can be transformed to

z′′(x) + (λ− ηρ(x))z(x) = 0,

where ηρ(x) = 1
2
ρ′′

ρ − 1
4 (

ρ′

ρ )
2 is assumed to be a real function in L2(0, π). The

boundary value condition is transformed to a new one:

a1z
′(0)−

(a1
2

ρ′(0)

ρ(0)
+ b1

)
z(0) = 0, a2z

′(π) +
(
b2 −

a2
2

ρ′(π)

ρ(π)

)
z(π) = 0.

Let (Λk, φk) be the exact eigenpairs of (3.1)-(3.2). Let (λk, φθk) be approximate
eigenpairs calculated by our Neural Networks. Denote

ρ0 := ess inf ηρ(x) and ρ1 := ρ0 +
2

π

∫ π

0

{ηρ(x)− ρ0}+ dx,

where {h(x)}+ = max{h(x), 0}. Now, we give the estimation of Λk for Sturm-
Liouville eigenvalue probems. The eigenvalue estimation for Dirichlet boundary
value conditions has been well studied.

Lemma 3.1 ([22]). The Sturm-Liouville problems (3.1) with Case (1) have the
following inequalities:

k2 + ρ0 ≤ Λk ≤ k2 + ρ1, k ∈ N+.
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The proof of above lemma can be seen in [22]. Notice that we have not assumed
that ρ0 > 0, so the case ρ(x) ≡ constant is included.

Denote α1 := ρ′(0)
2ρ(0) + b1

a1
and α2 := − ρ′(π)

2ρ(π) + b2
a2
. For other boundary value

problems, we have the following result.

Lemma 3.2. Let k ∈ N+. If a2 = 0 and α1 ≥ 0 (resp. a1 = 0 and α2 ≥ 0), the
Sturm-Liouville problems (3.1) with Case (3) and (4) satisfy(
k − 1

2

)2

+ ρ0 ≤ Λk ≤
(
k − 1

2

)2

+ ρ1 +
2α1

π

(
resp. ≤

(
k − 1

2

)2

+ ρ1 +
2α2

π

)
.

Proof. The case a2 = 0 and α1 = 0 can be found in [11]. Now we prove that it still
holds for the case a2 = 0 and α1 > 0. It is obviously that Λk > ρ0, k ∈ N+. We
introduce the Prüfer transformation:

zk = r sin θ, z′k =
√
Λk − ρ0r cos θ,

where r(x) > 0. Assume that zk(x) has (k − 1) zeros in the interval (0, π) denoted
as 0 = κ0 < κ1 < κ2 < · · · < κk−1 < κk = π. Define θ(κi) = iπ, i = 1, 2, . . . , k − 1.
Using the boundary conditions, we obtain

θ(0) = arctan

(
1

α1

√
Λk − ρ0

)
, θ(π) = kπ.

Firstly, we estimate the lower bound of Λk. It is not difficult to know that

θ′ =
√
Λk − ρ0 −

(ηu(x)− ρ0) sin
2 θ√

Λk − ρ0
≤

√
Λk − ρ0.

Integrating both sides of the inequality over (0, π), we obtain

θ(π)− θ(0) ≤
√
Λk − ρ0π.

Since α1 > 0, utilizing the properties of arctan(x), we know that

θ(0) = arctan
( 1

α1

√
Λk − ρ0

)
∈ (0,

π

2
),

i.e.,

θ(π)− θ(0) >
(
k − 1

2

)
π.

Thus, we conclude that

Λk ≥
(
k − 1

2

)2

+ ρ0

Secondly, we prove the upper bound of Λk. Let pk =
√
Λk − ρ0. Then, as an

increasing function of k, pk approaches infinity and satisfies pk > 1/2. Notice that

lim
k→+∞

pk

(
arctan

( pk
α1

)
− π

2

)
= −α1.

Define

f(p) := p
(
arctan

( p
α1

)
− π

2

)
.

Taking the derivative of f(p), we obtain

f ′(p) = arctan
( p
α1

)
− π

2
+

α1p

p2 + α2
1

.

and limp→+∞ f ′(p) = 0. Since

f ′′(p) =
2α1

p2 + α2
1

− 2α1p
2

(p2 + α2
1)

2
=

2α3
1

(p2 + α2
1)

2
> 0,
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we obtain f ′(p) < 0, p ∈ [ 12 ,+∞). It implies that√
Λk − ρ0

(
arctan

(√Λk − ρ0
α1

)
− π

2

)
≥ −α1.

Hence

θ(0) ≥ π

2
− α1√

Λk − ρ0
.

By the Prüfer transformation, we obtain

θ′ =
√
Λk − ρ0 cos

2 θ − (ηu(x)− ρ0) sin
2 θ√

Λk − ρ0

≥
√
Λk − ρ0 −

{ηu(x)− ρ0}+ sin2 θ√
Λk − ρ0

≥
√
Λk − ρ0 −

{ηu(x)− ρ0}+√
Λk − ρ0

.

By integrating both sides over the interval (0, π), we obtain:

θ(π)− θ(0) ≥
√
Λk − ρ0π −

∫ π

0
{ηu − ρ0}+dx√

Λk − ρ0
.

Therefore,

kπ − π

2
+

α1√
Λk − ρ0

≥
√
Λk − ρ0π −

∫ π

0
{ηu − ρ0}+dx√

Λk − ρ0
.

Defining D := Λk − ρ0, B := k − 1
2 , C := 1

π (
∫ π

0
{ηu(x) − ρ0}+dx + α1), we obtain

D ≤ B
√
D + C, which implies

√
D ≤ (

√
B2 + 4C +B)/2.

By inequalities √
B2 + 4C = B

√
1 +

4C

B2
≤ B(1 +

2C

B2
) = B +

2C

B
,

we obtain the upper bound

D ≤ B2 + 2B
√
B2 + 4C +B2 + 4C

4
≤ B2 + 2C.

Thus, we conclude that

Λk ≤
(
k − 1

2

)2
+ ρ1 +

2α1

π
.

The aforementioned conclusion can be easily extend to the case where a1 = 0 and
α2 ≥ 0. We omit the proof for brevity. □

Lemma 3.3. Assume that α1 ≥ 0 and α2 ≥ 0. Then the Sturm-Liouville problems
(3.1) with Case (2), (5) and (6) satisfy

(k − 1)2 + ρ0 ≤ Λk ≤ (k − 1)2 + ρ1 +
2α1

π
+

2α2

π
, k ∈ N+.

The above lemma can be proved by a similar argument to that of Lemma 3.2.
Now, we give a rough estimation of λk obtained by the neural network method for
the Sturm-Liouville eigenvalue problems.
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Proposition 3.4. Assume that ρ1− ρ0 ≤ 1. If λk ∈ [k2+ ρ0, k
2 + ρ1], k ∈ N+, the

Sturm-Liouville eigenvalue problems with Case (1) imply that

|λk − Λk| ≤ 1 ≤ min
j ̸=k

{|λk − Λj |}.

Proof. By Lemma 3.1, we have |λk − Λk| ≤ |ρ1 − ρ0| ≤ 1. For j > k ≥ 1, we have

|λk − Λj | ≥ |Λj − Λk| − |λk − Λk|
≥ |j2 + ρ0 − k2 − ρ1| − |k2 + ρ1 − k2 − ρ0|
≥ |j2 − k2| − 2|ρ1 − ρ0| ≥ 1.

The second inequality follows from Lemma 3.1, and the fourth inequality follows
from the fact that j2 − k2 ≥ j + k ≥ 3. Similarly, for k > j ≥ 1, we also conclude
that

|λ− Λj | ≥ 1.

Thus, for j ̸= k ∈ N+, we have

|λk − Λk| ≤ |ρ1 − ρ0| ≤ 1 ≤ min
j

{|λk − Λj |}. □

Proposition 3.5. Assume that a2 = 0, α1 ≥ 0 and ρ1−ρ0+ 2α1

π ≤ 2
3 (resp. a1 = 0,

α2 ≥ 0 and ρ1 − ρ0 +
2α2

π ≤ 2
3). If λk ∈ [

(
k − 1

2

)2
+ ρ0,

(
k − 1

2

)2
+ ρ1 +

2α1

π ] (resp.

λk ∈ [
(
k − 1

2

)2
+ ρ0,

(
k − 1

2

)2
+ ρ1 +

2α2

π ]), k ∈ N+, the Sturm-Liouville eigenvalue
problems with Case (3) and (4) imply that

|λk − Λk| ≤
2

3
≤ min

j ̸=k
{|λk − Λj |}.

By a similar argument to that of Proposition 3.4, we can prove Proposition 3.5
based on Lemma 3.2.

Proposition 3.6. Assume that α1 ≥ 0, α2 ≥ 0 and ρ1 − ρ0 +
2α1

π + 2α2

π ≤ 1
3 . If

λk ∈ [(k−1)2+ρ0, (k−1)2+ρ1+
2α1

π + 2α2

π ], k ∈ N+, the Sturm-Liouville eigenvalue
problems with Case (2), (5) and (6) imply that

|λk − Λk| ≤
1

3
≤ min

j ̸=k
{|λk − Λj |}.

By a similar argument to that of Proposition 3.4, we can prove Proposition 3.6
based on Lemma 3.3.

Denote Ek(x) = L[φθk ](x)−λkφθk(x), we can estimate the error of the eigenvalue
by ∥Ek(x)∥σ and ∥φθk∥σ.

Theorem 3.7 (Eigenvalue estimation). If |λk−Λk| ≤ minj ̸=k{|λk−Λj |}, k ∈ N+,
we have

|λk − Λk| ≤
∥Ek(x)∥σ
∥φθk∥σ

.

Proof. Note that

∥L[φθk ]− λkφθk∥2σ = (L[φθk ]− λkφθk , L[φθk ]− λkφθk)σ

=

∞∑
j=1

(Λj − λk)
2|(φθk , φj)σ|2
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≥ (Λk − λk)
2

∞∑
j=1

|(φθk , φj)σ|2

Thus, we conclude that

|λk − Λk| ≤
∥Ek(x)∥σ
∥φθk∥σ

. □

We define Pkφ = (φ,φk)σφk and P⊥
k φ =

∑∞
j ̸=k(φ, φj)σφj . Obviously, φθk =

Pkφθk + P⊥
k φθk . Next, we use ∥P⊥

k φθk | to evaluate the eigenfunction of our algo-
rithm.

Theorem 3.8 (Eigenfunction estimation). Assume that ρ1 − ρ0 < 1. If λk ∈
[k2 + ρ0, k

2 + ρ1], k ∈ N+, the Sturm-Liouville eigenvalue problems with Case (1)
satisfy

∥P⊥
1 φθ1∥σ ≤ ∥E1(x)∥σ

|Λ2 − λ1|
,

or

∥P⊥
k φθk∥σ ≤ ∥Ek(x)∥σ

min{|Λk+1 − λk|, |Λk−1 − λk|}
, k ≥ 2.

Proof. By Proposition 3.4, we have |λk − Λj | ≥ 1, k ̸= j. For k = 1, we obtain

∥L[φθ1 ]− λ1φθ1∥2σ = (L[φθ1 ]− λ1φθ1 , L[φθ1 ]− λ1φθ1)σ

=

∞∑
j=1

(Λj − λ1)
2|(φθ1 , φj)σ|2

≥ (Λ2 − λ1)
2

∞∑
j=2

|(φθ1 , φj)σ|2 + (Λ1 − λ1)
2|(φθ1 , φ1)σ|2

≥ (Λ2 − λ1)
2

∞∑
j=2

|(φθ1 , φj)σ|2

Thus, we conclude that

∥P⊥
1 φθ1∥σ ≤ ∥E1(x)∥σ

|Λ2 − λ1|
For k ≥ 2, we obtain

∥L[φθk ]− λkφθk∥2σ = (L[φθk ]− λkφθk , L[φθk ]− λkφθk)σ

=

∞∑
j=1

(Λj − λk)
2|(φθk , φj)σ|2

≥ min{(Λk+1 − λk)
2, (Λk−1 − λk)

2}
∞∑

j=1,j ̸=k

|(φθk , φj)σ|2

Thus, we conclude that

∥P⊥
k φθk∥σ ≤ ∥Ek(x)∥σ

min{|Λk+1 − λk|, |Λk−1 − λk|}
□

Remark 3.9. By Proposition3.5 and 3.6, Theorem 3.8 can be easily extended to:
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(1) Sturm-Liouville eigenvalue problems with Case (3) and (4), if a2 = 0, α1 ≥
0, ρ1−ρ0+ 2α1

π ≤ 2
3 and λk ∈ [

(
k − 1

2

)2
+ρ0,

(
k − 1

2

)2
+ρ1+

2α1

π ] (resp. a1 =

0, α2 ≥ 0, ρ1−ρ0+ 2α2

π ≤ 2
3 and λk ∈ [

(
k − 1

2

)2
+ρ0,

(
k − 1

2

)2
+ρ1+

2α2

π ]).
(2) Sturm-Liouville eigenvalue problems with Case (2), (5) and (6), if α1 ≥ 0,

α2 ≥ 0, ρ1 − ρ0 +
2α1

π + 2α2

π ≤ 1
3 and λk ∈ [(k − 1)2 + ρ0, (k − 1)2 + ρ1 +

2α1

π + 2α2

π ].

4. Comparison with previous algorithms

4.1. Comparison with the state-of-the-art deep learning methods. Con-
sider the smallest eigenpairs problems

φ′′(x) + λφ(x) = 0, (4.1)

with Dirichlet boundary value conditions

φ(0) = φ(π) = 0. (4.2)

Ben-Shaul et al. [5] utilized a more intricate cost function to simultaneously iden-
tify the four smallest eigenpairs. In Table 4.1, Ben-Shaul1 denotes the simultaneous
training of six smallest eigenpairs using 60000 epochs with their approach. Ben-
Shaul2 represents the concurrent training of seven smallest eigenpairs using 70000
epochs. We find that their algorithm has a large error when n = 6, and they ob-
tained incorrect results when n = 7. In contrast, our objective differs significantly.
Our aim is to devise an easy-to-understand algorithm and adapt it for handling
larger eigenvalues. Our method involves sequentially training 10 smallest eigen-
pairs, with each pair trained using 10000 epochs. Note that it is a fair comparison,
the total number of epochs used in our method is equivalent to that of the other
methods. We set the integral point to 500 and lr = 0.01. The hyper-parameters
are set as in [5]. We found that the runtime of our method is less than both Ben-
Shaul1 and Ben-Shaul2, but it obviously has more accuracy, see Table 4.1. For our
method, if we set 30000 epochs for each, 1000 inner points and 200 integral points,
we will get more accurate eigenpairs.

Table 4.1. Comparison with Ben-Shaul et al.’s method.

Exact Value Ben-Shaul1 Ben-Shaul2 Ours (Runtime)
λ1 = 1 0.9859 0.8639 1.0000 (39s)
λ2 = 4 3.9042 1.0964 4.0000 (81s)
λ3 = 9 8.8453 4.6499 8.9943 (149s)
λ4 = 16 15.4377 8.5765 16.0017 (270s)
λ5 = 25 24.4220 16.2587 24.9451 (338s)
λ6 = 36 34.8055(1485s) 23.5614 35.9928 (404s)
λ7 = 49 N/A 35.5628(2128s) 48.9332 (475s)
λ8 = 64 N/A N/A 63.9604 (552s)
λ9 = 81 N/A N/A 80.8455 (636s)
λ10 = 100 N/A N/A 99.8336 (725s)
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4.2. Comparison with classical numerical methods. The following finite dif-
ference method’s discretization scheme is derived from reference [1]. When a1 =
a2 = 0, we have Dirichlet boundary value condition.

φ(0) = φ(π) = 0. (4.3)

If, at the internal grid points of the uniform grid

G = {xi;xi = ih, i = 0, 1, . . . , n, n+ 1, h = π/(n+ 1)}, (4.4)

the operator Lφ is approximated using central differences, with

L =


2
h2 + ηρ(x1) − 1

h2

− 1
h2

2
h2 + ηρ(x2) − 1

h2

. . .
. . .

. . .

− 1
h2

2
h2 + ηρ(xn−1) − 1

h2

− 1
h2

2
h2 + ηρ(xn)

 . (4.5)

Such a matrix is symmetric, ensuring the orthogonality of different eigenfunctions.
The error of the k-th eigenvalue λk is about O(k4h2). However, for other boundary
value conditions, especially those involving derivatives(a1 ̸= 0 or a2 ̸= 0), loss of
symmetry brings additional difficulties when using classical numerical methods.

When a1 ̸= 0 or a2 ̸= 0, if we use finite difference method, we found that it
is not symmetric, resulting in the eigenfunctions not being orthogonal, while the
original differential operator is self-adjoint, ensuring the orthogonality of the real
eigenfunctions. Specifically, the central difference eigenvalues λk, k = 1, . . . , n + 1
of the above equation satisfy on the augmented grid

G∗ = {xj ;xj = jh, j = −1, 0, 1, . . . , n, n+ 1, h = π/n}, (4.6)

the following eigenvalue problem of matrix

L =


2
h2 + ηρ(x0) − α

h2

− 1
h2

2
h2 + ηρ(x1) − 1

h2

. . .
. . .

. . .

− 1
h2

2
h2 + ηρ(xn−1) − 1

h2

− β
h2

2
h2 + ηρ(xn)

 (4.7)

with

α =
2a1

a1 + h
(
b1 +

a1

2
ρ′(0)
ρ(0)

) and β =
2a2

a2 + h
(
b2 − a2

2
ρ′(π)
ρ(π)

) .
Obviously, it is not a diagonal matrix. Although the eigenvalues we calculated
are correct, the corresponding eigenfunctions are not orthogonal, which limits the
application of such a method.

Despite the fact that the study of the Dirichlet eigenvalue problem using deep
learning methods is a hot topic, to our knowledge, there is no work on the boundary
value condition involving derivatives using the deep learning method. Indeed, the
method we present in this paper can easily tackle boundary value conditions with
derivatives, resulting in orthogonal eigenfunctions. This is a very important advan-
tage of deep learning methods that has not yet been noticed. Additionally, we don’t
require ρ(x) to have a second-order derivative, which is an assumption required by
the above method. Unlike classical numerical methods, our neural network solution
provides an approximate analytical solution, in a certain sense, which allows us to
obtain derivatives using automatic differentiation.
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5. Numerical experiments

In this section, we will utilize the designed neural network algorithm to identify
the smallest eigenpairs under various boundary value conditions. The numerical
results obtained from the neural network algorithm will be compared to those from
the classical numerical method, demonstrating the efficiency of our approach. More-
over, we illustrate that our proposed method can be seamlessly extended to handle
two-dimensional cases and periodic scenarios.

Example 5.1. The Sturm-Liouville problem with Neumann boundary value condi-
tions:

−(ρ(x)φ′(x))′ = λρ(x)φ(x), x ∈ (0, π),

φ′(0) = φ′(π) = 0,
(5.1)

where ρ(x) = 1 + 0.3 sinx.

Table 5.1 shows the eigenvalues of the Sturm-Liouville Problem (5.1). λ̃n rep-
resents the numerical results obtained via the finite difference method (4.5) with

h = π
1000 . λ̂n represents the numerical results obtained from the deep learning

algorithm. We get the smallest eigenvalues and eigenfunctions simultaneously, see
Figure 5.1.

Table 5.1. Eigenvalues of Sturm-Liouville Problem (5.1)

λn λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

λ̃n 7.56 · 10−6 1.1129 4.1098 9.1099 16.1119 25.1151 36.1193 49.1243 64.1302 81.1368

λ̂n 6.62 · 10−6 1.1126 4.1082 9.1077 16.1057 25.1079 36.0993 49.1056 64.0550 81.0975

Figure 5.1. Eigenfunctions of the Sturm-Liouville Problem (5.1)

Example 5.1 shows that our neural network method is well adapted to the in-
homogeneous media case, especially to the derivative boundary value case. The
resulting eigenfunction is orthogonal and has broad prospects for use in other math-
ematical problems.

Example 5.2. Consider the periodic eigenpair problems:

−φ′′(x) = λφ(x), x ∈ (0, π),

φ(0) = φ(π), φ′(0) = φ′(π).
(5.2)
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Periodic phenomena are ubiquitous in physics. Regarding the periodic eigen-
value problem, where each eigenvalue corresponds to a pair of mutually orthogonal
eigenvectors, to our knowledge, no scholar has yet studied how to use deep learning
methods to find multiple smallest eigenpairs for such problems.

In Table 5.2, λ̂n represents the numerical results obtained from the deep learning
algorithm, and λn represents the exact value of the eigenvalue. It shows that
our algorithm can be easily applied to periodic boundary value cases with enough
accuracy.

Table 5.2. Eigenvalues of periodic boundary value problems (5.2)

λn λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

λn 0 4 4 16 16 36 36 64 64 100

λ̂n 0.0000 4.0000 3.9999 15.9998 16.0000 36.0002 36.0001 64.0007 63.9998 99.9998

Example 5.3. 2D Sturm-Liouville problem with Robin boundary value conditions
[10]:

−∇(ρ(x, y)∇φ(x, y)) = λρ(x, y)φ(x, y), (x, y) ∈ Ω

φ(0, y) = φx(π, y) = φ(x, 0) = φy(x, π) = 0,
(5.3)

where ρ(x, y) = (1 + 0.3 sinx)(1 + 0.3 sin y).

In this example, the finite element method is used as the baseline to compare
our Neural network method. The number of finite elements is set as 47905 by using
the software of Freefem++. Usually, the finite elements method has very high
accuracy. In Table 5.3, λ∗n represents the numerical eigenvalues obtained by finite

element method and λ̂n represents the numerical results obtained from our deep
learning algorithm. In Figure 5.2, we show the mutual orthogonal eigenfunctions
that are learned simultaneously with eigenvalues. Such eigenfunctions are hard
to learn for a non-expert using classical numerical methods. But our method is
beginner-friendly.

Table 5.3. Eigenvalues of 2D Sturm-Liouville problem (5.3)

λn λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

λ∗
n 0.4959 2.5067 2.5067 4.5175 6.5069 6.5069 8.5177 8.5177 12.5069 12.5069

λ̂n 0.4959 2.5067 2.5067 4.5174 6.5068 6.5068 8.5176 8.5176 12.5075 12.5071

The final example demonstrates that our neural network possesses considerably
good accuracy. Our neural network can be easily utilized, whereas the finite ele-
ment method poses significant difficulties for non-experts. How to further improve
accuracy of neural network methods remains an important question for future stud-
ies.

6. Conclusion

Deep learning techniques have shown significant advancements in addressing
eigenvalue problems, particularly with the use of PINN (Physics-Informed Neural
Networks) due to its ease of implementation and ability to maintain operator self-
adjointness. PINN has been applied to solve quantum problems and Sturm-Liouville
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Figure 5.2. Eigenfunctions of 2D Sturm-Liouville problem with (5.3)

boundary value problems, but with limitations such as one-dimensional homoge-
neous media or specific boundary value conditions. This paper introduces a novel
deep learning method to find the smallest eigenpairs by constructing a new cost
function, incorporating adaptive hyper-parameter tuning, and sequentially training
eigenpairs. The proposed approach extends to varying boundary value conditions
in inhomogeneous media, two-dimensional cases, and periodic scenarios, demon-
strating improved simplicity, accuracy, and interpretability. Quantitative estima-
tion of eigenpairs is given for the Sturm-Liouville eigenvalue problems. Numerical
experiments validate the method’s efficiency and accuracy compared to previous
algorithms [5].
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