
Electronic Journal of Differential Equations, Vol. 2024 (2024), No. 67, pp. 1–19.

ISSN: 1072-6691. URL: https://ejde.math.txstate.edu, https://ejde.math.unt.edu

DOI: 10.58997/ejde.2024.67

GLOBAL SOLUTION FOR COUPLED PARABOLIC SYSTEMS

WITH DEGENERATE COEFFICIENTS AND TIME-WEIGHTED

SOURCES
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Abstract. In this article we obtained the so-called Fujita exponent for the

degenerate parabolic coupled system

ut − div(ω(x)∇u) = trvp

vt − div(ω(x)∇v) = tsup

in RN × (0, T ) with initial data belonging to [L∞(RN )]2, where p, q > 0 with

pq > 1; r, s > −1, and either ω(x) = |x1|a or ω(x) = |x|b with a, b > 0.

1. Introduction

Several authors have studied models associated with elliptic and parabolic partial
differential equations, which presents a diffusion operator of the form div(ω(x)∇·),
where div is the divergent, ∇ is the gradient, and the spatial function ω : RN →
[0,∞) is a weight representing the part of thermal diffusion, which can degenerate.
See for example the works of Kamin and Rosenau [21, 22, 23]; Kohn and Niren-
berg [26]; Fabes, Kenig, and Serapioni [11]; Gutierrez and Nelson [15]; Fujishima,
Kawakami, and Sire [12]; Dong and Phan [9]; Sire, Terracini, and Vita [28]; Zel-
dovich [40]; Jleli, Kirane, and Samet [19]; and Jing, Nie, and Wang [20]. See also
the works of Wang and Zhao [37, 38], where it is studied parabolic problems related
to biological population models.

We are interested in the degenerate coupled parabolic problem with time-weighted
sources,

ut − div(ω(x)∇u) = h1(t)v
p in RN × (0, T ),

vt − div(ω(x)∇v) = h2(t)u
q in RN × (0, T ),

u(0) = u0, v(0) = v0 in RN ,

(1.1)

where (u0, v0) ∈ L∞(RN )×L∞(RN ) ≡ [L∞(RN )]2; u0, v0 ≥ 0; p, q > 0 with pq > 1;
h1(t) = tr, h2(t) = ts with r, s > −1; and the weighted function ω : RN → [0,∞)
satisfies one of the the following two conditions: either

(A1) ω(x) = |x1|a with a ∈ [0, 1) for N = 1, 2, and a ∈ [0, 2/N) for N ≥ 3, or
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(A2) ω(x) = |x|b with b ∈ [0, 1).

The function ω, with these characteristics, belongs to the Muckenhoupt class of
functions A1+2/N . Moreover, the operator div(ω(x)∇·) is not self-adjoint, as noted
in the observations made by Fujishima et al. [12].

In scenario (A1), the function ω exhibits a line of singularities. Consequently,
problem (1.1) connects to the fractional Laplacian via the Caffarelli-Silvestre exten-
sion, as referenced in [2, 12, 30, 5]. Additionally, the fractional Laplacian is linked
to nonlocal diffusion and is present in the Levy diffusion process, as illustrated in
[8, 24].

Fujishima et al. [12] studied the problem

ut − div(ω(x)∇u) = up in RN × (0, T ),

u(0) = u0 in RN ,
(1.2)

and obtained the Fujita exponent

p⋆(α) = 1 +
2− α

N
,

where α = a in case (A1) and α = b in case (A2).
When ω = 1, the problem defined in (1.2) has been studied by various re-

searchers. Hirose Fujita [13] linked the critical exponent p⋆(0) to the global ex-
istence of solutions for problem (1.2). He demonstrated that for 1 < p < p∗(0),
problem (1.2) lacks any non-negative global solutions. When p > p∗(0), both global
and non-global solutions may arise, contingent on the size of the initial conditions;
for further information, refer to [27, 31]. In the critical scenario where p = p∗(0),
Hayakawa [16] (for N = 1, 2), and subsequently Aronson and Weinberger [1] (for
N ≥ 3), proved that problem (1.2) does not possess a global solution.

Problem (1.1), with ω = 1 and h1 = h2 = 1, was studied firstly by Escobedo and
Herrero [10]. They showed that

(pq)∗ = 1 +
2

N
(max{p, q}+ 1)

is the Fujita exponent for problem (1.1), that is, if 1 < pq ≤ (pq)∗, then any non-
trivial nonnegative solution blows up in finite time, and when pq > (pq)∗, there exist
both global and nonglobal solutions. The case h1(t) = (1+ t)r and h2(t) = (1+ t)s

was analyzed later in Cao et al. [6] who showed the existence of the Fujita exponent

(pq)∗ = 1 +
2max{(r + 1)q + s+ 1, (s+ 1)p+ r + 1}

N
,

for problem (1.1). See also [3, 4, 18] and the references therein for other related
results.

The primary aim of this study is to ascertain the Fujita exponent for problem
(1.1). To achieve this, we employ the methods outlined in [12, 10], which are
adapted to address the challenges specific to the degenerate coupled system and
to handle the scenario where pq > 1 with 0 < p < 1 (or 0 < q < 1). Notably,
we rely solely on the properties (A3)-(A7) that are confirmed by the fundamental
solution Γ linked to the linear problem (2.1) (detailed in Section 2). Consequently,
the conventional approaches for addressing problem (1.1) (where h1 = h2 = ω = 1)
require refinement.
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The approach that we use can also be applied to determine the critical Fujita
exponent of the following problems:

(ui)t − div(ω(x)∇ui) = triuqii+1, i = 1, . . . ,m− 1 in RN × (0, T ),

(um)t − div(ω(x)∇um) = trmuqm1 in RN × (0, T ),
(1.3)

and
ut − div(ω(x)∇u) = tr1up + tr2vq in RN × (0, T ),

vt − div(ω(x)∇v) = tr3ur + tr4vs in RN × (0, T ).
(1.4)

When ω = 1, problem (1.3) was investigated in [32, 35, 4], while problem (1.4)
was examined in [7, 34, 3]. Moreover, similar outcomes can be achieved by consid-
ering the operator ω(x)−1 div(ω(x)∇ui) in place of the operator div(ω(x)∇ui), as
demonstrated in the recent findings in [17, 25].

Solutions for problem (1.1) with initial data (u0, v0) ∈ [L∞(RN )]2 are understood
in the following sense.

Definition 1.1. Let u and v be a.e. finite, measurable functions defined on RN ×
(0.T ) for some T > 0. A pair (u, v) is called a solution of (1.1) with initial condition
(u0, v0) ∈ [L∞(RN )]2, if (u, v) ∈ [L∞((0, T );L∞(RN ))]2 and satisfies

u(x, t) =

∫
RN

Γ(x, y, t)u0(y) dy +

∫ t

0

∫
RN

Γ(x, y, t− σ)h1(σ)v(y, σ)
p dy dσ <∞,

v(x, t) =

∫
RN

Γ(x, y, t)v0(y) dy +

∫ t

0

∫
RN

Γ(x, y, t− σ)h2(σ)u(y, σ)
q dy dσ <∞,

(1.5)
for almost all x ∈ RN and t ∈ (0, T ). If T = ∞, we say that (u, v) is a global-in-time
solution of (1.1). Here

S(t)ϕ(x) := [S(t)ϕ](x) :=

∫
RN

Γ(x, y, t)ϕ(y) dy

where Γ(x, y, t) is the fundamental solution of the linear problem ut−div(ω∇u) = 0
in RN × (0,∞).

Henceforth, we consider the following values:

γ1 :=
(r + 1) + (s+ 1)p

pq − 1
, (1.6)

γ2 :=
(s+ 1) + (r + 1)q

pq − 1
, (1.7)

r1⋆ :=
N

(2− α)γ1
, (1.8)

r2⋆ :=
N

(2− α)γ2
. (1.9)

Our main result is the following.

Theorem 1.2. Let r, s > −1, p, q > 0, with pq > 1. Suppose that α = a in the
case that ω satisfies the condition (A1), and α = b in the case that ω satisfies the
condition rm (A2).

(i) If γ := max{γ1, γ2} ≥ N/(2 − α), then problem (1.1) has no nontrivial
global- in-time solution.
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(ii) If γ := max{γ1, γ2} < N/(2 − α), then there are nontrivial global-in-time
solutions to (1.1). Moreover, there exists a constant δ > 0 such that for
any

(u0, v0) ∈ [L∞(RN ) ∩ Lr1⋆,∞(RN )]× [L∞(RN ) ∩ Lr2⋆,∞(RN )]

with max{∥u0∥r1⋆,∞, ∥v0∥r2⋆,∞} < δ, then problem (1.1) has a global-in-
time solution (u, v) satisfying:

sup
t>0

(1 + t)
N

2−α

(
1

r1⋆
− 1

µ

)
∥u(t)∥µ,∞ <∞,

sup
t>0

(1 + t)
N

2−α

(
1

r2⋆
− 1

µ

)
∥v(t)∥µ,∞ <∞

for max{r1⋆, r2⋆} < µ ≤ ∞.

Remark 1.3. Here are some comments on Theorem 1.2.

(i) When α = 0, Theorem 1.2 coincides with the result in [6, Theorem 1].
(ii) When α = 0 and r = s = 0, this theorem coincides with the results in [10].

Moreover, the values r1⋆ = N(pq−1)/2(p+1) and r2⋆ = N(pq−1)/2(q+1)
are the same used in [10] to determine the global existence.

(iii) The result is sharp and shows that the critical value of Fujita is given by

(pq)∗(α) = 1 +
(2− α)max{(s+ 1)p+ r + 1, (r + 1)q + s+ 1}

N
.

This work is organized as follows. In section 2, we present the necessary prelim-
inaries. Then in section 3, we prove the non-global existence. Finally, in section 4,
we prove the global existence.

2. Preliminaries and technical results

In that follows, C denotes a generic positive constant that may vary in different
places, and its change is not essential to the analysis. The positive part of ϕ(x) is
defined by ϕ+(x) = max{ϕ(x), 0}. The negative part of ϕ is defined analogously.

For x = (x1, . . . , xN ) ∈ RN , |x| =
(∑N

i=1 x
2
i

)1/2
is the Euclidean norm of RN .

The spaces L∞(RN ) and Lζ(RN )(ζ ≥ 1) are defined as usual, and their norms are
denoted by ∥ · ∥∞ and ∥ · ∥ζ , respectively.

For 1 ≤ ζ ≤ ∞ and 1 ≤ σ ≤ ∞, the Lorentz space Lζ,σ(RN ) is defined as

Lζ,σ := {ψ : RN → R;ψ is measurable and ∥ψ∥Lζ,σ(RN ) <∞},

where

∥ψ∥Lζ,σ(RN ) := ∥ψ∥Lζ,σ =

{( ∫∞
0

[s
1
ζ ψ⋆(s)]σ dss

)1/σ
if 1 ≤ σ <∞,

sups>0 s
1/ζψ⋆(s) if σ = ∞,

ψ⋆(s) := inf{λ > 0;µψ(λ) ≤ s},

µψ(λ) := {x : |ψ(x)| > λ}|, λ ≥ 0,

is the distribution function of ψ. By definition, L∞,∞(RN ) = L∞(RN ). The
Lorentz space Lζ,σ(RN ) is a Banach space; see [14, 41] for details.
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Definition 2.1. The Muckenhoupt class Ap, with 1 < p <∞, is the set of locally
integrable nonnegative functions w that satisfy(

−
∫
Q

w dx
)(

−
∫
Q

w− 1
(p−1) dx

)p−1

< K,

for every cube Q and some constant K > 0. For p = 1, the function w belongs to
the Muckenhoupt class A1 if there exists a constant K > 0 such that

−
∫
Q

w dx ≤ K inf
Q
w,

for all cube Q.

We will denote by Γ := Γ(x, y, t) the fundamental solution of the homogeneous
problem

ut − div(ω(x)∇u) = 0 (2.1)

in RN × (0, T ), with a pole at point (y, 0), and ω verifying either (A1) or (A2)
condition. Since ω belongs to the classes A1+2/N and A2 (see[29]), we have that
the fundamental solution Γ = Γ(x, y, t) satisfies the following properties (see [15, 12]
for more details):

(A3)
∫
RN Γ(x, y, t)dx =

∫
RN Γ(x, y, t) dy = 1 for x, y ∈ RN and t > 0;

(A4) Γ(x, y, t) =
∫
RN Γ(x, ξ, t− s)Γ(ξ, y, s)dξ for x, y ∈ RN and t > s > 0;

(A5) Let c0 := supQ
(
−
∫
Q
ω(x)dx

)(
−
∫
Q
ω(x)−1dx

)
< ∞, where the supremum is

taken over all cubes Q ∈ RN , and

hx(r) =
(∫

Br(x)

ω(y)−N/2 dy
)2/N

.

Then there exist constants C0⋆, c0⋆ > 0, depending only on N and c0, such
that

c−1
0⋆

( 1

[h−1
x (t)]N

+
1

[h−1
y (t)]N

)
exp

[
− c0⋆

(hx(| x− y |)
t

)1/(1−α)]
≤ Γ(x, y, t)

≤ C−1
0⋆

( 1

[h−1
x (t)]N

+
1

[h−1
y (t)]N

)
exp

[
− C0⋆

(hx(| x− y |)
t

)1/(1−α)]
for x, y ∈ RN , t > 0, and α ∈ {a, b}, where h−1

x denotes the inverse function
of hx.

Also, by [12, estimates (2.11), (2.12)], we have

(A6)
∫
|x|≤t1/(2−α) Γ(x, y, t)dx ≥ C, for all |y| ≤ t1/(2−α), and some constant C >

0.
(A7) Γ(x, y, t) ≥ Ct−N/(2−α), for |x|, |y| ≤ t1/(2−α), t > 0, and some constant

C > 0.

Remark 2.2. From (A5), we deduce that the fundamental solution Γ is nonnega-
tive. Moreover, if u0 ∈ L∞(RN ) is such that u0 ≥ 0 and u0 ̸= 0, then according to
(A6) (or (A7), there exists a τ0 := τ(u0) > 0 for which

S(t)u0(x) =

∫
RN

Γ(x, y, t)u0(y) dy > 0,

for almost every x ∈ RN and all t > τ0.
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The subsequent results will be utilized to demonstrate the existence of solutions
global-in-time for equation (1.1).

Proposition 2.3 ([12]). (i) Let ϕ ∈ Lq1(RN ) and 1 ≤ q1 ≤ q2 ≤ ∞, then

∥S(t)ϕ∥q2 ≤ c1t
− N

2−α ( 1
q1

− 1
q2

)∥ϕ∥q1 , (2.2)

for t > 0. The constant c1 > 0 can be taken so that it depends only on N , α ∈ {a, b}.
(ii) Let ϕ ∈ Lq1,∞(RN ) with 1 < q1 ≤ q2 ≤ ∞, then

∥S(t)ϕ∥q2,∞ ≤ c2t
− N

2−α ( 1
q1

− 1
q2

)∥ϕ∥q1,∞, (2.3)

for t > 0. The constant c2 > 0 can be taken so that it depends only on q1, N , and
α ∈ {a, b}. In particular, c2 is bounded in q1 ∈ (1 + ε,∞) for any fixed ε > 0 and
c2 → ∞ as q1 → 1.

Another tool used is the following interpolation result in Lorentz space.

Proposition 2.4 ([14]). Let 1 ≤ r0 ≤ r2 ≤ r1 ≤ ∞ be such that 1
r2

= θ
r0

+ 1−θ
r1

,

for θ ∈ [0, 1]. Then

∥f∥r2,∞ ≤ ∥f∥θr0,∞∥f∥1−θr1,∞, (2.4)

for f ∈ Lr0,∞ ∩ Lr1,∞.

The subsequent results will be utilized to demonstrate the existence of non-global
solutions to equation (1.1).

Lemma 2.5 ([12]). Assume that ω satisfies either (A1) or (A2). Let ϕ ∈ L∞(RN ),
ϕ ≥ 0, and ϕ ̸= 0. Then there exists a positive constant C(α,N), depending only
on α and N , such that

S(t)ϕ(x) ≥ C(α,N)−1t−
N

2−α

∫
|y|≤t

1
2−α

ϕ(y)dy,

for |x| ≤ t
1

2−α and t > 0, where α is defined by α = a in the case (A1) and α = b
in the case (A2).

Lemma 2.6. Assume that ω satisfies either (A1) or rm (A2). If u0 ∈ L∞(RN ) is
a nonnegative function and q ≥ 1, then∫

RN

Γ(x, y, t)[u0(y)]
q dy ≥

(∫
RN

Γ(x, y, t)u0(y) dy
)q
.

If 0 < q < 1, then(∫
RN

Γ(x, y, t)u0(y) dy
)q

≥
∫
RN

Γ(x, y, t)[u0(y)]
qdy.

Proof. Since the fundamental solution Γ is nonnegative, by (A5),
∫
RN Γ(x, y, t) dy =

1, and by (A3), we can use Jensen’s inequality for q > 1 in the estimate∫
RN

Γ(x, y, t)[u0(y)]
q dy ≥

(∫
RN

Γ(x, y, t)u0(y) dy
)q
.

For 0 < q < 1, we observe that uq0 ∈ L∞(RN ). Thus, the conclusion follows as the
anterior case replacing q by 1/q. □
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3. Nonglobal existence

To demonstrate the non-global existence aspect of Theorem 1.2, we require the
subsequent result. The method employed is traditional, albeit with necessary ad-
justments (refer to [39]).

Proposition 3.1. Assume that ω satisfies either (A1) or (A2), and u0, v0 ∈
L∞(RN ) with u0, v0 ≥ 0. Suppose that (u, v) ∈ [L∞((0, T ), L∞(RN ))]2 is a so-
lution of problem (1.1) with 0 < T ≤ ∞, and p, q > 0 with pq > 1. Then there
exists a constant C⋆ > 0 (which depends only on p, q, r, and s), such that

tγ1∥S(t)u0∥∞ ≤ C⋆, if q > 1,

tqγ1∥S(t)uq0∥∞ ≤ C⋆, if 0 < q < 1,

tγ2∥S(t)v0∥∞ ≤ C⋆, if p > 1,

tpγ2∥S(t)vp0∥∞ ≤ C⋆, if 0 < p < 1,

(3.1)

for all t ∈ [0, T ), where γ1, γ2 are given by (1.6) and (1.7).

Proof. Since u0 ∈ L∞(RN ), from (2.2) we have S(t)u0(x) < ∞ for a.e. x ∈ RN .
We will prove the first inequality of (3.1). To do this, we will show the estimate

u(x, t) ≥ Ckt
(βk−1)γ1 [S(t)u0(x)]

βk

(k ∈ N ∪ {0}), (3.2)

for a.e. x ∈ RN and t ∈ (0, T ), where C0 = 1, β = pq and

Ck = Cβk−1[(β
k−1 − 1)qγ1 + s+ 1]−p[(βk−1 − 1)γ1β + p(s+ 1) + (r + 1)]−1, (3.3)

for k ∈ N ∪ {0}. We proceed by induction on k. From (1.5) and property (A5),
it follows that u(x, t) ≥ S(t)u0(x) for almost every x ∈ RN and all t > 0; thus,
(3.2) is satisfied for k = 0. Now, assuming that estimate (3.2) is valid for k ≥ 1,
we apply (1.5), properties (A3), (A4), (A5), and Lemma 2.6 to obtain

v(x, t)

≥
∫ t

0

∫
RN

Γ(x, y, t− σ)h1(σ)[u(y, σ)]
q dydσ

≥
∫ t

0

∫
RN

Γ(x, y, t− σ)σs[Ckσ
(βk−1)γ1 [S(σ)u0(y)]

βk

]qdσ

≥ Cqk

∫ t

0

σ(βk−1)γ1q+s
[ ∫

RN

(∫
RN

Γ(x, y, t− σ)Γ(y, z, σ) dy
)
u0(z)dz

]qβk

dσ

≥ Cqk [S(t)u0(x)]
qβk

∫ t

0

σ(βk−1)γ1q+sdσ

= Ck,1t
(βk−1)γ1q+s+1[S(t)u0(x)]

qβk

(3.4)

for a.e. x ∈ RN and t > 0, where Ck,1 = Cqk/((β
k − 1)γ1q + s+ 1).

Similarly, from (3.4), we obtain

u(x, t) ≥
∫ t

0

∫
RN

Γ(x, y, t− σ)σs
[
Ck,1σ

(βk−1)γ1q+s+1[S(σ)u0(y)
]qβk

]pdydσ

≥ Cpk,1[S(t)u0(x)]
βk+1

∫ t

0

σ(βk−1)γ1β+(s+1)p+rdσ

= Ck,2t
(βk−1)γ1β+(s+1)p+(r+1)[S(t)u0(x)]

βk+1
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for a.e. x ∈ RN and t > 0, where Ck,2 = Cpk,1/[(β
k − 1)γ1β + (s + 1)p + (r + 1)].

Since
(βk − 1)γ1β + (s+ 1)p+ (r + 1) = (βk+1 − 1)γ1,

we have
u(x, t) ≥ Ck,2t

(βk+1−1)γ1 [S(t)u0(x)]
βk+1

,

for a.e. x ∈ RN and t > 0. Setting Ck+1 = Ck,2 and inserting the value of Ck,1, we
obtain (3.3). Thus, the induction process is complete.

Now we show that there exists κ0 > 0 such that Ck ≥ κβ
k

0 for all k ≥ 2. Defining
θk = −β−k ln(Ck) it is sufficient to prove that the sequence {θk}k∈N is bounded
from above. From relation (3.3), we have

θi − θi−1 = β−i ln
(Cβi−1

Ci

)
= β−i ln

(
[(βi−1 − 1)qγ1 + s+ 1]p[(βi−1 − 1)γ1β + p(s+ 1) + (r + 1)]

)
≤

{
β−i ln[γ1(β

i − 1)]p+1 if p > 1,

β−i ln[q[γ1(β
i − 1)]2 if 0 < p ≤ 1

≤ Cβ−i(i+ 1).

This implies that θk − θ1 =
∑k
i=1(θi − θi−1) ≤ C

∑k
i=1 β

−i(i+ 1) <∞.

From (3.2) and the estimate Ck ≥ κβ
k

0 we have that

u(x, t)1/β
k

≥ κ0t
γ1(1−1/βk)S(t)u0(x),

for a.e x ∈ RN and t ∈ (0, T ). Since β > 1, letting k → ∞, we obtain the first
inequality of (3.1).

For the proof of the second inequality of (3.1), we argue similarly to the previous
case. We use properties (A3)–(A5), and Lemma 2.6 iteratively, starting with

v(x, t) ≥ ts+1S(t)[u0(x)]
q, (3.5)

until the inequality

u(x, t) ≥ Dkt
(βk−1)γ1 [S(t)[u0(x)]

q]pβ
k−1

, (3.6)

for a.e. x ∈ RN , t ∈ (0, T ), and k ∈ N, where β = pq, and Dk ≥ ηβk

1 (η1 > 0). So,
from (3.6), we obtain

u(x, t)q/β
k

≥ η1t
qγ1(1−1/βk)S(t)[u0(x)]

q,

for a.e. x ∈ RN , t ∈ (0, T ) and some positive constant η1. Letting k tends to
infinity, we obtain the desired estimate.

By the symmetry the problem, the other inequalities can be proved analogously.
□

The following result is a direct consequence of the above proposition.

Corollary 3.2. Assume that ω satisfies either (A1) or (A2) condition, and u0, v0 ∈
L∞(RN ) with u0, v0 ≥ 0. If (u, v) ∈ [L∞((0,∞), L∞(RN ))]2 is a global-in-time
solution of (1.1) then there exists a constant C⋆⋆ > 0 (which depends only on
p, q, r, and s) such that

tγ1∥S(t)u(t)∥∞ ≤ C⋆⋆, if q > 1,

tqγ1∥S(t)[u(t)]q∥∞ ≤ C⋆⋆, if 0 < q < 1,
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tγ2∥S(t)v(t)∥∞ ≤ C⋆⋆, if p > 1,

tpγ2∥S(t)[v(t)]p∥∞ ≤ C⋆⋆, if 0 < p < 1,

for all t ∈ (0,∞).

Proof. Since (u, v) is a global-in-time solution to equation (1.1), the pair (u(· +
σ), v(·+σ)) for σ > 0 also constitutes a global-in-time solution to the same problem
with the initial condition (u(σ), v(σ)). Consequently, the estimate in equation (3.1)
applies with (u(σ), v(σ)) replacing (u0, v0). Therefore, the result is obtained by
setting σ = t in this estimate. □

Lemma 3.3. Under the assumptions of Proposition 3.1, let (u, v) be a global-in-
time solution of (1.1) with initial condition (0, 0) ̸= (u0, v0) ∈ [L∞(RN )]2. Then
there exist τ0 = τ0(u0, v0) > 0 such that u(x, t) > 0 and v(x, t) > 0 a.e. x ∈ RN
and t > τ0.

Proof. Assuming u0 ̸= 0, Remark 2.2 implies that [S(t)u0(x)] > 0 for almost every
x ∈ RN and t > τ0 with some τ0 > 0. Following the reasoning used to derive (3.4),
we obtain

u(x, t) ≥ [S(t)u0](x) > 0, and v(x, t) ≥ (s+ 1)−1[(S(t)u0)(x)]
qts+1 > 0,

for almost every x ∈ RN and t > τ0. A similar approach applies when v0 ̸= 0. □

Proof of the nonglobal existence (Theorem 1.2(i)). Assuming without
loss of generality that γ = γ1, we proceed by contradiction. Suppose there exists a
global-in-time solution (u, v) to problem (1.1) with the initial condition (u0, v0) ̸=
(0, 0). We will consider two cases:

Case I: q > 1. Let us assume first that γ1 > N/(2 − α). By Lemma 3.3, there
exists τ0 such that

u(x, t) > 0 and v(x, t) > 0, (3.7)

for a.e. x ∈ RN and t > τ0.
Define w(t) := u(t+τ) and z(t) := v(t+τ) for all t ≥ 0 and some τ > min{1, τ0}.

It follows from (3.7) that w0 := w(0) ̸= 0 and z0 := z(0) ̸= 0. Given that
(w, z) forms a global-in-time solution to (1.1) with the initial condition (w0, z0) =
(u(τ), v(τ)), Proposition 3.1 ensures that

tγ1∥S(t)w0∥∞ ≤ C⋆ for all t ≥ 0. (3.8)

On the other hand, since w0 > 0 there exists a non-trivial function 0 ≤ U1 ∈
L∞(RN ) such that suppU1 ⊂ B(t

1/(2−α)
0 ) (the ball of center 0 and radius t

1/(2−α)
0 )

for some t0 ≥ 1, and 0 ≤ U1 ≤ w0. By Lemma 2.5, we obtain

S(t)U1(x) ≥ CMt−
N

2−α , M :=

∫
B(t

1/(2−α)
0 )

U1(y) dy, (3.9)

for |x| ≤ t1/(2−α), t ≥ t0 and C > 0. Consequently, by property (A5), it follows
that

tγ1∥S(t)w0∥∞ ≥ tγ1∥S(t)U1∥∞ ≥ CMtγ1−
N

2−α ,

for all t ≥ t2, which contradicts (3.8).
Now, reconsider the previously mentioned global-in-time solution (w(t), z(t))

with γ1 = N
2−α . Following a computation similar to that in the derivation of (3.4),

we obtain
z(x, t) ≥ Cts+1[(S(t)w0)(x)]

q, (3.10)
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for almost every x ∈ RN and for all t > 0, and some constant C > 0. Conversely,
from (3.9), it follows that

S(t)w0(x) ≥ Ct−
N

2−α = Ct−γ1 , (3.11)

for all t ≥ t0, and for |x| ≤ t
1

2−α .
Note that, t + 1 − σ ≤ t and σ ≤ t + 1 − σ for 1 ≤ σ ≤ t/2. Thus, from (1.5),

(A5), (A6), (A7), (3.10), and (3.11), we obtain∫
|x|≤(t+1)1/(2−α)

w(x, t+ 1)dx

≥
∫
|x|≤t1/(2−α)

w(x, t+ 1)dx

≥
∫
|x|≤t1/(2−α)

∫ t/2

1

∫
|y|≤(t+1−σ)1/(2−α)

σrΓ(x, y, t+ 1− σ)z(y, σ)p dydσdx

≥
∫ t/2

t1

∫
|y|≤(t+1−σ)1/(2−α)

σr
(∫

|x|≤(t+1−σ)
1

2−α

Γ(x, y, t+ 1− σ)dx
)
z(y, σ)p dy dσ

≥ C

∫ t/2

t1

∫
|y|≤(t+1−σ)1/(2−α)

σr(σs+1[S(σ)w0(y)]
q)p dy dσ

≥ C

∫ t/2

t1

∫
|y|≤(t+1−σ)1/(2−α)

σr+(s+1)p[S(σ)w0(y)]
pq−1[S(σ)w0(y)] dy dσ

≥ C

∫ t/2

t1

σr+(s+1)p · σ−(pq−1)γ1
(∫

|y|≤σ1/(2−α)

σ−γ1 dy
)
dσ

≥ C

∫ t/2

t1

σ−1dσ

= C ln (t/(2t1)) > 0,

(3.12)
for t/2 > t1 = max{t0, 2} and some constant C > 0.

From (3.12), we deduce that for any R > 0, there exists t2 − 1 > 2t1 such that
the function U2, defined by U2(x) := w(x, t2) ∈ L∞(RN ), satisfies∫

|x|≤t1/(2−α)
2

U2(x) dx ≥ C ln
( t2 − 1

2t1

)
> R. (3.13)

Define (w1(t), z1(t)) = (w(t+ t2), z(t+ t2)). Note that (w1, z1) constitutes a global-
in-time solution of (1.5) with the initial condition (w1(0), z1(0)) = (U2(x), z(t2)).
Consequently, by Proposition 3.1, it follows that

tγ1∥S(t)U2∥∞ ≤ C⋆ for all t ≥ 0. (3.14)

However, from (3.13) and Lemma 2.5, it is established that

S(t)U2(x) ≥ C(α,N)−1Rt−
N

2−α ,

for |x| ≤ t1/(2−α) and t > t2. Consequently,

tγ1∥S(t)U2∥∞ = t
N

2−α ∥S(t)U2∥∞ ≥ C(α,N)−1R,

for all t > t2. This contradicts (3.14) because of the arbitrariness of R > 0.
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Case II: 0 < q < 1. From Lemma 3.3, we can assume without loss of generality,
that u(t) > 0 and v(t) > 0 for all t ≥ 0. Thus, Corollary 3.2 implies

tqγ1∥S(t)uq(t)∥∞ ≤ C⋆⋆, for all t > 0. (3.15)

First, assume that γ1 >
N

2−α . We can then find a non-trivial function 0 ≤ U3 ∈

L∞(RN ) such that suppU3 ⊂ B(t
1

2−α

0 ) for some t0 > 1 and 0 ≤ U3 ≤ u0. Following
a similar argument to the derivation of (3.9), we obtain

u(x, t) ≥ S(t)u0(x) ≥ Ct−
N

2−αX
t

1
2−α

(x), (3.16)

for t ≥ t0 and some constant C > 0, where Xt1/(2−α) is the characteristic function
on the ball centered at 0 with radius t1/(2−α). Consequently,

[u(x, t)]q ≥ Ct−q
N

2−αXt1/(2−α)(x),

for t ≥ t0 and some constant C > 0. This leads to

tqγ1∥S(t)[u(t)]q∥∞ ≥ Ctq(γ1−
N

2−α )S(t)Xt1/(2−α)(x), (3.17)

for t ≥ t0. Moreover, by (A7), we have

S(t)X
t

1
2−α

(x) ≥
∫
|y|<t

1
2−α

Γ(x, y, t) dy ≥ Ct−
N

2−α t
N

2−α , (3.18)

for all |x| ≤ t1/(2−α) and t > 0. Hence, estimate (3.17) contradicts (3.15).
Now, let us assume that γ1 = N

2−α . Given that (u, v) is a global-in-time solution

to equation (1.1), it follows that for any τ > 0:

u(x, t+ τ) =

∫
RN

Γ(x, y, t)u(y, τ) dy +

∫ t

0

∫
RN

Γ(x, y, t− σ)σrvp(y, σ + τ) dy dσ,

v(x, t+ τ) =

∫
RN

Γ(x, y, t)v(y, τ) dy +

∫ t

0

∫
RN

Γ(x, y, t− σ)σsuq(y, σ + τ) dy dσ,

and (u(·+τ), v(·+τ)) is also a global-in-time solution of (1.1) with initial condition
(u(τ), v(τ)). Then, recalling that 0 < q < 1 and proceeding similarly as in (3.5),
we obtain

v(x, t+ τ) ≥ Cts+1S(t)[u(τ)]q(x), (3.19)

for a.e. x ∈ RN and t > 0. Thus, taking t = τ in (3.19) and arguing similarly as in
(3.16)-(3.18), we have

v(x, 2t) ≥ Cts+1S(t)[u(t)]q(x),

≥ Cts+1S(t)[t−
N

2−αX
t

1
2−α

]q(x)

≥ Cts+1 · t−qγ1 ,

(3.20)

for |x| ≤ t1/(2−α) and t > t0 > 1.
Let t > 4t0. Since γ1 = N/(2−α), from (3.20) and proceeding as in the derivation

of (3.12), we have∫
|x|≤(t+1)

1
2−α

u(x, t+ 1)dx

≥ C

∫ t/2

1

∫
|y|≤(t+1−σ)

1
2−α

σr(v(y, σ))p dy dσ
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≥ C

∫ t/2

2t0

∫
|y|≤σ

1
2−α

σr(v(y, 2 · 2−1σ))p dy dσ

≥ C

∫ t/2

2t0

∫
|y|≤σ

1
2−α

σr
(
[
σ

2
]s+1[

σ

2
]−qγ1

)p
dy dσ

≥ C

∫ t/2

2t0

∫
|y|≤σ

1
2−α

σr+(s+1)p[σ−γ1 ]pq−1[σ−γ1 ] dy dσ

≥ C

∫ t/2

2t0

σr+(s+1)pσ−(pq−1)γ1
(∫

|y|≤σ
1

2−α

σ−γ1 dy
)
dσ

≥ C

∫ t/2

2t0

σ−1 dσ

= C ln
( t

4t0

)
.

Thus, we can use the same argument given in the previous case, using Corollary
3.2 in place of Proposition 3.1, to obtain a contradiction.

4. Global Existence

4.1. Local existence.

Lemma 4.1 (Comparison principle). Assume that either (A1) or (A2) is verified,
and (u0,i, v0,i) ∈ [L∞(RN )]2, for i = 1, 2. Let f, g : [0,∞) → [0,∞) be nondecreas-
ing and locally Lipschitz functions; r, s > −1; and

(ui, vi) ∈ [L∞((0, T ), L∞(RN )]2,

such that

ui(x, t) =

∫
RN

Γ(t, x, y)u0,i(y)dy +

∫ t

0

∫
RN

Γ(t− σ, x, y)σrf(vi(y, σ)) dydσ,

vi(x, t) =

∫
RN

Γ(t, x, y)v0,i(y)dy +

∫ t

0

∫
RN

Γ(t− σ, x, y)σsg(ui(y, σ)) dy dσ,

(4.1)

for a.e. x ∈ RN and t > 0. If u0,1 ≤ u0,2 and v0,1 ≤ v0,2, then u1(t) ≤ u2(t) and
v1(t) ≤ v2(t) for all t ∈ (0, T ).

Proof. Note that it is sufficient to show that [u1(t)− u2(t)]
+ = [v1(t)− v2(t)]

+ = 0
for t ∈ (0, T ). Let M0 = max{∥ui(t)∥∞, ∥vi(t)∥∞; t ∈ [0, T ], i = 1, 2}. Since
u0,1 ≤ u0,2 and v0,1 ≤ v0,2, from property (A4) and (4.1) we have

u1(t)− u2(t) ≤
∫ t

0

S(t− σ)σr[f(v1(σ))− f(v2(σ))] dσ,

v1(t)− v2(t) ≤
∫ t

0

S(t− σ)σs[g(u1(σ))− g(u2(σ))] dσ.

(4.2)

Since f and g are nondecreasing and locally Lipschitz, we obtain

g(u1(t))− g(u2(t)) ≤ [g(u1(t))− g(u2(t))]
+ ≤ LM1

[u1(t)− u2(t)]
+,

f(v1(t))− f(v2(t)) ≤ [f(v1(t))− f(v2(t))]
+ ≤ LM2 [v1(t)− v2(t)]

+,
(4.3)

where LM1
and LM2

are the Lipschitz constants on the interval [0;M0].
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It follows from estimate (2.2), (4.2), and (4.3) that

∥[u1(t)− u2(t)]
+∥∞ ≤ LM2

∫ t

0

σr∥[v1(σ)− v2(σ)]
+∥∞ dσ,

∥[v1(t)− v2(t)]
+∥∞ ≤ LM1

∫ t

0

σs∥[u1(σ)− u2(σ)]
+∥∞ dσ,

The results is now a direct consequence of Gronwall’s inequality (see for example
[36]). □

Theorem 4.2. Suppose p, q > 0 with pq > 1, ω satisfies either (A1) or (A2), and
(u0, v0) ∈ [L∞(RN )]2, u0, v0 ≥ 0. Then there exists T > 0 and a constant C0 > 0
such that problem (1.1) possesses a unique solution (u, v) on (0, T ) satisfying

sup
0<t<T

(∥u(t)∥∞ + ∥v(t)∥∞) ≤ C0(∥u0∥∞ + ∥v0∥∞).

Proof. For (u0, v0) ∈ [L∞(RN )]2, u0, v0 ≥ 0. We define the sequences {un}n≥1 and
{vn}n≥1 by

u1(x, t) =

∫
RN

Γ(x, y, t)u0(y) dy, v1(x, t) =

∫
RN

Γ(x, y, t)v0(y) dy

and

un+1(x, t) = u1(x, t) +

∫ t

0

σr
∫
RN

Γ(x, y, t− σ)vn(y, s)
p dy dσ,

vn+1(x, t) = v1(x, t) +

∫ t

0

σs
∫
RN

Γ(x, y, t− σ)un(y, s)
q dy dσ,

for a.e. x ∈ RN , n ≥ 1 and t > 0. The sequences {un}n≥1 and {vn}n≥1 satisfy

0 ≤ un(x, t) ≤ un+1(x, t) and 0 ≤ vn(x, t) ≤ vn+1(x, t) (4.4)

for a.e. x ∈ RN , t > 0. This is clear since Γ, u0, and v0 are non-negative functions
(Γ is nonnegative by (A5) property). Thus, we define

u∞(x, t) = lim
n→∞

un(x, t), v∞ = lim
n→∞

vn(x, t). (4.5)

Furthermore, we see that u∞(x, t), v∞(x, t) ∈ [0,∞].
Now, we show that the sequences {un}n≥1 and {vn}n≥1 are bounded in a small

interval (0, T ), that is,

sup
0<t<T

(∥un(t)∥∞ + ∥vn(t)∥∞) ≤ 2c1(∥u0∥∞ + ∥v0∥∞) (4.6)

for all n ∈ N and some T > 0 sufficiently small. The constant c1 > 0 is given by
inequality (2.2). To show (4.6), we argue by induction on n. This is clear for n = 1
due to (2.2). Suppose that (4.6) holds for some n ∈ N. Then, by (2.2) we have

∥un+1(t)∥∞ ≤ ∥u1(t)∥∞ +

∫ t

0

σr∥S(t− σ)vn(σ)
p∥∞ dσ

≤ c1∥u0∥∞ + c1

∫ t

0

σr∥vn(σ)∥p∞ dσ

≤ c1∥u0∥∞ + c1[2c1(∥u0∥∞ + ∥v0∥∞)]p
∫ t

0

σr dσ,

(4.7)
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for t ∈ (0, T ). Similarly, we have

∥vn+1(t)∥∞ ≤ ∥v1(t)∥∞ +

∫ t

0

σs∥S(t− σ)un(σ)
q∥∞ dσ

≤ c1∥v0∥∞ + c1

∫ t

0

σs∥un(σ)∥q∞ dσ

≤ c1∥v0∥∞ + c1[2c1(∥u0∥∞ + ∥v0∥∞)]q
∫ t

0

σs dσ,

(4.8)

for t ∈ (0, T ). Thus, the inequality (4.6) holds by adding (4.7) and (4.8) and taking
T > 0 small enough.

Finally, by (4.4), (4.5), and (4.6), we have that the limits functions u∞ and v∞
satisfies (1.5) and

sup
0<t<T

(∥u∞(t)∥∞ + ∥v∞(t)∥∞) ≤ 2c1(∥u0∥∞ + ∥v0∥∞).

Moreover, by the comparison principle (see Lemma 4.1), (u∞, v∞) is the unique
solution of the problem (1.1) if p, q ≥ 1. □

4.2. Global existence: proof of Theorem 1.2-(ii). Without loss of the gener-
ality, we suppose that q > 1. Let

(u0, v0) ∈ [L∞(RN ) ∩ Lr1⋆,∞(RN )]× [L∞(RN ) ∩ Lr2⋆,∞(RN )]

with max{∥u0∥r1⋆,∞, ∥v0∥r2⋆,∞} < δ, where δ > 0 will be chosen small enough later.
From (1.6)-(1.9), we obtain the following estimates:

pγ2 = γ1 + (r + 1), qγ1 = γ2 + (s+ 1), pr1⋆ > r2⋆, qr2⋆ > r1⋆. (4.9)

Also, since γ < N/(2− α), we have r1⋆, r2⋆ > 1.
Let {(un, vn)}n≥0 be the sequence defined by u0(t) = S(t)u0, v

0(t) = S(t)v0 and

uN (t) = S(t)u0 +

∫ t

0

S(t− σ)h1(σ)[v
n−1(σ)]p dσ,

vN (t) = S(t)v0 +

∫ t

0

S(t− σ)h2(σ)[u
n−1(σ)]q dσ,

(4.10)

for all t > 0. Note that the sequences {uN}n≥0 and {vN}n≥0 are non-decreasing.

By induction, we prove that there exists a constant C̃ > 0 such that

∥uN (t)∥r1⋆,∞ ≤ c⋆⋆δ + C̃δp,

∥uN (t)∥∞ ≤ (c⋆⋆δ + C̃δp)t
− N

(2−α)r1⋆ ,

∥vN (t)∥r2⋆,∞ ≤ 2c⋆⋆δ,

∥vN (t)∥∞ ≤ 2c⋆⋆δt
− N

(2−α)r2⋆ .

(4.11)

for all n ∈ N∪{0}, where c⋆⋆ = max{c1, c2} and the constants ci(i = 1, 2) are given
in Proposition 2.3.
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From estimate (2.3) we have

∥u0(t)∥r1⋆,∞ ≤ c∗∗∥u0∥r1⋆,∞,

∥u0(t)∥µ,∞ ≤ c∗∗t
− N

2−α ( 1
r1⋆

− 1
µ )∥u0∥r1⋆,∞,

∥v0(t)∥r2⋆,∞ ≤ c∗∗∥v0∥r2⋆,∞,

∥v0(t)∥µ,∞ ≤ c∗∗t
− N

2−α ( 1
r2⋆

− 1
µ )∥v0∥r2⋆,∞,

(4.12)

for all t > 0, µ ∈ [r1⋆,∞]. This implies that (4.11) holds for n = 0. Assume that
(4.11) holds for some n ∈ N. By symmetry, we only prove that (4.11) holds for
un+1. From estimates (2.4) and (4.11), we have

∥vn(t)∥µ,∞ ≤ ∥vn(t)∥
r2⋆
µ
r2⋆,∞∥vn(t)∥1−

r2⋆
µ

∞ ≤ 2c∗∗δt
− N

2−α ( 1
r2⋆

− 1
µ ) (4.13)

for all t > 0 and µ ∈ [r2⋆,∞]. Then, from (4.9) and (4.13), we have

∥vn(t)p∥η,∞ = ∥vn(t)∥pηp,∞
≤

[
2c∗∗δt

− N
2−α ( 1

r2⋆
− 1

ηp )
]p

= [2c∗∗]
pδpt

N
(2−α)η

− N
(2−α)r1⋆

−(r+1)

(4.14)

for any η > 1 with r2⋆ ≤ ηp. Similarly, from (4.9) and (4.11), we obtain

∥vN (t)p∥∞ = ∥vN (t)∥p∞
≤

(
2c⋆⋆δt

− N
(2−α)r2⋆

)p
= (2c⋆⋆δ)

pt−pγ2

= [2c∗∗]
pδpt

− N
(2−α)r1⋆

−(r+1)

(4.15)

for all t > 0.
Thus, by (2.2), (2.3), (4.9), (4.14) (with η = r1⋆), r2⋆ < r1⋆p, and (4.15) we have

∥
∫ t

t/2

S(t− σ)σrvN (σ)pdσ∥∞ ≤ c1c3[2c∗∗]
pδpt

− N
(2−α)r1⋆ , (4.16)

where c3 = (2−α)r1⋆
N (2N/(2−α)r1⋆ − 1), and

∥
∫ t

t
2

S(t− σ)σrvn(σ)p dσ∥r1⋆,∞ ≤ c2

∫ t

t
2

σr∥vn(σ)p∥r1⋆,∞ dσ

= c2

∫ t

t
2

σr∥vn(σ)∥ppr1⋆,∞ dσ

= c2[2c∗∗]
pδp

∫ t

t
2

σ−1 dσ

≤ c2[2c∗∗]
pδp,

(4.17)

for all t > 0.



16 R. CASTILLO, O. GUZMÁN-REA, M. LOAYZA, M. ZEGARRA EJDE-2024/67

On the other hand, since t−σ ≥ t/2 for all σ ∈ [0, t/2], by (2.3) and (4.14) (with
η = η1 > 1, which will be chosen later), we obtain

∥
∫ t/2

0

S(t− σ)σrvN (σ)pdσ∥∞

≤
∫ t/2

0

∥S(t− σ)σrvN (σ)p∥∞dσ

≤ c2

∫ t/2

0

(t− σ)
− N

(2−α)η1 σr∥vN (σ)p∥η1,∞dσ

≤ 2
N

(2−α)η1 c2t
− N

(2−α)η1

∫ t/2

0

σr∥vN (σ)p∥η1,∞dσ

≤ 2
N

(2−α)η1 c2[2c∗∗]
pδpt

− N
(2−α)η1

∫ t/2

0

σ
N

(2−α)η1
− N

(2−α)r1⋆
−1
dσ

≤ c2c4[2c∗∗]
pδpt

− N
(2−α)r1⋆ ,

(4.18)

for some 1 < η1 < r1⋆ so that r2⋆ < η1p (this is possible since p r1⋆ > r2⋆ > 1),

and c4 = 2
N

(2−α)r1⋆ [ N
(2−α)η1 − N

(2−α)r1⋆ ]
−1. Analogously (using the above η1 again),

we have

∥
∫ t/2

0

S(t− σ)σrvn(σ)pdσ∥r1⋆,∞

≤
∫ t/2

0

∥S(t− σ)σrvn(σ)p∥r1⋆,∞ dσ

≤ c2

∫ t/2

0

(t− σ)−
N

2−α ( 1
η1

− 1
r1⋆

)σr∥vn(σ)p∥η1,∞ dσ

≤ c22
N

2−α ( 1
η1

− 1
r1⋆

)t−
N

2−α ( 1
η1

− 1
r1⋆

)
∫ t/2

0

σr∥vn(σ)p∥η1,∞ dσ

≤ c2[2c∗∗]
pδp2

N
2−α ( 1

η1
− 1

r1⋆
)t−

N
2−α ( 1

η1
− 1

r1⋆
)
∫ t/2

0

σ
N

(2−α)η1
− N

(2−α)r1⋆
−1
dσ

≤ c2c5[2c∗∗]
pδp

(4.19)

for all t > 0, where c5 = [ N
(2−α)η1 − N

(2−α)r1⋆ ]
−1.

Then, from (4.10), (4.12), (4.16), (4.17), (4.18), (4.19), and taking δ > 0 suffi-
ciently small, we obtain

t
N

(2−α)r1⋆ ∥un+1(t)∥∞ ≤ c⋆⋆δ + C̃δp

∥un+1(t)∥r1⋆,∞ ≤ c⋆⋆δ + C̃δp

for all t > 0, where C̃ = [2c⋆⋆]
pmax{c1c3 + c2c4, c2c5 + c2}. Arguing similarly it is

possible to show that there exists a constant C, independent of n, δ, and t, such
that

t
N

(2−α)r2⋆ ∥vn+1(t)∥∞ ≤ c⋆⋆δ + C(c⋆⋆δ + C̃δp)q,

∥vn+1(t)∥r2⋆,∞ ≤ c⋆⋆δ + C(c⋆⋆δ + C̃δp)q.

Since q > 1 and pq > 1, we have

t
N

(2−α)r2⋆ ∥vn+1(t)∥∞ ≤ c⋆⋆δ + 2q−1Ccq⋆⋆δ
q + 2q−1C̃q+1δpq ≤ 2c⋆⋆δ
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for δ > 0 sufficiently small. Analogously, ∥vn+1(t)∥r2⋆,∞ ≤ 2c⋆⋆δ for δ > 0 possibly
smaller. Therefore, (un+1, vn+1) satisfies the estimates of (4.11) for all n ∈ N∪{0},
and the induction process is finalized.

From the estimates given in (4.11) we see that there exists a global-in-time
solution of (1.1) such that (u, v) = (limn→∞ uN , limn→∞ vN ) and

∥u(t)∥∞ ≤ Ct
− N

(2−α)r1⋆ , ∥u(t)∥r1⋆,∞ ≤ C,

∥v(t)∥∞ ≤ Ct
− N

(2−α)r2⋆ , ∥v(t)∥r2⋆,∞ ≤ C,

for some constant C > 0 (this solution is unique when p > 1 and q > 1). Moreover,
by Theorem 4.2,

∥u(t)∥∞ ≤ C(t+ 1)
− N

(2−α)r1⋆ and ∥v(t)∥∞ ≤ C(t+ 1)
− N

(2−α)r2⋆ ,

for t > 0 and some constant C > 0. From this and (2.4), we have

∥u(t)∥µ,∞ ≤ ∥u(t)∥
r1⋆
µ
r1⋆,∞∥u(t)∥1−

r1⋆
µ

∞ ≤ C(t+ 1)−
N

2−α ( 1
r1⋆

− 1
µ ),

∥v(t)∥µ,∞ ≤ ∥v(t)∥
r2⋆
µ
r2⋆,∞∥v(t)∥1−

r2⋆
µ

∞ ≤ C(t+ 1)−
N

2−α ( 1
r2⋆

− 1
µ ),

for all µ such that max{r1⋆, r2⋆} < µ ≤ ∞, t > 0 and some constant C > 0. Thus
the proof is complete.
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