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Abstract. In this work, we study the existence and multiplicity of solutions
to the problem

−(∆)spu+ V (x)|u|p−2u = λf(u), x ∈ Ω;

u = 0, x ∈ RN\Ω,

where Ω ⊂ RN is an open bounded set with Lipschitz boundary ∂Ω, N ⩾ 2,

V ∈ L∞(RN ), and (−∆)sp denotes the fractional p-Laplacian with s ∈ (0, 1),
1 < p, sp < N , λ > 0, and f : R → R is a continuous function. We extend the

results of Lopera et al. [22] by proving the existence of a second weak solution

to this problem. We apply a variant of the mountain-pass theorem due to
Hofer [15] and infinite-dimensional Morse theory to obtain the existence of at

least two solutions.

1. Introduction

Let Ω be an open bounded set in RN , N ⩾ 2, with Lipschitz boundary ∂Ω. In
this work, we study the existence and multiplicity of solutions for the problem

−(∆)spu(x) + V (x)|u(x)|p−2u(x) = λf(u(x)), x ∈ Ω;

u(x) = 0, x ∈ RN\Ω,
(1.1)

where V ∈ L∞(RN ), f : R → R is a continuous function and (−∆)sp denotes the
fractional p-Laplacian defined by

(−∆)spu(x) = 2 lim
ε→0+

∫
|x−y|>ε

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy, (1.2)

for x ∈ Ω, with s ∈ (0, 1), 1 < p, sp < N , and λ > 0.
As pointed out by Lindgren and Lidqvist [21, page 801], it is not sufficient to

prescribe the boundary values only on ∂Ω, but instead, we have to assume that
u = 0 in the whole complement RN\Ω because a change in u done outside Ω can
impact the fractional p-Laplacian operator (−∆)sp. For more details, see Nezza et
al. [12], Lindgren et al. [21], and references therein.
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In this work, the functions f and V satisfy the following hypotheses:

(H1) Assume that p− 1 < q < p∗s − 1, where p∗s := Np
N−sp is the fractional critical

Sobolev exponent, and there exist A,B > 0 such that

A(sq − 1) ⩽ f(s) ⩽ B(sq + 1), for s > 0, (1.3)

f(s) = 0, for s ⩽ −1. (1.4)

(H2) There exist θ > p and K ∈ R such that f satisfies the Ambrosetti-
Rabinowitz type condition

sf(s) ⩾ θF (s) +K, for all s ∈ R, (1.5)

where F (s) =
∫ s

0
f(ξ) dξ, for s ∈ R, is the primitive of f .

(H3) V ∈ L∞(RN ) and V (x) ⩾ −cV , for a.e. x ∈ RN , where 0 < cV < λ1 and
λ1 is the first eigenvalue of ((−∆)sp,W

s,p
0 (Ω)).

The first two results establish the existence and multiplicity of solutions for
problem (1.1) when f(0) ̸= 0.

Theorem 1.1. Assume that Ω is a bounded domain with a Lipschitz boundary ∂Ω
and (H1)–(H3) are satisfied with f(0) ̸= 0. Then there exists λ0 > 0 such tha, for
all λ ∈ (0, λ0), problem (1.1) has at least two solutions.

To obtain a positive solution, we need to assume that p ⩾ 2 to get enough
regularity of solutions up to the boundary of Ω and V (x) ⩾ 0, for a.e x ∈ Ω. In
this case, we obtain the following multiplicity result.

Theorem 1.2. In addition to the hypotheses of Theorem 1.1, assume that V (x) ⩾ 0
for a.e. x ∈ Ω, p ⩾ 2, Ω is bounded and satisfies the interior ball condition at any
x ∈ ∂Ω, and

p− 1 < q < min
{sp
N

p∗s, p
∗
s − 1

}
.

Then, there exists λ∗ > 0 such that, for all 0 < λ < λ∗, problem (1.1) has at least
two solutions. Moreover:

(a) If f(0) > 0, then both solutions are positive.
(b) If f(0) < 0, then at least one of the solutions is positive.

Remark 1.3. Observe that statement (b) encompasses the semipositone case. See,
for example, Castro et al. [8] and references therein.

When u ≡ 0 is a solution of problem (1.1), called the trivial solution, to obtain
a multiplicity result, we need an additional condition on the primitive of f .

Theorem 1.4. Assume that Ω is a bounded domain with a Lipschitz boundary ∂Ω
and (H1)–(H3) are satisfied. Moreover, assume that f(0) = 0 and

lim sup
s→0

F (s)

|s|p
= 0.

Then there exists λ0 > 0 such that for all λ ∈ (0, λ0) problem (1.1) has at least two
nontrivial solutions.

Problems involving the fractional p-Laplacian have been an object of intensive
research in the last years in many branches of science such as in phase transition
phenomena, population dynamics, and game theory (see [2, 7, 11, 12, 16, 17, 18,
19, 21, 22, 25, 29]). Valdinoci [30] presents a self-contained exposition on how a
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simple random walk with possibly long jumps is related to the fractional p-Laplacian
operator. For more insights on the applications, we refer to Iannizzotto et al. [16]
and Caffarelli [7] where the authors provide a detailed review of current applications
and challenges faced when dealing with these nonlocal operators.

This article was motivated by the results obtained by Castro et al. [8] for the
case of the p-Laplacian operator and by Lopera et al. [22] for the fractional p-
Laplacian. In those articles, the authors proved the existence of a positive solution
for problem (1.1) when the potential V ≡ 0. The existence result was obtained by
showing that the associated energy functional for problem (1.1) had the geometry
of the mountain-pass theorem of Ambrosetti-Rabinowitz [1]. They also proved that
the solution was positive by using some new regularity results and Hopf’s Lemma.

The main goal of this work is to extend the results of Lopera et al. [22] by
proving the existence of at least two solutions for problem (1.1). We will use a
variant of the mountain-pass theorem due to Hofer [15] and infinite-dimensional
Morse theory to obtain the existence of a second solution for both cases where
f(0) ̸= 0 and f(0) = 0, respectively.

This article is organized as follows: In Section 2 we present some preliminary
results that will be used throughout this work. In Section 3, we prove that the
associated energy functional to problem (1.1) has a critical point uλ of mountain-
pass type. In Section 4, we apply infinite-dimensional Morse theory to compute
the critical groups of the associated energy functional at infinity. In Section 5, we
compute the critical groups of the associated energy functional for problem (1.1)
at the origin. Finally, we prove the existence and multiplicity results in Section 6.

2. Preliminaries

In this work, we will use a variational approach to study the existence and multi-
plicity of solutions for problem (1.1). We start with some notation and preliminary
results that will be used throughout this article.

Let Ω be an open bounded subset of in RN , N ⩾ 2, with boundary ∂Ω. Denote
by C(Ω) the set of continuous functions on Ω. The space of γ-Hölder continuous
functions is defined by

Cγ(Ω) = {u ∈ C(Ω) : [u]Cγ(Ω) < ∞},

where 0 < γ ⩽ 1 and

[u]Cγ(Ω) = sup
x,y∈Ω,x ̸=y

|u(x)− u(y)|
|x− y|γ

.

The space Cγ(Ω) is a Banach space endowed with the norm

∥u∥Cγ(Ω) = ∥u∥L∞(Ω) + [u]Cγ(Ω).

In some of the regularity results that will be used in this article, it will be required
that the domain Ω ⊂ RN , N ⩾ 2, be a Lipschitz domain. This is the content of the
next definition.

Definition 2.1. We will say that Ω ⊂ RN has a Lipschitz boundary, and call it a
Lipschitz domain, if, for every x0 ∈ ∂Ω, there exists r > 0 and a map h : Br(x0) →
B1(0) such that

(i) h is a bijection,
(ii) h and h−1 are both Lipschitz continuous functions,
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(iii) h(∂Ω ∩Br(x0)) = Q0,
(iv) h(Ω ∩Br(x0)) = Q+,

where Br(x0) denotes the n−dimensional open ball of radius r and center at x0 ∈
∂Ω, and

Q0 := {(x1, . . . , xn) ∈ B1(0) |xn = 0}, Q+ := {(x1, . . . , xn) ∈ B1(0) |xn > 0}.

Next, we introduce the space of functions where the energy functional associated
with problem (1.1) will be defined. Let s ∈ (0, 1) and 1 ⩽ p < ∞, and denote by

W s,p
0 (Ω) = {u ∈ W s,p(RN ) : u = 0 a.e in RN\Ω} (2.1)

the subset of the fractional Sobolev space W s,p(RN ),

W s,p(RN ) =
{
u ∈ Lp(RN ) :

∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dx dy < ∞

}
,

endowed with the norm

∥u∥s,p :=
(
∥u∥pp + [u]ps,p

)1/p
, (2.2)

where ∥ · ∥p denotes the norm in Lp(Ω) for 1 ⩽ p < ∞ and

[u]s,p :=

∫
R2N

|u(x)− u(y)|p

|x− y|N+sp
dx dy, (2.3)

is the Gagliardo seminorm. It can be shown thatW s,p(RN ), endowed with the norm
∥ · ∥s,p defined in (2.2) and (2.3), is a Banach space, and W s,p

0 (Ω) ⊂ W s,p(RN ) is a
closed subspace. In the case 1 < p < ∞, W s,p(Ω) is a reflexive Banach space (see
Asso et al. [2, Section 2.1]).

By a Sobolev-type inequality (see [12, Theorem 6.7]), it can be shown that the
space W s,p

0 (Ω) can also be endowed with the norm

∥u∥ := [u]s,p, (2.4)

for s ∈ (0, 1) and 1 ⩽ p < ∞.

We will denote by W̃ s,p(Ω) the Sobolev space{
u ∈ Lp

loc(R
N ) : ∃U ⊃⊃ Ω s.t ∥u∥W s,p(U) +

∫
RN

|u(x)|p−1

(1 + |x|)N+ps
dx < ∞

}
,

where Ω ⊂ RN is a bounded set (see [19, Definition 2.1] for more details). Since Ω

is a bounded set, it follows from [11, Remark 1.1] that W s,p
0 (Ω) ⊂ W̃ s,p(Ω). We will

refer to the space W̃ s,p(Ω) during the proof of a comparison principle for problem
(1.1). For more details on fractional Sobolev spaces, see [12, Section 2], [6], and
references therein.

In this article, we shall denote by X the fractional Sobolev space W s,p
0 (Ω). We

define Jλ : X → R, the energy functional associated with problem (1.1), by

Jλ(u) =
1

p
∥u∥p + 1

p

∫
Ω

V (x)|u|p dx− λ

∫
Ω

F (u) dx, for u ∈ X, (2.5)

and λ > 0 with ∥ · ∥ defined in (2.4).
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The functional Jλ is well-defined and Jλ ∈ C1(X,R). It can be shown that the
Fréchet derivative of Jλ is given by

⟨J ′
λ(u), φ⟩ =

∫
R2N

Φp(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+sp
dx dy

+

∫
Ω

V (x)|u|p−2uφdx− λ

∫
Ω

f(u)φdx,

(2.6)

for all φ ∈ X, where Φp : R → R is given by Φp(s) = |s|p−2s, for s ∈ R.
We will say that u is a weak solution of problem (1.1) if u is a critical point of

Jλ; namely,

⟨J ′
λ(u), φ⟩ = 0, for all φ ∈ X. (2.7)

For every 1 < p1 < p∗s, we shall denote by Cp1 the optimal constant in the
Sobolev embedding theorem; namely,

∥u∥p1
⩽ Cp1

∥u∥, for all u ∈ X, (2.8)

see [12, Theorem 6.7].
In the proof of the existence of a solution of mountain-pass type, we will need

the following result due to Lindgren and Lindqvist [21].

Theorem 2.2 ([21, Thm. 5]). There exists a non-negative minimizer u inW s,p
0 (Ω),

u ̸≡ 0, and u = 0 in RN\Ω of the fractional Rayleigh quotient:

λ1 = inf
u∈W s,p

0 (Ω)\{0}

∫
RN

∫
RN

|u(u)−u(x)|p
|y−x|αp dx dy∫

RN |u(x)|p dx
. (2.9)

It satisfies the Euler-Lagrange equation∫
R2N

|u(y)− u(x)|p−2(u(y)− u(x))(φ(y)− φ(x))

|y − x|αp
dx dy

= λ

∫
RN

|u|p−2uφdx,

(2.10)

with λ = λ1 whenever φ ∈ C∞
c (Ω). If αp > 2N , the minimizer is in C0,β(RN ) with

β = α− 2N/p.

Theorem 2.2 motivated the following definition.

Definition 2.3 ([21, Definition 6]). We say that u ̸≡ 0, u ∈ W s,p
0 (Ω), s = α−n/p,

is an eigenfunction of Ω, if the Euler-Lagrange equation (2.10) holds for all test
functions φ ∈ C∞

c (Ω). The corresponding λ is called an eigenvalue.

Remark 2.4. The minimizer found in Theorem 2.2 is called the first eigenfunction
of ((−∆)sp,W

s,p
0 (Ω)).

To use some of the minimax theorems in the literature, we have to check that
the associated energy functional also satisfies some kind of compactness condition.

Definition 2.5. We will say that (un) ⊂ X is a PS-sequence for J if

|J(un)| ⩽ C for all n, and J ′(un) → 0 as n → ∞,

where C is a positive constant. We say that a functional J ∈ C1(X,R) satisfies
the Palais-Smale condition (PS-condition) if any PS-sequence (un) ⊂ X possesses
a convergent subsequence.
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To prove the existence of a second solution for (1.1) in Theorem 1.1, we will need
the concept of critical groups from infinite-dimensional Morse Theory.

Define Jc
λ = {w ∈ X| Jλ(w) ⩽ c}, the sub-level set of Jλ at c, and set

K = {u ∈ X| J ′
λ(u) = 0},

the critical set of Jλ. For an isolated critical point u0 of Jλ, the q–critical groups
of Jλ at u0, with coefficients in a field F of characteristic 0, are defined by

Ck(Jλ, u0) = Hk(J
c0
λ ∩ U, Jc0

λ ∩ U\{u0}), for all k ∈ Z,

where c0 = Jλ(u0), U is a neighborhood of u0 that contains no critical points
of Jλ other than u0, and H∗ denotes the singular homology groups. The critical
groups are independent of the choice of U by the excision property of homology
(see Hatcher [14]). For more information on the definition of critical groups, we
refer the reader to [9, 26, 24, 23].

Next, we present the concept of the critical groups at infinity introduced by
Bartsch and Li in [4]. Assume that Jλ ∈ C1(X,R) satisfies the Palais-Smale con-
dition. Let K = {u ∈ X : J ′

λ(u) = 0} be the set of critical points of Jλ and assume
that under these assumptions the critical value set is bounded from below; that is,

ao < inf Jλ(K),

for some ao ∈ R. The critical groups at infinity are defined by

Ck(Jλ,∞) = Hk(X, Jao

λ ), for all k ∈ Z, (2.11)

(see [4]). These critical groups are well-defined as a consequence of the Second
Deformation Theorem (see Perera and Schechter [26, Lemma 1.3.7]).

In this work, we use the concept of a critical point of a functional being of a
mountain-pass type. We use the definition found in Hofer [15] and Montreanu et
al. [24].

Definition 2.6 ([24, Definition 6.98]). Let X be a Banach space, J ∈ C1(X,R),
and u0 ∈ K. We say that u0 is of mountain-pass type if, for any open neighborhood
U of u0, the set {w ∈ U | J(w) < J(u0)} is nonempty and not path-connected.

The critical groups of mountain-pass type can be described by the following
proposition found in Montreanu et al. [24]:

Proposition 2.7 ([24, Proposition 6.100]). Let X be a reflexive Banach space,
J ∈ C1(X,R), and u0 ∈ K be isolated in J(K). If u0 is of mountain-pass type, then
C1(J, u0) ̸∼= 0.

Put Kd = {u ∈ X|J(u) = d, J ′(u) = 0}, the critical set at level d. One of the
critical points that will be obtained in the proof of Theorem 1.1 satisfies a variant
of the mountain-pass theorem due to Hofer, which we present next for the reader’s
convenience.

Theorem 2.8 ([15]). Assume that X is a real Banach space. Let J ∈ C1(X,R)
satisfy the Palais-Smale condition and assume that e0 and e1 are distinct points in
X. Define

A = {a ∈ C([0, 1], X)| : a(i) = ei, for i = 0, 1}, (2.12)

d = inf
a∈A

sup J(|a|), |a| = a([0, 1]), c = max{J(e0), J(e1)}. (2.13)
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If d > c, the set Kd is non-empty. Moreover, there exists at least one critical point
u0 in Kd that is either a local minimum or of mountain-pass type. If all the critical
points in Kd are isolated in X the set Kd contains a critical point of mountain-pass
type.

Remark 2.9. Once we prove that the functional Jλ defined in (2.5) satisfies the
conditions of Theorem 2.8 in Section 4, for the case f(0) ̸= 0, assuming that Jλ has
only one critical point uλ, it will follow from Proposition 2.7 that

C1(Jλ, uλ) ̸∼= 0. (2.14)

We do not have information about the other critical groups Ck(Jλ, uλ) when k ̸= 1.
But, the fact that C1(Jλ, uλ) is nontrivial will be enough to prove the existence of
a second critical point for the functional Jλ. A similar argument will be used in
Section 6 for the case f(0) = 0.

Finally, the last result we will need to prove multiplicity results for problem (1.1)
for the case f(0) ̸= 0 is found in Bartsch and Li [4].

Proposition 2.10 ([4, Proposition 3.6]). Suppose that J ∈ C1(X,R) satisfies the
Palais-Smale condition at level c for every c ∈ R. If K = ∅, then Ck(J,∞) ∼= 0 for
all k ∈ Z. If K = {uλ}, then Ck(J,∞) ∼= Ck(J, uλ), for all k ∈ Z.

We shall prove in Section 4 that Ck(Jλ,∞) ∼= 0 for all k > 0; that is, the
critical groups of Jλ at infinity are all trivial for k ̸= 0. In particular, we will have
C1(Jλ,∞) ∼= 0. Hence, assuming, by a way of contradiction, that Jλ has only the
critical point uλ found in Section 3, we will then obtain a contradiction based on
the result of Proposition 2.10 and the assertion in (2.14).

In the next section, we will prove the existence of a mountain-pass type solution
for problem (1.1).

3. Existence and a priori estimates

3.1. Existence of a mountain-pass type solution. In this section, we show
that the functional Jλ defined in (2.5) satisfies the conditions of the variant of the
mountain-pass theorem due to Hofer [15] as presented in Theorem 2.8.

First, by conditions (1.3) and (1.4), it can be shown that there exists B1 > 0
such that

F (s) ⩽ B1(|s|q+1 + 1), for all s ∈ R. (3.1)

It also follows from (1.3) and (1.4) that, for all s ⩾ 0, there exist A1, C1 > 0 such
that

F (s) ⩾ A1(s
q+1 − C1), for all s ⩾ 0. (3.2)

In what follows, let r > 0 be the positive number

r =
1

q + 1− p
, (3.3)

where p, q satisfy the conditions in hypothesis (H1).
In the next two lemmas, we prove the geometric conditions in Theorem 2.8.

Lemma 3.1. There exist τ > 0, c1 > 0 and λ̂2 ∈ (0, 1) such that if ∥u∥ = τλ−r

then Jλ(u) ⩾ c1(τλ
−r)p for all λ ∈ (0, λ̂2), where r is given in (3.3).
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Proof. By the Sobolev embedding theorem and hypothesis (H3), it follows from the
definition of Jλ in (2.5) that

Jλ(u) =
1

p
∥u∥p + 1

p

∫
Ω

V (x)|u|p dx− λ

∫
Ω

F (u)dx

⩾
1

p
∥u∥p − cV

λ1p
∥u∥p − λB1C

q+1
q+1∥u∥q+1 − λB1|Ω|,

(3.4)

for all u ∈ X. Let τ > 0 be a small enough constant such that the following identity
is satisfied:

1− cV
λ1

=
3

2
pCq+1

q+1B1τ
q+1−p. (3.5)

Next, setting ∥u∥ = λ−rτ in (3.4) and using that r(q + 1) + 1 = −rp, we obtain

Jλ(u) ⩾ λ−rp
[τp
p

(
1− cV

λ1

)
−B1C

q+1
q+1τ

q+1 − λ1+rpB1|Ω|
]
, (3.6)

for all u ∈ X.
Then, by (3.5), it follows from (3.6) that

Jλ(u) ⩾ λ−rp
(1
2
pCq+1

q+1B1τ
q+1−p − λ1+rp|Ω|B1

)
, (3.7)

for all u ∈ X.
Finally, choose λ ∈ (0, λ̂2) with λ̂2 := τp/(1+rp)(4pB1|Ω|)−1/(1+rp). Then, for

this choice of λ, we obtain from (3.7) that

Jλ(u) ⩾ c1(τλ
−r)p; for u ∈ X,

where c1 = 1
4p . This completes the proof. □

Lemma 3.2. Let φo ∈ X be such that φo > 0 and ∥φo∥ = 1. There exists λ̂1 > 0

such that if λ ∈ (0, λ̂1) then Jλ(cλ
−rφo) ⩽ 0, where r is given by (3.3).

Proof. Set ℓ = cλ−r, where c, λ > 0 are positive constants to be chosen shortly.
Then, by hypothesis (H1), the estimate (3.2), and the characterization of the first
eigenvalue of the fractional p-Laplacian from Theorem 2.2, we obtain

Jλ(ℓφo) =
1

p
∥ℓφo∥p +

1

p

∫
Ω

V (x)|ℓφo|p dx− λ

∫
Ω

F (ℓφo) dx

⩽
ℓp

p
∥φo∥p +

ℓp

p
∥V ∥∞∥φo∥pp − λA1ℓ

q+1

∫
Ω

φq+1
o dx+ λA1C1|Ω|

⩽
ℓp

p

(
1 +

1

λ1
∥V ∥∞∥φo∥p − λpA1ℓ

q+1−p∥φo∥q+1
q+1

)
+ λA1C1|Ω|.

(3.8)

Next, we define c > 0 such that

cq+1 =
2cp

pA1∥φo∥q+1
q+1

(
1 +

1

λ1
∥V ∥∞

)
. (3.9)

Then, by (3.9) and the definition of ℓ, it follows from (3.8) that

Jλ(ℓφo) ⩽ λ−rp c
p

p

[
−
(
1 +

1

λ1
∥V ∥∞

)
+ λ1+rpA1C2|Ω|

]
. (3.10)

We set

λ̂1 =
[1 + 1

λ1
∥V ∥∞

2pA1C2|Ω|

] 1
1+rp

.
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Then, it follows from (3.10) that

Jλ(ℓφo) ⩽ − cp

2p
λ−rp ⩽ 0,

for all λ ∈ (0, λ̂1), which establishes the lemma. □

In the next lemma, we will show that the functional Jλ satisfies the Palais-Smale
condition.

Lemma 3.3. Assume that (H1)–(H3) are satisfied and λ ∈ (0, λ3) with λ3 :=

min{λ̂1, λ̂2}, where λ̂1 is given by Lemma 3.2 and λ̂2 is given by Lemma 3.1.
Then, Jλ satisfies the Palais-Smale condition.

Proof. Let (un) be a Palais-Smale sequence for Jλ in X; that is,

|Jλ(un)| ⩽ C, for all n; (3.11)

where C > 0 is a constant and there exists a sequence of positive numbers (εn)
such that

⟨J ′
λ(un), φ⟩ ⩽ εn∥φ∥, for all n, (3.12)

and all φ ∈ X and εn → 0 as n → ∞. In particular, setting φ = un in (3.12), we
obtain that there exists N1 > 0 such that

|⟨J ′
λ(un), un⟩| ⩽ ∥un∥, for all n ⩾ N1.

Hence, we can write

−∥un∥p − ∥un∥ ⩽ −∥un∥p + ⟨J ′(un), un⟩, for n ⩾ N1. (3.13)

Thus, using the definition of the Fréchet derivative of Jλ given in (2.6), and the
definition of the norm ∥ · ∥ given in (2.4) and (2.3), we obtain from (3.13) that

−∥un∥p − ∥un∥ ⩽
∫
Ω

V (x)|un|pdx− λ

∫
Ω

f(un)un dx, (3.14)

for n ⩾ N1.
On the other hand, using the estimate in (1.5) in hypothesis (H2), we have that

1

p
∥un∥p −

λ

θ

∫
Ω

f(un)un dx+
λ

θ
K|Ω| ⩽ 1

p
∥un∥p − λ

∫
Ω

F (un) dx

for n ∈ N; so that, using the definition of Jλ in (2.5),

1

p
∥un∥p −

λ

θ

∫
Ω

f(un)un dx+
λ

θ
K|Ω| ⩽ Jλ(un)−

1

p

∫
Ω

V (x)|un|p, dx, (3.15)

for all n ∈ N.
Now, it follows from (3.15) and the hypothesis in (3.11) that

1

p
∥un∥p −

λ

θ

∫
Ω

f(un)un dx+
λ

θ
K|Ω| ⩽ C − 1

p

∫
Ω

V (x)|un|p dx, (3.16)

for n ∈ N.
Next, we multiply on both sides of the estimate in (3.14) by 1

θ and add 1
p∥un∥p

on both sides of the inequality to obtain(1
p
− 1

θ

)
∥un∥p −

1

θ
∥un∥

⩽
1

p
∥un∥p +

1

θ

(∫
Ω

V (x)|un|p dx− λ

∫
Ω

f(un)un dx
)
,

(3.17)
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for n ⩾ N1. It follows from the estimate (3.16) that

1

p
∥un∥p +

1

θ

(∫
Ω

V (x)|un|p dx− λ

∫
Ω

f(un)un dx
)

⩽ C −
(1
p
− 1

θ

) ∫
Ω

V (x)|un|p dx,
(3.18)

for n ∈ N. Consequently, combining the estimates in (3.17) and (3.18),(1
p
− 1

θ

)
∥un∥p −

1

θ
∥un∥ ⩽ C −

(1
p
− 1

θ

) ∫
Ω

V (x)|un|p dx, (3.19)

for n ⩾ N1.
Next, use the estimate for the potential V in hypothesis (H3) to obtain from

(3.19) that(1
p
− 1

θ

)
∥un∥p −

1

θ
∥un∥ ⩽ C +

(1
p
− 1

θ

)cV
λ1

∥un∥p, for n ⩾ N1, (3.20)

where we have used the definition of λ1 in (2.9).
Rearranging (3.20) we obtain(1

p
− 1

θ

)(
1− cV

λ1

)
∥un∥p −

1

θ
∥un∥ ⩽ C, for n ⩾ N1,

from which we obtain that (un) is bounded in W s,p
0 (Ω).

Hence, since (un) is bounded in X, we may invoke the Banach-Alaoglu theorem
(see [20, Theorem 2.18]) to deduce, passing to a subsequence if necessary, that there
exists u ∈ X such that

un ⇀ u weakly in X as n → ∞.

Furthermore, since 1 < q+1 < p∗, by the Sobolev embedding theorem, we can also
assume that

un → u in Lq+1(Ω) as n → ∞
un(x) → u(x) a.e. in Ω as n → ∞.

(3.21)

Next, we put q′1 = q+1
q ; so that, q′ > 1, and q′q = q + 1. Hence, by (3.1) we obtain

|f(un)|q
′
1 ⩽ B

q′1
1 (|un|q + 1)q

′
1 ⩽ C1(|un|qq

′
1 + 1) ⩽ C1(|un|q+1 + 1), (3.22)

for all n ∈ N, where C1 is a positive constant. Thus, applying Hölder’s inequality
with exponent q′1 in (3.22) and its conjugate, we obtain

λ

∫
Ω

f(un)(un − u) dx ⩽ C(∥un∥q+1 + 1)∥un − u∥q+1 ⩽ C∥un − u∥q+1,

where C is a positive constant.
Consequently, letting n → ∞ in the previous estimate and applying (3.21) with

the Lebesgue dominated convergence theorem, we obtain

λ

∫
Ω

f(un)(un − u)dx → 0, as n → ∞. (3.23)

Next, we put p′ = p
p−1 (recall that we are assuming p > 1); so that p′ > 1 and

p′(p− 1) = p. Then, by Hölder’s inequality we have∫
Ω

|V (x)||un|p−1|un−u| dx ⩽ ∥V ∥∞∥un∥p−1
p ∥un−u∥p ⩽ C∥un−u∥p ⩽ C∥un−u∥q+1,
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for all n ∈ N, where C is a positive constant. Hence, letting n → ∞ in the previ-
ous estimate and applying eqrefpss13 with the Lebesgue dominated convergence
theorem, we obtain∫

Ω

|V (x)||un|p−1|un − u| dx → 0, as n → ∞ . (3.24)

Next, since (un) is a Palais-Smale sequence in X, it follows from (3.12), (3.23),
and (3.24) that

lim
n→∞

∫
R2N

Φp(un(x)− un(y))((un − u)(x)− (un − u)(y))

|x− y|N+sp
dx = 0. (3.25)

Once again, using the fact that u is the weak limit of un we have

lim
n→∞

∫
R2N

Φp(u(x)− u(y))((un − u)(x)− (un − u)(y))

|x− y|N+sp
dx = 0. (3.26)

On the other hand, it follows from appling Hölder’s inequality as in [22, Lemma
3] that∫

Ω

Φp(un(x)− un(y))− Φp(u(x)− u(y))

|x− y|N+sp
((un − u)(x)− (un − u)(y)) dx dy

=

∫
Ω

[ |un(x)− un(y)|p

|x− y|N+sp
− Φp(un(x)− un(y))(u(x)− u(y))

|x− y|N+sp

− Φp(u(x)− u(y))(un(x)− un(y))

|x− y|N+sp
+

|u(x)− u(y)|p

|x− y|N+sp

]
dx dy

⩾ ∥un∥p − ∥un∥p−1∥u∥ − ∥un∥∥u∥p−1 + ∥u∥p

= (∥un∥p−1 − ∥u∥p−1)(∥un∥ − ∥u∥).
(3.27)

Then, in view of (
∥un∥p−1 − ∥u∥p−1

)
(∥un∥ − ∥u∥ ⩾ 0, for all n,

it follows from (3.25),(3.26), and (3.27) that

lim
n→∞

([∥un∥p−1 − ∥u∥p−1)(∥un∥ − ∥u∥) = 0,

from which we obtain
lim
n→∞

∥un∥ = ∥u∥. (3.28)

Finally, by (3.28) and that un ⇀ u weakly in X, we conclude that un → u strongly
in X. Hence, Jλ satisfies the Palais-Smale condition. □

Next, we present the main result of this section.

Theorem 3.4. Assume that (H1)–(H3) are satisfied. Then, for λ sufficiently small,
the functional Jλ has a critical point uλ ∈ X of mountain-pass type. Moreover,

c1λ
−rp ⩽ Jλ(uλ) ⩽ c2λ

−rp, (3.29)

where c1 and c2 are positive constants independent of λ, and r is given in (3.3).

Proof. It follows from Lemmas 3.8, 3.2, 3.3, that, for each λ ∈ (0, λ3), the functional
Jλ defined in (2.5) satisfies the conditions of Theorem 2.8. Therefore, Jλ possesses
a critical point, uλ, with critical value characterized by

Jλ(uλ) = inf
a∈A

max Jλ(|a|),
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with

A = {a ∈ C([0, 1], X) : a(0) = 0, a(1) = cλ−rφo},
where a(1) is obtained in Lemma 3.2 and |a| = a([0, 1]).

Furthermore, by Lemma 3.2, we observe that

Jλ(scλ
−rφo) ⩽ c2λ

−rp, for 0 ⩽ s ⩽ 1,

where c0 is a positive constant independent of λ. Hence, we conclude that

Jλ(uλ) ⩽ c2λ
−rp.

Finally, it follows from Lemma 3.1 that there exists a positive constant c1 indepen-
dent of λ such that

c1λ
−rp ⩽ Jλ(u), for all ∥u∥ = τλ−r.

Then, it follows from the characterization of the critical value that

c1λ
−rp ⩽ Jλ(uλ).

This completes the proof. □

The next two results will be used in the proof of a comparison principle for
problem (1.1).

Lemma 3.5. Assume that (H1)–(H3) are satisfied and let uλ be the mountain-pass
critical point of Jλ given in Theorem 3.4. There exists a constant c such that

∥uλ∥ ⩽ cλ−r. (3.30)

and r is given in (3.3).

Proof. Let uλ be a critical point of Jλ given by Theorem 3.4. Then, it follows from
(2.7) that

⟨J ′
λ(u), φ⟩ = 0, for all φ ∈ X. (3.31)

Then, setting φ = uλ in (3.31) and using (2.6), we obtain

∥uλ∥p +
∫
RN

V (x)|uλ|p dx = λ

∫
Ω

f(uλ)uλ dx.

It then follows from the Ambrosetti-Rabinowitz type condition in (1.5) that(1
p
− 1

θ

)
∥uλ∥p =

1

p
∥uλ∥p −

1

θ

(
λ

∫
Ω

f(uλ)uλ dx−
∫
RN

V (x)|uλ|p dx
)

⩽
1

p
∥uλ∥p −

λ

θ

(∫
Ω

θF (uλ) dx+K|Ω|
)
+

1

θ

∫
RN

V (x)|uλ|p dx

⩽
1

p
∥uλ∥p − λ

∫
Ω

F (uλ) dx+
1

p

∫
RN

V (x)|uλ|p dx− λK

θ
|Ω|

⩽ Jλ(uλ) + Cλ−rp;

so that, using (3.29) in Theorem 3.4, (3.30) follows. □

Finally, we present lower and upper estimates for ∥uλ∥∞, where uλ is the critical
point obtained in Theorem 3.4. These results will be used in the proof of comparison
principle for problem (1.1).
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Lemma 3.6. Assume that (H1)–(H3) are satisfied. Let uλ be a weak solution of
problem (1.1) obtained via Theorem 3.4 and λ3 be as in Lemma 3.3. Then, there
exists a constant C such that, for all 0 < λ < λ3,

Cλ−r ⩽ ∥uλ∥∞, (3.32)

and r is given in (3.3).

Proof. By estimate in (3.29) for Jλ(uλ) in Theorem 3.4, and that minF > −∞, we
obtain

λ

∫
Ω

f(uλ)uλ dx = ∥uλ∥p +
∫
RN

V (x)|u|p dx

= pJλ(uλ) dx+ pλ

∫
Ω

F (uλ) dx

⩾ pCλ−rp + pλ|Ω|minF

⩾ Cλ−rp.

(3.33)

On the other hand, by the growth of f in (1.3), we obtain

λ

∫
Ω

f(uλ)uλ dx ⩽ Bλ∥uλ∥q+1
∞ .f (3.34)

Combining the estimates (3.33) and (3.34), we obtain (3.32). □

In the proof of the comparison principle, we will need the following regularity
result found in Mosconi et al. [25].

Lemma 3.7 ([25, Lemma 2.3]). Let g ∈ Lt(Ω), N/(sp) < t ⩽ ∞ and u ∈ W 1,p
0 (Ω)

be a weak solution of (−∆)ps = g in Ω. Then

∥u∥∞ ⩽ C∥g∥1/(p−1)
t .

The following theorem due to Ianizotto et al. [17] establishes a sharp boundary
regularity result for the fractional p-Laplacian, for p ⩾ 2. The assumption of p ⩾ 2
will allow us to obtain enough regularity up to the boundary of Ω to obtain a
positive solution for (1.1).

Theorem 3.8 ([17, Theorem 1.1]). Let p ⩾ 2, Ω be a bounded domain with C1,1

boundary and d(x) = dist(x, ∂Ω). There exist α ∈ (0, s) and C > 0 depending on
N,Ω, p and s, such that, for all g ∈ L∞(Ω), a weak solution u ∈ W s,p

0 (Ω) of the
problem

(−∆)sp(u) = g; in Ω,

u = 0 in RN\Ω,

satisfies u/ds ∈ Cα(Ω) and

∥ u

ds
∥Cα(Ω) ⩽ C∥g∥

1
p−1
∞ .

Finally, we present the last result of this section that will be used to prove the
existence of a positive solution for problem (1.1).

Lemma 3.9. Assume that (H1)–(H3) are satisfied. Let λ3 > 0 be as in Lemma
3.3. Then, there exist α ∈ (0, s] and a constant C > 0 such that, for all 0 < λ < λ3,
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the solution uλ given in Theorem 3.4 of the problem (1.1) satisfies uλ/d
s ∈ Cα(Ω).

Furthermore

∥uλ∥∞ ⩽ Cλ−r,∥∥uλ

ds
∥∥
Cα(Ω)

⩽ Cλ−r.

and r is given in (3.3).

Proof. It follows from the assumption Nq/(sp) < p∗s that there exists t > 1 such
that N

sp < t and tq < p∗s, which implies t(p− 1) < p∗s. Set g := λf ◦ uλ + V Φp(uλ).

Since W s,p
0 (Ω) ↪→ Ltq(Ω) is a continuous embedding and |g| ⩽ A1λ(|uλ|q + 1) +

∥V ∥∞|uλ|p−1 we obtain∫
Ω

|λf(uλ)(x) + V Φp(uλ)|t dx ⩽ λt

∫
Ω

|A1(u
q
λ + 1)|t dx+ ∥V ∥t∞

∫
Ω

|uλ|t(p−1) dx

⩽ λtC

∫
Ω

(|uλ|qt + 1) dx+ ∥V ∥t∞
∫
Ω

|uλ|t(p−1) dx.

Hence, g ∈ Lt(Ω) and it follows from Lemma 3.7 that

∥uλ∥∞ ⩽ ∥g∥
1

p−1

t . (3.35)

On the other hand, by Lemma 3.5, we have

∥g∥t ⩽ C1λ∥uλ∥qtq + C2∥uλ∥p−1
t(p−1)

⩽ C1λ∥uλ∥q + C2∥uλ∥p−1

⩽ C(λ1−rq + λ−r(p−1)).

Therefore, from (3.35) and the fact that −r = (1− rq)/(p− 1) we obtain that

∥uλ∥∞ ≤ ∥g∥1/(p−1)
t ≤ Cλ−r. (3.36)

Thus, uλ ∈ L∞(Ω) and then g ∈ L∞(Ω). Hence, by Theorem 3.8, there exists
α ∈ (0, s] and C > 0, depending only on N, p, s and Ω, such that the solution uλ

satisfies uλ/d
s ∈ Cα(Ω) and∥∥uλ

ds
∥∥
Cα(Ω)

⩽ C∥g∥
1

p−1
∞ ⩽ λ−r. □

3.2. Existence of a positive solution. To prove that the solution uλ found in
Subsection 3.1 is positive, we will list two results found in Del Pezzo et al. [11]
and one theorem due to Ianizzoto et al. [19], which will lead us to a comparison
principle for the fractional p-Laplacian problem in (1.1).

First, we recall two basic definitions that will be used in this section for the
reader’s convenience.

Definition 3.10. Let Ω ⊂ RN , N ⩾ 1, be an open set. We say that xo ∈ ∂Ω
satisfies the interior ball condition if there is x ∈ Ω and r > 0 such that

Br(x) ⊂ Ω, and xo ∈ ∂Br(x),

where Br(x) = {z ∈ RN : |z − x| < r}.

Next, we recall the concept of a function u ∈ W̃ s,p(Ω) being a super-solution of
the fractional p-Laplacian problem (1.1).
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Definition 3.11. Let Ω ⊂ RN be an open bounded set with N ⩾ 1. We say that

u ∈ W̃ s,p(Ω) is a super-solution of (1.1) if∫
R2N

Φp(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+sp
dx dy +

∫
Ω

V (x)|u|p−2uφdx ⩾ λ

∫
Ω

f(u)φdx,

for each φ ∈ W̃ s,p(Ω).

The next two theorems due to Del Pezzo et al. [11] will play a special role in the
main result to be discussed in this section.

Theorem 3.12 ([11, Theorem 1.4]). Let c ∈ C(Ω) be a non-positive function and

u ∈ W̃ s,p(Ω) ∩ C(Ω) be a weak super-solution of

(−∆)spu(x) = c(x)|u(x)|p−2u(x), for x ∈ Ω. (3.37)

If Ω is bounded and u ⩾ 0 a.e. in RN\Ω, then either u > 0 in Ω or u = 0 a.e. in
RN .

Theorem 3.13 ([11, Theorem 1.5]). Let Ω satisfy the interior ball condition at

x0 ∈ ∂Ω, c ∈ C(Ω), and u ∈ W̃ s,p(Ω) ∩ C(Ω) be a weak super-solution of (3.37).
Suppose that Ω is bounded, c(x) ⩽ 0 in Ω and u ⩾ 0 a.e. in RN\Ω. Then, either
u = 0 a.e. in RN , or

lim inf
x→x0, x∈B

u(x)

(d(x))s
> 0, (3.38)

where B ⊆ Ω is an open ball in Ω, such that x0 ∈ ∂B, and d is the distance from
x to RN\B.

Next, we present a version of the comparison principle for problem (1.1) moti-
vated by a result due to Lindgren et al. [21, Lemma 9] (see also Ianizzotto et al.
[19, Proposition 2.10]).

Theorem 3.14. Let Ω be a bounded subset of RN , N ⩾ 2, and u, v ∈ W̃ s,p(Ω)
satisfy u ⩽ v in RN\Ω. Moreover, assume that∫

R2N

Φp(u(x)− u(y))(φ(x)− φ(y))

|x− y|N+sp
dx dy +

∫
RN

V (x)Φp(u)φdx

⩽
∫
R2N

Φp(v(x)− v(y))(φ(x)− φ(y))

|x− y|N+sp
dx dy +

∫
RN

V (x)Φp(v)φdx,

(3.39)

for all φ ∈ W s,p
0 (Ω), φ ⩾ 0 a.e. in Ω. If V (x) ⩾ 0 for a.e. x ∈ RN , then u ⩽ v in

Ω.

Proof. We set φ = (u− v)+, where (u− v)+ = max{u− v, 0} denotes the positive
part of the function u− v, in (3.39) to obtain∫

RN

V (x)(Φp(u)− Φp(v))(v − u)+(x) dx

⩽
∫
R2N

(Φp(v(x)− v(y))− Φp(u(x)− u(y)))((v − u)+(x)− (v − u)+(y))

|x− y|N+sp
dx dy.

(3.40)
Using an identity found in [21, page 809],

Φp(b)− Φp(a) = (p− 1)(b− a)

∫ 1

0

|a+ t(b− a)|p−2 dt,
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with b = u(x) and a = v(x), we obtain the estimate

0 ⩽ (p− 1)(u(x)− v(x))(u− v)+(x)

∫ 1

0

|v(x) + t(u(x)− v(x))|p−2 dt

= (Φp(u(x))− Φp(v(x)))(u− v)+(x).

(3.41)

for a.e. x ∈ RN . Hence, we conclude that the left-hand side of (3.40) is nonnegative.
The remainder of the proof of the theorem follows the same line of reasoning as in
[21, Lemma 9] and we omit the arguments here. □

Next, we show that the solution uλ found through Theorem 3.4 is positive in Ω.

Theorem 3.15. Assume that p ⩾ 2 and V (x) ⩾ 0 for a.e x ∈ Ω. If p − 1 < q <
min{ sp

N p∗s, p
∗
s − 1}, then there exists λ∗ > 0 such that, for all 0 < λ < λ∗, problem

(1.1) has at least one positive solution uλ ∈ Cα
o (Ω) for some 0 < α < 1.

Proof. From Lemma 3.4 we know that, for any λ ∈ (0, λ3), there exists a solution
uλ ∈ X. Assume, by a way of contradiction, that there exists a sequence (λj)j∈N
with 0 < λj < 1 such that λj → 0 as j → ∞ and, for all j ∈ N, we have

|Ωj | > 0, (3.42)

where Ωj = {x ∈ Ω|uλj
(x) ⩽ 0}, for all j ∈ N, and |Ωj | denotes the Lebesgue

measure of the set Ωj .

We set wj =
uλj

∥uλj
∥∞

. Notice that wj(x) ⩽ 0 for all x ∈ Ωj . Thus, by the

regularity result in [19, Theorem 1.1], we obtain

(−∆)sp(wj) = hj(x,wj),

where hj(x, s) := −V (x)Φp(s)+λj∥uλj∥1−p
∞ f(∥uλj∥∞s). Using that λj∥uλj∥1−p

∞ <

1 and, by Lemma 3.9, λj∥uλj∥q+1−p
∞ < C for j large, and 1− r(1− p+ q) = 0, we

obtain

|hj(x, s)| ⩽ |V (x)||s|p−1 + λj∥uλj∥1−p
∞ B((∥uλj∥∞|s|)q + 1)

⩽ ∥V ∥∞|s|p−1 +Bλj∥uλj
∥1−p+q
∞ |s|q +Bλj∥uλj

∥1−p
∞

⩽ ∥V ∥∞|s|p−1 +Bλ
1−r(1−p+q)
j |s|q +B

⩽ C1|s|p
∗−1 + C2.

Using the result of Theorem 3.8, there exists α ∈ (0, s] such that∥∥wj

dsΩ

∥∥
Cα(Ω)

⩽ ∥hj(x,wj)∥1/(p−1)
∞

⩽ (C1∥wj∥p
∗−1

∞ + C2)
1/(p−1) = C3,

(3.43)

where C3 is a positive constant which does not depend on λj .
Next, choose β such that 0 < β < α. By Arzelà-Ascoli Theorem (see [28,

Theorem 40 on pg. 169]), up to a subsequence, it follows from (3.43) that

lim
j→∞

wj

dsΩ
=

w

dsΩ
, in Cβ(Ω).

The next step consists of using the comparison principle to prove that w(x) ⩾ 0.
Indeed, let v0 ∈ W s,p

0 (Ω) be a solution of

(−∆)spu+ V (x)Φp(u) = 1, in Ω;
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u = 0, in RN\Ω,

obtained in Appendix 7.

LetKj =
λj

∥uλj
∥p−1
∞

mint∈R f(t), and note thatKj < 0. Let vj = −(−Kj)
1/(p−1)v0.

Then vj solves

(−∆)spu+ V (x)Φp(u) = Kj , in Ω;

u = 0, in RN\Ω.

Observe that, for all φ ∈ W s,p
0 (Ω) with φ ⩾ 0, we have the estimate∫

R2N

Φp(wj(x)− wj(y))

|x− y|N+sp
(φ(x)− φ(y)) dx dy +

∫
Ω

V (x)Φp(wj)φdx

=

∫
Ω

λjf(uλj
)∥uλj

∥1−p
∞ φdx

⩾
∫
Ω

Kjφdx

=

∫
R2N

Φp(vj(x)− vj(y))

|x− y|N+sp
(φ(x)− φ(y)) dx dy +

∫
Ω

V (x)Φp(vj)φdx.

(3.44)

The above estimate implies that (−∆)sp(wj) ⩾ (−∆)sp(vj). By the comparison
principle stated in Theorem 3.14, we conclude that wj ⩾ vj . Since vj → 0, as
j → ∞, we obtain w(x) ⩾ 0, for x ∈ Ω.

Next, let t := Npr/(N − sp) > 1. By Lemmas 3.6) and 3.9, we have that

C1λ
−r ⩽ ∥uλ∥∞ ⩽ C2λ

−r.

Then, we obtain

λj |f(uλj
(x))|∥uλj

∥1−p
∞ ⩽ Cλj(|uλj

(x)|q + 1)∥uλj
∥1−p
∞

⩽ Cλj(∥uλj∥q∞ + 1)∥uλj∥1−p
∞

⩽ Cλj(λ
−rq
j + 1)λ

r(p−1)
j

⩽ Cλjλ
−rq
j λ

r(p−1)
j

= Cλ
1−rq+r(p−1)
j = C,

where C is a positive constant and q < p∗s−1. It follows from the previous estimate
that ∫

Ω

(λjf(uj)∥uλj∥1−p
∞ )t dx ⩽ CΩ|Ω|.

Thus, {λjf(uj)∥uλj
∥1−p
∞ }j is bounded in Lt(Ω) and we may assume that it con-

verges weakly in Lt(Ω). Let z := limj⇀0 λjf(uj)∥uλj
∥1−p
∞ be its weak limit. Since

f is bounded from below and limj→∞ λj∥uλj
∥1−p
∞ = 0, it follows that z ⩾ 0. We

claim that (−∆)sp(w) = z. In fact, by Lemmas 3.5 and 3.6, we can follow the same
line of reasoning as in the proof of [22, Theorem 1.1] to obtain

lim
j→∞

∫
R2N

|wj(x)− wj(y)|p−2(wj(x)− wj(y))(φ(x)− φ(y))

|x− y|N+sp
dx dy

=

∫
R2N

|w(x)− w(y)|p−2(w(x)− w(y))(φ(x)− φ(y))

|x− y|N+sp
dx dy.

(3.45)
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On the other hand, since wj → w uniformly in Ω and w ∈ Lp(Ω), we also have that

lim
j→∞

∫
Ω

V (x)Φp(wj)φ(x) dx =

∫
Ω

V (x)Φp(w)φ(x) dx. (3.46)

Notice that wj → w in W s,p
0 (Ω), which implies that w ∈ W s,p

0 (Ω). Consequently,
by (3.45), (3.46), and the fact that z is the weak limit of {λjf(uλj

∥uλj
∥1−p
∞ }, we

have that

(−∆)spw + V Φp(w) = z.

That is, w is a weak supersolution of (−∆)spw+ V Φp(w) = 0. Hence, by Theorems
3.12 and 3.13, we have two alternatives: First, w = 0 cannot hold since wj → w in

Cβ(Ω) and ∥wj∥∞ = 1 for all j ∈ N. Second, w > 0 in Ω and, for all x0 ∈ ∂Ω,

lim inf
x→x0, x∈B

w(x)

(d(x))s
> 0,

where B ⊆ Ω is an open ball in Ω, such that x0 ∈ ∂B, and d(x) is the distance
from x to RN\B (see (3.38)). Therefore, there exist jo sufficiently large such that,

for all j ⩾ jo, we have wj > 0. But this contradicts that wj(x) =
uλj

(x)

∥uλj∥∞
⩽ 0, for

x ∈ Ωj .
Hence, |Ωj | = 0 for all j ∈ N and we conclude that problem (1.1) has at least

one positive solution uλ ∈ Cα
0 (Ω), for some 0 < α < 1. □

4. Computation of critical groups at infinity

In this section, we will obtain the first multiplicity result for problem (1.1). The
first step will consist of computing the critical groups of Jλ at infinity as defined
in (2.11). This will require to use the concept of two topological spaces being
homotopically equivalent.

To show that two topological spaces A and B are homotopically equivalent,
denoted by A ∼= B, one needs to show that there exist functions η : A → B and
i : B → A such that η ◦ i ≈ idB and i ◦ η ≈ idA, where id denotes the identity
function and the symbol ≈ denotes the existence of a homotopy.

In particular, if B ⊂ A and i : B → A denotes the inclusion function and
η : A → B is a deformation retraction from A onto B, then we have that η ◦ i ≈ idB
and i ◦ η = idA. Hence, to obtain the critical groups of Jλ at infinity, we will prove
the existence of a deformation retract from J−M

λ onto S∞, for some M to be chosen
soon, where S∞ denotes the unit sphere in X. Finally, the result will follow by
using an argument with the long exact sequence of the topological pair (X, J−M )
and the fact that S∞ is contractible in X.

Let S∞ = {u ∈ X : ∥u∥ = 1} be the unit sphere in X. Notice that, for u ∈ S∞,
we have that

lim
t→∞

Jλ(tu) = −∞. (4.1)

In fact, substituting (3.2) into (2.5) and applying (H3), we obtain

Jλ(tu) ⩽
tp

p

(
1 + ∥V ∥L∞∥u∥pp

)
− λA1t

q+1∥u∥q+1
q+1 + λA1C1|Ω|, (4.2)

for all u ∈ S∞. Then, since p < q + 1, the result (4.1) follows by letting t → ∞ in
(4.2).
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Lemma 4.1. Assume that (H1), (H2) are satisfied. Then, there exists M̃ > 0 such

that, for all M ⩾ M̃ , J−M
λ is homotopically equivalent to S∞.

Proof. We will follow a line of reasoning similar to one in [31, Section 3] to show

the existence of a deformation retract from J−M
λ to S∞.

First, notice that the critical value set Jλ(K) is bounded from below. In fact, if
u0 ∈ K, then setting φ = u0 in (2.6), we obtain

∥u0∥p +
∫
Ω

V (x)|u0|p dx = λ

∫
Ω

f(u0)u0 dx. (4.3)

Next, we substitute (4.3) into (2.5) and use (H2) to obtain

Jλ(u0) =
λ

p

∫
Ω

[f(u0)u0 − pF (u0)] dx

⩾
λ

p

∫
Ω

[(θ − p)F (u0) +K] dx

⩾
λ

p
|Ω|((θ − p)minF +K) =: −a0,

for all u0 ∈ K, and therefore

−ao ⩽ inf Jλ(K). (4.4)

By (4.1), given u ∈ S∞ and M1 > 0, there exists t0 = t0(u) ⩾ 1 such that

Jλ(tu) < −M1, for t0 ⩾ 1, u ∈ S∞.

We define M̃ = min{−ao,−M1}. Choosing M2 > M̃ such that, for tu ∈ J−M2

λ , we
have

Jλ(tu) =
tp

p

(
1 +

∫
Ω

V (x)|u|p dx
)
− λ

∫
Ω

F (tu) dx, (4.5)

for t ⩾ 1.
Using the chain rule, and taking into account that f(s)s is bounded from below,

and p
θ < 1, it follows from (4.5) and (H2) that

d

dt
Jλ(tu) =

1

t

[
pJ(tu) + λ

∫
Ω

(pF (tu)− f(tu)tu) dx
]

⩽
1

t

[
− pM2 + λ

∫
Ω

(p
θ
f(tu)(tu)− f(tu)tu− Kp

θ

)
dx

]
⩽

1

t

[
− pM2 + λ

(p
θ
− 1

) ∫
Ω

f(tu)(tu)) dx− λ
Kp

θ
|Ω|

]
⩽

1

t
[−Mo + K̂λ],

(4.6)

where Mo and K̂ are positive constants, for all tu ∈ J−M2

λ .
Choosing λ small enough in (4.6), we obtain

d

dt
Jλ(tu) < 0, (4.7)

for tu ∈ J−M2

λ , and t ⩾ 1.

Let us take M ⩾ M̃ . Then, combining (4.1) and (4.7), we can invoke the
intermediate value theorem to conclude that there exists T (u) ⩾ 1 such that

Jλ(T (u)u) = −M, for u ∈ S∞.
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It follows from the implicit function theorem [10, Theorem 15.1] that T ∈ C(S∞,R).
Finally, let B∞ = {u ∈ X : ∥u∥ ⩽ 1} be the unit ball in X. We define η :

[0, 1]× (X\B∞) → X\B∞ by

η(t, u) = (1− t)u+ tT (u)u,

for t ∈ [0, 1] and u ∈ X\B∞. Observe that η(0, u) = u and η(1, u) ∈ J−M
λ . Thus, η

is a deformation retract from X\B∞ onto J−M
λ . Since X\B∞ ∼= S∞, we conclude

that

J−M
λ

∼= X\B∞ ∼= S∞;

that is, J−M
λ is homotopically equivalent to S∞. □

Since J−M
λ and S∞ are homotopically equivalent, as shown in the previous

lemma, we conclude that the homology groups Hk(J
−M
λ ) and Hk(S

∞) are iso-
morphic, for all k ∈ Z (see [14, Corollary 2.11]). Since S∞ is also contractible
in X (see Benyamini-Sternfeld [5]), we obtain that the singular homology groups

Hk(J
−M
λ ) have the homology type of a point for all k ∈ Z; namely,

Hk(J
−M
λ ) ∼= δk,0F, for all k ∈ Z.

Using an argument similar to that in [27, Section 3] with the long exact sequence

of reduced homology groups of the topological pair (X, J−M
λ ) and the fact that

Jλ satisfies the Palais-Smale condition shown in Lemma 3.3, we conclude that the
critical groups of Jλ at infinity are given by

Ck(Jλ,∞) = Hk(X,J−M
λ ) ∼= δk,0F, for all k ∈ Z. (4.8)

5. Computation of critical groups at the origin

In this section, we study the questions of existence and multiplicity for the case
f(0) = 0. In this case, the function u ≡ 0 is also a critical point of Jλ and we need
to obtain some information about the critical groups of Jλ at the origin. To obtain
another solution, we need to make an additional assumption about the behavior of
F at the origin. This is the content of the next lemma.

Lemma 5.1. Assume that the nonlinearity f satisfies (H1) and its primitive F
satisfies

lim sup
s→0

F (s)

|s|p
= 0. (5.1)

Then, the origin is a local minimizer of the functional Jλ and its critical groups are

Ck(Jλ, 0) ∼= δk,0F, for all k ∈ Z. (5.2)

Proof. By condition (5.1), for each given ε > 0, there exists a δ > 0 such that

|s| < δ ⇒ F (s) < ε|s|p. (5.3)

It follows from (3.1) that there exists a constant K1 = K1(δ) such that

|F (s)| ⩽ K1|s|q+1, for all |s| ⩾ δ. (5.4)

In fact, assuming s ⩾ δ and using (H1) we obtain

|F (s)| ⩽
∫ s

0

|f(ξ)| dξ ⩽ Bs+
B

q + 1
sq+1;
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so that

|F (s)| ⩽ B
[
δ
(s
δ

)
+

δq+1

q + 1

(s
δ

)q+1]
. (5.5)

Since we are assuming that s ⩾ δ; so that s
δ ⩾ 1, it follows from (5.5) that

|F (s)| ⩽ B
[
δ
(s
δ

)q+1

+
δq+1

q + 1

(s
δ

)q+1 ]
, for s ⩾ δ, (5.6)

from which we obtain that

|F (s)| ⩽ B

δq+1

[
δ + δq+1

]
sq+1, for s ⩾ δ, (5.7)

where we have used that q + 1 > p > 1, in view of hypothesis (H1). Setting
K1 = K1(δ) = B

δq+1 [δ + δq+1], we see that (5.4) follows from (5.7). The case for
s ⩽ −δ is analogous. Hence, estimate (5.4) is valid for all |s| ⩾ δ.

Next, combine the estimates (5.3) and (5.4) to obtain

F (s) ⩽ ε|s|p +K1|s|q+1, for s ∈ R. (5.8)

Then, it follows from (5.8) that∫
Ω

F (u) dx ⩽ ε

∫
Ω

|u|p dx+K1

∫
Ω

|u|q+1 dx;

so that, using the Sobolev inequality [12, Theorem 6.7], it follows from the previous
estimate that ∫

Ω

F (u) dx ⩽ C3

(
ε+K1∥u∥q+1−p

)
∥u∥p, (5.9)

for some positive constant C3.
Setting ρ = ( ε

2K1
)1/(q+1−p), we obtain from (5.9) that

∥u∥ < ρ ⇒
∫
Ω

F (u) dx ⩽ C3ε∥u∥p. (5.10)

It follows from the definition of Jλ in (2.5), (5.10), and (H3) that

Jλ(u) ⩾
(1
p
− C3λε

)
∥u∥p − cV

p
∥u∥pp. (5.11)

On the other hand, it follows from [21, Section 3] that the first eigenvalue λ1 of
(−∆)sp is characterized by the minimization of the Rayleigh quotient,

λ1 = inf
u∈X\{0}

∥u∥p

∥u∥pp
, (5.12)

with λ1 ∈ (0,∞); see [21, Theorem 5].
Hence, applying (5.12) in (5.11), we obtain

Jλ(u) ⩾
[1
p

(
1− cV

λ1

)
− C3λε

]
∥u∥p. (5.13)

By (H3), cV < λ1, thus we can choose ε > 0 such that

ε <
1

2pC3λ

(
1− cV

λ1

)
. (5.14)

Then, by (5.14), we obtain from (5.13) that

Jλ(u) ⩾
1

2pC3λ

(
1− cV

λ1

)
∥u∥p > J(0), for 0 < ∥u∥ < ρ,
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where ρ > 0 is sufficiently small. Consequently, u = 0 is a local minimum of Jλ in
Bρ(0). It follows from ([9, Example 1, page 33] that

Ck(Jλ, 0) ∼= δk,0F, for k ∈ Z. □

6. Proofs of main results

Proof of Theorem 1.1. Assume, by a way of contradiction, that K = {uλ} where
uλ is the mountain-pass type solution found in Theorem 3.4. Then, it follows from
Proposition 2.7 that

C1(Jλ, uλ) ̸∼= 0. (6.1)

Since we are assuming that K = {uλ}, we can invoke Proposition 2.10 to obtain

Ck(Jλ,∞) ∼= Ck(Jλ, uλ), for all k ∈ Z. (6.2)

In particular, if k = 1 in (6.2), we obtain from (4.8) and (6.1) that

0 ∼= C1(Jλ,∞) ∼= C1(Jλ, uλ) ̸∼= 0,

which is a contradiction. Therefore, Jλ must have at least two critical points and
this completes the proof. □

Proof of Theorem 1.2. By Theorem 1.1, we obtain the existence of two solutions for
problem (1.1). Furthermore, one of them is of mountain pass type. Next, assume
that p ⩾ 2 and V (x) ⩾ 0 for a.e. x ∈ Ω. For the case of f(0) > 0, it follows
from the Comparison Theorem 3.15 that both solutions are positive. For the case
of f(0) < 0, Theorem 3.15 leads us to the positivity of the mountain-pass type
solution. □

Proof of Theorem 1.4. Assume, by a way of contradiction, that K = {0, uλ}, where
uλ is the mountain-pass type solution found in Theorem 3.4. Then, it follows from
[9, Theorem 4.2, page 35] that

Hk(X, J−M
λ ) ∼= Ck(Jλ, 0)⊕ Ck(Jλ, uλ), for all k ∈ Z. (6.3)

In particular, setting k = 1 in (6.3) and using (2.14), (4.8), and (5.2), we obtain

0 ∼= C1(Jλ, 0)⊕ C1(Jλ, uλ) ∼= 0⊕ C1(Jλ, uλ) ̸∼= 0,

which is a contradiction. Therefore, the critical set K must have at least three
critical points. This completes the proof. □

7. Appendix

In this section, we prove that the problem

(−∆)spu(x) + V (x)Φp(u(x)) = 1, for x ∈ Ω;

u = 0, in RN\Ω,
(7.1)

has a positive weak solution. We will show that the associated energy functional
with problem (7.1) is coercive and weakly lower semi-continuous. Then, the exis-
tence result follows by a result found in Evans [13, Theorem 2, Chapter 8].

In fact, the associated functional with problem (7.1) is

E(u) :=
1

p
∥u∥ps,p +

1

p

∫
Ω

V (x)|u|p dx−
∫
Ω

u dx, u ∈ X. (7.2)

To prove the coercivity of E, let (un)n be a sequence in X such that ∥un∥s,p → ∞
as n → ∞. From (2.8) we have that ∥un∥1 ⩽ C1∥un∥s,p, for all n. Moreover,
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∥un∥pp ⩽ 1
λ1
∥un∥ps,p, for all n. Therefore, applying these estimates and (H3) to (7.2)

we obtain

E(un) ⩾
1

p
∥un∥ps,p −

cV
p
∥un∥pp − C1∥un∥s,p

⩾
1

p

(
1− cV

λ1

)
∥un∥ps,p − C1∥un∥s,p,

(7.3)

for all n ∈ N.
Since 1 − cV

λ1
> 0 and p > 1, we obtain from (7.3) that E(un) → ∞ as n → ∞.

Now, E is continuous because of its differentiability. Moreover, a simple computa-
tion shows that the functional E is convex. Therefore, E is weakly lower semicon-
tinuous (see for example [3, Theorem 1.5.3]). This proves that problem (7.1) has
at least one solution u ∈ X, which is nontrivial.

Finally, notice that u is a weak supersolution of the problem

(−∆)spu(x) + V (x)Φp(u(x)) = 0, for x ∈ Ω,

withu = 0, in RN\Ω. Thus, by Theorem (3.12), it follows that u > 0.
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