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EXISTENCE AND FORMS OF ENTIRE SOLUTIONS TO
SYSTEM OF NON-LINEAR PARTIAL DIFFERENTIAL
EQUATIONS

ABHILJIT BANERJEE, JHUMA SARKAR

ABSTRACT. The main objective of this article is to explore the existence and
forms of transcendental entire solutions of some systems of non-linear partial
differential equations. We obtain two results and illustrate the results with
several examples. This article improves the results in [5,[I5]. In the last section
we discuss the differences between the solutions involving homogeneous and
non-homogeneous operators, and state an open question for the sake of future
research.

1. INTRODUCTION

The development of the difference analogue of the Nevanlinna theory [4, [TT]
has greatly influenced the study of difference and difference-differential equations.
Naturally, this topic has become a central focus for many researchers in the field. In
1966, Gross [6] studied the existence and form of transcendental entire solution of
the equation f(2)™+g¢g(z)™ = 1, and settled the problem for m = 2 and pointed out
that the equation does not possess any non-constant transcendental entire solution if
m > 2. This significant result opened new avenues for further exploration about the
existence and form of transcendental entire solutions for variants of classical Fermat-
type equations. In course of time, this line of research has gained momentum,
leading to a number of interesting results by many researchers, thereby enriching
the field.

Theorem 1.1 ([I2]). For any two positive integers m and n with m # n, the
equation

FE"+fz+a™ =1,
has no transcendental entire solution with finite order.

Theorem 1.2 ([12]). The finite order transcendental entire solution of
Fl@)? + flz+0)® =1,

must satisfy f(z) = sin(z+Bi), where B is a constant and ¢ = 2kw or ¢ = (2k+1)m,
k is an integer.
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In 2017, Gao [B] investigated the existence and form of transcendental entire
solutions, for the following systems of Fermat-type equations:

AE@™ + fa(z+ 0™ = Qu(2),

£(2)" + fi(z + )™ = Qa(2), (1.1)

and
12?4 fa(z+¢)* = Qu(2),
f5(2)2 + f1(z + ¢ = Qa(2),

where @Q;(z), j = 1,2 are non-zero polynomials in C. For systems (1.1)) and (1.2)),
the following results were obtained:

(1.2)

Theorem 1.3 ([5]). There does not exist any finite order transcendental entire

solutions (f1(z), f2(2)) of (L.1) if any of the following conditions is satisfied:
(i) mims > Ning;,
(i) my; > 4, j=1,2.

g

Theorem 1.4 ([5]). Let (f1(z), f2(2)) be a finite order transcendental entire solu-
tion of (1.2)) in C. Then Q1(z) = c11¢12, Q2(2) = ca1¢22 and

az+by az—b;

0216a2+b2 _ C216—az—b2

f2(2) = % )

c11€ — C12€"

2a ’

fi(z) =
where a* =1, by, ba, ¢ (#0), k,j = 1,2 are constants.

In 2018, Xu-Cao [I5] investigated the existence and form of transcendental entire
solutions of shift-differential equation in C? to obtain the following result.

Theorem 1.5 ([I5]). Let ¢ = (c1,c2) be a non-zero constant in C2. Then the
Fermat-type partial differential equation

(3f(21>22)

821 ) +f(21+cl7z2+62)m:17

does not have a finite order transcendental entire solution whenever m, n are two
distinct positive integer.

Theorem 1.6 ([I5, [16]). Let ¢ = (c1,ca) be a non-zero constant in C2, then each
finite order transcendental entire solution of the Fermat-type partial differential
equation

8f(21722) 2 2
(T) + f(zi 4,22 +c2)" =1,

has the form f(z1,22) = sin(Az; + Bzo + H(z2)), where A, B are constants in
C satisfying A? = 1, elAatBe2) — 1 gnd H(z) is a polynomial in one variable
zo such that H(z2) = H(ze 4+ c2). In special case whenever co # 0, we have
f(z1,22) = sin(Azy + Bzz + constant).

Motivated by the results several authors made contribution to this field; see
[1l [14], [I7]-[21] and the references therein.
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2. FORMULATION OF MAIN PROBLEM AND RELEVANT EXAMPLES
To proceed further, we introduce the following differential-operator

Definition 2.1. The partial differential operator Pr,, in C" is defined as

n !
Pr,= bjl...jnm»

|7=1 1 e

where bj, . ;, # 0 are constants in C and J = (j1,j2,- .-, Jn), |J| = D4y jt. From

now onwards, we use Z, = (z1,22,...,2n), Cn = (c1,C2,...,¢,) and 2, + &, =
(z1+c1,20+ ¢y y2n + ) and 0= (0, 0,..., 0).

This article is based on exploring existence of finite order transcendental entire
solutions in n (n > 1) dimensional complex field of the equations

(Pr, (f1(Z))" + folzn + &)™ = Qu(z)
(Pr, (f2(Z)))"2 + f1(Z + )" = Qa(2);

where Q;(Z5,), j = 1,2 are two non-zero polynomials in C™ and are of finite order
transcendental entire solution for n = 2, i.e. in C? of the equations

(Pp,(f1(5))* + fa(z + &)? =1
(Pr,(f2(2)* + (B +6&) =1

Theorem 2.2. Let ¢ = (¢1,¢o,...,¢n) be a non-zero constant in C™. Then (2.1))
can not have a finite order transcendental entire solution (f1(2,,), f2(Zn), -« fu(Zn))
if the exponents satisfy one of the following two conditions:

(i) kilk'g > lllg,‘

(i) ke > g forly > 2,6 =1,2.

(2.1)

(2.2)

The above theorem motivate us to explore the case I; =1, and k; = 1;t =1, 2.
In this respect, the following example shows that the solution exists.

Example 2.3. Let ll = 1, lQ = 1, kl = ]., kQ = 1, bl() = ]., b01 = ]., b11 = ].,
bao = 1, boz = 1, Q1(2) = 1, Q2(23) = 1. Then f(2) = (fi(22), f2(22)), where
[i(#%) =€t + 1, j =1,2is a solution of (2.1)) when e“*+¢ = —5,

For the sake of convenience and to proceed further we us use the following ex-
pressions

Aq(r,8) = —b1os + borr + b11(das — dir) + 2bagdy s — 2bgadar,
As(r,8) = b1gs — borr + bi1(das — dir) + 2bagdy s — 2bgadar,
B(r,s) = =byirs + boos? + boar?,
Dy (r,8) = —bigr — bo15 + b1178 + bagr? + bgas?,
Dy(r,s) = bior + bo1s + biirs + boor? + boas?,
L(r,s) = dyr + das,
where 7, s are parameters and d, d2 are two constants in C.

Theorem 2.4. Let (c1,c2) # (0,0) € C? be a constant and (f1(23), f2(23)) be
a finite order transcendental entire solution of ([2.2) in C2. Also let B(cy,ca),
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Ai(c1, ) and B(ey, ), Ax(cr,ca) be nonzero simultaneously. Then (f1(23) f2(232))
takes one of the following form:

(A) When
- D (d1 dg)
Di(dy,d2)Ds(dy,do) = 1, e2H(e2) = 22072
1( 15 2) 2( 15 2) , € Dl(dl,dQ)’
AW+ Wa) _ W+ Ws _ i —L(&)
e =-1, e = ——¢€ ,
D (dy,ds)
we have
. efL(z;)+L(C;)+W2 _ eL(Z;)*L(C;)*VI@
fl(ZQ) = 2% )
. eL(22)—L(c2)+ Wi _ o—L(22)+L(c2)—W1
where W1, Wy are two constants in C.
(B) When
- Dy (dy,d2) _
Di(dy,ds)Da(dy,do) =1, 2L(@) = 221 2AWi-Wa) _
1(d1,d2) D (dy, da) , € D1(d1,d2)’e )
Wi—-Wy _ _ i —L(cz)
e = e ,
D1 (dy,ds)
. eL(#)—L(2)+Wa _ o—L(53)+L(c3)~W>
f1(22) = % )
. eL(#)—L(&2)+W1 _ o—L(2)+L(c3)-W1
f2(22) =

2i ’

where W1, W are two constants in C.
The following examples justify Theorem

Example 2.5. Let big = —2i, bo1 =i, bi1 = =21, boo =4, boe =i, d1 =1, dy =1,
=7, =", Wi==% Wy == Then

—je— A1zt 4 jes1tz2 =" e~ 71—zt + e#1tz2—7¢ )

(1(2). f2(2) = ( ; - 5
is a solution of .

Example 2.6. Let blO — 22’ bOl — 7;? bll = 27,, bgo = 7;, b02 = i, dl = 1, d2 = —L
e =% =% W= 5, Wy =% Then

e~ tz—T _ jom—zt+T e—Z1+22—% + 621—224-%)

(), £203) = (© 5 - -

is a solution of (2.2]).

Example 2.7. Let b10 = 2i, b01 = i, b11 = 2i, bgo = i, b02 = i, d1 = ].7 d2 = —].7
C1 = 27Ti, Co — —27Ti, W1 = 0, W2 = 0. Then

je F1tE2 _ jer1—22 jo—Z1t22 _ 7:621*22)

(1), f2(3)) = ( > , ;
is a solution of (2.2]).
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Example 2.8. Let byg = 2i, bgy = 4, by1 = 24, boyg = @, bgo = i, dy = 1, do
01:1, 02:1, W1:0, W2:0 Then

je A1TE2 _ jor1i—22 jo—Ritz2 _ iezl_ZQ)

(11(2), 2(3)) = ( > : 5
is a solution of .

Example 2.9. Let blO = i, b01 = 22, b11 = 22, bgo = i, bog = i, d1 = 1, d2 = 71,

¢ =mi, cg = —7i, Wi = %i, Wy = —%i. Then
—jemA1tE2 4 jerim22 o221tz _ o122
(h1(3) f2(3)) = ( : )
2 2
is a solution of (2.2]).
Example 2.10. Let b10 = 721, b01 = 721, b11 = 21, b20 = ’i, b02 = ’i, dl = ].,

do=-1,¢c1=1,co =1, Wy =27i, Wo = wi. Then

—je~Ate2 4 jeri—a2 je—Ata2 Z'ezl_ZZ)

(3. £203)) = ( ; , ;

is a solution of (2.2]).

Example 2.11. Let b10 = ]., b01 = ]., b11 = ]., 620 = ]., b02 = 1, d1 = ]., dg = —].,
cp=co=1, Wy =7 Wy =7 Then

e~ A1tz + ef1—z2tit jo—zmitzm—Tf _ joni—znt )

(13, £203)) = ( ; 7 ;

is a solution of (2.2]).

Example 2.12. Let b10 :41, b01 = 2}, bll = 2, b20 = ]., bOQ = ]., dl = 2, dg = 71,
c1 = 2mi, ca = 2mi, Wy = 7, Wo = 7. Then

e~ 2zt | g2ni—zt Y je—2zita— T jo2z1—zt )

(13, £203)) = ( ; 7 ;

is a solution of (2.2]).

Example 2.13. Let blO = 17 b01 = 2, b1 = 2, b20 = 1, b02 = 1, dy = 21, dy = 72"
C1 = i, Cy = 227 W1 = —%7 W2 = —% Then

i3 i

e—2i21+i22+% + e2izl—i22— 7y ie—2iz1+iz2+% _ ie2izl_iz2_T)

(13 £203)) = (- 5 , -

is a solution of (2.2]).

Example 2.14. Let b10 = 17 b01 = 2, bll = 2, b20 = 1, b02 = 1, d1 = 21, d2 = —7:,
Cc1 = 27T, Co = 27T, W1 = 7%, W2 = 7%, Then

672izl+izz+% + 62iz17izz7% i€72iz1+iz2+%@ _ ieQizlfizzf%)
2 ’ 2

(i) f2(3) = (-

is a solution of (2.2]).

Example 2.15. ‘Let b1o :Al, bo1 = 2, bi11 =2,by=1,bps =1,d; =2, dy = —1,
Cy = *%, W1 = %7 WQ = % Then

6—2Z1+22 + 6221—22 6—221+22 + 6221—22>

(h1(2), 2(3) = ( . : 5
is a solution of .

.
C1 = 75,




6 A. BANERJEE, J. SARKAR EJDE-2024/61

Example 2.16. Let b10 = b01 = —g, b11 = %, bQQ
cr=1,cp=log(1) =1, Wy = Wy = Zt. Then

Il
oo
~
S
[\)
I
(S
QU
oy
I
—_
S8
()
Il
—_

i i

e—zi—z2+E _ pozitza—Tt gezitzat i _ %e—m—m—j)
2i ’ 21

1
(). £2(3) = (3
is a solution of (2.2).

Corollary 2.17. Let (f1(23), f2(23)) be a transcendental entire function of order
properly greater than one with B(cy,c), A1(c1,c2) and As(er,ce) are not zero si-
multaneously. Then (f1(23), f2(232)) can not be a solution of (2.2).

3. LEMMAS

We assume that the readers are familiar with the basic notations of the Nevan-
linna theory such as N(r, f), N(r, %), m(r, ), T(r, f) in complex variable [7]. For
several complex variables we refer to [I0] and the references therein. By S(r, f) we
will mean any quantity satisfying S(r, f) = o(T(r, f)), r — oo, outside possibly an
exceptional set of finite logarithmic measure. Based on the notations, the following
lemmas will play important role in proving our theorems.

Lemma 3.1 ([13]). For each entire function F in C", F(0) # 0 and put p(np) =
p < 0o. Then there exists a canonical function fr and a function gp € C™ such
that F(z) = fp()e9rGn . For special case n = 1, fr is the canonical product of

Weierstrass. Here p(ny) denotes the order of the counting function of zeros of F.
Lemma 3.2 ([22 2]). Let f(z) be a non-constant meromorphic function in C"
n

and let I = (i1,...,i,) be @ multi index with length |I| = > ,_,i;. Assume that
T(ro, f) > e for some ro. Then

m(r, a;f) =S5(rf),

holds for all v > 710, outside a set E C (0,400) of finite logarithmic measure
d o'
fETt < o0, where 91 f = m.
Lemma 3.3 ([9]). Let f;j(# 0), j = 1,2,3 be meromorphic function in C" such
that f1 is not constant, f1 + fo+ f3 =1 and
3 1 B
> Ny (r, ?) +2N(r, f;)} < NT(r, f1) + o(log™ T (r, f1)),
J

J=1

for all r outside possibly a set with finite logarithmic measure, where A < 1 is a
positive number, then either fo =1 or f3 = 1.

Lemma 3.4 ([3]). Let f(Z,) be a non-constant meromorphic function with finite
order in C™ such that f((_j) # 0,00 and let € > 0. Then, for ¢, € C",

f(Zn) f(Zn + )
_— —_— = S
m(’"’ f(5n+8n)) +m(’"’ [ED) ) r, f):

holds for all v > 10, outside a set E C (0,400) of finite logarithmic measure

% < oo,
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Lemma 3.5 ([0, Lemma 3.1]). Suppose that ag(Zp,),a1(Zm), -, an(Zm), n > 1, are
meromorphic in C™ and go(Zm), 92(Zm), ..., gn(Zm) are entire in C™. g;(Zm) —
gk (Zm) are non-constant for 0 < j <k <mn. If

3 aj(Zn)et ) =0
=0

and T(r,a;) =0(T(r)), j=0,1,2...,n

T — 3 T 9k —9j
(1) omin_ (r, e )s

then a; = 0.

4. PROOF OF THE MAIN RESULTS

Proof of Theorem[2.3. Let (f1(25), f2(Zn),---, fn(Z5)) be a finite order transcen-

dental entire solution of (2.1)) in C™. We consider the following 2 cases:
Case 1: Let ki1ky > l1lo. Using Lemma [3.4] we have that
fi(zn)

m(T, = = ):Sraf’a 4.1

fj(zn +Cn) ( J) ( )

holds for all » > 0 outside a possible set E; C [1,400), j = 1,2,...,n of finite

logarithmic measure [ B % < 00. Clearly, we have the following

T(r, fj(zn)) = m(r, fg( ))

IN

m\r, —5——>5S<

f ICRE)]

(
< Tuisl .

" f Zn + Cn mn (T7 fj(z?b + C:L)) + log 27
m(r, fj(Zn + ) +1og 2 + S(r, f;),
- T(n fi(Zh +6)) +log2 + S(r, f;),

for all » ¢ E; U Es. Applying Valliron Mohon’ko theorem in several complex
variables [8] we have

kiT(r, fa(2n)) < ki T(r, fo(Zn + cn)) + S(r, f2)
< T(r, fo(Z + E))") + S(r, fa),

=T (1 (P, (1(Z)" — Qu(5)) + S(r. f2),

(4.2)

IN

m

=ULT (r,Pr,(f1(Z3))) + S(r, f1) + S(r, f2),
= Lim (1, Pr, (F1(5)) + S(r, f1) + S(r, f2), (43)
<l {m( ,fEf:n)) +m(r, f1(Z)) + log?2

+S(va1) ( ’f2)7
= llT(T’ fl(z_;l) + S(T, fl) + S(Ta f2)7

i.e. from wee obtain
(k1 +o(L)T(r, f2(z0)) < (L +0(1))T(r, f1(2)), 1 & En. (4.4)
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Similarly,we obtain

(k2 +o(1))T(r, f2(20)) < (lz +0(1))T(r, f1(Z1)), 7 & Ea. (4.5)
From and clearly we have a contradiction.

Case 2: Let k; > ltl—il, l; > 2,t=1,2. Using the Nevanlinna second main theorem,

from we obtain
(b =1)T (r, P, (f1(2)))

< N(r, PLn(fl(z_,'L))> —|—N(r7 L

(Pr, (L(Z))" = Qi)

— 1
N( m) +5(r, f1),
S T(T f2<zn + cn)) + S(Ta fl)a
< T(r, f2(zn)) + S(r, f1) + S(r, f2).
Proceeding with the similar arguments, from the second equation we obtain
(lo =T (r, Pp, f2((2,)) S T(r, f1(Z2)) + S(r, f1) + 5(r, f2). (4.7)

From the first equation of . and using Valliron Mohon’ko theorem in several
complex variables [8] we obtain

kT (r, fo(Z + 6)) = T(r, (Po, (fi(Z))" = Qu(z)) + S(r, fr)
SUT(r, P, (f1(z2))) + S(r, f1) + S(r, fr).

Proceeding, in the similar way from the second equation of (2.1) we obtain
kT (r, fr(zn + cn)) < LT (r, Pr, (f2(Z0)) + S(r, f1) + S(r, f2). (4.9)
From (4.6)-(4.9) we obtain

(k= 2 + o) T fa(2) < S0 )

(k- B )T u(5) < SO ).

Since (f1(25), f2(zn)s .- -, fn(Zn)) is a transcendental entire function, we obtain

(1 - lll— o)) (2 - I li +o() <0.

)+ S0P, (1)),

(4.6)

(4.8)

Since k; > ll— t = 1,2, we have a contradiction. The proof of Theorem H is
complete

The following expression is used several times to prove the next theorem.

a m 8 m 2 82 m 2
Myn,u(p) = bio paZ(Z2) + bor paz(f) +b11{ 8218(522)

+ ( 1) 821 822 } + b20{ 6 %

for m,u=1,2.
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Proof of Theorem[2.]]. Let (f1(%2), f2(72)) be a pair of finite order transcendental
entire solution of (2.2)) in C2. Clearly, system (2.2)) can be re-written as follows

{PL, (f1(2)) +ifa(2 + ) H{PrL, (/1(22)) —if2(%2 + &3)} = 1,

o r o o R ) o . 4.10
PL(B(3) A5 + S HPLBE) A +ay =1 10
Now using Lemma[3.1] from (4.10) we obtain

Pr,(f1(%)) +if2(2 + ¢3) = eP1 (),

Pr,(f1(%)) —if2(% + &) = e 73, (4.11)

%))
Pr,(f2(3)) 4+ if1(5% + ) = eP2(32)
Pr,(f2(5) —ifi(5 + &) = e P2(32)
where p;(23), p2(23) are two non-constant polynomials in C2. By an easy compu-

tation from (4.11)), we obtain

eP1(22) 4 o—p1(33)

Pr(fi(3) =
o eP1(22) _ o—p1(72)
f2(2+é3) = 5 :
Lo B} (4.12)
~ eP2(22) 4 o—p2(73)
Pr(fa(5) =
o eP2(72) _ o—p2(72)
fi(zz+c) = %

Combining the first and the last equations, and the second and the third equations
of (4.12)) we obtain respectively
—iM, 1ep1(z§+03)+pz(z§) — iM; 26?1(23+C§)*p2(3_é) _ e2m(z+cs) 1, (4.13>

and
—iM, 16?2(ZE+CE)+p1(ZE) — M, 2ep2(ZE+CE)—p1(ZE) _ e2p2(2+c) 1 (4'14)
Now taking into consideration equation (4.13]), we discuss the following possibil-
ities:
(i) Let Ma1 = 0, Mao = 0. Then we have —e2n1(2+6) — 1 which shows that

p1(22) is a constant polynomial, a contradiction.
(i) Let Ms 1 =0 and My o # 0. Then we have

—iMy geP1(B+3)—pa(22) _ o2m(5+e) — 1 (4.15)

Since p;(Z3) is a non-constant polynomial, (4.15) implies that p; (23 + ¢3) — p2(23)
is also non-constant. We claim that —ps(23) — p1(23 + ¢3) is also non-constant. On
the contrary, let —po(23) — p1(23 + ¢3) = Af, where A} is a constant in C.

Then from (4.15)) we obtain

7Z-M2726A’1+2p1(272+c*2) _ e2n(fté) 1,

ie. (iMage +1)e21(BF3) —

Then we have p;(23) is a constant polynomial, a contradiction. Clearly, we can

rewrite (4.15)) as

My pe P2() _ oP1(FBHE) _ ompi(B+E) — (4.16)

Now applying Lemma in (4.16) we have Ms 2 = 0, a contradiction.
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(iii) Let Ma1 # 0 and M3 o = 0. Then proceeding in the similar way as done in
case (ii) we obtain a contradiction.
So we must have My # 0 and M3 2 # 0. Using similar arguments from (4.14])

we obtain M, # 0 and M; 5 # 0. Hence using Lemma in (4.13]) and (4.14]) we
obtain

. Z24C3)+p2(Z2) — . Z25+63)—p2(23) — q.
27\127167)1( 34+c3)+p2(22) = 1 o Z»7\[2726101( 3+¢3)—p2(23) 1;
» 5 +¢3)+p1(33) — M 5 +¢3)—p1(23) —

ZMl’lePZ(ZZ é3)+p1(%3) = 1 or i 1726172(@ ¢3)—p1(22) 1,

respectively.
Now we consider the following four cases:

Case 1:

—iM, 16P1(Z“2+C“2)+p2(2"2) =1,

—iM, 161)2(52-"-52)4‘171(52) =1.
Clearly we have p1(2 + é3) + p2(22) = m, p2(22 + ¢2) + pi(2) = 12, where ny,
72 are two constants in C. Then we have p1(z3) = L(23) + H(s) + W1, pa(z2) =

—L(Z3) — H(s) + Wa, where Wy, W5 are two constants in C, H(s) is a polynomial
in s = coz1 — ¢122. Now combining with (4.13)) and (4.14) we obtain

bio (—dy — H'(s)c) + boy (—da + H'(s)cy)

+ b1 {H"(s)erca + (—di — H'(s)c2) (—d2 + H'(s)e1) }

+boo{—H"(5)c + (—dy — H'(s)e2)"}

+boo{—H" (s)cf + (= d2+H'( Jer) pelETWEWs = 4

bio (dy + H'(s)c2) + bor (dy — H'(s)c1)

+ b1 {—H"(s)c1co + (di + H'(5)c2) (do — H'(s)c1)} + bao{H" (5)c3

+ (d + H'(s)e2)’} + boa{H (s)ed + (do — H'(s)er) " Jo MWW =,

bio (—di — H'(s)c2) + bor (—da + H'(s)c1) (4.17)
+bu{H"(s)erca — (—di — H'(s)e2) (—d2 + H'(s)e1)}

+bao{—H"(s)c3 — (—dy — H'(s)c2)”}

+boa{—H"(s)c{ — (= d2+H( Jer) pem HA Wi We =

bio (di + H'(s)c2) + bor (d2 — H'(s)c1)

+ b1 {—H"(s)eica — (di + H'(s)e2) (da — H'(s)e1)}

+ boo{H" ()¢5 — (di + H'(s)c2)"}

+boa{ H" (5)c] — (dy — H(s)c1)*JeH ()= W=We =

We note that coefficient of H'(s) of the first, second, third, and fourth equa-
tions are Aj(cy,ca), Aa(cr,ca), —Aa(er,ea), and —Aq(eq,cq) respectively.  Also,
coefficients of H'(s)? of the first, second, third, and fourth equations are B(c, ¢2),
B(e1,ca), —B(er, ¢2), and —B(cy, ¢2) respectively. Further, the coefficients of H” (s)
of the first, second, third, and fourth equations are —B(c1, ¢2), B(c1, ¢2), —B(ct, ¢2),
and B(c, c2) respectively.
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Then (4.17) reduces to

[D1 (di,do) + A(cr, c2) H'(s) + Bler, e2){H'(s)* — H"(s)}]
L(C2)+W1+W2 —

[Da(dy, da) + Az(cr, e2) H'(s) + Bler, e2) {H'(s)* + H" (s)}]

% e~ (@) +Wi+Ws —

[—Ds(dy, da) — Ag(cy, c2)H'(s) — Bler, e2){H'(s)*> + H"(s)}]
% o= L(@)=W1—W;

i,
(4.18)
=1,

[=Di(dy, da) — As(er, e2)H'(s) = Bex, c2){H'(s)* = H"(5)}]

x M@ =Wi=Ws2 — ;.
Taking into consideration the first and fourth equations of (4.18)), we have the

following:

(a) Ai(cr,c2) #0, B(cr,c2) # 0, then degree of H(s) < 1.
(b) Ai(c1,c2) =0, B(cq,c2) # 0, then degree of H(s) < 1.
(¢) Ai(c1,e2) #0, B(cr,c2) =0, then degree of H(s) < 1.
(d) Ai(e1,c2) =0, B(ey,ce) =0, then degree of H(s) can be any finite number.

Now using the first assumption of Theorem i.e. B(ey,cz) and Aq(cq, c2) are not
zero simultaneously, we obtain degree of H(s) < 1. Since under H(s) < 1; p1(£3),
p2(Z3) both become linear polynomials, without loss of generality we can consider
H(s) =0. Then from first and fourth equations of we must have

D1 (dy, dp)e™ () TWitWa — g
—D1(d1,d2) L(@)=Wi=-W2 _ ;.
Let us consider the second and third equations of (4.18). We have the following
4 possibilities:

(e) Aa(ci,c2) #0, B(cr,c2) # 0, degree of H(s
(f) As(cr,c2) =0, Ber,cg) # 0, degree of H(s
(g) Az(cr,co) #0, B(e,cz) =0, degree of H(s

(h) Ax(c1,c2) =0, B(ey,ea) =0, degree of H(s rbitrary finite number.
Using the assumption of T heorem which is B(cy, ¢2) and As(eq, ¢o) are not zero
simultaneously, we must have deg(H (s) < 1. Since p1(23), p2(Z2) becomes a linear

polynomial, without any loss of generality we consider H(s) = 0. Then from second
and third equations of (4.18) we obtain

Dz(dl’dz)e—L(CE)+W1+W2 =i,
—Ds(dy, d2)€_L(CE)_W1_W2 =1.

Considering all conditions such that degree of H(s) < 1i.e. B(ey,ca), A1(c1,c2)
and B(ecq,ca), As(ci, ) are not zero simultaneously, from (4.19) and (4.20) we

have

(4.19)
<1.
<1.
<1
1S a

)
)
)
)i

(4.20)

. Dy(dy,ds)

Di(dy,do)Ds(dy,do) =1, e2L(®) = 220
1(dy, d2)Do(dy, d2) , € D1 (dy,do)’
2WitWa) 4 eWitWe v —L(cz)
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The form of the solution is

—L(23)+L(c3)+Wa _ ,L(22)—L(cs)—W;

- € — €
fl (ZQ) = 2% ;
. eL(22)—L(c2)+Wi _ ,—L(z2)+L(c2)—W1
fa(z2) = 57

Case 2: Let
—iM, 16P1(23+63)+p2(23) =1,
—iMy 26?2(ZE+cE)—p1(ZE) =1.
Clearly we have py(25+¢3)+p2(23) = n1, p2(23+63) —p1(23) = 12, where 1y, 12 are

two constants in C. Then by easy computation we obtain p; (23 + 2¢3) + p1(23) =
11 — 12, which contradicts that p;(Z3) is a non-constant polynomial.

Case 3: Let
—iM, 26191(524-52)—?2(52) =1,

—iM, 1ep2(23+c§)+p1(z3) =1.

Then by using similar arguments as in Case 2, we obtain a contradiction.
Case 4: Let

—iMs 26?1(Z§+CE)—92(23) =1,

—iMy peP2(B+E)—p1(22) =
Then clearly we have p; (22 + ¢3) — p2(22) = n1, p2(22 + ¢3) — p1(23) = 02, where
71, N2 be two constants in C. Let us take pi(23) = L(Z3) + H(s) + W1, pa(Z3) =
L(z5) + H(s) + W, where Wy, W, are constants in C, H(s) is a polynomial in

S = Cg21 — C1%22.

Then combining this with and , we obtain
bio (d1 + H'(s)c2) + bor (d2 — H'(s)c1)
+ b {—H"(s)cica — (di + H'(s)c2) (d — H'(s)c1)}
+bao{H" (5)c3 — (dy + H'(s)e2)"}
+ boa{H" (s)e} — (da — H'(s)a)f}e“@*m‘% =" (4.21)
big (d1 + H'(s)ca) + bo1 (do — H'(s)cq)
+bu{—H"(s)eica — (di + H'(s)c2) (d2 — H'(s)e1) }
+boo{ H" ()3 — (dy + H'(s)c2)"}
+boa{H" (s)c — (dy — H'(s)cy) pe™ ()Wt Wa =
bio (dy + H'(s)c2) + bo1 (da — H'(s)c1)
+ b {—H"(s)cica + (di + H'(s)c2) (d2 — H'(s)c1) }
+bao{H" (5)c3 + (d1 + H'(s)c2)}
)ei +

+boo{H" (s)c] + (da — H'(s) 1)2}6_L(€2)_W1+W2 =1,
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bio (di + H'(s)c2) + bor (do — H'(s)c1)

+ b1 {—H"(s)c1ca + (dy + H'(s)c2) (de — H'(s)e1)}
+bao{H"(5)5 + (dh + H'(5)e2)"}

+ boo {H" (5)E3 + (dy — H'(s)c1)  Je H@FWi-Wa — ;.

Proceeding with the similar methods as done in Case 1 we conclude that H(s) =

0. Then from we obtain
—D1(dy, dp)e™ DT We —
—D1(dy, dg)e™ (@)=t We —
Dg(dl, dg)e_L(CE)_W1+W2 = i,

Do(dy, dy)e” HDTWi=Wa — g,

Clearly we have

- Dy (dy,ds)

Dy(dy,ds)Da(dy,dp) = 1, (@) = 220520

1(d1, d2)D2(d1, d2) » € D1 (dy,da)’

ez(wlfvv?):l’ Wi=Wa _ 7 e~ L(e)
D (dy,d2)

In this case the form of the solution is
L(z3)—L(c3)+Wa __ 67L(z'§)+L(c'§)7W2

. e
fl(ZQ) = % )

B eL(#)—L(&)+W1 _ o—L(22)+L(c3)-W1
fa(22) = 5

5. DISCUSSION RELATED TO THEOREM [2.4] AND AN OPEN QUESTION

From the expressions of D (dy,ds), D2(d1,ds) we see that they are related in
a certain way. More elaborately, when we consider only the second degree homo-
geneous differential operator, then D;(dy,ds) = Da(d1,d2) and when we consider
only the first order differential operator, then D;(dy,ds) = —Ds(dy,ds). Now we
discuss the following cases:

Case 1: Let Di(dy,ds) = Da(dy,ds) = D(dy,d2). Then from Case 1 and Case 4
in Theorem we obtain D?(dy,dy) = 1, that is D(dy,ds) = £1.

Case 2: Let Dy(dy,dy) = —D(d1,ds) = D(dy,d2). Then from Case 1 and Case 4
in Theorem [2.4] we obtain D?(dy,ds) = —1, that is D(dy,ds) = +i.

Combining Case 1 and Case 2 we clearly see that D;(dy,ds) and Dy(dy,ds) can
take the values {1, —1,4, —i} with D;(dy,d3)D2(d1,d2) = 1. In particular, we can
write the solution of equation as the follows: Let
. SllefL(zé)fwl +3126L(z§)+W1 . 52167L(z3)7W1 +5226L(z3)+W1
f1(7) = 5 . fo(2) = 2 ;
where Wl, W2 and Sll, Slg, Sgl, SQQ are constants in C.

Now under the conclusion (A) in Theorem we have the following:

(1) Di(dy,d2) =i, Da(dy,dy) = —i and e"(2) =i eW1+W2 = —j then Sy =
77:, 512 = i, 521 = 717 522 = —1 or BL(CE) = 72', 6W1+W2 = i, then
S11=—1i, S12 =1, So1 =1, Spa =1; or
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(11) Dl(dl,dQ) = —i, Dz(dl,dz) =4 and 6L(C_é) = i, €W1+W2 = i, then Sll = i,
S12 = —1, So1 = -1, Sop = —1 or 6L(62) = —1, Wit — —1, then S = i,
512 = —7;, 521 = 1, 522 = 1; or
(111) Dl(dl,dQ) = 17 Dg(dl,dz) =1 and €L(C_é) = 1, €W1+W2 = Z', then 811 = 1,
S1o = 1, then So; = i, Sog = —1; el(@) = -1, eWitWa — —i, then S11 = 1,
512 = 1, then 521 = i, 522 = —i; or
(iV) Dl(dl,dz) = —1, DQ(dl,dQ) = —1 and eL(C_é) = 1, €W1+W2 = —i, then
S11=—-1, S1o=—1, S91 =14, Sog = —i or el(@) = -1, etz — i, then
S11=—1, 810 = —1, So1 = —i, Sop = i.
Similarly, under conclusion (B) in Theorem we have the following
(i) Dl(dl,d2> = —1, Dg(dl,dg) =1, and el(é) = 1, eWi-Wa — 1, then Si; =1,

S = —1, So1 = i, Soo = —1; or eL(CE) = —1, eWi="a — -1, then S1; = i,
512 = —i, 521 = —i, 522 = i; (6]

(ii) Dl(dl,d2> = 1, Dg(dl,dg) = —i and el = 1, eWri-W2 — —1, then
S11 = —1i, S1g =4, So1 =i, Sog = —i; or el = —1, W1=W2 = 1 then
S11 = —i, 512 = i7 521 = —i7 522 = i; or

(iii) Dy(dy,d2) = —1, Do(dy,ds) = —1 and eX(2) = j e"1=W2 = 1 then
Si1 = =1, S12 = —1, So1 = —1, Sao = —1, or eH(@) = —j MN=We = 1,

then 511 = —1, 512 = —1, 521 = ]., 522 = ].; or

(iV) Dl(dl,d2> =1, Dg(dl,d2> =1, and el(@) = i, eWi—Wa — —1, then S1; = 1,
512 = 1, 521 = —]., 522 = —1, 6L(CE) = —i, €W17W2 = 1, then Sll = ].,
S12 =1, 81 =1, Seo = 1.

In view of and the following question is inevitable:

What will be the possible form of transcendental entire solution of
the following system of equation in C”

(Pro(f1(2))" + fa(5 + 3)* = Qu(2),
(Pry(f2(2))" + f1(5 + &)° = Qa(3);
where Q;(232), j = 1,2 are two non-zero polynomials in C"?
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