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INTEGRO-DIFFERENTIAL HEAT EQUATIONS WITH
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RAVI P. AGARWAL, UMIDA BALTAEVA, FLORENCE HUBERT, BOBURJON KHASANOV

Abstract. This work is devoted to the unique solvability of the direct and
inverse problems for a multidimensional heat equation with a fractional load

in Holder spaces. In the problem under consideration, the loaded term is in

the form of a fractional integral operator for the time variable. We prove the
existence and uniqueness of the solution to these problems by the contraction

mapping theorem and the theory of integral equations.

1. Introduction

The theory of differential equations with fractional operators has been widely
used in various fields of science and engineering [46]. These equations are mul-
tidisciplinary and used in diverse fields such as dynamical systems, control the-
ory, elasticity, electric drives, circuits systems, continuum mechanics, heat transfer,
quantum mechanics, fluid mechanics, signal analysis, biomathematics, biomedicine,
social systems, and bioengineering for modeling of the anomalous diffusion processes
[2, 32, 47]; see the references therein.

Fractional diffusion equations are extensions of the basic equations of mathe-
matical physics [8, 9, 35, 42]. The analytical methods used for solving these equa-
tions are of minimal use. In general, such equations began to be studied at the
end of the previous century and have been intensively developed in recent decades
[11, 16, 19, 25, 30, 40, 44, 52]. One of the actively studied fractional diffusion equa-
tions in recent years is the time-fractional diffusion equation which describes the
mathematical processes of slow and super slow anomalous diffusion [15, 41, 51, 53].

But what about the diffusion equation with the time-fractional diffusion equation
when the fractional operator includes a trace or combination of traces of the desired
function? Here, we should also note the nonlocal problems [45] studied for the
diffusion and wave equations, which have been successfully used in [5, 6, 10, 17, 26,
27, 39, 43] with applications to optimal control problems for dynamic populations.
Such equations are also closely related to loaded equations [1, 12].
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If we dwell, especially on problems for the loaded equation of parabolic type
[45], or diffusion equation with the loaded term, then it should be noted the first
results in these directions were obtained in the work of Nakhushev, Borisov, and
Kreferov. Further, in [36] we find studies on the existence and uniqueness for the
problem for a nonlinear loaded parabolic equation. Also in [24] we find studies of
the Cauchy problem and related inverse problems for a one-dimensional nonlinear
loaded parabolic equation in a special form.

Also in [7, 29] there are studies of the initial and boundary value problems
(Cauchy problem, Cauchy-Dirichlet problem) for equations of essential loaded par-
abolic type loaded at a fixed time variable. A feature of these problems is the
presence of a loaded term in an equation with a derivative of any integer order of
the desired solution. In [37, 48] there are studies of boundary value problems for
a fractionally loaded heat equation in two and three-dimensional domains. There
when the order of the derivative in the loaded term is less than the order of the
differential part, the load point moves. We should also note that in the recent
papers [1, 28, 31, 50] there are interesting mixed-type loaded equations, which in-
clude parabolic equations with fractional operators in two and three-dimensional
domains. Therefore, loaded fractional-diffusion equations with Riemann-Liouville
or Caputo operators and parabolic type equations with fractional loads in three
and higher dimensional domains need to be studied. This is for the completeness
of the theory of fractional diffusion and integro-differential equations, and for their
numerous applications.

In this work, along with the Cauchy problem, we study the inverse problem
of determining the coefficient for the fractional time-loaded equation, which has
attracted some interest in inverse problems research. Here, we also note the work
[21] in two-dimensional problem of determining the diffusion coefficient for the frac-
tional time equation. In [33] there are studies of inverse problems for the perturbed
fractional diffusion time equation with a final redefinition. In [33] we find an ex-
plicit formula for solving the anomalous diffusion equation in a multidimensional
space. Inverse problems for time-fractional diffusion equations with nonclassical
conditions were investigated in [14, 34, 49].

The aim of this work is to study the existence and uniqueness of the solution of
direct and inverse problems for the heat equation in a multidimensional domain. As
far as we know, very few researchers have studied problems for fractional diffusion
equations in a multidimensional domain and fractional load equations. In this work,
we generalize the study to the heat equation with a fractional load and equations
of convolution type [23] in an n-dimensional domain.

2. Cauchy problem for integro-differential heat equations with
fractional load

In this section, we prove the existence and uniqueness of a solution to the Cauchy
problem for the integro-differential equation of heat dissipation loaded with variable
coefficients. Before proceeding to the formulation of the problem, we give some
definitions and propositions for Holder spaces [38]. We introduce the following
notation:

Let Rn be the n dimensional Euclidean space, x = (x1, . . . , xn) ∈ Rn;
Rn

T is (n + 1) dimensional Euclidean space, consisting of points (x, t), where

x ∈ Rn and t ∈ (0, T ], T > 0; Rn−1
T = {(x′, t) : x′ ∈ Rn−1, 0 < t < T}.
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Let f(x) be a position function in Rn.

Definition 2.1. If for any two points x1, x2 ∈ Rn, there is a positive constant A
such that

|f(x1)− f(x2)| ≤ A|x1 − x2|l,
then, the function f is said to satisfy the Holder condition with exponent l. The
class of functions satisfying this condition is denoted as H l(Rn).

Definition 2.2. If for any given pair of values (x(1), t1) and (x(2), t2) in Rn
T , with

x(1) = x
(1)
1 , x

(1)
2 , . . . , x

(1)
n and x(2) = x

(2)
1 , x

(2)
2 , . . . , x

(2)
n , if holds

|f(x(1), t1)− f(x(2), t2)| ≤
n∑

i=1

Ai|x(1)i − x
(2)
i |l +An+1|t1 − t2|l/2,

where Ai is a positive constant and l ∈ (0, 1), then the function f(x, t) is said to
satisfy the Holder condition with exponent l, l/2 on Rn

T . The class of such functions

is denoted as H l,l/2(Rn
T ).

Cauchy problem. Find a solution u(x, t) in the domain (x, t) ∈ Rn
T of the loaded

heat equation

ut − a(t)∆u = λD−α
0t u(x

′, t) +

∫ t

0

k(x′, τ)u(x, t− τ)dτ, (x, t) ∈ Rn
T , (2.1)

that satisfies the condition

u(x, t)
∣∣
t=0

= φ(x), x ∈ Rn, (2.2)

where D−α
0t is the Riemann-Liouville fractional integral operator of order α defined

by

D−α
0t u(x

′, t) =
1

Γ(α)

∫ t

0

(t− τ)α−1u(x′, τ)dτ, α > 0,

a(t) ∈ E := {a(t) ∈ C1[0, T ] : 0 < a0 < a(t) ≤ a1 <∞}, λ ∈ R,

∆ :=
∑n

i=1
∂2

∂x2
i
is the Laplace operator acting on variables x(x1, x2, . . . , xn), k(x

′, t),

and φ(x) is a given real-valued function sufficiently smooth.

Theorem 2.3. If a(t) ∈ E for all t ∈ (0, T ], and k(x′, t) ∈ H l,l/2(R
n−1

T ),

φ(x) ∈ H l+2(Rn), φ(x) ≤ φ0,

where φ0 is a positive constant, then there exists a unique solution to the Cauchy
problem in the domain u(x, t) ∈ H l+2,(l+2)/2(Rn

T ), where

(R
n−1

T ) = {(x′, t) : x′ ∈ Rn−1, 0 ≤ t ≤ T}, l ∈ (0, 1).

Thus, on the basis of the given functions k(x′, t) and φ(x), we will consider
finding the function u(x, t) from the integro-differential equation (2.1) with the
initial condition (2.2), i.e., the Cauchy problem.

Before proceeding to study the Cauchy problem (2.1) and (2.2), we present the
well-known solution to the problem for the classical inhomogeneous heat equation:

v(x, t) =

∫
Rn

ϕ(ξ)G(x− ξ, θ(t))dξ

+

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

F (ξ, θ−1(τ))G(x− ξ, θ(t)− τ)dξ,

(2.3)
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which is the solution of the Cauchy problem for the heat equation with a time-
varying heat conduction coefficient,

vt − a(t)∆v = F (x, t), x ∈ Rn, t > 0,

v(x, 0) = ϕ(x), x ∈ Rn.

In (2.3), θ−1(t) is the inverse functions of θ(t) =
∫ t

0
a(τ)dτ , and G(x− ξ, θ(t)− τ)

is a fundamental solution of the differential operator with a variable coefficient
∂/∂t− a(t)∆, ξ = (ξ1, ξ2, . . . , ξn); see [20].

Using (2.3), taking into account the properties of the fundamental solution, we
have that the Cauchy problem (2.1) and (2.2) is equivalently reduced to the loaded
integral equation of Volterra type with the shift [45],

u(x, t) =

∫
Rn

φ(ξ)G(x− ξ, θ(t))dξ

+

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

k(ξ′, α)u(ξ, θ−1(τ)− α)

×G(x− ξ, θ(t)− τ)dξdα

+
λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

(θ−1(τ)− β)α−1

× u(ξ′, β)G(x− ξ, θ(t)− τ)dβdξ,

(2.4)

where ξ′ = (ξ1, ξ2, . . . , ξn−1), |x|2 = x21 + x22 + · · · + x2n. Thus, the last integral in
relation (2.4) is understood as

λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn−1

∫ θ−1(τ)

0

(θ−1(τ)−β)α−1u(ξ′, β)G̃(x′−ξ, θ(t)−τ)dβdξ′,

i.e. with a loaded member, where G̃(x′ − ξ, θ(t)− τ) =
∫∞
−∞G(x− ξ, θ(t)− τ)dξn.

For the solvability of the loaded integral equation (2.4), we use the theory of
Volterra integral equations.

Lemma 2.4. Let φ(x) ∈ H l+2(Rn), φ(x) ≤ φ0 and k(x′, t) ∈ H l,l/2(R
n−1

T ). Then
there exists a unique solution u(x, t) to the integral equation (2.4).

Proof. Using the method of successive approximations for (2.4) we define the se-
quence {uj(x, t)}∞j=0 as follows:

u0(x, t) =

∫
Rn

φ(ξ)G(x− ξ, θ(t))dξ,

u1(x, t) =
λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

(θ−1(τ)− β)α−1u0(ξ
′, β)

×G(x− ξ, θ(t)− τ)dβdξ

+

∫ θ(t)

0

dτ

a(θ−1(t))

∫
Rn

∫ θ−1(τ)

0

k(ξ′, α)u0(ξ, θ
−1(τ)− α)

×G(x− ξ, θ(t)− τ)dξdα,
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u2(x, t) =
λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

(θ−1(τ)− β)α−1u1(ξ
′, β)

×G(x− ξ, θ(t)− τ)dβdξ

+

∫ θ(t)

0

dτ

a(θ−1(t))

∫
Rn

∫ θ−1(τ)

0

k(ξ′, α)u1(ξ, θ
−1(τ)− α)

×G(x− ξ, θ(t)− τ)dξdα

. . . (2.5)

uj(x, t) =
λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

(θ−1(τ)− β)α−1uj−1(ξ
′, β)

×G(x− ξ, θ(t)− τ)dβdξ

+

∫ θ(t)

0

dτ

a(θ−1(t))

∫
Rn

∫ θ−1(τ)

0

k(ξ′, α)uj−1(ξ, θ
−1(τ)− α)

G(x− ξ, θ(t)− τ)dξdα,

for (x, t) ∈ Rn
T , j = 1, 2, . . . .

Using φ0 = |φ(x)|l in Rn
T , and

∫
Rn

G(x− ξ, θ(t)− τ)dξ = 1, (2.6)

we estimate the modulus of functions uj(x, t) defined above,

|u0(x, t)|l+2,(l+2)/2
T ≤

∫
Rn

|φ(ξ)|l+2,(l+2)/2
T G(x− ξ, θ(t))dξ ≤ φ0,

and

|u1(x, t)|l+2,(l+2)/2
T

≤ |λ|
Γ(α)

∫ θ(t)

0

dτ

|a(θ−1(t))|

∫
Rn

∫ θ−1(τ)

0

(θ−1(τ)− β)α−1|u0(ξ′, β)|l+2,(l+2)/2
T

×G(x− ξ, θ(t)− τ)dβdξ +

∫ θ(t)

0

dτ

|a(θ−1(t))|

∫
Rn

∫ θ−1(τ)

0

|k(ξ′, α)|l+2,(l+2)/2
T

× |u0(ξ, θ−1(τ)− α)|l+2,(l+2)/2
T Gdξdα

≤ φ0
|λ|
Γ(α)

Tα

α

a1
a0

t

1!
+ φ0

a1k0T

a0

t

1!

= φ0(
|λ|Tα

Γ(α+ 1)
+ k0T )

a1
a0

t1

1!
,

where k0 := |k(x′, t)|l,l/2T .
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We also estimate the modulus for u2(x, t), . . . :

|u2(x, t)|l+2,(l+2)/2
T

≤ |λ|
Γ(α)

∫ θ(t)

0

dτ

|a(θ−1(t))|

∫
Rn

∫ θ−1(τ)

0

(θ−1(τ)− β)α−1|u1(ξ′, β)|l+2,(l+2)/2
T

×G(x− ξ, θ(t)− τ)dβdξ

+

∫ θ(t)

0

dτ

|a(θ−1(t))|

∫
Rn

∫ θ−1(τ)

0

|k(ξ′, α)|l+2,(l+2)/2
T |

× u1(ξ, θ
−1(τ)− α)|l+2,(l+2)/2

T Gdξdα

≤ φ0

( |λ|
Γ(α)

Tα

α

a1
a0

)2 t2

2!
+ φ0(

a1k0T

a0
)2
t2

2!

= φ0

(
(

|λ|Tα

Γ(α+ 1)
)2 + (k0T )

2
)
(
a1
a0

)2
t2

2!
,

(2.7)

|uj(x, t)|l+2,(l+2)/2
T ≤ φ0

(( |λ|
Γ(α)

Tα

α

)j
+ (k0T )

j
)(a1
a0

)j tj
j!
,

. . .

As a result, we have the functional series
∞∑
j=0

uj(x, t). (2.8)

Using the above estimates, according to the Weierstrass theorem on the smooth
approximation of functional series [4], we can easily see that the obtained functional
series converges. Using the definete integral for uj(x, t), the sequence of functions

(2.8) converges uniformly to a function u(x, t) defined in H l+2,(l+2)/2(Rn
T ). Thus,

we have shown that there exists a solution of the integral equation (2.4), i.e., there
is a solution to the Cauchy problem (2.1)-(2.2) as a mapping H l+2,(l+2)/2 → (Rn

T ).
Next we prove the uniqueness of this solution. Suppose on the contrary that the

integral equation (2.4) has two different solutions u(1)(x, t) and u(2)(x, t):

u(1)(x, t)

=

∫
Rn

φ(ξ)G(x− ξ, θ(t))dξ +
λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

×
∫
Rn

∫ θ−1(τ)

0

(θ−1(τ)− β)α−1u(1)(ξ′, β)G(x− ξ, θ(t)− τ)dβdξ

+

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

k(ξ′, α)u(1)(ξ, θ−1(τ)− α)

×G(x− ξ, θ(t)− τ)dαdξ,

and

u(2)(x, t) =

∫
Rn

φ(ξ)G(x− ξ, θ(t))dξ +
λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

×
∫
Rn

∫ θ−1(τ)

0

(θ−1(τ)− β)α−1u(2)(ξ′, β)G(x− ξ, θ(t)− τ)dβdξ



EJDE-2024/64 INVERSE PROBLEMS FOR INTEGRO-DIFFERENTIAL HEAT EQUATIONS 7

+

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

k(ξ′, α)u(2)(ξ, θ−1(τ)− α)

×G(x− ξ, θ(t)− τ)dαdξ.

Let the difference between these two functions be

Z(x, t) = u(1)(x, t)− u(2)(x, t).

Thus Z(x, t) satisfies a homogeneous integral equation, and

Z(x, t) =
λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

(θ−1(τ)− β)α−1Z(ξ′, β)

×G(x− ξ, θ(t)− τ)dβdξ

+

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

k(ξ′, α)Z(ξ, θ−1(τ)− α)

×G(x− ξ, θ(t)− τ)dξdα.

(2.9)

For t ∈ [0, T ] and x ∈ Rn the modular supremum of Z(x, t) is

Z = sup |Z(x, t)|, t ∈ [0, T ].

In this case, it is easy to see that the following integral inequality holds

Z(t) ≤ a1
a0

(
|λ|
Γ(α)

Tα

α
+ k0T )

∫ a1t

0

Z(t)dτ.

Therefore, by the Gronwall-Bellman inequality [13], the last integral inequality has
a unique solution, i.e. Z̄(t) ≡ 0, for all t ∈ [0, T ]. From this, we obtain that

Z(x, t) ≡ 0, i.e. u(1)(x, t) = u(2)(x, t) in R
n

T . Thus, the integral equation (2.4) has
a unique solution, and thus we can conclude that the equivalent problem (2.1) and
(2.2) also has a unique solution. Lemma 2.4 is proved. □

3. Inverse problem for the heat equation with fractional load

Problem 3.1. Find functions u(x, t) and k(x′, t) in the domains (x, t) ∈ Rn
T and

(x′, t) ∈ Rn−1
T respectively, which satisfy the equation

ut − a(t)∆u = λD−α
0,t u(x̃, t) +

∫ t

0

k(x′, τ)u(x, t− τ)dτ, (x, t) ∈ Rn
T , (3.1)

and the initial and boundary value conditions

u(x, t)
∣∣
t=0

= φ(x), x ∈ Rn, (3.2)

u
∣∣
xn=0

= f(x′, t), (x′, t) ∈ R̄n−1
T , (3.3)

where

a(t) ∈ E := {a(t) ∈ C1[0, T ] : 0 < a0 < a(t) ≤ a1 <∞},

∆ is the Laplace operator acting on variables x(x1, x2, . . . , xn) ∈ Rn, x̃ ∈ Rn−2,
where xi = xj = 0, at i ̸= j (1 ≤ i, j ≤ n), λ ∈ R, D−α

0t is the Riemann-Liouville
fractional integral operator of order α (α > 0), φ(x) and f(x′, t) are given real-
valued functions with f(x′, 0) = φ(x′, 0).
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We use the following notation

(R
n−2

T ) = {(x̃, t) : x̃ ∈ Rn−2, 0 ≤ t ≤ T},

(R
n−1

T ) = {(x′, t) : x′ ∈ Rn−1, 0 ≤ t ≤ T}, l ∈ (0, 1).

Remark 3.2. In loaded equations [28], a loaded operator or loaded term must
include the trace of the desired function in the manifolds of dimension less than
one from the sought-for solution in Rn+1 [3]. Based on this, we assume let x̃ ∈ Rn−2.
(We choose so that there is a difference between the x′ functions).

Thus, the problem can be continued in the same way in the cases where the
loaded operatorMu ≡ λD−α

0,t u(x̃, t) contains the trace of the desired function, from

the domains Rn−3, . . . , R1, i.e. respectively when x1 = 0, x2 = 0, . . . , xn = 0.

Theorem 3.3. If f(x′, t) ∈ H l+4,(l+4)/2(R̄n−1
T ), f(x′, 0) = φ(x′, 0) and

φ(x) ∈ H l+2(Rn), φ(x) ≤ φ0 = const > 0,

then there exists a unique solution to the inverse problem in the domains Rn
T and

Rn−1
T respectively.

This theorem will be proven using the theory of integral equations. First, we show
that the inverse problem is equivalent to a system integral equations of Volterra
type. We will introduce a new function as ϑ(x, t). Thus, by replacing ϑ(x, t) =
uxnxn

(x, t), then the problem (3.1)-(3.2) takes and follows (is taken and followed)
the form:

ϑt − a(t)∆ϑ = λD−α
0,t ϑ(x̃, t) +

∫ t

0

k(x′, τ)ϑ(x, t− τ)dτ, (3.4)

ϑ(x, t)
∣∣
t=0

= φxnxn
(x), (3.5)

when xn = 0. Taking into account (3.1) and (3.2), we have an additional boundary
condition (3.3) for the function ϑ(x, t) in the form

ϑ(x, t)
∣∣
xn=0

=
1

a(t)
ft(x

′, t)−
n−1∑
k=1

∂2

∂x2k
f(x′, t)− 1

a(t)

∫ t

0

k(x′, τ)f(x′, t− τ)dτ

− λ

a(t)
D−α

0,t f(0, 0, x3 . . . , xn−1, t).

(3.6)

As a result, we obtain the following condition, in agreement with initial and bound-
ary conditions (3.5) and (3.6):

φxnxn(x
′, 0) =

1

a(0)
ft(x

′, 0)−
n−1∑
k=1

∂2

∂x2k
f(x′, 0) (3.7)

If matching conditions (3.6) and (3.7) are satisfied, f(x′, t) ∈ H l+4,(l+4)/2(R̄n−1
T ),

f(x′, 0) = φ(x′, 0), and φ(x) ∈ H l+2(Rn), then it is equivalent to the inverse
problem with respect to the function ϑ(x, t) = uxnxn(x, t), where

u(x, t) = f(x′, t) + xnφn(x
′, 0) +

∫ xn

0

(xn − ξ)ϑ(x′, ξ, t)dξ. (3.8)



EJDE-2024/64 INVERSE PROBLEMS FOR INTEGRO-DIFFERENTIAL HEAT EQUATIONS 9

Taking into account the matching conditions f(x′, 0) = φ(x′, 0) and (3.7), for t = 0,
we obtain the following conditions

u(x, t)|t=0 = f(x′, 0) + xnuxn
(x′, 0, 0) +

∫ xn

0

(xn − ξ)φξξ(x
′, ξ)dξ

= f(x′, 0) + xnuxn(x
′, 0, 0) +

∫ xn

0

(xn − ξ)dφξ

= f(x′, 0) + xnuxn
(x′, 0, 0) + (xn − ξ)φξ(x

′, ξ)|xn
0 −

∫ xn

0

φξ(x
′, ξ)dξ

= f(x′, 0) + xnuxn
(x′, 0, 0)− xnφxn

(x′, 0) + φ(x)− φ(x′, 0)

= xn(uxn(x
′, 0, 0)− φxn(x

′, 0)) + φ(x) = φ(x).

It is easy to see from (3.8) that at xn = 0, our additional condition arises. Similarly,
following the derivation of equation (3.1) from equation (3.4) as follows. Integrating
twice from both parts of equation (3.4) from 0 to xn, we obtain∫ xn

0

(xn − ξ)ϑt(x
′, ξ, t)dξ − a(t)

∫ xn

0

(xn − ξ)∆ϑ(x′, ξ, t)dξ

=

∫ xn

0

(xn − ξ)

∫ t

0

k(x′, τ)ϑ(x′, ξ, t− τ)dτdξ

+
λ

Γ(α)

∫ xn

0

(xn − ξ)

∫ t

0

(t− τ)α−1u(x̃, τ)dτdξ.

Therefore, taking into account the equality∫ xn

0

(xn − ξ)ϑ(x′, ξ, t)dξ = u(x, t)− f(x′, t)− xnφn(x
′, 0),

we have

∂

∂t
(u(x, t)− f(x′, t)− xnφn(x

′, 0))− a(t)∆x′(u(x, t)

− f(x′, t)− xnφn(x
′, 0))− a(t)

∫ xn

0

(xn − ξ)ϑxnxn
(x′, ξ, t)dξ

=

∫ t

0

k(x′, τ)(u(x, t− τ)− f(x′, t− τ)− xnφn(x
′, 0))dτ

+
λ

Γ(α)

∫ t

0

(t− τ)α−1(u(x̃, τ)− f(x̃, t− τ)− xnφn(x
′, 0))dτ,

i.e.

ut(x, t)− ft(x
′, t)− a(t)∆x′u(x, t) + a(t)f(x′, t) + a(t)xnϑxn(x

′, 0, t)

− a(t)ϑ(x, t) + a(t)ϑ(x′, 0, t)

=

∫ t

0

k(x′, τ)u(x, t− τ)dτ −
∫ t

0

k(x′, τ)f(x′, t− τ)dτ

− xnφn(x
′, 0)

∫ t

0

k(x′, τ)dτ +
λ

Γ(α)

∫ t

0

(t− τ)α−1u(x̃, τ)dτ

− λ

Γ(α)

∫ t

0

(t− τ)α−1(f(x̃, t− τ) + xnφn(x
′, 0))dτ.
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Thus, the inverse problem of (3.1)-(3.3) of finding the functions u(x, t) and k(x′, t)
is equivalent to the problem of determining the functions ϑ(x, t) and k(x′, t) from
problem (3.4)-(3.6).

In the next step, equations (3.4), (3.6) with differentiated once by the variable t,
and ϑt(x, t) = ω(x, t), as a result, we have (3.4), (3.5) and the auxiliary problems

ωt − a(t)∆ω = (ln a(t))′ω − (ln a(t))′
∫ t

0

k(x′, τ)ϑ(x, t− τ)dτ

+

∫ t

0

k(x′, τ)ω(x, t− τ)dτ − λ(ln a(t))′D−α
0,t ϑ(x̃, t) + λD−α

0,t ω(x̃, t)

+ k(x′, t)φxnxn
(x) +

λ

Γ(α)
tα−1φxnxn

(x̃),

(3.9)
and

ω|t=0 = a(0)∆φxnxn
(x), (3.10)

ω|xn=0 = Ft(x
′, t) +

a′(t)

a2(t)

∫ t

0

k(x′, τ)f(x′, t− τ)dτ

− 1

a(t)

∫ t

0

k(x′, τ)ft(x
′, t− τ)dτ − 1

a(t)
k(x′, t)φ(x′, 0),

(3.11)

where

F (x′, t) =
1

a(t)
ft(x

′, t)−
n−1∑
k=1

∂2

∂x2k
f(x′, t)

− λ

a(t)Γ(α)

∫ t

0

(t− τ)α−1f(0, 0, x3, . . . , xn−1, τ)dτ.

From relations (3.9), (3.10), and (3.11) we can find the functions ϑ(x, t), k(x′, t),
and ω(x, t).

When we integrate ϑt(x, t) = ω(x, t) from 0 to t, we obtain

ϑ(x, t) = φxnxn(x) +

∫ t

0

ω(x, τ)dτ. (3.12)

From this equality, if the function ω(x, t) is known, we can easily determine the
function ϑ(x, t). Thus, from the problem (3.9)-(3.11) arises the problem (3.4)-(3.6),
as a result of which (3.1)-(3.3) is passed to the inverse problem. Thus, the inverse
problem of (3.1)-(3.3) of finding the functions u(x, t) and k(x′, t) is equivalent to
the problem of determining the functions ϑ(x, t), ω(x, t) and k(x′, t) from problem
(3.4)-(3.6) and (3.9) and (3.11). Thus, we proved the following lemma.

Lemma 3.4. Let φ(x) ∈ H l+6(Rn), f(x′, t) ∈ H l+4,(l+4)/2(R̄n−1
T ), a(t) ∈ E and

satisfies the agreement conditions

f(x′, 0) = φ(x′, 0), φxnxn(x
′, 0) =

1

a(0)
ft(x

′, 0)−
n−1∑
k=1

∂2

∂x2k
f(x′, 0),

then (3.1), (3.2), (3.3) inverse problem is equivalent to the problem (3.4)-(3.6) and
(3.9)-(3.11), finding functions ϑ(x, t), k(x′, t), and ω(x, t)

In the next stage, we will transform the lemma on the equivalence of the obtained
problem (3.4)-(3.6) and (3.9)-(3.11) into a system of loaded integral equations.
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Lemma 3.5. Equations (3.4)-(3.6) and (3.9)-(3.11) auxiliary problems, equivalent
to finding functions ϑ(x, t), k(x′, t), ω(x, t), from the following system of integral
equations:

ϑ(x, t) = ψ01(x, t) +

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

dξ

×
∫ θ−1(τ)

0

k(ξ′, α)ϑ(ξ, θ−1(τ)− α)G(x− ξ, θ(t)− τ)dα

+
λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

(θ−1(τ)− β)α−1ϑ(ξ̃, β)

×G(x− ξ, θ(t)− τ)dβdξ,

(3.13)

ω(x, t) = ψ02(x, t) +

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

[
(ln a(θ−1(τ)))′ω(ξ, θ−1(τ))

− (ln a(θ−1(τ)))′
∫ θ−1(τ)

0

k(ξ′, α)ϑ(ξ, θ−1(τ)− α)dα
]

×G(x− ξ, θ(t)− τ)dξ

+

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

k(ξ′, α)ω(ξ, θ−1(τ)− α)G(x− ξ, θ(t)− τ)dαdξ

+

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

k(ξ′, θ−1(τ))φξnξn(ξ)G(x− ξ, θ(t)− τ)dξ

+
λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

(θ−1(τ)− β)α−1ω(ξ̃, β)G(x− ξ, θ(t)− τ)dβdξ

− λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

(ln a(θ−1(τ)))′
∫ θ−1(τ)

0

(θ−1(τ)− β)α−1ϑ(ξ̃, β)Gdβdξ,

(3.14)

k(x′, t)

= ψ03(x, t) +
a(t)

φ(x′, 0)

{∫ θ(t)

0

dτ

a(θ−1(τ))

×
∫
Rn

((ln a(θ−1(τ)))′
∫ θ−1(τ)

0

k(ξ′, α)ϑ(ξ, θ−1(τ)− α)dα)G(x′ − ξ′, ξn, θ(t)− τ)dξ

−
∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

(ln a(θ−1(τ)))′ω(ξ, θ−1(τ))G(x′ − ξ′, ξn, θ(t)− τ)dξ

−
∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

k(ξ′, α)ω(ξ, θ−1(τ)− α)G(x′ − ξ′, ξn, θ(t)− τ)dαdξ

−
∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

k(ξ′, θ−1(τ))φξnξn(ξ)G(x
′ − ξ′, ξn, θ(t)− τ)dξ

+
λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

×
∫
Rn

((ln a(θ−1(τ)))′
∫ θ−1(τ)

0

(θ−1(τ)− β)α−1ϑ(ξ̃, β)dβG(x′ − ξ′, ξn, θ(t)− τ)dξ
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−
∫ θ−1(τ)

0

(θ−1(τ)− β)α−1ω(ξ̃, β)G(x′ − ξ′, ξn, θ(t)− τ)dβdξ)
}

+
(ln a(t))′

φ(x′, 0)

∫ t

0

k(x′, τ)f(x′, t− τ)dτ − 1

φ(x′, 0)

∫ t

0

k(x′, τ)ft(x
′, t− τ)dτ,

(3.15)

where

ψ01(x, t) =

∫
Rn

φξnξn(ξ)G(x− ξ, θ(t))dξ,

ψ02(x, t) =

∫
Rn

a(0)∆φξnξn(ξ)G(x− ξ, θ(t))dξ

+
λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

(θ−1(τ))α−1φξnξn(ξ̃)G(x− ξ, θ(t)− τ)dξ,

ψ03(x, t) =
a(t)

φ(x′, 0)
(Ft(x

′, t)−
∫
Rn

a(0)∆φξnξn(ξ)G(x
′ − ξ′, ξn, θ(t))dξ)

+
a(t)

φ(x′, 0)
(− λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

(θ−1(τ))α−1φξnξn(ξ̃)

×G(x′ − ξ′, ξn, θ(t)− τ)dξ).

The proof of the lemma 3.5 can obviously be obtained, from (3.4), (3.5), (3.9),
and (3.10), we did the integral relations (3.13) and (3.14), as the integral equation
(2.4). And also, from equations (3.11) and (3.14), we easily obtain relation (3.15).

4. Existence and uniqueness for the inverse problem

In this section, we demonstrate one of the main results of the inverse problem, the
existence and uniqueness theorem for solutions to the system of integral equations
(3.13)-(3.15), from which the unique solvability of the problem (3.1)-(3.3) follows.

Theorem 4.1. Let a(t) ∈ E, φ(x) ∈ H l+6(Rn), and f(x′, t) ∈ H l+4,(l+4)/2(R̄n−1
T ),

moreover

f(x′, 0) = φ(x′, 0)φxnxn
(x′, 0) =

1

a(0)
ft(x

′, 0)−
n−1∑
k=1

∂2

∂x2k
f(x′, 0),

and the terms of the agreement be reasonable. Then there exists a sufficiently small
number T0 > 0 such that for any T ∈ (0, T0], there is a unique solution to the
system of integral equations (3.13)–(3.15), in the domains

{ϑ(x, t), ω(x, t)} ∈ H l+2,(l+2)/2(R̄n
T ), k(x

′, t) ∈ H l,l/2(R̄n−1
T ).

Proof. Without loss of generality, we can prove this theorem by the classical integral
method. First, we write the system of integral equations (3.13)-(3.15) in the form
of an operator equation

ψ = Lψ, (4.1)

where ψ = (ψ1, ψ2, ψ3)
∗ = (ϑ(x, t), ω(x, t), k(x′, t))∗, with ∗ denote the transposi-

tion. Equations (3.13)-(3.15) as operator in equations become

Lψ = [(Lψ)1, (Lψ)2, (Lψ)3]
∗.
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Operators (Lψ)i, i = 1, 2, 3 can be written in the form

(Lψ)1 = ψ01(x, t) +

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

ψ3(ξ
′, α)ψ1(ξ, θ

−1(τ)− α)

×G(x− ξ, θ(t)− τ)dαdξ +
λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

×
∫
Rn

∫ θ−1(τ)

0

(θ−1(τ)− β)α−1ψ1(ξ̃, β)Gdβdξ,

(4.2)

(Lψ)2 = ψ02(x, t) +

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

[
(ln a(θ−1(τ)))′ψ2(ξ, θ

−1(τ))

− (ln a(θ−1(τ)))′
∫ θ−1(τ)

0

ψ3(ξ
′, α)ψ1(ξ, θ

−1(τ)− α)dα
]

×G(x− ξ, θ(t)− τ)dξ +

∫ θ(t)

0

dτ

a(θ−1(τ))

×
∫
Rn

∫ θ−1(τ)

0

ψ3(ξ
′, α)ψ2(ξ, θ

−1(τ)− α)G(x− ξ, θ(t)− τ)dαdξ

+

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

ψ3(ξ
′, θ−1(τ))φξnξn(ξ)G(x− ξ, θ(t)− τ)dξ

+
λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

(θ−1(τ)− β)α−1ψ2(ξ̃, β)Gdβdξ

− λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

(ln a(θ−1(τ)))′×

×
∫ θ−1(τ)

0

(θ−1(τ)− β)α−1ψ1(ξ̃, β)G(x− ξ, θ(t)− τ)dβdξ,

(4.3)

(Lψ)3 = ψ03(x, t) +
a(t)

φ(x′, 0)

(∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

ln a(θ−1(τ))
)′

×
∫ θ−1(τ)

0

ψ3(ξ
′, α)ψ1(ξ, θ

−1(τ)− α)Gdαdξ

−
∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

(
ln a(θ−1(τ))

)′
ψ2(ξ, θ

−1(τ))Gdξ

−
∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

ψ3(ξ
′, α)ψ2(ξ, θ

−1(τ)− α)Gdαdξ

−
∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

ψ3(ξ
′, θ−1(τ))φξnξn(ξ)G(x

′ − ξ′, ξn, θ(t)− τ)dξ

− λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

(θ−1(τ)− β)α−1ψ2(ξ̃, β)Gdβdξ

+
λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

(
ln a(θ−1(τ))

)′
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×
∫ θ−1(τ)

0

(θ−1(τ)− β)α−1ψ1(ξ̃, β)Gdβdξ)

+

(
ln a(t)

)′
φ(x′, 0)

∫ t

0

ψ3(x
′, τ)f(x′, t− τ)dτ

− 1

φ(x′, 0)

∫ t

0

ψ3(x
′, τ)ft(x

′, t− τ)dτ. (4.4)

Therefore, in relations (4.2)–(4.4), taking into account the notation of Lemma 3.5,
we denote

|ψ|l,l/2T = max(|ψ1|l.l/2T0
, |ψ2|l.l/2T0

, |ψ3|l.l/2T0
),

and on H l,l/2(Rn
T ), we include the conditions

S(T ) = |ψ1 − ψ0|l,l/2T ≤ |ψ0|l,l/2T0
, (4.5)

where ψ0 = (ψ01, ψ02, ψ03) and |ψ0|l,l/2T0
= max(|ψ01|l,l/2T0

, |ψ02|l,l/2T0
, |ψ03|l,l/2T0

). □

Suppose that ψ is an arbitrary in S(T ), here T < T0. In this case, the following
inequalities are valid:

|ψi|l,l/2T ≤ 2|ψ0|l,l/2T0
, i = 1, 2, 3.

Therefore, it is similar to setting the Cauchy problem for the classical heat equation
when we consider a function in the class φ(x) ∈ H l+6, and introduce the following
notation:

a2 := max
t∈[0,T ]

|(ln a(t))′|, φ1 := |φ|l+6, f0 := |f |l+4,(l+4)/2
T .

Let the operator L be defined in a closed S, which is part of the Banach space.

Definition 4.2. An operator L is called a contraction operator in S, when the
following two conditions are satisfied:

(1) if y ∈ S, then Ly ∈ S, i.e. the operator L maps the set S in itself;
(2) if there exists a real number ρ ∈ [0, 1) such that

∥Ly − Lz∥ ≤ ρ ∥y − z∥ , ∀y, z ∈ S .

If for the mapping L : X → X there exists a point x ∈ X such that Lx = x, then
the point x is called the fixed point of L, [4].

In this section, we state and prove the contraction mapping principle [18], which
is one of the most useful methods for the construction of the solution of the differ-
ential equations [20].

Contraction mapping principle. Every contraction mapping defined in a com-
plete metric space R has one, and only one fixed point, that is, the equation, Lx = x
has a unique solution x0 ∈ S.

First of all, we show that the operator L satisfies the first condition for the
definition of compressibility in S, i.e.:

|(Lψ)1 − ψ01|l,l/2T

=
∣∣ ∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

ψ3(ξ
′, α)ψ1(ξ, θ

−1(τ)− α)
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×G(x− ξ, θ(t)− τ)dαdξ
∣∣l,l/2
T

+
∣∣ λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))

×
∫
Rn

∫ θ−1(τ)

0

(θ−1(τ)− β)α−1ψ1(ξ̃, β)G(x− ξ, θ(t)− τ)dβdξ
∣∣l,l/2
T

,

here after replacing |y = θ−1(τ)| as a result, we obtain∣∣ ∫ t

0

dτ

a(θ−1(τ))

∫
Rn

∫ y

0

ψ3(ξ
′, α)ψ1(ξ, y − α)G(x− ξ, θ(t)− θ(y))dαdξ

∣∣l,l/2
T

+
∣∣ λ

Γ(α)

∫ t

0

dτ

a(θ−1(τ))

∫
Rn

∫ y

0

(y − β)α−1ψ1(ξ̃, β)

×G(x− ξ, θ(t)− θ(y))dβdξ|l,l/2T

≤ β̄0(T )
∣∣(ψ3(ξ

′, t0)ψ1(ξ, y − t0))
∣∣l,l/2
T

+ β̄1(T )|(ψ1(ξ̃, t0))
∣∣l,l/2
T

≤ 4β0(T )(|ψ0|l,l/2T0
)2 + 2β1(T )(|ψ0|l,l/2T0

),

Similarly, we obtain estimates for other components of the vector L:∣∣(Lψ)2 − ψ02

∣∣l,l/2
T

≤ 4β1(T )(a2 + 1)(|ψ0|l,l/2T0
)2 + 2β2(T )(2a2 + φ1 + 1)(|ψ0|l,l/2T0

),∣∣(Lψ)3 − ψ03

∣∣l,l/2
T

≤ 2(β1(T )a1φ
−1
0 (2a2 + φ1 + 1) + f0φ

−1
0 T0(a2 + 1))|ψ0|l,l/2T0

+ 4β2(T )a1φ
−1
0 (a2 + 1)(|ψ0|l,l/2T0

)2.

Here, If T → 0 then, βi(T ), (i = 0, 1, 2) tends to zero. If we choose T0 such that

4β0(T0)(|ψ0|l,l/2T0
)2 + 2β1(T0)(|ψ0|l,l/2T0

) ≤ 1,

4β1(T0)(a2 + 1)(|ψ0|l,l/2T0
)2 + 2β2(T0)(2a2 + φ1 + 1)(|ψ0|l,l/2T0

) ≤ 1,

2(β1(T0)a1φ
−1
0 (2a2 + φ1 + 1) + f0φ

−1
0 T0(a2 + 1))|ψ0|l,l/2T0

+ 4β2(T0)a1φ
−1
0 (a2 + 1)(|ψ0|l,l/2T0

)2 ≤ 1,

(4.6)

then the operator L satisfies the first mapping condition by reducing T < T0, i.e.,
LS ⊂ S. In the same way, we can pass the second condition to the contraction
principle. We suppose that

ψ(1) = (ψ
(1)
1 , ψ

(1)
2 , ψ

(1)
3 ) ∈ S(T ), ψ(2) = (ψ

(2)
1 , ψ

(2)
2 , ψ

(2)
3 ) ∈ S(T ).

To estimate the distance between the images of the functions ψ(1) and ψ(2) as a
result of mapping L, with regards to∣∣ψ(1)

2 ψ
(1)
1 − ψ

(2)
2 ψ

(2)
1

∣∣l,l/2
T

= |(ψ(1)
2 − ψ

(2)
2 )ψ

(1)
1 + ψ

(2)
2 (ψ

(1)
1 − ψ

(2)
1 )|l,l/2T

≤ 2|ψ(1) − ψ(2)|l,l/2T max(|ψ(1)
1 |l,l/2T , |ψ(2)

2 |l,l/2T )

≤ 4|ψ0|l,l/2T |ψ(1) − ψ(2)|l,l/2T ,

we have

|((Lψ)(1) − (Lψ)(2))1|l,l/2T

=
∣∣ ∫ θ(t)

0

dτ

a(θ−1(τ))

∫
Rn

∫ θ−1(τ)

0

ψ3(ξ
′, α)ψ1(ξ, θ

−1(τ)− α)

×G(x− ξ, θ(t)− τ)dαdξ|l,l/2T + | λ

Γ(α)

∫ θ(t)

0

dτ

a(θ−1(τ))
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×
∫
Rn

∫ θ−1(τ)

0

(θ−1(τ)− β)α−1ψ1(ξ̃, β)G(x− ξ, θ(t)− τ)dβdξ
∣∣l,l/2
T

≤ [8β0(T )|ψ0|l,l/2T0
+ 4β1(T )]|ψ(1) − ψ(2)|l,l/2T .

In the same way, the second and third components of Lψ satisfy:∣∣((Lψ)(1) − (Lψ)(2))2
∣∣l,l/2
T

≤ [2β1(T )(2a2 + φ1 + 1) + 8β2(T )(a2 + 1)|ψ0|l,l/2T0
]|ψ(1) − ψ(2)|l,l/2T0

,

|((Lψ)(1) − (Lψ)(2))3|l,l/2T

≤ [2(β1(T )a1φ
−1
0 (2a2 + φ1 + 1) + f0φ

−1
0 T0(a2 + 1))]|ψ(1) − ψ(2)|l,l/2T0

+ [8β2(T )a1φ
−1
0 (a2 + 1)(|ψ0|l,l/2T0

)]|ψ(1) − ψ(2)|l,l/2T0
.

Therefore,

|(Lψ(1) − Lψ(2))|l,l/2T < ρ|ψ(1) − ψ(2)|l,l/2T .

Thus, if the following conditions are satisfied

[8β0(T )|ψ0|l,l/2T0
+ 2β1(T )] ≤ ρ < 1,

[2β1(T )(2a2 + φ1 + 1) + 8β2(T )(a2 + 1)|ψ0|l,l/2T0
] ≤ ρ < 1,

[2(β1(T )a1φ
−1
0 (2a2 + φ1 + 1) + f0φ

−1
0 T0(a2 + 1))]

+ [8β2(T )a1φ
−1
0 (a2 + 1)(|ψ0|l,l/2T0

)] ≤ ρ < 1,

(4.7)

then, operator L is compact on S(T ), [20].
From the fulfillment of inequality (4.7), it is not difficult to see that condition

(4.6) is satisfied for T0. It follows that the contraction principle holds for in T < T0.
In this case, according to the Banach fixed point theorem [4], there exists a unique
solution to the equation (4.1). Therefore, from the system of integral equations
(3.13)-(3.15), using the method of successive approximations, we determine the
unique solution of the system that belongs to the class H l+2,(l+2)/2(R̄n

T ).

5. Conclusion

Parabolic equations, especially diffusion and reaction-diffusion equations, are one
of the most used equations of the modern theory of partial differential equations,
which have been rapidly developing in recent years. This happens because the
mathematical models for the dynamics of infectious diseases can show optimal con-
trol of the spread, and controllability and stabilization of the dynamics of infection.
Based on this, in this paper we study the solvability of direct and inverse problems
for a multidimensional fractionally loaded heat equation in Holder spaces.

Introductory section of this work is dedicated to the history and literature on
problems for the fractional differential equations, time-fractional diffusion equa-
tions, integro-differential equations with fractional load, and the novelty of the
work.

In the second section, we investigated the Cauchy problem for the integro-
differential equation with a fractional load. We proved the unique solvability of
the initial-value problem using the theory of the integral equations and the meth-
ods of successive approximations.
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In the third section, we formulate inverse problems. With a change of variables,
the formulated problem (3.1)-(3.3) is reduced to auxiliary problems with new func-
tions v(x, t), w(x, t) and k(x′, t). Hence, the auxiliary problems are equivalently
reduced to a system of loaded integral equations of Volterra type.

In the fourth section, we obtain one of the main results of the inverse problem
(3.1)-(3.3), the existence and uniqueness of solutions to the system of integral equa-
tions (3.13)-(3.15). There, using the contraction mapping principle method, we find
the solution of PDEs. Then the existence and uniqueness of the resulting system
are proved. Thus, proving the unique solvability of the posed inverse problem.
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