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MILD SOLUTIONS TO FOURTH-ORDER PARABOLIC

EQUATIONS MODELING THIN FILM GROWTH WITH TIME

FRACTIONAL DERIVATIVE

QIANG LIU, WANYU ZHU, HAILONG YE

Abstract. In this article, we study initial-boundary problems for fourth-order

nonlinear parabolic equations modeling thin film growth with Caputo-type

time fractional derivative. By means of the theory of abstract fractional calcu-
lus and Lp − Lq estimates, we establish the existence and uniqueness of local

mild solutions in the spaces C([0, T ];L
βN
2−β (Ω)) with 1 < β < 2. Moreover, the

local solutions can be extended globally if the initial data is sufficiently small.

1. Introduction and main result

Thin film growth processes play a crucial role in various scientific and technolog-
ical applications, ranging from semiconductor manufacturing to material sciences
[14, 17, 23]. Understanding the dynamics of thin film growth is essential for opti-
mizing the quality, stability, and functionality of thin films in these applications.
Mathematical modeling provides a powerful tool to capture the intricate dynamics
involved in such processes and to develop predictive models that guide experimental
design and optimization.

In recent years, there has been a growing interest in utilizing fractional calculus
to describe and analyze complex phenomena that exhibit non-local and memory ef-
fects. In this article, we focus on boundary value problems of fourth-order parabolic
equation modeling thin film growth with time fractional derivative,

cD
α
t u(t) + ∆2u = ∇ · f(∇u), x ∈ Ω, t > 0,

∂νu|∂Ω = ∂ν∆u|∂Ω = 0, t > 0,

u(x, 0) = φ(x), x ∈ Ω.

(1.1)

Here Ω ∈ RN with N ≥ 2 is a bounded smooth domain, ∂Ω denotes the boundary
of Ω and ν is the unit outer vector normal to Ω, cDα

t is the Caputo derivative with
order α ∈ (0, 1), which is defined by

cD
α
t u(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− s)−α(u(s)− u(0)) ds,
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where the Gamma function defined by Γ(λ) :=
∫∞
0

tλ−1e−tdt. Here the term u

represents the scaled film height, and ∆2u denotes the capillarity-driven surface
diffusion whereas ∇ · f(∇u) denotes the upward hopping of atoms. Throughout
this paper, we will assume that f ∈ C1(RN ,RN ) with f(0) = Df(0) = 0 and for
some β > 1, and f satisfies the following growth condition

|f ′(ξ1)− f ′(ξ2)| ≤ C(|ξ1|β−1 + |ξ2|β−1)|ξ1 − ξ2| (1.2)

for any ξ1, ξ2 ∈ RN . As a simple example of (1.2), we can take f(ξ) = |ξ|βξ.
When α = 1, the fractional time Caputo derivative is replaced with the classical

integer derivative ut. The problem (1.1) becomes the usual thin film growth model,
which is well studied by many researchers. King et al. [9] proved the existence,
uniqueness, regularity and large time behavior of solutions in Sobolev function
space. Using Kato’s Method, Sandjo et al. [16] established existence, uniqueness and

regularity of the solution in spaces of C0([0, T ];Lp(Ω)) with p = nβ
2−β , 1 < β < 2.

Furthermore, they illustrated the qualitative behavior of the approximate solution
through some numerical simulations. Ishige et al. [6] give sufficient conditions on
the existence of global solutions, the maximal existence time and blow up rate for
0 < β ≤ 2. Y. Feng et al. [5] studied the existence of local mild solutions for any
initial data lies in L2 on the two-dimensional torus with and without advection.
We refer the interested reader to the references therein.

Fractional models extend the classical model with non-integer orders differentia-
tion and integration, allowing the incorporation of memory and long-range depen-
dencies into models. There are many numerical simulations for the time fractional
thin film growth equations. T. Tang et al. [18] proved the time-fractional molecular
beam epitaxy models admit an energy dissipation law as integral cases and pro-
posed a class of finite difference schemes inherited the theoretical energy stability.
Chen et al. [4] developed an efficient and accurate, full discrete, linear numerical
approximation for the time-fractional thin film model with the classical Caputo
fractional derivative of order α and shown the models possessed an energy dissipa-
tion law. Wang et al. [20] proposed a variable-step L1 scheme for the time-fractional
molecular beam epitaxy model and also investigated the stability and convergence
of the stabilized convex splitting scheme. However, to the best of our knowledge,
the well-posedness for the solutions of the time fractional thin film growth equation
is not clear, which is the main motivation of the present work. We refer [19] for
well posedness of the linear and semilinear time fractional order Cauchy problem
with almost sectorial operators, and [22] for well posedness of the time fractional
order Cahn-Hilliard equation in R3.

In this article, we focus on the existence and uniqueness of mild solutions on
problem (1.1). Because of the observation that the biharmonic operator can be
regarded as a sectorial operator on some spaces, we follow some ideas in [3], properly
adapted to our problem.

We denote A = ∆2 defined on Lp(Ω), 1 < p < ∞ with its domain

D(A) = {u ∈ W 4,p(Ω) : ∂νu|∂Ω = ∂ν∆u|∂Ω = 0}.

It is clear [15] that the following homogeneous boundary value problem is normally
elliptic in Ω,

∂tu = −Au, x ∈ Ω, t > 0,

u(x, 0) = φ(x), x ∈ Ω.
(1.3)
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Hence, the fourth-order operator −∆2 with corresponding Neumann boundary

( ∂
∂ν
, ∂∆
∂ν

) is the infinitesimal generator of an analytic semigroup T (t) = e−t∆2

in

Lp(Ω). For a detailed discussion on these results, we refer the reader to [1, 2].
The time fractional version of (1.3) with lower order term can be written as

cD
α
t u = −Au+ F (u), x ∈ Ω, t > 0

u(x, 0) = φ(x), x ∈ Ω.
(1.4)

We formally give a mild solution for (1.4), where the rigorous deduction could
be found in [3, 8, 10, 19]. We denote by L Laplace transform operator. By the
convolution property of Laplace transform, we have

L( cDα
t u) = λαL(u)− λα−1φ,

as in [10]. So taking the Laplace transform to (1.4) gives

L(u) = λα−1(λα +A)−1φ+ (λα +A)−1L(F (u)).

Application of Laplace inversion [3] implies

u(t) = Eα (−tαA)φ+

∫ t

0

(t− s)α−1Eα,α (−(t− s)αA)F (u)(s)ds.

where Eα(−tαA) and Eα,α(−tαA) are the Mittag-Leffler operators (see Section 2).
This formal computation then motivates the definition of the mild solution of (1.1)
as follows:

Definition 1.1. Let 0 < α < 1 and T > 0 .

(i) A function u such that u ∈ C([0, T ];L
βN
2−β (Ω)) defined by

u(x, t) = Eα(−tαA)φ+

∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)∇ · f(∇u) ds, (1.5)

is called a local mild solution of (1.1).
(ii) If T = ∞, we say that u is a global mild solution of (1.1).

We are now in a position to state the main result of this article.

Theorem 1.2. Suppose Ω ⊆ RN is a bounded domain with C4 boundary, 0 < α <

1 < β < 2 and φ ∈ L
βN
2−β (Ω). Then there exists T > 0 such that (1.1) admits a

unique mild solution u ∈ C([0, T ];L
βN
2−β (Ω)) satisfying

max
{

sup
0≤t≤T

t
α
2β− αγ

4β2 ∥∇u(t)∥ β2N
γ

, sup
0≤t≤T

t
α
2 ∥∇2u(t)∥ βN

2−β

}
< ∞,

where 0 < γ < min{2β, β(N+1)−2}. Furthermore, if ∥φ∥ βN
2−β

is sufficiently small,

the solution u can be extended to be global, that is, T = ∞.

To explain the meaning of the result, we take f(ξ) = |ξ|βξ in (1.1)1 as an example.
Notice that a smooth function u(x, t) solves the equation in (1.1) for t > 0 if and
only if

uλ(x, t) = λ
2α
β −αu(λαx, λ4t)

does so too with each given constant λ. In addition, for the initial data φ, under

the transformation φ 7→ φλ, the L
βN
2−β (Ω) norm is invariant. Therefore, we expect

the global existence and uniqueness of solutions when the initial data is sufficiently

small in the critical space L
βN
2−β (Ω).
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It is worth mentioning that the singularity together with strong nonlinearity
arising from the time fractional derivative cD

α
t u and the nonlinear term ∇· f(∇u)

make its mathematical analysis more difficult in comparison with the fourth-order
parabolic equation (1.3)1. For example, the Mittag-Leffler operators Eα(−tαA) and
Eα,α(−tαA) do not satisfy the semigroup properties. So we need to overcome these
essential difficulties to get some a priori estimates and extend the local solution to
a global one. For more details, one can refer to Section 3.

This article is organized as follows. In the next section, we introduce some
elementary properties of Mittag-Leffler operators, which are essential throughout
the whole paper and give the main results of this paper.

In Section 3, we establish the existence and uniqueness of mild solutions using
appropriate functional spaces and Banach fixed pointed theorem.

2. A priori estimates

Throughout this paper, C stands for a generic positive constant which may vary
from line to line. For the analytic semigroup T (t), we have the Lp − Lq estimates,
which are state as follows.

Proposition 2.1 ([15, 21]). Let 1 < q ≤ p < ∞ and j = 0, 1, 2, 3. For u ∈ Lq(Ω),
we have

∥∇jT (t)u∥Lp(Ω) ≤ C t−
N
4 ( 1

q−
1
p )−

j
4 ∥u∥Lq(Ω), t > 0.

Let us recall some properties of Mittag-Leffler operators. For α ∈ (0, 1), we
denote the entire function Mα : C → C the Mainardi function by

Mα(z) :=

∞∑
n=0

(−z)n

n!Γ(1− α(1 + n))
,

which is a particular case of the Wright type function introduced by Mainardi in
[12] to characterize the fundamental solutions for some standard boundary value
problems in physics. The following classical result gives some essential relations
used in this article to obtain the main estimates.

Proposition 2.2 ([19]). Let 0 < α < 1 and −1 < γ < ∞. If we restrict Mα to the
positive real line, then it holds that

Mα ∈ S([0,∞)), Mα(t) ≥ 0 for all t ≥ 0 and

∫ ∞

0

tγMα(t) dt =
Γ(γ + 1)

Γ(αγ + 1)
,

where S([0,∞)) is the Schwartz space on [0,∞).

Now, for each α ∈ (0, 1), we define the Mittag-Leffler families

Eα(−tαA) =

∫ ∞

0

Mα(s)T (st
α) ds,

Eα,α(−tαA) =

∫ ∞

0

αsMα(s)T (st
α) ds.

It is interesting to notice that the Mainardi functions act as a bridge between the
fractional and the classical abstract theories, for more details see [19, 11, 3].

The next result comprises the main assertions about the theory of abstract frac-
tional calculus.
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Proposition 2.3 ([19]). Eα(−tαA) and Eα,α(−tαA) are well defined from Lp(Ω) to
Lp(Ω), p ∈ (1,∞). Moreover, for t ≥ 0, Eα(−tαA) and Eα,α(−tαA) are uniformly
continuous in the uniform operator topology on Lp(Ω).

Our proof relies on the well-known Weierstrass M-test in Banach space and
Lp − Lq estimates for Mittag-Leffler operators.

Lemma 2.4 (Weierstrass M-test [7]). Let X denote a Banach space equipped with
the norm ∥ · ∥X . Suppose {ωj}j≥0 is a sequence of continuous functions from [0, T ]
to X such that

sup
0≤t≤T

∥ωj(t)∥X ≤ Mj , j = 0, 1, 2, . . .

where 0 < T ≤ ∞ and the sequence {Mj}j≥0 satisfies
∑∞

j=0 Mj < ∞, then the

sequence {ωj}j≥0 converges uniformly on [0, T ], that is,

∞∑
j=0

ωj ∈ C([0, T ];X).

Using Proposition 2.1, we can obtain similar Lp −Lq estimates for both families
of Mittag-Leffler operators, which also depend on the exponent of differentiation α.

Proposition 2.5. Let 1 < q ≤ p < ∞ and 1
q − 1

p < 4−j
N with any nonnegative

integer j < 4. For u ∈ Lq(Ω), we have

∥∇jEα(−tαA)u∥Lp(Ω) ≤ Ct−
Nα
4 ( 1

q−
1
p )−

jα
4 ∥u∥Lq(Ω), t > 0. (2.1)

Proof. Noting that if 0 ≤ 1
q − 1

p < 4−j
N with j < 4, we have

−N

4
(
1

q
− 1

p
)− j

4
> −1.

By Proposition 2.1 and 2.2, we obtain

∥∇jEα(−tαA)u∥Lp(Ω) ≤
∫ ∞

0

Mα(s)∥∇jT (stα)u∥Lp(Ω) ds

≤ C
(∫ ∞

0

Mα(s)s
−N

4 ( 1
q−

1
p )−

j
4 ds

)(
t−

Nα
4 ( 1

q−
1
p )−

jα
4 ∥u∥Lq(Ω)

)
≤ Ct−

Nα
4 ( 1

q−
1
p )−

jα
4 ∥u∥Lq(Ω).

The proof is complete. □

Proposition 2.6. Let 1 < q ≤ p < ∞ and 1
q −

1
p < 8−j

N with a nonnegative integer

j < 4. Then we have

∥∇jEα,α(−tαA)u∥Lp(Ω) ≤ Ct−
Nα
4 ( 1

q−
1
p )−

jα
4 ∥u∥Lq(Ω), t > 0.

The proof of the above propostion is similar to that of Proposition 2.5, so we
omit it.
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3. Proof of Theorem 1.2

In this section, based on the Lp−Lq estimates in section 2, we will prove Theorem
1.2 by using the method of successive approximation. To simplify the notation, we
denote the norm ∥ · ∥Lp(Ω) by ∥ · ∥p. Recalling the integral equation (1.5), we define
a sequence {uj}j≥0 as follows,

u0(x, t) = Eα(−tαA)φ,

uj(x, t) = Eα(−tαA)φ+

∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)∇ · f(∇uj−1) ds
(3.1)

for positive integers j and t > 0. In additional, we define

R(t)j = max
{

sup
0<s≤t

s
α
2 ∥∇2uj(s)∥ βN

2−β
, sup
0<s≤t

s
α
2β− αγ

4β2 ∥∇uj(s)∥ β2N
γ

}
(3.2)

for t > 0 and j ≥ 0, where 0 < γ < min{2β, β(N + 1)− 2}.
Next, we show uj(t) belongs L

βN
2−β (Ω) and is continuous under some smallness

conditions. The proofs require the following iteration lemma.

Lemma 3.1 ([13]). Let λ, β > 0 and bj be a nonnegative sequence such that

bj ≤ b0 + λb1+β
j−1

for all positive integer j. If 2λ(2b0)
β < 1, then for each nonnegative integer j, we

have

bj ≤
b0

1− λ(2b0)β
.

Lemma 3.2. For any T > 0, there exists a constant ε0 > 0 independent of T such

that if R(T )0 ≤ ε0, each uj(t) is well defined as an element of L
βN
2−β (Ω) for any

t > 0, and

R(T )j ≤ 2R(T )0, j ≥ 0. (3.3)

Proof. Because f ′(ξ) behaves like |ξ|β , we have

∥f ′(∇u)∥s ≤ C∥∇u∥βs .

By Hölder’s inequality, it is easy to verify that

∥∇ · f(∇uj(s))∥ βN
2−β+γ

= ∥∇2uj(s) · f ′(∇uj(s))∥ βN
2−β+γ

≤ ∥∇2uj(s)∥ βN
2−β

∥f ′(∇uj(s))∥ βN
γ

= s−α+αγ
4β

(
s

α
2 ∥∇2uj(s)∥ βN

2−β

)(
s

α
2 −αγ

4β ∥∇uj(s)∥ββ2N
γ

)
≤ s−α+αγ

4β

(
sup

0<s≤t
s

α
2 ∥∇2uj(s)∥ βN

2−β

)(
sup

0<s≤t
s

α
2β− αγ

4β2 ∥∇uj(s)∥ β2N
γ

)β

≤ s−α+αγ
4β R(t)1+β

j .

(3.4)

Applying the differential operator ∇ to (3.1), and applying Propositions 2.5 and
2.6, and (3.4), we obtain that

∥∇uj+1∥ β2N
γ
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≤ ∥∇Eα(−tαA)φ∥ β2N
γ

+

∫ t

0

(t− s)α−1∥∇Eα,α(−(t− s)αA)∇ · f(∇uj)∥ β2N
γ

ds

≤ ∥∇u0∥ β2N
γ

+ C

∫ t

0

(t− s)
α−1+ αγ

4β2 − α
2β−αγ

4β ∥∇ · f(∇uj)∥ βN
2−β+γ

ds (3.5)

≤ ∥∇u0∥ β2N
γ

+ CR(t)1+β
j

∫ t

0

(t− s)
α−1+ αγ

4β2 − α
2β−αγ

4β s−α+αγ
4β ds

≤ ∥∇u0∥ β2N
γ

+ Ct
αγ

4β2 − α
2β R(t)1+β

j ,

and similarly

∥∇2uj+1∥ βN
2−β

≤ ∥∇2Eα(−tαA)φ∥ βN
2−β

+

∫ t

0

(t− s)α−1∥∇2Eα,α(−(t− s)αA)∇ · f(∇uj)∥ βN
2−β

ds

≤ ∥∇2u0∥ βN
2−β

+ C

∫ t

0

(t− s)
α
2 −1−αγ

4β ∥∇ · f(∇uj)∥ βN
2−β+γ

ds

≤ ∥∇2u0∥ βN
2−β

+ CR(t)1+β
j

∫ t

0

(t− s)
α
2 −1−αγ

4β s−α+αγ
4β ds (3.6)

≤ ∥∇2u0∥ βN
2−β

+ Ct−
α
2 R(t)1+β

j .

Combining (3.5) and (3.6), for any fixed T > 0, we have

R(T )j+1 ≤ R(T )0 + CR(T )1+β
j ,

where C > 0 is independent of T . According to Lemma 3.1, there exists a constant
ε0 > 0 such that R(T )0 ≤ ε0, and 2C(2R(T )0)

β < 1, which yields

R(T )j ≤ 2R(T )0, j ≥ 0.

At last, we obtain

∥uj+1∥ βN
2−β

≤ ∥Eα(−tαA)φ∥ βN
2−β

+

∫ t

0

(t− s)α−1∥Eα,α(−(t− s)αA)∇ · f(∇uj)∥ βN
2−β

ds

≤ R(T )0 + C

∫ T

0

(t− s)α−1−αγ
4β ∥∇ · f(∇uj)∥ βN

2−β+γ
ds

≤ R(T )0 + CR(T )1+β
j

∫ T

0

(t− s)α−1−αγ
4β s−α+αγ

4β ds

≤ R(T )0 + CR(T )1+β
j

≤ CR(T )0,

which means uj(t) ∈ Lp(Ω) for any 0 < t ≤ T and j ≥ 0. □

Next, we shall show the strong continuity of uj(t) for t ∈ [0, T ].

Lemma 3.3. Under the assumption R(T )0 ≤ ε0 in Lemma 3.2, for any j ≥ 0, we
have

uj ∈ C([0, T ];L
βN
2−β (Ω)), T > 0, j = 0, 1, 2, · · · .
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Proof. Fixing t0 ∈ (0, T ), we have the estimate

∥uj+1(t)− uj+1(t0)∥ βN
2−β

≤ ∥(Eα(−tαA)− Eα(−tα0A))φ∥ βN
2−β

+

∫ t

t0

(t− s)α−1 ∥Eα,α(−(t− s)αA)∇ · f(∇uj)∥ βN
2−β

ds

+

∫ t0

0

∥∥(t− s)α−1Eα,α(−(t− s)αA)∇ · f(∇uj)

− (t0 − s)α−1Eα,α(−(t0 − s)αA)∇ · f(∇uj)
∥∥

βN
2−β

ds

= I1 + I2 + I3,

(3.7)

where t0 < t ≤ T .
Using the strong continuity of Eα(−tαA) on Lp(Ω) for t ∈ [0,∞), we deduce

easily that the first term I1 goes to zero as t → t+0 . By Proposition 2.6, the
estimate of the second term yields

I2 =

∫ t

t0

(t− s)α−1 ∥Eα,α(−(t− s)αA)∇ · f(∇uj)∥ βN
2−β

ds

≤ C

∫ t

t0

(t− s)α−1−αγ
4β ∥∇ · f(∇uj)∥ βN

2−β+γ
ds

≤ CR(T )1+β
0

∫ t

t0

(t− s)α−1−αγ
4β s−α+αγ

4β ds

≤ CR(T )1+β
0

( t− t0
t0

)1−α+αγ
4β

.

Obviously, this term vanishes as t → t+0 . For the estimate of the third term, we
first denote

g(t, s) =
∥∥(t− s)α−1Eα,α(−(t− s)αA)∇ · f(∇uj)

− (t0 − s)α−1Eα,α(−(t0 − s)αA)∇ · f(∇uj)
∥∥

βN
2−β

,

where 0 < s < t0 < t. Combining this with (3.4), it is easy to see that

g(t, s) ≤ |(t− s)α−1 − (t0 − s)α−1| ·
∥∥Eα,α(−(t− s)αA)∇ · f(∇uj(s))

∥∥
βN
2−β

+ (t0 − s)α−1
∥∥Eα,α(−(t− s)αA)∇ · f(∇uj(s))

− Eα,α(−(t0 − s)αA)∇ · f(∇uj(s))
∥∥

βN
2−β

≤ C|(t− s)α−1 − (t0 − s)α−1|(t− s)−
αγ
4β · ∥∇ · f(∇uj(s))∥ βN

2−β+γ

+ (t0 − s)α−1
∥∥Eα,α(−(t− s)αA)∇ · f(∇uj(s))

− Eα,α(−(t0 − s)αA)∇ · f(∇uj(s))
∥∥

βN
2−β

≤ C|(t− s)α−1 − (t0 − s)α−1|(t− s)−
αγ
4β s−α+αγ

4β R(T )0

+ (t0 − s)α−1
∥∥Eα,α(−(t− s)αA)∇ · f(∇uj(s))

− Eα,α(−(t0 − s)αA)∇ · f(∇uj(s))
∥∥

βN
2−β

.

(3.8)
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Then combining with the strong continuity of Eα,α(−tαA) on L
βN
2−β (Ω) for t ∈

(0,∞) , we have
lim
t→t+0

g(t, s) = 0

for each fixed s ∈ (0, t0). In addition, the last term of (3.8) is integrable. Applying
dominated convergence theorem yields the third term I3 also tends to zero as t →
t+0 . Indeed, for 0 < s < t0 < t, we have

I3 =

∫ t0

0

g(t, s) ds

≤ C

∫ t0

0

(t0 − s)α−1−αγ
4β ∥∇ · f(∇uj)∥ βN

2−β+γ
ds,

≤ CR(T )1+β
j

∫ t0

0

(t0 − s)α−1−αγ
4β s−α+αγ

4β ds

≤ CR(T )1+β
0 .

Similarly, we can also prove the same limit as t → t−0 with t0 ∈ (0, T ]. Thus,

lim
t→t0

∥uj+1(t)− uj+1(t0)∥ βN
2−β

= 0, t0 ∈ (0, T ].

As for the continuity up to t = 0 of uj+1, Observe that

∥uj+1(t)− uj+1(0)∥ βN
2−β

≤ ∥Eα(−tαA)φ− φ∥ βN
2−β

+

∫ t

0

(t− s)α−1 ∥Eα,α(−(t− s)αA)∇ · f(∇uj(s))∥ βN
2−β

ds

≤ ∥Eα(−tαA)φ− φ∥ βN
2−β

+ C

∫ t

0

(t− s)α−1−αγ
4β ∥∇ · f(∇uj)∥ βN

2−β+γ
dsr

≤ ∥Eα(−tαA)φ− φ∥ βN
2−β

+ CR(t)1+β
j

∫ t

0

(t− s)α−1−αγ
4β s−α+αγ

4β ds

≤ ∥Eα(−tαA)φ− φ∥ βN
2−β

+ CR(t)1+β
0 .

Obviously, if
lim
t→0+

R(t)0 = 0, (3.9)

then combining with the strong continuity of Eα(−tαA), we obtain that

lim
t→0+

∥uj+1(t)− uj+1(0)∥ βN
2−β

= 0.

To prove (3.9), we notice that since φ ∈ L
βN
2−β (Ω), for any ε > 0, there exists

φ̃ ∈ C∞
0 (Ω) such that

∥φ− φ̃∥ βN
2−β

< ε.

Then we have

t
α
2β− αγ

4β2 ∥∇u0(t)∥ β2N
γ

= t
α
2β− αγ

4β2 ∥∇Eα(−tαA)φ∥ β2N
γ

≤ t
α
2β− αγ

4β2 ∥∇Eα(−tαA)(φ− φ̃)∥ β2N
γ

+ t
α
2β− αγ

4β2 ∥∇Eα(−tαA)φ̃∥ β2N
γ

≤ ∥φ− φ̃∥ βN
2−β

+ t
α
4 ∥∇φ̃∥ βN

2−β
≤ ε
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for small t > 0, which implies

lim
t→0+

t
α
2β− αγ

4β2 ∥∇u0(t)∥ β2N
γ

= 0. (3.10)

Similarly, we can obtain

lim
t→0+

t
α
2 ∥∇2u0(t)∥ βN

2−β
= 0. (3.11)

Combining (3.10) with (3.11), we derive (3.9). Summing up, we see that

uj ∈ C([0, T ];L
βN
2−β (Ω))

for any T > 0 and j ≥ 0. □

Proof of Theorem 1.2. To prove the main result, we only need to show the uniform
convergence of the sequence {uj}j≥0 under the assumption that R(T )0 ≤ ε0. By
Lemma 2.4, we define the sequence

ω0(x, t) = u0(x, t),

ωj(x, t) = uj(x, t)− uj−1(x, t), j ≥ 1.
(3.12)

Obviously, ωj ∈ C([0, T ];L
βN
2−β (Ω)) for any T > 0 and j ≥ 0. In addition, we have

the identity

ωj+1(x, t)

= uj+1(x, t)− uj(x, t)

=

∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)
(
∇ · f(∇uj)−∇ · f(∇uj−1)

)
ds

=

∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)
(
∇2uj · f ′(∇uj)−∇2uj−1 · f ′(∇uj−1)

)
ds

=

∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)∇2ωj · f ′(∇uj) ds (3.13)

+

∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)∇2uj−1 ·
(
f ′(∇uj)− f ′(∇uj−1)

)
ds.

As in Lemma 3.2, to estimate ωj , we to derive a priori estimates for ∇ωj and ∇2ωj .
So we define

R̃(t)j = max
{

sup
0<s≤t

s
α
2 ∥∇2ωj(s)∥ βN

2−β
, sup
0<s≤t

s
α
2β− αγ

4β2 ∥∇ωj(s)∥ β2N
γ

}
(3.14)

for t > 0 and j ≥ 0, where 0 < γ < min{2β, β(N+1)−2}. Obviously, R̃(t)0 = R(t)0.
Let R(T )0 ≤ ε0. By Hölder’s inequality, we obtain that for 0 < s ≤ t ≤ T ,

∥∇2ωj(s) · f ′(∇uj(s))∥ βN
2−β+γ

≤ ∥∇2ωj(s)∥ βN
2−β

∥f ′(∇uj(s))∥ βN
γ

= s−α+αγ
4β

(
s

α
2 ∥∇2ωj(s)∥ βN

2−β

)(
s

α
2 −αγ

4β ∥∇uj(s)∥ββ2N
γ

)
≤ s−α+αγ

4β R̃(T )jR(T )βj

≤ Cs−α+αγ
4β R̃(T )jR(T )β0 .

(3.15)
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In addition, the growth condition on f ′ and Hölder’s inequality yield, for 0 < s ≤
t ≤ T ,

∥f ′(∇uj(s))− f ′(∇uj−1(s))∥ βN
γ

≤
∥∥∥∇ωj(s)

(
|∇uj(s)|β−1 + |∇uj−1(s)|β−1

)∥∥∥
βN
γ

≤ ∥∇ωj(s)∥ β2N
γ

∥∥∥|∇uj(s)|β−1 + |∇uj−1(s)|β−1
∥∥∥

β2N
γ(β−1)

≤ ∥∇ωj(s)∥ β2N
γ

(
∥∇uj(s)∥β−1

β2N
γ

+ ∥∇uj−1(s)∥β−1
β2N
γ

)
≤ s−

α
2 +αγ

4β R̃(T )j

(
R(T )β−1

j +R(T )β−1
j−1

)
.

Then for R(T )0 ≤ ε0, we have

∥∇2uj−1(s) ·
(
f ′(∇uj(s))− f ′(∇uj−1(s))

)
∥ βN

2−β+γ

≤ ∥∇2uj−1(s)∥ βN
2−β

∥f ′(∇uj(s))− f ′(∇uj−1(s))∥ βN
γ

≤ s−α+αγ
4β R̃(T )jR(T )j−1

(
R(T )β−1

j +R(T )β−1
j−1

)
≤ Cs−α+αγ

4β R̃(T )jR(T )β0 .

(3.16)

Applying the differential operator ∇ to (3.13), and combining this with (3.15)–
(3.16), we have

∥∇ωj+1∥ β2N
γ

≤
∫ t

0

(t− s)α−1∥∇Eα,α(−(t− s)αA)∇2ωj · f ′(∇uj)∥ β2N
γ

ds

+

∫ t

0

(t− s)α−1∥∇Eα,α(−(t− s)αA)∇2uj−1 ·
(
f ′(∇uj)− f ′(∇uj−1)

)
∥ β2N

γ

ds

≤ C

∫ t

0

(t− s)
α−1+ αγ

4β2 − α
2β−αγ

4β ∥∇2ωj · f ′(∇uj)∥ βN
2−β+γ

ds

+ C

∫ t

0

(t− s)
α−1+ αγ

4β2 − α
2β−αγ

4β ∥∇2uj−1 ·
(
f ′(∇uj)− f ′(∇uj−1)

)
∥ βN

2−β+γ
ds

≤ CR̃(T )jR(T )β0

∫ t

0

(t− s)
α−1+ αγ

4β2 − α
2β−αγ

4β s−α+αγ
4β ds

≤ Ct
αγ

4β2 − α
2β R̃(T )jR(T )β0 , j ≥ 1.

(3.17)
Similarly, we have

∥∇2ωj+1∥ βN
2−β

≤
∫ t

0

(t− s)α−1∥∇2Eα,α(−(t− s)αA)∇2ωj · f ′(∇uj)∥ βN
2−β

ds

+

∫ t

0

(t− s)α−1∥∇2Eα,α(−(t− s)αA)∇2uj−1 ·
(
f ′(∇uj)− f ′(∇uj−1)

)
∥ βN

2−β
ds

≤ C

∫ t

0

(t− s)
α
2 −1−αγ

4β ∥∇2ωj · f ′(∇uj)∥ βN
2−β+γ

ds
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+ C

∫ t

0

(t− s)
α
2 −1−αγ

4β ∥∇2uj−1 ·
(
f ′(∇uj)− f ′(∇uj−1)

)
∥ βN

2−β+γ
ds

≤ CR̃(T )jR(T )β0

∫ t

0

(t− s)
α
2 −1−αγ

4β s−α+αγ
4β ds

≤ Ct−
α
2 R̃(T )jR(T )β0 , j ≥ 1. (3.18)

Combining (3.14), (3.17) with (3.18), for any fixed T > 0, we have

R̃(T )j+1 ≤ CR̃(T )jR(T )β0 , j = 1, 2, . . . (3.19)

where C > 0 is independent of T . Noting that

ω1 =

∫ t

0

(t− s)α−1Eα,α(−(t− s)αA)∇ · f(∇u0) ds,

following the same idea in the proof (3.17) and (3.18), we obtain

R̃(T )1 ≤ CR̃(T )0R(T )β0 = CR(T )1+β
0 . (3.20)

Combining (3.19) with (3.20), we finally derive

R̃(T )j ≤ R(T )0

(
CR(T )β0

)j

, j = 0, 1, 2, . . .

provided that R(T )0 ≤ ε0.
With the help of a priori estimates above, now we can estimate ωj ,

∥ωj+1∥ βN
2−β

≤
∫ t

0

(t− s)α−1∥Eα,α(−(t− s)αA)∇2ωj · f ′(∇uj)∥ βN
2−β

ds

+

∫ t

0

(t− s)α−1∥Eα,α(−(t− s)αA)∇2uj−1 ·
(
f ′(∇uj)− f ′(∇uj−1)

)
∥ βN

2−β
ds

≤ C

∫ t

0

(t− s)α−1−αγ
4β ∥∇2ωj · f ′(∇uj)∥ βN

2−β+γ
ds

+ C

∫ t

0

(t− s)α−1−αγ
4β ∥∇2uj−1 ·

(
f ′(∇uj)− f ′(∇uj−1)

)
∥ βN

2−β+γ
ds

≤ CR̃(T )jR(T )β0

∫ t

0

(t− s)α−1−αγ
4β s−α+αγ

4β ds

≤ R(T )0

(
CR(T )β0

)j+1

, j ≥ 1.

(3.21)
Similarly, we obtain that

∥ω1∥ βN
2−β

≤ CR(T )1+β
0 .

Therefore,

Mj := sup
0≤t≤T

∥ωj(t)∥ βN
2−β

≤ R(T )0

(
CR(T )β0

)j

, j ≥ 0

and the sequence {Mj}j≥0 is summable provided that

R(T )0 < min{ε0, C− 1
β }. (3.22)
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Since limT→0+ R(T )0 = 0, we can choose T > 0 small enough such that (3.22)

holds. Then Lemma 2.4 implies that {uj}j≥0 is a Cauchy sequence in C([0, T ];L
βN
2−β (Ω)),

and converges to a unique solution u ∈ C([0, T ];L
βN
2−β (Ω)) of the integral equation

(1.5).
Moreover, recalling that

u0(x, t) = Eα(−tαA)φ,

and combining this with Proposition 2.5, we obtain

R(T )0 ≤ max
{

sup
0≤t≤T

t
α
2β− αγ

4β2 ∥∇u0(t)∥ β2N
γ

, sup
0≤t≤T

t
α
2 ∥∇2u0(t)∥ βN

2−β

}
≤ C∥φ∥ βN

2−β
.

So if ∥φ∥ βN
2−β

is sufficiently small, the solution u can be extended to be global. The

proof of Theorem 1.2 is complete. □
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