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EXISTENCE OF GLOBAL WEAK SOLUTION TO TUMOR

CHEMOTAXIS COMPETITION SYSTEMS WITH LOOP AND

SIGNAL DEPENDENT SENSITIVITY

SHANMUGASUNDARAM GNANASEKARAN, NAGARAJAN NITHYADEVI

Abstract. This article examines the weak solution of a fully parabolic chemotaxis-
competition system with loop and signal-dependent sensitivity. The system

is subject to homogeneous Neumann boundary conditions within an open,

bounded domain Ω ⊂ Rn, where n ≥ 1 and ∂Ω is smooth. We assume that the
parameters in the system are positive constants. Additionally, the initial data

(u10, u20, v10, v20) ∈ L2(Ω) × L2(Ω) × W 1,2(Ω) × W 1,2(Ω) are non-negative.

The existence of a weak solution to the problem is established using energy
inequality method.

1. Introduction

This article shows the existence of weak solutions for a chemotaxis-competition
system that features loop and signal dependent sensitivity. The system under con-
sideration models the chemotactical communication within the tumor site, specifi-
cally the EGF/CSF-1 paracrine invasion loop.

u1t = d1∆u1 −∇ · (χ1(v1)u1∇v1)−∇ · (χ2(v2)u1∇v2)

+ δ1u1(1− u1 − a1u2), x ∈ Ω, t > 0,

u2t = d2∆u2 −∇ · (ξ1(v1)u2∇v1)−∇ · (ξ2(v2)u2∇v2)

+ δ2u2(1− a2u1 − u2), x ∈ Ω, t > 0,

v1t = d3∆v1 + α1u1 + β1u2 − γ1v1, x ∈ Ω, t > 0,

v2t = d4∆v2 + α2u1 + β2u2 − γ2v2, x ∈ Ω, t > 0,

∂u1

∂ν
=

∂u2

∂ν
=

∂v1
∂ν

=
∂v2
∂ν

= 0, x ∈ ∂Ω, t > 0,

u1(x, 0) = u10, u2(x, 0) = u20, v1(x, 0) = v10, v2(x, 0) = v20, x ∈ Ω,

(1.1)

where Ω ⊂ Rn, n ≥ 1 is an open bounded domain with smooth boundary ∂Ω
and ∂

∂ν indicate differentiation with respect to the outward normal on ∂Ω. The
quantities u1(x, t) and u2(x, t) represent the densities of macrophages and tumor
cells, respectively, while v1(x, t) and v2(x, t) represent the concentration of chemical
signals secreted by u1 and u2, respectively. We assume the all parameters in the
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equation are positive. Here, di (for i = 1, 2, 3, 4) denotes the diffusion coefficients.
Meanwhile, δ1 and δ2 represent the growth rates of macrophages and tumor cells,
respectively. The coefficient a1 describes the interaction among macrophages, while
a2 describes the interaction among tumor cells. The parameters αi, βi, and γi (for
i = 1, 2) represent the production rate of macrophages and tumor cells, respectively,
while γi represents the decay of the chemical attractants. The initial conditions u10,
u20, v10, and v20 satisfy

u10, u20 ∈ L2(Ω), with u10, u20 ≥ 0 in Ω,

v10, v20 ∈ W 1,2(Ω), with v10, v20 ≥ 0 in Ω.
(1.2)

The chemotactic sensitivity functions χi(vi) and ξi(vi), i = 1, 2 satisfy

χi(vi), ξi(vi) ∈ L∞(Ω), with χi(vi), ξi(vi) > 0 in Ω. (1.3)

The system (1.1) under consideration is a generalized version of the classic Keller-
Segel chemotaxis system. Chemotaxis refers to the directional movement of micro-
organisms in response to a chemical stimulus, and is involved in various biological
processes such as disease progression, wound healing, neuron migration, and tumor
invasion. Keller and Segel first introduced the original Keller-Segel system in 1970
[13], and since then, the theoretical analysis of Keller-Segel and its variants has
been intensively studied due to its numerous applications in biology, medicine, and
other sciences. For further insight into the applications of chemotaxis, [22] provides
a comprehensive review. Many researchers have been attracted to the study of
Keller-Segel chemotaxis systems, as evidenced by the reviews by Bellomo et al. [2],
Horstmann [11], Lankeit and Winkler [16], and the references therein. For more
information, see [1, 19, 20, 21, 25, 26, 34].

Recently, Wikler [33] discussed the following keller-segel system using some es-
timates on the Neumann problem

ut = ∇ · (D(v)∇u)− χ∇ · (uS(v)∇v) + ru− µu2,

vt = ∆v − v + u.
(1.4)

When r ∈ R, D ∈ C2([0,∞)) and S ∈ C2([0,∞)) ∩W 1,∞((0,∞)), for any µ > 0,
the authors provided a result on the global existence of classical solutions in a two
dimensional domain.

The system consisting of two species chemotaxis with respect to two chemicals
is expressed as follows

ut = ∆u− χ∇ · (u∇v) ,

τvt = ∆v − v + w,

wt = ∆w − ξ∇ · (w∇z) ,

τzt = ∆z − z + u.

(1.5)

Tao and Winkler [24] investigated system (1.5) under the conditions of τ = 0 and
χ, ξ ∈ ±1. They established the existence of globally bounded classical solutions to
(1.5) for both the attraction-repulsion case (χ = 1, ξ = −1) and double repulsion
case (χ = ξ = −1). Furthermore, for the attraction-attraction case (χ = ξ = 1),
they proved the global existence and boundedness of solutions to (1.5) if either m =∫
Ω
u0+

∫
Ω
w0 is less than a certain threshold value in the two-dimensional space (n =

2), or if n ≥ 3 and the values of |u0|L∞(Ω) and |w0|L∞(Ω) are sufficiently small.
Additionally, they showed that the system (1.5) exhibits a blow-up of solutions in
finite time if either n = 2 and m is sufficiently large, or if n ≥ 3 and m > 0. Li
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and Wang [18] extended the results of [24] to the fully parabolic case by presenting
the unique global classical solution for the system in two dimensions under the
condition that both m1 and m2 are small.

Consider the chemotaxis system with two species and two chemicals, which in-
cludes a logistic source term and is described by the following equations

ut = d1∆u− χ1∇ · (u∇v) + µ1u(1− u− a1w),

τvt = d2∆v − λ1v + α1w,

wt = d3∆w − χ2∇ · (w∇z) + µ2w(1− a2u− w),

τzt = d4∆z − λ2z + α2u.

(1.6)

Zhang et al. [35] studied the global existence and boundedness of solutions to (1.6)
with τ = 0 and di = 1 (i = 1, 2, 3, 4) under smallness assumptions on the initial
conditions and appropriate conditions on the strength of the damping death effects.
They also established asymptotic stability when a1 ≥ 0 and a2 < 1. Tu et al.
[30] studied the global bounded classical solution of the same system under the
assumption that χi

µi
(i = 1, 2) are sufficiently small. They also showed that this

solution converges exponentially to the steady state when a1, a2 ∈ (0, 1) and µ1, µ2

are sufficiently large. In the case where a1 ≥ 1 > a2 > 0 and µ2 is sufficiently large,
the classical solution of the system converges to (0, 1, 1, 0) as t → ∞. Chunlai et
al. [5] established the global-in-time solution of the system (1.6) using the eventual
comparison approach and investigated the stability analysis of the system under
suitable conditions. Wang and Mu [32] partially improved the results of [35] and
[30] under suitable conditions on the parameters χi, µi, and ai (i = 1, 2).

Zheng and Mu [36] investigated the global bounded classical solution of (1.6) for
n = 2 and τ = 0 using a priori estimates and the Moser-Alikakos iteration tech-
nique. Meanwhile, when τ = 1 and n ≥ 1, a globally bounded solution to system
(1.6) is shown to exist by the authors, utilizing the maximal Sobolev regularity and
semigroup technique. For the three-dimensional case, Li et al. [17] established the
global boundedness of the classical solution if µi ≥ max{7χ2

i + 1, 51/2}, i = 1, 2,
and proved that the solution exponentially converges to (1, 1, 1, 1) for large time,
subject to the conditions that µ1 >
chi22/8 and µ2 >
chi21/8. Additionally, Black [3] examined the global existence of a bounded solu-
tion for the two-dimensional Lotka-Volterra competitive system with an additional
chemotactic influence, and established the asymptotic behavior of the solution for
n ≥ 2. If µi/χ

2
i , i = 1, 2, are sufficiently large and a1, a2 < 1, any global solutions

u ̸= 0 ̸= w of the system converge to the unique positive equilibrium point. Fur-
thermore, the author also demonstrated that the solution of the system converges
to (0, 1, 1, 0) as t → ∞ provided a1 ≥ 1, a2 < 1, and µ2

χ2
is sufficiently large. Finally,

Pan et al. [23] studied the unique global bounded classical solution of (1.6) for
n = 3 when µi, i = 1, 2, are sufficiently large.

The system under consideration is a chemotaxis competition model featuring a
loop structure, described by the set of equations

u1t = d1∆u1 − χ11∇ · (u1∇v1)− χ12∇ · (u1∇v2) + µ1u1(1− u1 − a1u2),

u2t = d2∆u2 − χ21∇ · (u2∇v1)− χ22∇ · (u2∇v2) + µ2u2(1− a2u1 − u2),

τ1v1t = d3∆v1 + α11u1 + α12u2 − λ1v1,

τ2v2t = d4∆v2 + α21u1 + α22u2 − λ2v2.

(1.7)
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Espejo et al. [8] investigated the chemotaxis competition system with loop (1.7)
in the case where µi = τi = λi = 0, i = 1, 2. They established the necessary and
sufficient conditions for global existence and blow-up of solutions by adapting the
second moment technique from [6] and [9]. This blow-up behavior of solutions mod-
els the aggregation of tumor cells and macrophages. They also demonstrated the
system has an energy structure and proved global existence using the logarithmic
HLS-inequality. Tu et al. [27] studied the chemotaxis competition system with loop
(1.7) with τ = 0 and established sufficient conditions for the existence of global solu-
tion, as well as exponential convergence to the unique positive equilibrium point for
sufficiently large µ1 and µ2. They also showed that if χ11/µ1, χ12/µ1, χ21/µ2, and
χ22/µ2 are sufficiently small for n ≥ 2, then the system admits a globally bounded
classical solution. When a1 > 1 and µ2 is sufficiently large, the solution converges
to a semi-trivial equilibrium point, and this convergence is algebraic when a1 = 1.
Tu et al. [28] further examined the global boundedness of the classical solution of
the system in two dimensions for the case where τ = 1 and di = 1, i = 1, 2, 3, 4.
They proved that the solution converges exponentially to the same point as in [27].
When µ1 and µ2 are sufficiently large, Tu et al. [29] obtained the global bounded
classical solution of (1.7) in three dimensions. For more information, refer to [31].
The global existence of classical solutions to 1.7 with chemotaxis sensitivity function
was studied by Gurusamy et al. [10].

Inspired by the aforementioned studies and their relevance in biological contexts,
we investigate the system (1.1). By utilizing the energy estimates, we establish the
global existence of weak solutions subject to suitable conditions on the parameters
and non-negative initial data (u10, u20, v10, v20) ∈ L2(Ω) × W 1,2(Ω) × W 1,2(Ω),
where Ω ⊂ Rn and n ≥ 1. Additionally, we present numerical simulations of the
system (1.1) in two-dimensional domain.

The structure of our article is as follows: In Section 2, we introduce some fun-
damental inequalities and a key lemma, and we demonstrate the local existence of
classical solutions. In Section 3, we focus on the global existence of solutions to the
approximate system. In Section 4, some energy estimates are derived to support
the weak solutions analysis. Section 5 discusses the weak solutions to the system
(1.1).

First we have the existence of global weak solutions.

Theorem 1.1. Assume that Ω ⊂ Rn, n ≥ 1 is an open, bounded domain with
smooth boundary. Let the initial data (u10, u20, v10, v20) ∈ L2(Ω)×L2(Ω)×W 1,2(Ω)×
W 1,2(Ω) and assume that the functions χi(vi) and ξi(vi), for i = 1, 2 satisfy (1.3).
Then, for any positive parameters, the system (1.1) admits at least one global weak
solution.

Definition 1.2. Let (u10, u20, v10, v20) ∈ L2(Ω)× L2(Ω)×W 1,2(Ω)×W 1,2(Ω) be
nonnegative and the functions χi(vi) and ξi(vi), i=1,2 satisfy (1.3). We say that
(u1, u2, v1, v2) of functions is a global weak solution of (1.1), if

u1 ∈ L2
loc

(
(0,∞);L2(Ω)

)
, u2 ∈ L2

loc

(
(0,∞);L2(Ω)

)
,

v1 ∈ L2
loc

(
(0,∞);W 1,2(Ω)

)
, v1 ∈ L2

loc

(
(0,∞);W 1,2(Ω)

)
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and satisfies

−
∫ ∞

0

∫
Ω

u1ϕt = d1

∫
Ω

u10ϕ0 −
∫ ∞

0

∫
Ω

∇u1 · ∇ϕ+

∫ ∞

0

∫
Ω

χ1(v1)u1∇v1∇ϕ

+

∫ ∞

0

∫
Ω

χ2(v2)u1∇v2∇ϕ+ δ1

∫ ∞

0

∫
Ω

u1(1− u1 − a1u2)ϕ,

−
∫ ∞

0

∫
Ω

u2ϕt = d2

∫
Ω

u20ϕ0 −
∫ ∞

0

∫
Ω

∇u2 · ∇ϕ+

∫ ∞

0

∫
Ω

ξ1(v1)u2∇v1∇ϕ

+

∫ ∞

0

∫
Ω

ξ2(v2)u2∇v2∇ϕ+ δ2

∫ ∞

0

∫
Ω

u2(1− u2 − a2u1)ϕ,

−
∫ ∞

0

∫
Ω

v1ϕt = d3

∫
Ω

v10ϕ0 −
∫ ∞

0

∫
Ω

∇v1 · ∇ϕ+ α1

∫ ∞

0

∫
Ω

u1ϕ+ β1

∫ ∞

0

∫
Ω

u2ϕ

− γ1

∫ ∞

0

∫
Ω

v1ϕ,

−
∫ ∞

0

∫
Ω

v2ϕt = d4

∫
Ω

v20ϕ0 −
∫ ∞

0

∫
Ω

∇v2 · ∇ϕ+ α2

∫ ∞

0

∫
Ω

u1ϕ+ β2

∫ ∞

0

∫
Ω

u2ϕ

− γ2

∫ ∞

0

∫
Ω

v2ϕ,

for all ϕ ∈ C∞
0 (Ω× [0,∞)).

2. Preliminaries and local solution

In this section, we establish the existence of local solutions to the approximate
system, a standard process that follows the principles outlined in [12].

System (1.1) is approximated for each ϵ ∈ (0, 1) by the system

u1ϵt = d1∆u1ϵ −∇ · (χ1(v1ϵ)u1ϵ∇v1ϵ)−∇ · (χ2(v2ϵ)u1ϵ∇v2ϵ) + f1(u1ϵ, u2ϵ),

u2ϵt = d2∆u2ϵ −∇ · (ξ1(v1ϵ)u2ϵ∇v1ϵ)−∇ · (ξ2(v2ϵ)u2ϵ∇v2ϵ) + f2(u1ϵ, u2ϵ),

v1ϵt = d3∆v1ϵ + α1u1ϵ + β1u2ϵ − γ1v1ϵ,

v2ϵt = d4∆v2ϵ + α2u1ϵ + β2u2ϵ − γ2v2ϵ,

(2.1)

with the source

f1(u1ϵ, u2ϵ) = δ1u1ϵ(1− u1ϵ − a1u2ϵ)− ϵuq
1ϵ,

f2(u1ϵ, u2ϵ) = δ2u2ϵ(1− u2ϵ − a2u1ϵ)− ϵuq
2ϵ.

We introduce the non-negative approximate initial data

u10ϵ, u20ϵ ∈ C0(Ω), with u10ϵ, u20ϵ ≥ 0 in Ω,

v10ϵ, v20ϵ ∈ W 1,q(Ω), for some q > {2, n} with v10ϵ, v20ϵ ≥ 0 in Ω
(2.2)

that satisfy the following conditions

u10ϵ → u10 in L2(Ω),

u20ϵ → u20 in L2(Ω),

v10ϵ → v10 in W 1,2(Ω),

v20ϵ → v20 in W 1,2(Ω),
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as ϵ → 0. Moreover, the chemotactic sensitivity functions χi(viϵ) and ξi(viϵ), i = 1, 2
are positive, non-decreasing and satisfy

∥χi(viϵ)∥L∞(Ω) ≤ C and ∥ξi(viϵ)∥L∞(Ω) ≤ C,

χi(viϵ) → χi(vi) and ξi(viϵ) → ξi(vi) inL∞(Ω) a sϵ → 0,
(2.3)

where C > 0.

Lemma 2.1 (Local solution). Suppose that Ω ⊂ Rn, n ≥ 1 is an open, bounded do-
main with smooth boundary and q > max{2, n}. Assume that the functions χi(viϵ)
and ξi(viϵ), i = 1, 2 satisfy (2.3) and the initial conditions (u10ϵ, u20ϵ, v10ϵ, v20ϵ) sat-
isfy (2.2). Then there exists Tmax < ∞ such that (2.1) admits a unique solution
(u1ϵ, u2ϵ, v1ϵ, v2ϵ) satisfies

u1ϵ, u2ϵ ∈ C0
(
Ω× [0, Tmax )

)
∩ C2,1

(
Ω× (0, Tmax)

)
,

v1ϵ, v2ϵ ∈ C0
(
Ω× [0, Tmax )

)
∩ C2,1

(
Ω× (0, Tmax)

)
∩ L∞

loc( [0, Tmax ) ;W
1,q(Ω)).

Proof. Standard techniques involving the Banach fixed point theorem and parabolic
regularity theories can be utilized to derive the proof. For a detailed demonstration,
please refer to [12]. Moreover, the non-negativity of the solution in Ω× (0, Tmax) is
guaranteed by the maximum principle along with (2.2) . □

3. Global solution

To establish the weak solution of our system, we first demonstrate the existence
of global solutions to the approximate system (2.1).

Lemma 3.1. The solution (u1ϵ, u2ϵ, v1ϵ, v2ϵ) of (2.1) for every ϵ ∈ (0, 1) satisifes
the following conditions ∫

Ω

u1ϵ ≤ C, ∀t ∈ (0, Tmax,ϵ), (3.1)∫
Ω

u2ϵ ≤ C, ∀t ∈ (0, Tmax,ϵ), (3.2)∫
Ω

v1ϵ ≤ C, ∀t ∈ (0, Tmax,ϵ), (3.3)∫
Ω

v2ϵ ≤ C, ∀t ∈ (0, Tmax,ϵ), (3.4)∫
Ω

|∇v1ϵ|2 ≤ C, ∀t ∈ (0, Tmax,ϵ), (3.5)∫
Ω

|∇v2ϵ|2 ≤ C, ∀t ∈ (0, Tmax,ϵ). (3.6)

Moreover, we have∫ T

0

∫
Ω

u2
1ϵ +

ϵ

δ1

∫ T

0

∫
Ω

uq
1ϵ ≤ C(T + 1), ∀t ∈ (0, Tmax,ϵ), (3.7)∫ T

0

∫
Ω

u2
2ϵ +

ϵ

δ2

∫ T

0

∫
Ω

uq
2ϵ ≤ C(T + 1), ∀t ∈ (0, Tmax,ϵ), (3.8)

where the constant C > 0.
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Proof. Upon integrating the first equation in (2.1), we obtain

d

dt

∫
Ω

u1ϵ = δ1

∫
Ω

u1ϵ(1− u1ϵ − a1u2ϵ)− ϵ

∫
Ω

uq
1ϵ, (3.9)

≤ δ1

∫
Ω

u1ϵ − δ1

∫
Ω

u2
1ϵ, (3.10)

and
d

dt

∫
Ω

u2ϵ ≤ δ2

∫
Ω

u2ϵ − δ2

∫
Ω

u2
2ϵ. (3.11)

The proof follows a similar approach as outlined in [10, lemma 1]. Next, we integrate
the third equation in (2.1) over Ω, yielding

d

dt

∫
Ω

v1ϵ = α1

∫
Ω

u1ϵ + β1

∫
Ω

u2ϵ − γ1

∫
Ω

v1ϵ.

By utilizing (3.1) and (3.2), we can derive

d

dt

∫
Ω

v1ϵ = −γ1

∫
Ω

v1ϵ + C,

Now, applying ODE arguments, we deduce that∫
Ω

v1ϵ ≤ max
{∫

Ω

v10ϵ, C
}
.

Employing a similar procedure, we can derive equation (3.4). We then proceed by
multiplying the third equation in (2.1) with −∆v1ϵ and integrating it over Ω, gives

1

2

d

dt

∫
Ω

|∇v1ϵ|2 + d3

∫
Ω

|∆v1ϵ|2 + γ1

∫
Ω

|∇v1ϵ|2

= −
∫
Ω

(α1u1ϵ + β1u2ϵ)∆v1ϵ,

(3.12)

for all t ∈ (0, Tmax). Using Young’s inequality, we obtain

1

2

d

dt

∫
Ω

|∇v1ϵ|2 + d3

∫
Ω

|∆v1ϵ|2 + γ1

∫
Ω

|∇v1ϵ|2

≤ d3

∫
Ω

|∆v1ϵ|2 +
α2
1

2d3

∫
Ω

u2
1ϵ +

β2
1

2d3

∫
Ω

u2
2ϵ,

thus
1

2

d

dt

∫
Ω

|∇v1ϵ|2 + γ1

∫
Ω

|∇v1ϵ|2 ≤ α2
1

2d3

∫
Ω

u2
1ϵ +

β2
1

2d3

∫
Ω

u2
2ϵ.

For each ϵ ∈ (0, 1), we set

yϵ(t) =
α2
1

2d3δ1

∫
Ω

u1ϵ +
β2
1

2d3δ2

∫
Ω

u2ϵ +
1

2

∫
Ω

|∇v1ϵ|2, ∀t ∈ (0, Tmax,ϵ).

Therefore,

yϵ(t)
′ + 2γ1yϵ(t) ≤

α2
1

2d3δ1

d

dt

∫
Ω

u1ϵ +
β2
1

2d3δ2

d

dt

∫
Ω

u2ϵ +
1

2

d

dt

∫
Ω

|∇v1ϵ|2

+
γ1α

2
1

d3δ1

∫
Ω

u1ϵ +
γ1β

2
1

d3δ2

∫
Ω

u2ϵ + γ1

∫
Ω

|∇v1ϵ|2.
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Using (3.10) and (3.11), we obtain

y′ϵ(t)
′ + 2γ1yϵ(t) ≤

α2
1

d3

(1
2
+

γ1
δ1

)∫
Ω

u1ϵ +
β2
1

d3

(1
2
+

γ1
δ2

)∫
Ω

u2ϵ.

Now, using (3.1) and (3.2), one has

yϵ(t)
′ + 2γ1yϵ(t) ≤ C, ∀t ∈ (0, Tmax).

applying the ODE argument, yields

yϵ(t) ≤ max
{

sup
ϵ∈(0,1)

yϵ(0),
C

2γ1

}
, ∀t ∈ (0, Tmax,ϵ),

this proves (3.5). The proof for (3.6) follows a similar approach. We then proceed
by integrating (3.9) with respect to time over (0, T ) and utilizing (3.1), which leads
to∫
Ω

u1ϵ(·, T ) + δ1

∫ T

0

∫
Ω

u2
1ϵ + ϵ

∫ T

0

∫
Ω

uq
1ϵ ≤

∫
Ω

u1ϵ(·, 0) + δ1CT, ∀T ∈ (0, Tmax,ϵ).

Hence, we obtain (3.7) from the above equation. Following the same argument, we
can also obtain (3.8). This completes the proof. □

Lemma 3.2 (Global solution). Assume that the functions χi(viϵ) and ξi(viϵ), i =
1, 2 satisfy (2.3) and the initial conditions (u10ϵ, u20ϵ, v10ϵ, v20ϵ) satisfy (2.2). Then
the solution of (2.1) remains global in time for any ϵ ∈ (0, 1).

The proof of the above lemma is similar to [10, Theorem 1] and it is omited here.

4. Energy estimates

We present a priori estimates that are necessary to establish the main results.

Lemma 4.1. For each ϵ ∈ (0, 1), there exists a constant C > 0 such that for all
T > 0, ∫

Ω

v21ϵ(·, T ) + γ1

∫ T

0

∫
Ω

v21ϵ ≤ C(T + 1), (4.1)∫
Ω

v22ϵ(·, T ) + γ2

∫ T

0

∫
Ω

v22ϵ ≤ C(T + 1). (4.2)

Proof. We multiply the third equation in (2.1) by v1ϵ and integrate over Ω to obtain

1

2

d

dt

∫
Ω

v21ϵ + d3

∫
Ω

|∇v1ϵ|2 + γ1

∫
Ω

v21ϵ

≤ α1

∫
Ω

u1ϵv1ϵ + β1

∫
Ω

u2ϵv1ϵ,

≤ γ1
4

∫
Ω

v21ϵ +
α2
1

γ1

∫
Ω

u2
1ϵ +

γ1
4

∫
Ω

v21ϵ +
β2
1

γ1

∫
Ω

u2
2ϵ,

this gives

d

dt

∫
Ω

v21ϵ + 2d3

∫
Ω

|∇v1ϵ|2 + γ1

∫
Ω

v21ϵ ≤
2α2

1

γ1

∫
Ω

u2
1ϵ +

2β2
1

γ1

∫
Ω

u2
2ϵ,

for all t > 0. Integrating with respect to time, yields∫
Ω

v21ϵ(·, T ) + 2d3

∫ T

0

∫
Ω

|∇v1ϵ|2 + γ1

∫ T

0

∫
Ω

v21ϵ
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≤
∫
Ω

v21ϵ(·, 0) +
2α2

1

γ1

∫ T

0

∫
Ω

u2
1ϵ +

2β2
1

γ1

∫ T

0

∫
Ω

u2
2ϵ.

Using (3.7) and (3.8), we obtain∫
Ω

v21ϵ(·, T ) + 2d3

∫ T

0

∫
Ω

|∇v1ϵ|2 + γ1

∫ T

0

∫
Ω

v21ϵ ≤ C(T + 1), ∀T > 0.

This completes the proof. □

Lemma 4.2. For each ϵ ∈ (0, 1), there exists a constant C > 0 such that for all
T > 0, ∫ T

0

∫
Ω

|∆v1ϵ|2 ≤ C(T + 1), (4.3)∫ T

0

∫
Ω

|∆v2ϵ|2 ≤ C(T + 1), (4.4)

Proof. From (3.12), we have

1

2

d

dt

∫
Ω

|∇v1ϵ|2 + d3

∫
Ω

|∆v1ϵ|2 + γ1

∫
Ω

|∇v1ϵ|2

= −
∫
Ω

(α1u1ϵ + β1u2ϵ)∆v1ϵ,

≤ d3
2

∫
Ω

|∆v1ϵ|2 +
α2
1

d3

∫
Ω

u2
1ϵ +

β2
1

d3

∫
Ω

u2
2ϵ,

for all t > 0. Hence

d

dt

∫
Ω

|∇v1ϵ|2 + d3

∫
Ω

|∆v1ϵ|2 + 2γ1

∫
Ω

|∇v1ϵ|2 ≤ 2α2
1

d3

∫
Ω

u2
1ϵ +

2β2
1

d3

∫
Ω

u2
2ϵ.

Integrating with respect to time, we infer that∫
Ω

|∇v1ϵ(·, T )|2 + d3

∫ T

0

∫
Ω

|∆v1ϵ|2 + 2γ1

∫ T

0

∫
Ω

|∇v1ϵ|2

≤
∫
Ω

|∇v1ϵ(·, 0)|2 +
2α2

1

d3

∫ T

0

∫
Ω

u2
1ϵ +

2β2
1

d3

∫ T

0

∫
Ω

u2
2ϵ.

Using (3.7) and (3.8), we attain∫
Ω

|∇v1ϵ(·, T )|2 + d3

∫ T

0

∫
Ω

|∆v1ϵ|2 + γ1

∫ T

0

∫
Ω

|∇v1ϵ|2 ≤ C(T + 1),

for all T > 0. We can apply the same procedure as above to prove (4.4). This
completes the proof. □

Lemma 4.3. For each ϵ ∈ (0, 1), there exists a constant C > 0 such that∫ T

0

∫
Ω

|∇u1ϵ|2

1 + u1ϵ
+ δ1

∫ T

0

∫
Ω

u2
1ϵ ln(1 + u1ϵ) + ϵ

∫ T

0

∫
Ω

uq
1ϵ ln(1 + u1ϵ)

≤ C(T + 1)

(4.5)

and ∫ T

0

∫
Ω

|∇u2ϵ|2

1 + u2ϵ
+ δ2

∫ T

0

∫
Ω

u2
2ϵ ln(1 + u2ϵ) + ϵ

∫ T

0

∫
Ω

uq
2ϵ ln(1 + u2ϵ)

≤ C(T + 1),

(4.6)
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for all T > 0.

Proof. By using ln(1 + u1ϵ) as a test function and applying the first equation in
(2.1), we obtain

d

dt

∫
Ω

(
(1 + u1ϵ) ln(1 + u1ϵ)− u1ϵ

)
≤ −d1

∫
Ω

|∇u1ϵ|2

1 + u1ϵ
+ C

∫
Ω

u1ϵ

1 + u1ϵ
∇u1ϵ · ∇v1ϵ + C

∫
Ω

u1ϵ

1 + u1ϵ
∇u1ϵ · ∇v2ϵ

+ δ1

∫
Ω

u1ϵ(1− u1ϵ − a1u2ϵ) ln(1 + u1ϵ)− ϵ

∫
Ω

uq
1ϵ ln(1 + u1ϵ),

for all t > 0. It known that for all values of u1ϵ greater than 0, the inequality
0 ≤ ln(1 + u1ϵ) ≤ u1ϵ holds and

d

dt

∫
Ω

(
(1 + u1ϵ) ln(1 + u1ϵ)− u1ϵ

)
≤ −d1

∫
Ω

|∇u1ϵ|2

1 + u1ϵ
+ C

∫
Ω

(
ln(1 + u1ϵ)− u1ϵ

)
∆v1ϵ + C

∫
Ω

(
ln(1 + u1ϵ)− u1ϵ

)
∆v2ϵ

+ δ1

∫
Ω

u2
1ϵ − δ1

∫
Ω

u2
1ϵ ln(1 + u1ϵ)− ϵ

∫
Ω

uq
1ϵ ln(1 + u1ϵ).

Using Young’s inequality we obtain

d

dt

∫
Ω

(
(1 + u1ϵ) ln(1 + u1ϵ)− u1ϵ

)
≤ −d1

∫
Ω

|∇u1ϵ|2

1 + u1ϵ
+

C

2

∫
Ω

|∆v1ϵ|2 +
C

2

∫
Ω

(
ln(1 + u1ϵ)− u1ϵ

)2
+

C

2

∫
Ω

|∆v2ϵ|2

+
C

2

∫
Ω

(
ln(1 + u1ϵ)− u1ϵ

)2
+ δ1

∫
Ω

u2
1ϵ − δ1

∫
Ω

u2
1ϵ ln(1 + u1ϵ)

− ϵ

∫
Ω

uk
1ϵ ln(1 + u1ϵ).

From the inequality (a− b)2 ≤ a2 + b2, we conclude that

d

dt

∫
Ω

(
(1 + u1ϵ) ln(1 + u1ϵ)− u1ϵ

)
≤ −d1

∫
Ω

|∇u1ϵ|2

1 + u1ϵ
+

C

2

∫
Ω

|∆v1ϵ|2 +
C

2

∫
Ω

|∆v2ϵ|2 +
C

2

∫
Ω

ln(1 + u1ϵ)
2 +

C

2

∫
Ω

u2
1ϵ

+
C

2

∫
Ω

ln(1 + u1ϵ)
2 +

C

2

∫
Ω

u2
1ϵ + δ1

∫
Ω

u2
1ϵ − δ1

∫
Ω

u2
1ϵ ln(1 + u1ϵ)

− ϵ

∫
Ω

uq
1ϵ ln(1 + u1ϵ),

d

dt

∫
Ω

(
(1 + u1ϵ) ln(1 + u1ϵ)− u1ϵ

)
≤ −d1

∫
Ω

|∇u1ϵ|2

1 + u1ϵ
+

C

2

∫
Ω

|∆v1ϵ|2 +
C

2

∫
Ω

|∆v2ϵ|2 + (C + C + δ1)

∫
Ω

u2
1ϵ

− δ1

∫
Ω

u2
1ϵ ln(1 + u1ϵ)− ϵ

∫
Ω

uq
1ϵ ln(1 + u1ϵ).
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By integrating with respect to time and utilizing the fact that (1+u1ϵ) ln(1+u1ϵ)−
u1ϵ > 0, it is possible to derive

d1

∫ T

0

∫
Ω

|∇u1ϵ|2

1 + u1ϵ
+ δ1

∫ T

0

∫
Ω

u2
1ϵ ln(1 + u1ϵ) + ϵ

∫ T

0

∫
Ω

uq
1ϵ ln(1 + u1ϵ)

≤
∫
Ω

(
(1 + u1ϵ0) ln(1 + u1ϵ0)− u1ϵ0

)
+

C

2

∫ T

0

∫
Ω

|∆v1ϵ|2

+
C

2

∫ T

0

∫
Ω

|∆v2ϵ|2 + (C + C + δ1)

∫ T

0

∫
Ω

u2
1ϵ.

Using the previous Lemmas, we obtain

d1

∫ T

0

∫
Ω

|∇u1ϵ|2

1 + u1ϵ
+ δ1

∫ T

0

∫
Ω

u2
1ϵ ln(1 + u1ϵ) + ϵ

∫ T

0

∫
Ω

uq
1ϵ ln(1 + u1ϵ) ≤ C(T + 1),

for all T > 0. The same argument gives us that

d2

∫ T

0

∫
Ω

|∇u2ϵ|2

1 + u2ϵ
+ δ2

∫ T

0

∫
Ω

u2
2ϵ ln(1 + u2ϵ) + ϵ

∫ T

0

∫
Ω

uq
2ϵ ln(1 + u2ϵ) ≤ C(T + 1),

for all T > 0. This completes the proof. □

Lemma 4.4. For all values of ϵ ∈ (0, 1), there exists a positive constant C such
that∥∥u1ϵ

∥∥
L4/3((0,T );W 1, 4

3 (Ω))
≤ C(T + 1),

∥∥u2ϵ

∥∥
L4/3((0,T );W 1, 4

3 (Ω))
≤ C(T + 1), (4.7)

for all T > 0.

Proof. Let ∫ T

0

∫
Ω

|∇u1ϵ|4/3 =

∫ T

0

∫
Ω

|∇u1ϵ|4/3

(1 + u1ϵ)2/3
(1 + u1ϵ)

2/3.

Using the Young’s inequality, then (3.7) and (4.5) the above estimate yields∫ T

0

∫
Ω

|∇u1ϵ|4/3 ≤
∫ T

0

∫
Ω

(
|∇u1ϵ|4/3

(1 + u1ϵ)2/3

)3/2

+
1

4

∫ T

0

∫
Ω

(1 + u1ϵ)
2,

≤
∫ T

0

∫
Ω

|∇u1ϵ|2

(1 + u1ϵ)
+

1

4

∫ T

0

∫
Ω

(1 + u1ϵ)
2 ≤ C(T + 1)

. (4.8)

Again, using the Young’s inequality, one obtains∫ T

0

∫
Ω

u
4/3
1ϵ ≤

∫ T

0

∫
Ω

u2
1ϵ +

1

4
|Ω|T ≤ C(T + 1).

Combining the preceding two estimates, we have established the proof for all T > 0.
The same reasoning can be applied for u2ϵ. □

The following lemma is used for showing the strong compactness properties of
the solution (u1ϵ, u2ϵ, v1ϵ, v2ϵ).

Lemma 4.5. There exists C > 0 and let ϵ ∈ (0, 1) and p > 1 + n
2 , such that

∥∂u1ϵ

∂t
∥
L1
(
(0,T );(Wp,2

0 (Ω))
′
) ≤ C(T + 1), (4.9)

∥∂u2ϵ

∂t
∥
L1
(
(0,T );(Wp,2

0 (Ω))
′
) ≤ C(T + 1), (4.10)
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∥∂v1ϵ
∂t

∥
L2
(
(0,T );(W 1,2(Ω))′

) ≤ C(T + 1), (4.11)

∥∂v2ϵ
∂t

∥
L2
(
(0,T );(W 1,2(Ω))′

) ≤ C(T + 1), (4.12)

for all T > 0.

Proof. Multiply the first equation in (2.1) by ϕ ∈ C∞
0 (Ω), and then integrate by

parts to obtain∣∣ ∫
Ω

u1ϵtϕ
∣∣ ≤ (∥∥∇ϕ

∥∥
L∞(Ω)

+
∥∥ϕ∥∥

L∞(Ω)

)(
d1

∫
Ω

∇u1ϵ +M1

∫
Ω

u1ϵ∇v1ϵ

+M2

∫
Ω

u1ϵ∇v2ϵ + δ1

∫
Ω

u1ϵ + δ1

∫
Ω

u2
1ϵ + δ1a1

∫
Ω

u1ϵu2ϵ + ϵ

∫
Ω

uq
1ϵ

)
.

Basic inequalities imply∣∣ ∫
Ω

u1ϵtϕ
∣∣ ≤ ∥∥ϕ∥∥

W 1,∞(Ω)

(3
4

∫
Ω

|∇u1ϵ|4/3 +
d41|Ω|
4

+
M1

2

∫
Ω

u2
1ϵ +

M1

2

∫
Ω

|∇v1ϵ|2

+
M2

2

∫
Ω

u2
1ϵ +

M2

2

∫
Ω

|∇v2ϵ|2 + δ1

∫
Ω

u1ϵ + δ1

∫
Ω

u2
1ϵ

+
δ1a1
2

∫
Ω

u2
1ϵ +

δ1a1
2

∫
Ω

u2
2ϵ + ϵ

∫
Ω

uq
1ϵ

)
.

As a consequence of the embedding W p,2
0 (Ω) ↪→ W 1,∞(Ω) for p > 1 + n

2 , there

exists a positive constant C such that
∥∥ϕ∥∥

W 1,∞(Ω)
=

∥∥∇ϕ
∥∥
L∞(Ω)

+
∥∥ϕ∥∥

L∞(Ω)
≤

C
∥∥ϕ∥∥

Wp,2
0 (Ω)

. By utilizing the previous lemmas, we can apply the aforementioned

inequality to obtain∫ T

0

∥∥u1ϵt(·, t)
∥∥
(Wp,2

0 (Ω))
′

≤ 3

4

∫ T

0

∫
Ω

∣∣∇u1ϵ

∣∣4/3 + d41|Ω|T
4

+
M1

2

∫ T

0

∫
Ω

u2
1ϵ +

M1

2

∫ T

0

∫
Ω

|∇v1ϵ|2

+
M2

2

∫ T

0

∫
Ω

u2
1ϵ +

M2

2

∫ T

0

∫
Ω

|∇v2ϵ|2 + δ1

∫ T

0

∫
Ω

u1ϵ

+ δ1

∫ T

0

∫
Ω

u2
1ϵ +

δ1a1
2

∫ T

0

∫
Ω

u2
1ϵ +

δ1a1
2

∫ T

0

∫
Ω

u2
2ϵ + ϵ

∫ T

0

∫
Ω

uq
1ϵ

≤ C(T + 1).

Similarly, we obtain ∫ T

0

∥∥u2ϵt(·, t)
∥∥
(Wp,2

0 (Ω))
′ ≤ C(T + 1).

Choose ϕ ∈ W 1,2(Ω), test the third equation in (2.1) and applying the Hölder’s
inequality infer that∫

Ω

v1ϵtϕ ≤ d3

∫
Ω

∇v1ϵ · ∇ϕ− γ1

∫
Ω

v1ϵϕ+ α1

∫
Ω

u1ϵϕ+ β1

∫
Ω

u2ϵϕ

≤ d3

(∫
Ω

|∇v1ϵ|2
)1/2(∫

Ω

|∇ϕ|2
)1/2

+ γ1

(∫
Ω

v21ϵ

)1/2(∫
Ω

ϕ2
)1/2
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+ α1

(∫
Ω

u2
1ϵ

)1/2(∫
Ω

ϕ2
)1/2

+ β1

(∫
Ω

u2
2ϵ

)1/2(∫
Ω

ϕ2
)1/2

≤
(
d3

(∫
Ω

|∇v1ϵ|2
)1/2

+ γ1

(∫
Ω

v21ϵ

)1/2

+ α1

(∫
Ω

u2
1ϵ

)1/2

+ β1

(∫
Ω

u2
2ϵ

)1/2)
∥ϕ∥W 1,2(Ω).

This implies

∥v1ϵt(·, t)∥2(
W 1,2(Ω)

)′ ≤ C

∫
Ω

|∇v1ϵ|2 + C

∫
Ω

v21ϵ + C

∫
Ω

u2
1ϵ + C

∫
Ω

u2
2ϵ.

Integrating with respect to time, one obtains∫ T

0

∥v1ϵt(·, t)∥2(
W 1,2(Ω)

)′

≤ C

∫ T

0

∫
Ω

|∇v1ϵ|2 + C

∫ T

0

∫
Ω

v21ϵ + C

∫ T

0

∫
Ω

u2
1ϵ + C

∫ T

0

∫
Ω

u2
2ϵ,

≤ C(T + 1),

for all T > 0. Similarly, we can show that∫ T

0

∥v2ϵt(·, t)∥2(
W 1,2(Ω)

)′ ≤ C(T + 1),

for all T > 0. This completes the proof. □

5. Existence of weak solutions

Next, as ϵ → 0, we proceed to passing the limits in order to construct a weak
solution of (1.1).

Lemma 5.1. There exist u1, u2, v1, v2 on Ω × (0,∞) and a sequence {ϵj}j∈N ⊂
(0, 1), with ϵj → 0 as j → ∞, such that

u1ϵ → u1 in L2
loc(Ω× [0,∞)) and a.e in Ω× (0,∞), (5.1)

∇u1ϵ ⇀ ∇u1 in L
4/3
loc (Ω× [0,∞)), (5.2)

ϵuq
1ϵ ⇀ 0 in L1

loc(Ω× [0,∞)), (5.3)

u2
1ϵ ⇀ u2

1 in L1
loc(Ω× [0,∞)), (5.4)

v1ϵ → v1 in L2
loc(Ω× [0,∞)) and a.e in Ω× (0,∞), (5.5)

∇v1ϵ ⇀ ∇v1 in L2
loc(Ω× [0,∞)), (5.6)

χ1(v1ϵ)u1ϵ∇v1ϵ ⇀ χ1(v1)u1∇v1 in L1
loc(Ω× [0,∞)) (5.7)

u2ϵ → u2 in L2
loc(Ω× [0,∞)) and a.e in Ω× (0,∞), (5.8)

∇u2ϵ ⇀ ∇u2 in L
4/3
loc (Ω× [0,∞)), (5.9)

ϵuq
2ϵ ⇀ 0 in L1

loc(Ω× [0,∞)), (5.10)

u2
2ϵ ⇀ u2

2 in L1
loc(Ω× [0,∞)), (5.11)

u1ϵu2ϵ → u1u2 in L1
loc(Ω× [0,∞)), (5.12)

v2ϵ → v2 in L2
loc(Ω× [0,∞)) and a.e in Ω× (0,∞), (5.13)
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∇v2ϵ ⇀ ∇v2 in L2
loc(Ω× [0,∞)), (5.14)

χ2(v2ϵ)u1ϵ∇v2ϵ ⇀ χ2(v2)u1∇v2 in L1
loc(Ω× [0,∞)), (5.15)

ξ1(v1ϵ)u2ϵ∇v1ϵ ⇀ ξ1(v1)u2∇v1 in L1
loc(Ω× [0,∞)), (5.16)

ξ2(v2ϵ)u2ϵ∇v2ϵ ⇀ ξ2(v2)u2∇v2 in L1
loc(Ω× [0,∞)) (5.17)

Proof. To prove the results, we simply take the subsequence ϵ := ϵj . Lemma

4.4 and 4.5 show the boundedness of {u1ϵ} in L4/3
(
(0, T );W 1, 43 (Ω)

)
and {u1ϵt}

in L1
(
(0, T ); (W p,2

0 (Ω))′
)
. Because of the embedding W 1, 43 (Ω) ↪→↪→ L4/3(Ω) ↪→(

W p,2
0 (Ω)

)′
, the Aubin-Lion’s lemma [4] yields a subsequence such that u1ϵ → u1

in L4/3(Ω×[0,∞)) as ϵ → 0 and this convergence is almost everywhere in Ω×(0,∞)
for some u1 ∈ L4/3(Ω× [0,∞)).

Furthermore, (3.7) and Egorov’s theorem yield a subsequence along which u1ϵ →
u1, ensuring the boundedness of {u1ϵ} in L2

loc(Ω× [0,∞)) and allowing us to con-
clude (5.2) from (4.8). Additionally, the sequence

{
u2
1ϵ

}
being equi-bounded and

equi-integrable follows from (3.7) and (4.5). Applying the Dunford-Pettis theorem
[7], a subsequence of

{
u2
1ϵ

}
is weakly convergent in L1

loc(Ω× [0,∞)) and hence

∥u1ϵ∥L2
loc(Ω×[0,∞)) → ∥u1∥L2

loc(Ω×[0,∞)) as ϵ → 0

by taking constant as test function. This result, along with the convergence u1ϵ →
u1 in L2

loc(Ω× [0,∞)), allow us to achieve (5.1).
Since the sequence {ϵuq

1ϵ} is equi-integrable from (4.5), uq
1ϵ weakly converges to

0 by applying the Dunford-Pettis theorem, which yields (5.3). Repeating the same
arguments, we obtain (5.8)-(5.11) and the result (5.12) follows from the combination
of (5.1) and (5.8).

Furthermore, combining (3.5) and (4.1), we obtain that ∥v1ϵ∥L2((0,T );W 1,2(Ω))

is bounded for all T > 0. Along with a subsequence, (5.5) follows from previous
argument and (4.12) using Aubin-Lion’s Lemma. At the same time, we can conclude
(5.6). The same arguments are used to prove (5.13) and (5.14).

Finally, the combination of (5.1) and (5.6), gives (5.7). The same arguments are
used to prove the remaining results (5.15) - (5.17). This completes the proof. □

Lemma 5.2. (u1, u2, v1, v2) is a global weak solution to (1.1) in the sense of Defi-
nition 1.2.

Proof. Let ϕ ∈ C∞
0 (Ω × [0,∞)) and test it in the approximate problem (2.1).

Applying the convergence properties from Lemma 5.1 and passing the limits, we
obtain the proof. □

Proof of Theorem 1.1. The proof follows by the combination of Lemma 5.1 and
Lemma 5.2. □

6. Conclusion

This study provides the global existence and boundedness of weak solutions to
the chemotaxis competition system with loop and signal dependent sensitivity based
on the energy inequality method.
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