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OPTIMAL SWITCHING OF VACCINATION FOR AN

INFECTIOUS DISEASE MODEL

SHRADDHA SALWAHAN, SYED ABBAS, ABDESSAMAD TRIDANE

Abstract. We study a switched SIHR (Susceptible Infected Hospitalized Re-

covered) model for infectious diseases. The aim is to find the most effective

switching signal to manage the disease’s effects as effectively as maintaining
a continuous vaccination program. A nonlinear, non-convex optimal control

problem of the switched system is converted into a linear and convex opti-

mal control problem by applying the theory of moments and semi-definite
programming. Finally, some numerical simulations are performed to compare

continuous vaccination programs and optimal switching of vaccination control.

1. Introduction

For many decades and even centuries, differential equations have served as pow-
erful tools for modelling a wide range of complex phenomena. These models can be
based on either ordinary differential equations (ODEs) or partial differential equa-
tions (PDEs). Some examples include modelling the spread of infectious diseases
[15], analyzing the impact of criminal behaviour on society [19], studying diseases
such as Alzheimer’s [2, 9], and applications in engineering and fluid dynamics [22].
In this article, we specifically focus on a mathematical model related to controlling
the spread of infectious diseases.

Because of the spread of several infectious diseases, mathematical modelling of
these diseases has gained much attention in the past few decades. Modeling in-
fectious diseases and even epidemics helps study all kinds of diseases in different
situations. There is a vast amount of literature on this. Numerous mathematical
elements can be incorporated to enhance disease modeling. For instance, one can
include delay, which can be time-dependent or state-dependent, etc., or even im-
pulse, which can be instantaneous or non-instantaneous, and many more. Some of
the articles and books for the references can be [4, 7, 27, 30]. The primary objective
of approaching the study of infectious diseases in this manner is to achieve several
vital aims: controlling disease transmission through various interventions, forecast-
ing disease spread, or merely comprehending the dynamics of infectious diseases to
enhance our readiness for future scenarios. The most prevalent strategies for man-
aging an infectious disease involve vaccination and isolation. The optimal control
of these interventions provides an optimum manner in which the disease can be
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controlled under a particular objective function. Since there is much literature on
optimal control of infectious diseases, some references specific to optimal control by
vaccination are [5, 10, 11, 21].

A switched system is a type of hybrid system in which the system switches be-
tween several subsystems depending on some conditions or a switching signal. They
have vast applications in engineering [6]. Switched systems can also be employed
in the mathematical modeling of infectious diseases. This approach is particularly
valuable for emulating real-world scenarios through mathematical models, which
can be challenging otherwise, for example, a limited stockpile of drugs and vac-
cines and the effect of seasonality in the disease transmission [16, 26]. Impulses can
also be included in a switched infectious disease model [25]. Optimal control of a
switched system can also be an interesting application to disease modeling [28, 31].

In a switched system, determining the optimal control for the system becomes
a challenging problem when the sequence of subsystems or the switching signal is
not known in advance. This problem can be divided into two main parts, the first
of which involves identifying the optimal instants to switch between subsystems,
and this in itself is a complex task [29, 8]. Although numerically expensive, some
methods like dynamic programming and gradient descent are used to evaluate the
optimal switching signal [1]. An innovative approach to this challenge is studied
in [17]. This novel method relies on leveraging the theory of moments for global
polynomial optimization using semi-definite programming to determine the optimal
switching instants. Several research articles discussing this approach include [3, 13,
23].

This article employs the methodology described in [3, 17]. The application of
this method to modeling and controlling infectious diseases is also discussed in
[20, 23]. Notably, both articles do not consider the population of critically ill or
hospitalized individuals. While in [23], the treatment category is treated equiva-
lently to hospitalization; this article assumes that individuals receiving treatment
or undergoing isolation are within the infected group, with only critically ill indi-
viduals hospitalized. Vaccination is considered the only control intervention. The
goal is to minimize the infected and hospitalized populations. To assess the impact
of limited vaccination, specifically vaccinations administered at optimal switching
instants, the numerical simulations are compared against continuous vaccination
scenarios.

This article is structured as follows: The model is formulated in section 2. Section
3 covers the evaluation of equilibrium points and the Basic Reproduction Number.
Section 4 defines the model as a switched system and then outlines the primary
problem, which is the Switched Optimal Control Problem (SOCP). By using the
Lagrange polynomial, the SOCP is transformed to its polynomial equivalent of the
optimal control problem (PEOCP) in section 5. Finally, in section 6, the moments
and moment matrix are discussed briefly, and by using the moments approach, a
semi-definite program (SDP) is formulated. Section 7 illustrates the results with a
numerical example.

2. Model formulation

The objective of this study is to examine the effect of vaccination as a primary
intervention to control the spread of disease. We work on the SIHR model with
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critically ill individuals admitted to hospitals.

S′ = µ− βSI − µS − λϵS,

I ′ = βSI − αI − γ1I + δH − (µ+ µ1)I,

H ′ = αI − δH − γ2H − (µ+ µ2)H,

R′ = γ1I + γ2H − µR+ λϵS,

(2.1)

with the initial condition at t = t0 as S(t0), I(t0), H(t0), and R(t0). The nonlinear
SIHR epidemiological model includes four non-negative state variables S(t), I(t),
H(t), and R(t) that are defined as Susceptible, Infected, Hospitalized, and Recov-
ered respectively. Here, S(t) represents the number of individuals susceptible to the
infection (i.e., they are not infected yet). The individuals who get infected move to
the infected compartment at rate β. Individuals in this compartment spread the
disease. All infected individuals undergoing treatment or are quarantined are con-
sidered in this compartment. From this compartment, only the critically ill humans
are shifted to hospitals at rate α. The recovered individuals move to the recovered
compartment from the infected compartment at rate γ1 and from the hospitalized
compartment at rate γ2. Death due to the disease is at rate µ1 in the infected com-
partment and µ2 in the hospitalized compartment. µ is the natural mortality rate.
The parameter λ is the vaccination rate, and ϵ is the control parameter, described
later in the article. Figure 1 describes the flow diagram of the model (2.1).

Figure 1. Conceptual flow diagram of the SIHR model.

3. Equilibria and basic reproduction number

The disease-free equilibrium point is,

E1 =
( µ

λϵ+ µ
, 0, 0,

λϵ

λϵ+ µ

)
.

The endemic equilibrium is denoted as, E2 = (S∗, I∗, H∗, R∗). Next, using the
next-generation matrix [24], to calculate the basic reproduction number (R0). Let
the population be grouped in k number of compartments. Consider xi as the
population in each compartment.

Then, a general model describing the movement of humans between the com-
partments can be written as

ẋi = Fi(x)− Vi(x), where x = (x1, . . . , xk)
T .
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We define Fi as the influx of infected population, and Vi denotes the outflow of
population from the ith compartment. Vi can be further written as, Vi = V+

i −
V−
i . Furthermore, since each function represents the transfer of individuals, it is

important to consider x ≥ 0, Fi ≥ 0, V+
i ≥ 0, V−

i ≥ 0, for i = 1, . . . , k.
If E1 is the equilibrium point and F and V are the k × k matrices defined as,

F =

[
∂Fi

∂xj
(E1)

]
, V =

[
∂Vi

∂xj
(E1)

]
,

then Basic reproduction is defined as

R0 = ρ(FV −1). (3.1)

We calculate the basic reproduction number R0 for the model (2.1) by using the
method given above. We have

F =

[
βSI + δH

0

]
, V =

[
(α+ γ1)I + (µ+ µ1)I

δH + γ2H + (µ+ µ2)H − αI

]
,

where F and V are the column vectors of Fi and Vi, respectively. Then, by consid-
ering the notation defined above, we obtain

F =

[
βS δ
0 0

]
, V =

[
α+ γ1 + µ+ µ1 0

−α δ + µ+ µ2 + γ2

]
.

Therefore, the Basic reproduction number is

R0 =
µβ

(λϵ+ µ)(α+ γ1 + µ+ µ1)
+

δα

(α+ γ1 + µ+ µ1)(δ + µ+ µ2 + γ2)
.

4. SIHR model as switched system and optimal control problem

Let y = (S, I,H,R)⊤. Then we can write model (2.1) as a switched system,

ẏ(t) = gω(t)(y(t)),

where gi : R4 → R4 is the ith vector field and ω : [t0, T ] → S is the switching
signal. The switching signal ω(t) is both a time-dependent function and a piece-wise
constant. We assume t0 = 0, so the interval becomes [0, T ] and initial conditions are
y(0) = (S(0), I(0), H(0), R(0)⊤. Here ϵ will be the control and switching parameter,
i.e., ϵ = 0, 1. Case ϵ = 0 means that there is no vaccination. In real life, it can
mean that there is no stock of vaccination doses or that there is no vaccination drive.
Case ϵ = 1 signifies the presence of vaccination as an intervention. Each mode in
the switching system is associated with a particular subsystem. It is defined as,
ẏ(t) = gi(y(t)) for i ∈ S = {0, 1}. The subsystem i = 0 corresponds to the case
when ϵ = 0 and subsystem i = 1 means the case when ϵ = 1. Hence, the system
switches between two subsystems according to the presence of vaccination control.

Before further analysis, we shall assume some conditions. Since the switched
system consists of a duplet of a finite sequence of nodes and switching time t0 =
0 < t1 < · · · < tn = T , then:

• There are no jump discontinuities in the state.
• There are no infinite switching accumulation points.

The main goal of this work is to study the impact of optimal switching instants
with respect to an objective function. Let us assume the objective functional to be

J =

∫ T

t0=0

{I(t) +H(t)}dt.
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Let the running cost be denoted by Lω(t) ,i.e., Lω(t)(t, y(t)) = I(t) +H(t). Hence,
L0 = I(t) + H(t) and L1(t, y(t)) = I(t) + H(t). Therefore, the switched optimal
control problem (SOCP) can be written as

min
ω(t)

J(t0, T, y(t), ω(t)), (4.1)

subject to

ẏ(t) = gω(t)(y(t)), where ω(t) ∈ S = {0, 1}. (4.2)

5. Polynomial equivalent optimal control problem (PEOCP)

We will first define the above SOCP (4.1) and (4.2) in the form of a continuous
system, which is not a switched system with a control variable. A polynomial
expression is built, which can mimic the behaviour of the switched system. Like
the approach used in [17], Lagrange polynomials transform the switched system
into a continuous one. The control variable shall be denoted by ξ, and ξ ∈ ∆ =
{ξ ∈ R| ϕ(ξ) = 0} where,

ϕ(ξ) = ξ(1− ξ). (5.1)

According to the kth Lagrange polynomial pk(ξ), if k = 0, 1, then

p0(ξ) = (1− ξ), p1(ξ) = ξ. (5.2)

From the results in [17], we can write system (4.2) as

ẏ(t) = G(y, ξ) = g0(y)p0(ξ) + g1(y)p1(ξ). (5.3)

Similarly, the running cost can be written as

L(y(t), ξ) = L0(t, y(t))p0(ξ) + L1(t, y(t))p1(ξ). (5.4)

Therefore (4.1) becomes

J =

∫ T

t0=0

L(y(t), ξ)dt.

Therefore, we can formulate the PEOCP as

min
ξ∈∆

J(t0, T, y(t), ξ), (5.5)

subject to

ẏ(t) =

1∑
k=0

gk(y)pk(ξ). (5.6)

The problem becomes non-convex because the set ∆ is non-convex. To overcome
it, we shall redefine the PEOCP using the moments technique.

6. Semi-definite relaxation using moments approach

In this section, we will first discuss the moments and localizing matrices and
then move on to the semi-definite program for the PEOCP.

We will cover the topic of moments and moment matrices briefly. For more
details, one can refer to [20, 13, 14] and the references within. The smallest closed
set Q ⊂ Rn such that ν(Rn\Q) = 0 for a measure ν on Rn is defined as the support
of ν, expressed as supp(ν), and the measure ν is said to be supported by Q if
supp(ν) ⊂ Q.
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If ν is a probability measure supported by Q ⊂ R and R[x]n is the space of
polynomials of degree at most n and in variable x, then the ith moment of ν is
defined as

zi =

∫
Q
xi ν(dx).

It means for a polynomial l(x) ∈ R[x]n written as l(x) =
∑n

i=0 lix
i,∫

Q
l(x) ν(dx) =

n∑
i=0

lizi.

Now for probability measure ν, if z = {zi}2si=0 is a sequence of moments, then
moment matrix Ms(z) is defined as a (s+ 1)× (s+ 1) matrix with (i, j) the entry
as zi+j , 0 ≤ i, j ≤ s. Hence, the matrix becomes,

Ms(z) =


z0 z1 z2 . . . zs
z1 z2 z3 . . . z(s+1)

...
...

... . . .
...

zs z(s+1) z(s+2) . . . z2s

 .

For the polynomial l(x) and sequence of moments z defined above the Localising
matrix can be defined as an (s + 1) × (s + 1) symmetric matrix with its (i, j)th
entry as

Ms(lz)(i, j) =

n∑
k=0

lkzi+j+k.

One can read [23, 12] for examples and other details. From the results discussed
in [20, 23] for control variable ξ ∈ ∆, and the constraint ϕ(ξ) = 0 or ϕ(ξ) ≥ 0 and
−ϕ(ξ) ≥ 0. We will denote

ϕ1 = ϕ(ξ) and ϕ2 = −ϕ(ξ).

The following two lemmas help formulate the semi-definite program.

Lemma 6.1. If z = {zi}2si=0 is a sequence of moments of probability measure ν
supported by Q, then Ms(z) ⪰ 0.

Lemma 6.2. Assume that the polynomials ϕ1(ξ) and ϕ2(ξ) satisfies d
1
ϕ = ⌈deg(ϕ1)/2⌉ =

1 and d2ϕ = ⌈deg(ϕ2)/2⌉ = 1. Consider the sequence z = {zi}2si=0 of moments of

probability measure ν supported by set Q1 = {ν ∈ R|ϕ1 ≥ 0}. Then Ms−d1
ϕ
(ϕ1z) ⪰

0, i.e, Ms−1(ϕ1z) ⪰ 0 and similarly Ms−1(ϕ2z) ⪰ 0.

Proof. Letting h ∈ R[ξ](s−1), that is h(ξ) =
∑s−1

j=0 hjξ
j , then

h⊤M(s−1)(ϕ1z)h =

s−1∑
α=0

s−1∑
β=0

hαhβM(s−1)(ϕ1z)(α, β)

=

s−1∑
α=0

s−1∑
β=0

hαhβ

[
0 + zα+β+1 − zα+β+2

]
=

s−1∑
α=0

s−1∑
β=0

hαhβ

[ ∫
Q1

ξα+β+1 ν(dξ)−
∫
Q1

ξα+β+2 ν(dξ)
]
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=

∫
Q1

(h(ξ))2ϕ1(ξ)ν(dξ) ≥ 0.

Hence M(s−1)(ϕ1z) ⪰ 0. Similarly, we can consider measure µ supported by set
Q2 = {µ ∈ R|ϕ2 ≥ 0} along with its corresponding sequence of moments and
proceeding as above, it is not difficult to prove that M(s−1)(ϕ2z) ⪰ 0. □

Suppose that ∆ is a Borel subset of Rn and P (∆) is the space of probability
measures ν which has support contained in Γ. Then we can say that

min
ξ∈∆

J = min
ν∈P (∆)

∫
∆

Jν(dξ). (6.1)

The proof of (6.1) can be found in [13] and [12]. Hence the minimization problem
(5.5) becomes

min
ξ∈∆

J(t0, T, y(t), ξ) = min
ν∈P (∆)

∫
∆

J ν(dξ)

= min
ν∈P (∆)

∫
∆

∫ T

t0=0

L(y, ξ) dt ν(dξ).

Then minν∈P (∆)

∫
∆

∫ T

t0=0
L(y, ξ) dt ν(dξ) is equal to

min
ν∈P (∆)

∫
∆

∫ T

t0=0

L0(t, y(t))p0(ξ) + L1(t, y(t))p1(ξ) dt ν(dξ)

= min
ν∈P (∆)

∫
∆

∫ T

t0=0

{(L0 + L1)ξ + L0} dt ν(dξ)

= min
z∈Z

∫ T

t0=0

{(L0 + L1)z1 + L0z0} dt

= min
z∈Z

∫ T

t0=0

1∑
k=0

1∑
i=0

Lk(t, y(t))ckizidt,

where Z is the space of moments i.e., Z = {z = {zi}|zi =
∫
∆
ξiν(dξ), ν ∈ P (∆)}.

Also, c00 = 1, c01 = −1, c10 = 0, and c11 = 1.
Now, by using the approach in [17], a semi-definite program (SDP) of relaxation

order s ≥ 1 can be formulated as SDPs:

min
z∈Z

∫ T

t0=0

1∑
k=0

1∑
i=0

Lk(t, y(t))ckizi dt,

Ms(z) ⪰ 0,

Ms−1(ϕ1z) ⪰ 0,

Ms−1(ϕ2z) ⪰ 0,

ẏ(t) =

1∑
k=0

1∑
i=0

gk(y)ckizi.

(6.2)
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So, the SDP for the lowest order of relaxation is for s = 1. which is SDP1:

min
z∈Z

∫ T

t0=0

1∑
k=0

1∑
i=0

Lk(t, y(t))ckizi dt,

M1(z) ⪰ 0,

M0(ϕ1z) ⪰ 0,

M0(ϕ2z) ⪰ 0,

ẏ(t) =

1∑
k=0

1∑
i=0

gk(y)ckizi.

(6.3)

7. Numerical simulations

We perform some numerical simulations to support the analysis presented above.
The parameter values under consideration are not specific to any particular disease
(table 1), and research articles that influence them are [23, 18]. The reproduction
number is calculated to be R0 = 2.05 when there are no vaccination strategies, i.e.,
ϵ = 0 and R0 = 0.24 when there is continuous vaccination, i.e., ϵ = 1. The method
followed for the numerical simulation is similar to [23].

Table 1. Parameters used

Parameter Value Parameter Value
β 0.99 δ 0.1
µ 0.033 γ1 0.2

µ1 = µ2 0.0833 γ2 0.1
α 0.2 λ 0.5

S(0) 0.79 I(0) 0.16
H(0) 0.05 R(0) 0

The primary aim of this research study is to reduce the number of people in both
the infected and hospitalized compartments. This objective has been chosen be-
cause it is more cost-effective to promote recovery through vaccination than treating
individuals with specific medications after infection. Furthermore, hospitalization
costs significantly exceed the expense of a vaccination dose. Here, we minimize the
objective function by finding the optimal number of switches of vaccination so that
we get similar behavior to continuous vaccination and the disease is in control even
when R0 > 1.

In Figure 2, it is illustrated that the susceptible population is the least in the
presence of continuous vaccination. We can conclude that most of the population
recovers from vaccination and will never be infected. Conversely, in case of no
vaccination, the susceptible population is maximum, which means that all may
get infected in the future. For the optimal switching of vaccination control, the
susceptible population is close to that in the case of continuous vaccination.

In Figures 3 and 4, the time series of the population in the infected and hospital-
ized compartments are the same for both continuous vaccination and vaccinating
optimally. Since R0 > 1 in case of no vaccination control, the infected and hospi-
talized compartment population is stable at the endemic equilibrium. Finally, in
Figure 5, the recovered population is maximum for the case of constant vaccination
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Figure 2. Time evolution of model (2.1) when R0 > 1.
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Figure 3. Time evolution of model (2.1) when R0 > 1.

and minimum for no vaccination. Finally, Figure 6 depicts the optimal switching
signal. The optimal switching signal indicates that initiating vaccination strategies
at the onset of an epidemic is critical for controlling the disease, and the availability
of vaccines (duration of vaccination campaigns) can be gradually reduced over time.
Based on all the figures related to the numerical simulation, it can be concluded
that even when the reproduction number exceeds one and the availability of vac-
cines is limited, the disease can still be effectively controlled through the optimal
use of vaccination. The effect of switching vaccination strategies optimally, while
not identical, is nearly as effective as continuous vaccination of the population.
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Figure 4. Time evolution of model (2.1) when R0 > 1.
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Figure 5. Time evolution of model (2.1) when R0 > 1.

8. Conclusion

This research article studies a simple SIR model with hospitalization as a differ-
ent compartment. In light of the global experience with a pandemic and the lessons
learned from being ill-prepared, it is imperative to take proactive measures for the
future. Various interventions have been devised to manage the disease, but in this
article, we focus solely on vaccination control. It is important to note that vaccina-
tion doses can be limited based on the available stockpile within a city or country,
making them potentially unavailable at times. Hence, we considered vaccination
as a switched intervention. By using the strategy in [17], we solve the switched
control problem. Implementing vaccination at the initial stages of disease spread is
crucial, as this is when infections escalate rapidly. As time progresses, the period
of effective control diminishes, and the intervals between vaccination drives can be
increased. To conclude, optimal switching and Optimal control of the control inter-
ventions can help control the spread of disease even when its reproduction number
is greater than 1.
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Figure 6. Time evolution of model (2.1) when R0 > 1.
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