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Abstract. This article focuses on the existence and asymptotic behavior of

Kneser-type solutions to third-order noncanonical differential equations with

a delay or advanced argument in the neutral term(
r2(t)

(
r1(t)z

′(t)
)′)′

+ g(t)x(t) = 0,

where z(t) = x(t) + p(t)x(τ(t)). This equation is transformed into a canonical
equation, which reduces the number of classes of positive solutions from 4 to

2. This is done without assuming extra conditions, and greatly simplifies the

process of obtaining conditions for the existence of Kneser-type solutions. Also
we obtain lower and upper bounds for these solutions, and obtain their rate of

convergence to zero. Two examples are provided to illustrate our main results,
one with a delay neutral term, and one with an advanced neutral term.

1. Introduction

This article concerns the asymptotic properties of Kneser-type solutions to the
third-order neutral differential equation(

r2(t)
(
r1(t)z

′(t)
)′)′

+ g(t)x(t) = 0, t ≥ t0 > 0, (1.1)

where z(t) = x(t)+p(t)x(τ(t)). During this study, we use the following assumptions:

(H1) r1 ∈ C2([t0,∞), (0,∞)), r2 ∈ C1([t0,∞), (0,∞)), g ∈ C([t0,∞), [0,∞)),
and p ∈ C3([t0,∞), [0,∞)) with 0 ≤ p(t) < 1;

(H2) τ ∈ C3([t0,∞),R), either τ(t) ≤ t or τ(t) ≥ t, and limt→∞ τ(t) = ∞;
(H3) equation (1.1) is in noncanonical form, i.e.,∫ ∞

t0

dt

r1(t)
<∞ and

∫ ∞

t0

dt

r2(t)
<∞.

By a solution of (1.1), we mean a function x ∈ C([tx,∞),R) for some tx ≥ t0
such that z ∈ C1([tx,∞),R), r1z′ ∈ C1([tx,∞),R), r2(r1z′)′ ∈ C1([tx,∞),R), and
x satisfies equation (1.1) on [tx,∞). We consider only those solutions of (1.1) that
exist on some half-line [tx,∞) and such that sup{|x(t)| : T1 ≤ t <∞} > 0 for each
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T1 ≥ tx; such solutions are said to be continuable. We tacitly assume that equation
(1.1) possesses such solutions. A continuable solution x(t) of (1.1) is said to be
oscillatory if it has infinitely many zeros; otherwise, it is called nonoscillatory. We
say that (1.1) has property A if any solution x(t) of (1.1) is either oscillatory or
limt→∞ x(t) = 0. Note that if y is a negative solution of (1.1), then x(t) = −y(t)
is positive solution of the same equation; statements for positive solutions apply to
non-oscillatory solutions.

The qualitative theory of third-order differential equations has seen rapid devel-
opment recently due to its numerous applications and the mathematical challenges
it presents, as indicated by [11, 15, 16, 18]. In particular, the oscillation and
asymptotic behavior of third-order functional differential equations have received
significant attention, as evidenced by extensive literature; see the references in this
article and the references therein. However, a literature review reveals limited find-
ings on the existence and non-existence of Kneser-type solutions for third-order
delay and neutral type differential equations.

In [2], the authors studied the existence and estimates for Kneser-type solutions
of (1.1) with an advanced neutral term (i.e., τ(t) ≥ t) and r1(t) = 1 and in canonical
form, that is, ∫ ∞

t0

1

r2(t)
dt = ∞.

In [3], the authors generalized the results in [2] for the equation(
r2(t)

(
r1(t)(z

′(t))α
)′)′

+ g(t)xα(t) = 0 (1.2)

under the condition ∫ ∞

t0

1

r
1/α
1 (t)

dt =

∫ ∞

t0

1

r2(t)
dt = ∞, (1.3)

i.e., the authors considered the equation (1.2) in canonical form.
In [7], the authors considered the equation(

r2(t)
(
r1(t)z

′(t)
)′)′

+ g(t)x(σ(t)) = 0, (1.4)

under condition (1.3) and established conditions for the nonexistence of Kneser-type
solutions of (1.4).

The nonexistence of Kneser-type solutions was discussed in [21] for the equation(
r2(t)

(
z′′(t)

)α)′
+ g(t)xβ(σ(t)) = 0,

under the condition ∫ ∞

t0

1

r
1/α
2 (t)

dt = ∞.

Recently in [23], the authors discussed the existence and estimates for the Kneser-
type solutions for the semi-canonical equation with an advanced argument in the
neutral term (

r2(t)
(
r1(t)(z

′(t))α
)′)′

+ g(t)xα
(
σ(t)

)
= 0 (1.5)

under the conditions∫ ∞

t0

1

r2(t)
dt <∞ and

∫ ∞

t0

1

r
1/α
1 (t)

dt = ∞,
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by transforming (1.5) into a canonical type equation.
On the other hand, in [4], the authors discussed the existence and estimates for

Kneser-type solutions of the third-order canonical type delay differential equation
(i.e., σ(t) < t)

x′′′(t) + g(t)x(σ(t)) = 0,

and in [20] the authors studied the convergence to zero of Kneser solutions of general
canonical type third-order delay differential equations.

From the above discussion, it is clear that the existence and estimates for the
Kneser-type solutions have been investigated for third-order delay differential equa-
tions or advanced type neutral differential equations in canonical or semi-canonical
form. To the best of the authors knowledge, no results exist on the existence of
Kneser-type solutions for noncanonical type differential equations with a delay or
advanced argument in the neutral term.

This article aims to address this question by taking (1.1) in noncanonical form
with a delay or advanced argument in the neutral term. To achieve this, we trans-
form the noncanonical equation (1.1) into a canonical form. This reduces the
number of classes of positive solutions to two instead of the usual four classes
for noncanonical equations. Hence, this significantly simplifies finding conditions
for the existence and finding estimates of Kneser-type solutions. Two examples are
provided to illustrate our main results.

2. Preliminary results

In this section, we introduce results necessary to demonstrate our main findings.
In view of (H3), it is possible to define the following functions for t ≥ t0:

R12(t) =

∫ ∞

t

1

r1(s)

∫ ∞

s

1

r2(w)
dw ds, R21(t) =

∫ ∞

t

1

r2(s)

∫ ∞

s

1

r1(w)
dw ds,

q1(t) =
r1(t)R

2
12(t)

R21(t)
, q2(t) =

r2(t)R
2
21(t)

R12(t)
.

Note that R12 and R21 are positive and decreasing. We begin with the following
theorem whose proof can be found in [1, Theorem 2.1].

Theorem 2.1. The noncanonical equation (1.1) can be expressed in an equivalent
canonical form as(

q2(t)
(
q1(t)

( z(t)

R12(t)

)′)′)′
+R21(t)g(t)x(t) = 0, (2.1)

with ∫ ∞

t0

1

q1(t)
dt =

∫ ∞

t0

1

q2(t)
dt = ∞ . (2.2)

Setting ψ(t) = z(t)/R12(t) in (2.1), we have the following 2 lemmas.

Lemma 2.2. A function x is a solution of the noncanonical equation (1.1) if and
only if x is solution of the canonical equation(

q2(t)
(
q1(t)ψ

′(t
)′)′

+R21(t)g(t)x(t) = 0, t ≥ t0 . (2.3)

Lemma 2.3. The noncanonical neutral differential equation (1.1) has an eventually
positive solution if and only if the canonical equation (2.3) has an eventually positive
solution.
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It has been established, see for example [5, 19], that if x is an eventually positive
solution of (1.1), then there exists t1 ≥ t0 such that for all t ≥ t1, the corresponding
function z(t) = x(t) + p(t)x(τ(t)) belongs to one of the following four classes:

S1 = {z : z > 0, L1z < 0, L2z < 0, L3z < 0},
S2 = {z : z > 0, L1z < 0, L2z > 0, L3z < 0},
S3 = {z : z > 0, L1z > 0, L2z > 0, L3z < 0},
S4 = {z : z > 0, L1z > 0, L2z < 0, L3z < 0},

where
L1z = r1z

′, L2z = r2(r1z
′)′, L3z =

(
r2(r1z

′)′
)′
.

From the above classification, we see that (1.1) has two types of monotonically
increasing solutions and two types of monotonically decreasing solutions. Lemma
2.3 simplifies the study of (1.1), since (2.3) has only of two types of solutions: one
eventually decreasing and the other eventually increasing, as stated in the following
lemma. This lemma follows from a generalization of the well-known Kiguradze
lemma [13, Lemma 1.1] applied to (1.4).

Lemma 2.4. Assume that x is an eventually positive solution of (2.3). Then the
corresponding function ψ belongs to one of the following two classes:

N0 = {ψ : ψ > 0, L1ψ < 0, L2ψ > 0, L3ψ < 0},
N2 = {ψ : ψ > 0, L1ψ > 0, L2ψ > 0, L3ψ < 0},

where
L1ψ = q1ψ

′, L2ψ = q2(q1ψ
′)′, L3ψ =

(
q2(q1ψ

′)′
)′
.

Definition 2.5. A solution x is called Kneser solution, if its corresponding function
ψ belongs to N0.

3. Main results

In this section, first we derive conditions for making the class N2 empty, so the
positive solutions of (2.3) belong N0. To simplify notation we define:

Q1(t) =

∫ t

t1

1

q1(s)
ds, Q2(t) =

∫ t

t1

1

q2(s)
ds,

Q12(t) =

∫ t

t1

1

q1(s)

∫ s

t1

1

q2(w)
dw ds,

∆(t) =

∫ ∞

t

1

q2(s)

∫ ∞

s

g(w)R21(w)R12(w) dw ds,

ϕ(t) = exp
(∫ t

t1

∆(s)

q1(s)
ds
)
,

where t ≥ t1 ≥ t0.
Now we introduce 2 additional conditions on the coefficient p(t). There exits

t2 ≥ t1 such that for all t ≥ t2, we have

p(t)
R12(τ(t))

R12(t)

ϕ(t)

ϕ(τ(t))
< 1 if τ(t) ≤ t, (3.1)

p(t)
R12(τ(t))

R12(t)

Q12(τ(t))

Q12(t)
< 1 if τ(t) ≥ t, (3.2)
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Since R12 and Q12 and ϕ are positive, the inequality 0 ≤ p(t) is preserved. Since ϕ
is increasing, when τ(t) ≤ t, we have ϕ(t)/ϕ(τ(t)) ≥ 1. Therefore (3.1) implies

p(t)
R12(τ(t))

R12(t)
< 1 .

Assuming (3.1) and (3.2), we define G such that for t ≥ t2,

0 < G(t) =

1− p(t)R12(τ(t))
R12(t)

if τ(t) ≤ t,

1− p(t)R12(τ(t))
R12(t)

Q12(τ(t))
Q12(t)

if τ(t) ≥ t,
(3.3)

Assuming (3.1), we define G1 such that for t ≥ t2,

0 < G1(t) =

1− p(t)R12(τ(t))
R12(t)

if τ(t) ≥ t,

1− p(t)R12(τ(t))
R12(t)

ϕ(t)
ϕ(τ(t)) if τ(t) ≤ t.

(3.4)

Lemma 3.1. Let x be an eventually positive solution of (2.3) with the correspond-
ing function ψ ∈ N2. Then

(i) q1(t)ψ
′(t)

Q2(t)
is decreasing, and

(ii) ψ(t)
Q12(t)

is decreasing.

Proof. The proof of (i) is the same proof as in [1, Lemma 3.1]. Let x be an eventually
positive solution of (2.3) with the corresponding function ψ ∈ N2. Since x(t) > 0,
by (2.3), we have that q2(t)(q1(t)ψ

′(t))′ is decreasing, and

q1(t)ψ
′(t) ≥

∫ t

t1

q2(s)(q1(s)ψ
′(s))′

q2(s)
ds ≥ Q2(t)q2(t)(q1(t)ψ

′(t))′.

Then (q1(t)ψ′(t)

Q2(t)

)′
=
Q2(t)q2(t)(q1(t)ψ

′(t))′ − q1(t)ψ
′(t)

Q2
2(t)q2(t)

≤ 0 .

Hence, q1(t)ψ
′(t)/Q2(t) is decreasing, which proves (i).

(ii) Using that q1(t)ψ
′(t)/Q2(t) is decreasing, we obtain

ψ(t) ≥
∫ t

t1

q1(s)ψ
′(s)

q1(s)

Q2(s)

Q2(s)
ds ≥ Q12(t)q1(t)ψ

′(t)

Q2(t)
. (3.5)

Therefore, ( ψ(t)

Q12(t)

)′
=
q1(t)ψ

′(t)Q12(t)− ψ(t)Q2(t)

q1(t)Q2
12(t)

≤ 0,

which implies ψ(t)/Q12(t) is decreasing and so (ii) is proved. □

Lemma 3.2. Let (3.1) and (3.2) hold and let x be an eventually positive solution
of (2.3) with the corresponding function ψ ∈ N2. Then

G(t)ψ(t) ≤ x(t)

R12(t)
≤ ψ(t), for all t ≥ t2 . (3.6)

Proof. Let x(t) be an eventually positive solution of (2.3) with the corresponding
function ψ(t) ∈ N2 for t ≥ t1 ≥ t0. Then, from the definition of ψ(t), it is easy to
see that

ψ(t) =
z(t)

R12(t)
≥ x(t)

R12(t)
. (3.7)
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Moreover,

x(t) = R12(t)ψ(t)− p(t)x(τ(t))

≥ R12(t)ψ(t)− p(t)R12(τ(t))ψ(τ(t))

= R12(t)
(
ψ(t)− p(t)

R12(τ(t))

R12(t)
ψ(τ(t))

)
.

When τ(t) ≤ t, since ψ is increasing, ψ(τ(t)) ≤ ψ(t) which is used for obtain-
ing G(t) in the above inequality. Also when τ(t) ≥ t, since ψ/Q12 is decreasing,
ψ(τ(t))/Q12(τ(t)) ≤ ψ(t)/Q12(t), which is used for obtaining G(t) in the above
inequality. In both cases we have

x(t) ≥ R12(t)G(t)ψ(t). (3.8)

Combining this inequality and (3.7) we obtain (3.6). □

Theorem 3.3. Let (3.1) and (3.2) hold and let x be an eventually positive solution
of (1.1). If

lim sup
t→∞

( 1

Q2(t)

∫ t

t2

g(s)R21(s)R12(s)G(s)Q2(s)Q12(s) ds

+Q12(t)

∫ ∞

t

g(s)R21(s)R12(s)G(s) ds
)
> 1 ,

(3.9)

then the class N2 is empty.

Proof. Let x be an eventually positive solution of (1.1). Since limt→∞ τ(t) = ∞,
we can assume x(τ(t)) > 0. By Lemma 2.3, x is also a positive solution to (2.3).
To obtain a contradiction assume that the corresponding function ψ(t) belongs to
the class N2. Applying (3.6) to (2.3), one obtains(

q2(t)
(
q1(t)ψ

′(t)
)′)′

+ g(t)R21(t)R12(t)G(t)ψ(t) ≤ 0, t ≥ t2.

Integrating the latter inequality from t to ∞, we obtain(
q1(t)ψ

′(t)
)′ ≥ 1

q2(t)

∫ ∞

t

g(s)R21(s)R12(s)G(s)ψ(s) ds.

Again integrating from t2 to t, we obtain

q1(t)ψ
′(t) ≥

∫ t

t2

1

q2(s)

(∫ ∞

s

g(v)R21(v)R12(v)G(v)ψ(v) dv
)
ds

=

∫ t

t2

1

q2(s)

(∫ t

s

g(v)R21(v)R12(v)G(v)ψ(v) dv
)
ds

+

∫ t

t2

1

q2(s)

(∫ ∞

t

g(v)R21(v)R12(v)G(v)ψ(v) dv
)
ds

≥
∫ t

t2

g(s)R21(s)R12(s)G(s)Q2(s)ψ(s) ds

+Q2(t)

∫ ∞

t

g(s)R21(s)R12(s)G(s)ψ(s) ds.
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Using (3.5) in the latter inequality, we obtain

Q2(t)ψ(t)

Q12(t)
≥

∫ t

t2

g(s)R21(s)R12(s)G(s)Q2(s)ψ(s) ds

+Q2(t)

∫ ∞

t

g(s)R21(s)R12(s)G(s)ψ(s) ds.

(3.10)

Using that ψ(t) is increasing and ψ(t)/Q12(t) is decreasing in (3.10), we obtain

1 ≥ 1

Q2(t)

∫ t

t2

g(s)R21(s)R12(s)G(s)Q2(s)Q12(s) ds

+Q12(t)

∫ ∞

t

g(s)R21(s)R12(s)G(s) ds.

Computing the lim sup as t → ∞ on both sides of the inequality, we arrive at a
contradiction to (3.9). The proof is complete. □

Next, we present lower and upper bounds for the positive solutions of (1.1). For
simplicity, we define:

F (t) =
ϕ(t)

q1(t)

∫ ∞

t

1

q2(v)

∫ ∞

v

g(s)R21(s)R12(s)G1(s)

ϕ(s)
ds dv.

Lemma 3.4. Let (3.1) hold and let x be an eventually positive solution of (2.3)
with the corresponding function ψ ∈ N0. Then

(i) ψ(t)ϕ(t) is increasing, and

(ii) G1(t)ψ(t) ≤ x(t)
R12(t)

≤ ψ(t).

Proof. Since ψ ∈ N0, we have

ψ(t) > 0, q1(t)ψ
′(t) < 0, q2(t)(q1(t)ψ

′(t))′ > 0,
(
q2(t)(q1(t)ψ

′(t))′
)′
< 0,

for all t ≥ t2. Since q2(t)(q1(t)ψ
′(t))′ is positive and decreasing, there exists a

constant ℓ such that

lim
t→∞

q2(t)
(
q1(t)ψ

′(t)
)′

= ℓ ≥ 0.

We claim that ℓ = 0. If not, then (q1(t)ψ
′(t))′ ≥ ℓ

2q2(t)
> 0 and therefore

q1(t)ψ
′(t) ≥ q1(t2)ψ

′(t2) +
ℓ

2

∫ t

t2

1

q2(s)
ds→ ∞ as t→ ∞,

which contradicts that q1(t)ψ
′(t) < 0 for all t ≥ t2. Thus,

lim
t→∞

q2(t)(q1(t)ψ
′(t))′ = 0.

Since q1(t)ψ
′(t) is negative and increasing, there exists a constant m such that

lim
t→∞

q1(t)ψ
′(t) = m ≤ 0.

We claim that m = 0. If not, then ψ′(t) ≤ m
q1(t)

< 0 and we have

ψ(t) ≤ ψ(t2) +m

∫ t

t2

1

q1(s)
ds→ −∞ as t→ ∞,



8 G. PURUSHOTHAMAN, K. SURESH, E. THANDAPANI, E. TUNÇ EJDE-2024/55

which contradicts that ψ(t) is positive. Therefore, limt→∞ q1(t)ψ
′(t) = 0. Now, an

integration of (2.3) from t to ∞ yields(
q1(t)ψ

′(t)
)′

=
1

q2(t)

∫ ∞

t

g(s)R21(s)x(s) ds

≤ 1

q2(t)

∫ ∞

t

g(s)R21(s)R12(s)ψ(s) ds

≤ ψ(t)

q2(t)

∫ ∞

t

g(s)R21(s)R12(s) ds,

(3.11)

where we have used ψ(t) ≥ x(t)
R12(t)

and ψ(t) is decreasing. Again integrating (3.11),

we obtain

ψ′(t) ≥ − ψ(t)

q1(t)

∫ ∞

t

1

q2(s)

(∫ ∞

s

g(v)R21(v)R12(v) dv
)
ds = −ψ(t)∆(t)

q1(t)
.

Hence,

(ψ(t)ϕ(t))′ = ψ′(t)ϕ(t) + ψ(t)ϕ′(t) ≥ ψ(t)
(
ϕ′(t)− ∆(t)

q1(t)
ϕ(t)

)
.

Since ϕ(t) is a solution of the differential equation ϕ′(t)− ∆(t)
q1(t)

ϕ(t) = 0, we conclude

that ψ(t)ϕ(t) is increasing. From the definition of ψ(t), and 0 ≤ p(t), we see that

ψ(t) =
z(t)

R12(t)
=

1

R12(t)

(
x(t) + p(t)x(τ(t))

)
.

So, ψ(t) ≥ x(t)
R12(t)

and

x(t) ≥ R12(t)ψ(t)− p(t)R12(τ(t))ψ(τ(t))

≥ R12(t)
(
ψ(t)− p(t)

R12(τ(t))

R12(t)
ψ(τ(t))

)
≥ R12(t)G1(t)ψ(t).

Hence,

G1(t)ψ(t) ≤
x(t)

R12(t)
≤ ψ(t),

and the proof is complete. □

Theorem 3.5. Let conditions (3.1), (3.2) and (3.9) be satisfied. Then there exist
positive constants α1 and α2 such that every positive solution x of (1.1) satisfies

α1
G1(t)

ϕ(t)
≤ x(t)

R12(t)
≤ α2 exp

(
−
∫ t

t2

F (s) ds
)
, for t ≥ t2 . (3.12)

Proof. Assume that x is a positive solution of (1.1). Then, by Lemma 2.3, x is also
a positive solution of (2.3). By Theorem 3.3, ψ(t) belongs to N0 for t ≥ t2. From
(i) and (ii) of Lemma 3.4 we have

x(t)

R12(t)
≥ G1(t)

ϕ(t)
ϕ(t)ψ(t) ≥ G1(t)

ϕ(t)
ϕ(t2)ψ(t2). (3.13)

On the other hand, integrating (2.3) from t to ∞ and taking into account Lemma
3.4(ii), we obtain

(q1(t)ψ
′(t))′ =

1

q2(t)

∫ ∞

t

g(s)R21(s)x(s) ds
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≥ 1

q2(t)

∫ ∞

t

g(s)R21(s)R12(s)G1(s)ψ(s) ds

≥ ψ(t)ϕ(t)

q2(t)

∫ ∞

t

g(s)R21(s)R12(s)G1(s)

ϕ(s)
ds.

Once more integration yields

−ψ′(t) ≥ ψ(t)ϕ(t)

q1(t)

∫ ∞

t

1

q2(v)

∫ ∞

v

g(s)R21(s)R12(s)G1(s)

ϕ(s)
ds dv,

or equivalently
ψ′(t)

ψ(t)
≤ −F (t).

Integrating the latter inequality from t2 to t yields

x(t)

R12(t)
≤ ψ(t) ≤ ψ(t2) exp

(
−
∫ t

t2

F (s) ds
)
. (3.14)

Combining (3.13) and (3.14) gives the desired result (3.12). □

4. Examples

In this section, we present two examples to illustrate the main results.

Example 4.1. We consider the non-canonical differential equation with an ad-
vanced neutral term,(

t2
(
t2(x(t) + p0x(λt))

′)′)′
+ atx(t) = 0, t ≥ 1, (4.1)

where a > 0, λ > 1, and 0 < p0 < 1/(2 − λ−1)2. Here r1(t) = r2(t) = t2,
z(t) = x(t) + p0x(τ(t)), p(t) = p0, τ(t) = λt > t, g(t) = at, t0 = 1. Simple
calculations show that

R12(t) = R21(t) =
1

2t2
, q1(t) = q2(t) =

1

2
,

Q1(t) = Q2(t) =
(t− 1)

2
, Q12(t) = 2(t− 1)2.

The transformation ψ(t) = z(t)/R12(t) yields the canonical equation

ψ′′′(t) +
2a

t
x(t) = 0.

First we check the conditions for applying Theorem 3.3. Condition (3.2) becomes

p0

( t− λ−1

t− 1

)2

< 1, ∀t ≥ t2 .

Since λ > 1, for t > 1, it follows that t−λ−1 > 0 and t−λ−1

t−1 is decreasing. Therefore

we select t2 = 2. Then (3.2) is implied by p0(2−λ−1)2 < 1, which follows from the
choice of p0 in (4.1). Then for τ(t) ≥ t and t ≥ t2 = 2, we have

G(t) = 1− p0

( t− λ−1

t− 1

)2

≥ 1− p0(2− λ−1)2 > 0

To check condition (3.9), we label the 2 integrals as I and II. Then

I ≥
a
(
1− p0(2− λ−1)2

)
2

1

(t− 1)

∫ t

2

(
1− s−1)3 ds
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and

II ≥
a
(
1− p0(2− λ−1)2

)
2

(t− 1)2
∫ ∞

t

s−3 ds

Adding the above inequalities, and using L’Hopital’s Rule to compute the limits as
t→ ∞, we have

lim
t→∞

I + II ≥ 3a

4

(
1− p0(2− λ−1)2

)
which will be greater than 1 if we choose

a >
4

3
(
1− p0(2− λ−1)2

) .
Under this condition all positive solutions of (4.1) are Kneser-type solutions.

To check the conditions for Theorem 3.5, we observe that G1(t) = 1 − p0λ
−2.

Since p0 < 1 and λ > 1, we have G1(t) > 0 for all t ≥ 1. Also we have ϕ(t) = ta/2,

∆(t) =

∫ ∞

t

2

∫ ∞

s

aw
1

2w2

1

2w2
dw ds =

a

2

∫ ∞

t

∫ ∞

s

1

w3
dw ds =

a

4t
,

F (t) = 2ta/2
∫ ∞

t

2

∫ ∞

s

aw
1

2w2

1

2w2

(
1− p0λ

−2
)
/wa/2 dw ds =

4a
(
1− p0λ

−2
)

(4 + a)(2 + a)
t−1,

exp
(
−
∫ t

1

F (s) ds
)
= t−δ, where δ =

4a
(
1− p0λ

−2
)

(4 + a)(2 + a)
.

By Theorem 3.5 there are positive constants α1 and α2 such that all positive
solutions to (4.1) satisfy

α1t
−2− a

2 ≤ x(t) ≤ α2t
−2−δ .

As a particular case p0 = 1/18, λ = 2, and a = 2 yield the bounds

α1t
−3 ≤ x(t) ≤ α2t

−503/216 .

When p0 = 0, Theorem 3.5 yields an estimate for ordinary differential equation(
t2
(
t2x′(t)

)′)′
+ atx(t) = 0, a > 0, t ≥ 1;

namely

α1t
−2− a

2 ≤ x(t) ≤ α2t
−2− 4a

(4+a)(2+a) .

Example 4.2. We consider the non-canonical differential equation with an delayed
neutral term, (

t2
(
t2(x(t) + p0x(λt))

′)′)′
+ atx(t) = 0, t ≥ 1, (4.2)

where a > 0, τ(t) = λt with λ < 1, 0 < p0 < λ2+
a
2 . The expression for

g, q, q, r, R, ϕ,∆ are the same as in Example 4.1.
First we check the conditions for applying Theorem 3.3. Condition (3.1) becomes

p0
1

λ2
< 1, ∀t ≥ t2 ,

which is implied by the assumption 0 < p0 < λ2+
a
2 . Setting t2 = 1 we have

G(t) = 1− p0λ
−2 > 0, ∀t ≥ t2 = 1 .
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To check condition (3.9), we label the 2 integrals as I and II. Then

I =
a

2

(
1− p0λ

−2
) 1

(t− 1)

∫ t

1

(
1− s−1)3 ds

and

II =
a

2

(
1− p0λ

−2
)
(t− 1)2

∫ ∞

t

s−3 ds .

Adding the above equalities, and using L’Hopital’s Rule to compute the limits as
t→ ∞, we have

lim
t→∞

I + II =
3a

4

(
1− p0λ

−2),

which will be greater than 1 if we choose

a >
4

3
(
1− p0λ−2)

.

Under this condition all positive solutions of (4.2) are Kneser-type solutions.
To check the conditions for Theorem 3.5, we compute the following expressions:

G1(t) = 1− p0λ
−2− a

2 ,

which is positive by the assumption 0 < p0 < λ2+
a
2 . Then we compute

F (t) =
4a

(
1− p0λ

−2− a
2

)
(4 + a)(2 + a)

t−1,

exp
(
−
∫ t

1

F (s) ds
)
= t−γ , where γ =

4a
(
1− p0λ

−2− a
2

)
(4 + a)(2 + a)

.

By Theorem 3.5 there are positive constants α1 and α2 such that all positive
solutions to (4.2) satisfy

α1t
−2− a

2 ≤ x(t) ≤ α2t
−2−γ .

As a particular case p0 = 1/16, λ = 1/2, and a = 2, we have the bounds

α1t
−3 ≤ x(t) ≤ α2t

−13/6 .

5. Conclusion

In this study, we derived conditions for the existence and estimates of Kneser-
type solutions of the noncanonical third-order differential equations with a delay
or advanced argument in the neutral term. This was achieved by transforming the
noncanonical equation (1.1) into a canonical form without adding any new condi-
tions. We obtained estimates for the Kneser-type solutions of (1.1), which are new
contribution to the literature. These estimates for Kneser-type solutions are not
easily obtained for the noncanonical equation (1.1) without such a transformation.
Furthermore, the results from references [2, 3, 4, 7, 20, 21, 23] do not apply to
equations (4.1) and (4.2) as they are noncanonical. It is interesting to study similar
properties of (1.1) when the neutral term is of mixed type.
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