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SOLVABILITY OF AN ATTRACTION-REPULSION
CHEMOTAXIS NAVIER-STOKES SYSTEM WITH ARBITRARY
POROUS MEDIUM DIFFUSION

YADHAVAN KARUPPUSAMY, SHANGERGANESH LINGESHWARAN,
MANIMARAN JEYARAJ

ABSTRACT. In this work, we proposed a model that describes the influence of
two chemically opposed stimuli in the movement of species living in a fluid
environment. We investigated the well-posedness of a system that models the
attraction-repulsion chemotaxis Navier-Stokes system with nonlinear diffusion.
We validate the existence of a global three-dimensional weak solution. Fur-
thermore, with some restrictions on the nonlinear exponent and degradation
coefficients of the chemical signal, we established the existence of a three-
dimensional global bounded weak solutions for the system.

1. INTRODUCTION

Chemotaxis is a fascinating natural occurrence that involves organisms moving
in response to chemical signals in their surroundings. It is a trait possessed by all
motile organisms, ranging from single-celled bacteria to complex multicellular be-
ings. This phenomenon plays significant importance in several biological processes,
such as immune responses, wound healing, and the movement of microorganisms
in their respective habitats. The chemotaxis system was modeled by Keller and
Segel [19], and their model has provided a framework for studying this fascinating
phenomenon as

ur = Au—V - (xuVv),

v = Av — av + fu (1.1)

where u refers to species density, v refers to concentration of signal and x refers
to sensitivity function. The global weak solution for the quasilinear degenerate
Keller-Segel system of the parabolic-parabolic type was established in [I5]. The
global weak solutions and their decay properties were discussed for the degenerate
Keller-Segel model in [27]. Different results about the singularity, boundedness,
and global existence of solutions were obtained for a simplified form of in
[12, 13, 26].
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A model that describes the behavior of bacteria living near solid-air-water con-
tact lines was developed in [31] as

ug + 2 - Vu=Au—V - (x(v)uVo),
ve+z-Vo=Av—k(v)u,
22+ 7(2-V)z+ Vp=Az —uVe,
dive =0

(1.2)

where u refers to cell density, v refers to the concentration of oxygen and z,p
refer to the velocity field and pressure of the fluid, respectively. When 7 = 1, the
system is called Keller-Segel-Navier-Stokes system (KS-NS) whereas 7 = 0
is called as Keller-Segel-Stokes (KSS) system. The global existence of classical
solutions of KS-NS near-constant states in R? and the existence of a global weak
solution in R? under some assumptions were studied in [§]. A numerical method
for solving KS-NS was introduced in [5] with a full exploration of its dynamics.
The global-in-time existence of weak solutions of KSS under some assumptions was
established in [24]. The local-in-time smooth solution for the Keller-Segel-Navier-
Stokes (KS-NS) system under minimal assumptions on the sensitivity function and
oxygen consumption rate was established in [I]. Additionally, it was demonstrated
that the local and global existence of solutions for the KS-NS system when the
oxygen concentration follows either a hyperbolic or parabolic type, as detailed in [3].
The global weak solutions for KSS with regularity in initial data and boundedness
of large of large-data solutions were investigated in [32]. Global-in-time classical
solution of KSS value was established in [21] for specific initial. Results on weak
and bounded weak solutions, mild solutions, and boundedness for KS-NS and KSS
under some assumption on x, k, and diffusion property were established in [4] [14]
17, (18, 20].

Suppose the diffusion of the cell is considered as migration in a porous medium

then becomes
g 4z - Vu = Au'T — V- (xyuVo),
ve+ 2z Vo =Av—k(v)u,
ze+7(2-V)z+Vp=Az —uVe,
divz = 0.

(1.3)

The existence of global-in-time solution for with 7 = 0 in R? established in
[11], when o € (1,1] and the same have been established for v = £ in [22]. Also,
global existence of weak solutions for was established in [II] for a bounded
domain in R? with a € [0.8,1] and 7 = 1. The global existence of weak solutions of
with a > % and 7 = 0 was discussed in [30] under the assumption that initial
data are sufficiently regular and positive. The global existence of bounded weak
solutions of with o > 0 and 7 = 0 studied in [29] under some assumptions on
initial data. The weak and bounded weak solutions were established globally in [7]
under some assumptions on x, k, and diffusive exponent.

The movement of organisms in biological processes is greatly impacted by chem-
ical stimuli, which can either attract or repel them. Chemoattraction represents an
organism moving towards an increasing signal concentration, and chemorepulsion
means that an organism moves away from an increasing signal concentration, which
are both important factors in chemical migration. A recent study in [25] focused
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on modeling a system that highlights the chemotactic response of microglial cells
as
up = Au— V- (x(v)uVv) + V - ((w)uVw),

vy = Av + fu — yv, (1.4)

wy = Aw + du — nw
where u denotes species density, v denotes concentration of chemoattractant, and w
denotes concentration of chemorepellant. Global solvability, the existence of steady
states and blow up of (1.4)were discussed in [28] with the assumption of v = 7.
Also, the same generalized for v,n > 0 in [I0]. The classical solutions and steady
states of ([1.4) were studied globally in [I6] for one dimension. The existence of a
global bounded classical solution for ([L.4]) with logistic source under the assumption
of limitation on growth in the logistic source was established in [33].

One interesting phenomenon in biology is the migration of species, which is
thought to be influenced by attraction-repulsion chemotaxis signals in fluid. As
a result, equation (1.4)) can be coupled with the Navier-Stokes equation to better
understand the dynamics of these phenomena as

up = Au— V- (x(v)uVv) + V- ({(w)uVw),
v = Av + fu — v,
wy = Aw + du — nw,
2+ 7(2-V)z+Vp=Az—uVe
where u denotes density of bacteria, v denotes concentration of attraction signal, w
refers concentration of repulsive signal, and z refers velocity field of the fluid. The
global-in-time classical solution for (1.5 with logistic source under the assumption

that initial data are sufficiently regular and non-negative was discussed in [34].
The uniqueness and existence of mild global solutions were discussed in [9] in the
Besov-Morrey type of .

However, there is no paper in the literature to study the attraction-repulsion
chemotaxis-Navier-Stokes equation with nonlinear diffusion exponent 1+ «. In this
paper, we considered with the diffusion of the bacteria assumed as migration
in a porous medium, in R3 x [0,7) with T' > 0, as

ug + 2 - Vu = Aurt — V- (x(v)uVv) + V - (£(w)uVw),
v+ 2z - Vo =Av + fu — v,

(1.5)

wi + z - Vw = Aw + du — nw, (1.6)
22+ 7(2-V)z+ Vp=Az —uVe,
divz =0,

where u refers species density, v refers concentration of attraction signal, w refers
concentration of repulsive signal, z refers velocity field of the fluid, p refers hydro-
static pressure, ¢ refers gravitational potential, v refers outward normal vector, y
and ¢ are non-negative sensitivity functions and «, 3,, d,  are positive constants.
Therefore, in this work, we have attempted to study the existence of weak and
bounded weak solutions of the proposed model for o > 0 and « > 1/8 respectively
with some assumption in the chemotactic sensitivity function.

This paper is organized as follows. In section [2] we defined the weak solution
and suitable approximation problem of the model with 7 = 1. Also, a priori
estimate is derived using the approximation problem and weak solution established
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globally using the priori estimate. In section [3] we defined the bounded weak
solution and suitable approximation for the proposed model (|1.6) with 7 = 0. We
demonstrated the existence of global bounded weak solution.

2. EXISTENCE OF WEAK SOLUTIONS

We considered the attraction-repulsion chemotaxis Navier-Stokes system, that
is, (1.6) with 7 =1 in this secion, as follows:

ug + 2 - Vu = Aurt — V- (x(v)uVv) + V - ((w)uVw),
v+ 2z - Vo= Av + fu — v,

w + 2 - Vw = Aw + du — nu, (2.1)
zt+ (2-V)z+Vp=Az—uVe,
divz = 0.

This section first defines the weak solution for . Then, we introduce the suitable
approximation problem for . Before demonstrating our main finding, namely
weak solutions to in R3, we first establish some key lemma used to substantiate
our main findings.

Definition 2.1. For « > 0 and T € (0,00), the unknown functions w,v,w > 0
and z represents a vector function on R3 x (0,7, (u,v,w,z) is termed as a weak
solution of if

(1) u(l+ |z| + |logu|) € L>=(0,T; L*(R3)),
2) Given p € [1,1+a], u € L>®(0,T; LP(R?)), and Vu"s" € L*(0,T; L2(R3)),
3) v,w € L>(0,T; HY(R?)) N L?(0, T; H?(R?)),
4) v, w e L®(R3 x [0,7)),
5) z € L>=(0,T; L*(R3)),
6) Vze L2(0,T; L2(R%)),
7) Given a test function ¢ € C§°(R? x [0,7)), it holds

¢
/ / —up; — zu - Vo + Vur T - Vo — ux(v)Vo - Vo + ué(w)Vw - V) dr dt
o Jr3

/ uoep(-
R¢

t
/ / (—vpr — 2v - Vo + Vo - Vo — Bup + yup) de dt = / vo(+, 0)dx,
o Jrs R3

(%)

/ / (—wer — zw - Vo + Vw - Vo — dup + nuy) de dt = / wo(+,0)dz,
0 JR3 R3

8) Given a test function 1 € C°(R? x [0,T),R3) with V -1 = 0, it holds
0

¢
//(—z-wt—i—Vz-Vl/J—&—((z-V)z)-1/1+uV¢~z/1)dmdt:/ 20 - (-, 0)dx
0o Jr? R3

The problem we are dealing with here is quite complex due to the strong pres-
ence of degeneracy in the diffusion terms. Hence, we introduced an approximation
problem to the proposed model which allows us to overcome the degeneracy
problem and make progress in our analysis. By considering the regularized problem
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of (2.1) as below, we have made significant strides in understanding the underlying
dynamics and behavior of the system.

Ue, + 2¢ - Ve = Alue + e)Ha — V- (x(ve)ueVoe) + V- (§(we)u Vwe),
Ve, + Ze Ve = Ave + ﬂue — Ve,

We, + 2¢ - VW = Aw, + due — nwe, (2.2)
Ze, + (ZE . V)Ze + Vpg = Aze - uev¢7
divz, =0

with initial conditions

U, = Qe * Uy, Vo, = Qe * Vg, Wo, = Pe * Wo, 20, = Pe * 20,

where ¢, is a usual mollifier with € € (0,1). Hereafter, throughout the paper we use
all unknown (ue, ve, we, z¢) as (u, v, w, z) for notation simplicity. According to the
standard theory of existence and regularity, for every € > 0, equation admits
a local-in-time classical solution. The proof for this assertion is not provided here
because it follows a similar methodology as in [2] [23].

Consider the functional

E(t) = /RS u(logu+2(x)) dz + |[ulli 5 + [ Voll3 + | Vwll3 + [12]3 (2.3)

and
142«

1ta
D(t) = |Vu =[5+ [Vu = |3+ [|Av]3 + [Aw] + [IV2]3, (2.4)

where (z) = (1 + |z|2)2. Next, we present two lemmas with some assumptions on
sensitivity functions and nonlinear exponent, which play a major role in establishing
the main result of the paper.

Lemma 2.2. Let (u,v,w, z) be a classical solution of , for all e € (0,1) and
initial data (uo,,vo,,Wo,, 20,) satisfies the following independent of e:

(1) wo, (1 + Jz| + |logug,|) € L'(R?),
(2) uo, € L'(R?),

(3) wo., wo, € L®(R®) N H'(R?),
(4) 29, € L3(R?).

Assume that

1
a>z X.EELy, ¢eWRE(RY). (2.5)
Then, given t € (0,T)),
t
sup E(T) —|—/ D(T)dT < C, (26)
0<r<t 0

where C' > 0 is a constant solely depends on initial data.

Proof. By integrating (2.2),, we can obtain ||u(t)||1 = ||uo||1, which leads us to
the conclusion that the total mass of w conserved. Additionally, by applying the
maximal principle to (2.2), and (2.2), we obtain |[v||p®sx[0,7)) < [|volleo and
llwl] Loo (r3 x[0,1)) < l|wolloo-
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Case (i): 1/6 < a < 1/3. First, multiply (2.2)); by logu and integrating to obtain

4 wlogudr + | Vilegu-V(u+ €)'t dz
dt R3 R3 (27)
= Vu- (xVv)dr — Vu - (§Vw)dx.

R3 R3

The second term in LHS of above is evaluated as

Viogu - V(u+ €)'T* dx > Viogu - (14 a)u*Vudz
R? R (2.8)

14+

4
=—|Vu = |2
1+O{” u 12

The first term in RHS of (2.7)) is evaluated using Young’s inequality as

2x
. <
. Vu - (xVv)dr < T+a

(eﬂ\VuHTaH% +C(61)/ ut | Vol dac), (2.9)
RB

1—a

where we used that |[Vu| = 2-u"2 |Vu1+7a| and X 1= Supgs 0,7 [X(V)]-
The last term in RHS of (2.7) is evaluated using Young’s inequality as

/ ut ™| Vol? do
R3

:/ u' Vo - Vo dz
RS

scl(/ |Vu1_a||Vv|dm+/ u | Ao dz)
R3 R3

SC&(/ Cgul_;Q‘VuHTa“Vva—&—/ ul_“|Av\dx>
R3 R3

SC’lCz/ 62‘Vu1+7a’2+C’(62)u1_3°‘|V1}\2dm+Cl/ ut ™| Av| de,
R3 R3

where we used that |Vu! | = 2((11_;(3)u1723u |VUHTCx |. Using the above in (2.9), we
obtain

/3 Vu - (xVv) dx
"
(2.10)
SC{I”VUHTOLH%+C£// u1*3°‘\Vv|2dx+C’§’/ ut ™| Av| d,
R3

R3

where C' = 21%6; for i € {1,2,3}, C7 = €1 + C1C2C(€1)€a, C) = C1C2C(e1)C(e2)
and C§ = C1C(e1). Following the same procedure as above, we obtain

- Vu - (EVw)dx
R3

gciHVUHTa”%—&-Cg/ u1_3a\Vw\2da:+C’é/ u' ™| Aw| d,
R3 R3

(2.11)
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where C/,i € {4,5,6} are positive constants. Using (2.8, (2.10) and (2.11)) in (2.7),

we obtain

d [e3

—/ wlogudz + C'||Vu = |2

dt Jrs

< Cé'/ u1_3a|VU|2dm+C§'/ u' | Av| dx (2.12)

RS RS
+Ci / ur 3 V| dr + Cf / u' | Aw| dz,
RS RS

where ¢/ = 1_;4_(1 — C{ — C4. Multiply (2.2), by (z) and integrate over R3. Then

using Young’s inequality along with simple algebraic calculations (See [22] (3.6) |
and [6l (2.13)]) leads to

4 (z)udzr = / uz - V{z)dr +/ (u+ )" Alz) dx
dt R3 R3 R3

+/ V<x>-uvadx7/ V(z) - uEVwdzx (2.13)
R3 R3

1+
< Cr(1+ [l2)3 + [Voll3 + IVwll3) + (Cle) + €l Va ™= ][3).

Multiply (2.2]); by u® and integrating to obtain

1 d
Julli1e + / Vu® - V(u+ €)'t dx
R3

1+adt (2.14)
= Vu® - u(xVv) de — / Vu® - u(Vw) d.
R3 R3
Using |Vu®| = ozumTfl|Vu|7 |utt| = (1 + a)u? |Vul, and
2
vt = L2 2 gy,
we obtain
do(l+ ) 1420
. ody > ———— 7 |13 2.15
. Vu® - V(u+e) T > 1120 (IVu II5 ( )
The first term in RHS of (2.14) evaluated using Young’s inequality as
/ Vu® - u(x Vo) dz < OX/ VU2 |(u? Vo) da
R e (2.16)

1+

< Cye3]|Vu o IE: +CXC’(63)/ u|Vo|? de.
R3

The last term in above evaluated using Young’s inequality as

/ u|Vo|? dx
R3

gcg/ V|| Vo] + ulAo| de
R3

2 1—2a 142«
Co / uz |Vu 5 ||[Vo|de + Cg/ ulAv|dz
RS RS

~ 14 2a

2Cq€e,y 120 5 2C09C (ey) 1-2 2
< v i e 74 *|Vol|“d C Av|dx.
—1+2aH w2 Coa R3u |Vl dx 4+ Cy R3u| v|dx
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Using the above inequality in (2.16)), we obtain

Vu® - u(xVv) dx
R (2.17)

< ClolVu S 3 +.Cpy [ ol |Vo do+ Cy [ ulaelda,

_ X 20, CoC
where X = supgsyjo 1) [X(v)|, Cx = %, Cly = Cyez + %ﬁfa’)q, ciy =
%&?M and C1, = C,CyC(e3). Following the same procedure as above,
we obtain

7/ Vu® - u({Vw) dz
R (2.18)

+

< OVt |2 4 / W2Vl dr 4 Cl / ulAw) de,
R3 R3

where C/,i € {13,14,15} are positive constants. Using (2.15)), (2.17) and (2.18) in
(2.14), we have

1+2a

d
ﬁ\IUIHIZ + Cil| Va2

I3

§C{1/ u1_2a|Vv|2dx+C{4/ u1_2“\Vw\2d:E+C’{2/ ulAvldr  (2.19)
R3 R3 R3
—&—C{s/ ulAw|dx,
R3

where Ci5 = 7482;5)22 —C1y— C15-

Multiplying (2.2)), by —Awv and integrating to obtain

iHV'UH%-i—%‘A’UH%ﬁ/ Av~(z-Vv)dm—ﬁ/ u|Av|dm—|—’y/ v|Av|dz. (2.20)
dt R3 R3 R3

The first term in RHS of above is evaluated as

R3

Av - (z-Vv)dr = / E v 0;0;00;2; dx < Co||Av|3|| V2|3
R3 5
i

Using the above in , we obtain
I3 + 2180l < CollAvlBIV=3 - 5 [ wldoldo+ [ ololde. (221
Following similar procedure as above, we obtain
%”VUJH% + 2[|Aw|3 < C1||Aw|3|| V2|5 - 5/]1{3 u|Aw|dzr + U/R?’ w|Aw|dz. (2.22)
Multiply 4 by z and integrating, we obtain

d
eI+ 21ValE < Cl [ uleldo, (2:23)
R3
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where Clg = ||V | o rs). Adding (2.12), (2.13)), (2.19) and (2.21))-(2.23)), we obtain

4
dt
142«

lta
+ Co(I1Vu™5* 3 + IV % 3 + |avll3 + |l Aw]3 + | V2]3)

( / u(logu+2(z)) do + [ull 15 + Vol + IVwllf + 12]3)

SC{)(/ ul_go‘\VU|2dx—|-/ u1_3°‘|Vw|2d33—|—/ ur 2|\ Vo|? do
R3 R3 R?

+/ u1*2a|vw|2d:c—|—/ ulfo‘\Av|dx—|—/ u170‘|Aw|dz+/ u|Av| dx
R3 R3 R3 R3

+/ u|Aw|d:c—|—/ U|Av|daz—|—/ w|Aw|da:—|—/ u|z\dx)
R3 R3 R3 R3

To deduce (2.6 from above, we estimate the integrals in RHS as follows:
As 0 < 1 —3a < 2/3, using the Young’s, Holder and Sobolev inequality, we
obtain

/ W3 Vo2 dr < Jgs (C(ea) —|—e4u2/3)|VU\2dz if1/6 < a<1/3,
R3 ~ 1 IVvl|3 if o =1/3.

(2.24)

(2.25)
< {C(€4>||Vv||g +ealluo/ Av]3 i£1/6 <o <1/3,

[Vvl|3 if o =1/3.

Following the same procedure as above, we obtain

[ sl < {c<e5>||w||§ Fesluol/¥Awl3 i£1/6 << 1/3,
R3 N

IVul? ita=1/3
(2.26)
[ utuP de < Clel Vol + eolual P80l (220
R3
[ w2Vl do < @IVl + alulPClav 229
R3

Next, we estimate the integral ng ul=*|Av|dz. Using the Hélder, Young and
Gagliardo-Nierenberg inequalities in the integral, we obtain

/RS u' | Av dz < Cles)|[ull325 + es[Av]3
75e |y, e | 5T 2
< Cles)Crlluol[y™ [Vu =77 + es[|Av]l;

144a

< Cles)Cao (Cleo)Juoll 7 + o[V ) + esl| Ao

(2.29)

1ta
= Ci7 + C1s||Vu™2 ||3 + es]|Av|3,

Ltda
where C17 = C16C(eg)C(€9)]|uolli > and Cig = C16C (eg)eg. Here, we used that

3 < 5752 < 2. Following the same procedure as above, we obtain

/3 ul = Aw|dz < O + Cao| V' |3 + exol| Aw]3. (2.30)
R
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Next, we estimate the integral [p; u|Av|dz. Using the Young and Gagliardo-
Nierenberg inequalities in the integral, we obtain

| vl do < e ulf + enflaol?
R

_6
SE T 4 en|Av)3

1460
< Cer)Cofluoll{ ™ [|Vu (2.31)
1420

1+46a
< Clen)Cor (Clen)lluoll 7% + 0| Va5 ) + exs| w3

142a

= Cél + CQQHVU 2

5+ ewrl|Av]|3,

1460
where C; = Co1C(€11)C(e12)]|uo|; 7 and Caa = Ca1€12C(€11). Here, we used

that % <3 fGa < 2. Following the same procedure as above, we obtain

142a
/3 ulAw| dz < Chs + Coa |V "2 |2 + exs]| A2 (2.32)
R

Next we estimate the integrals [o; v|Av|dz, [ w|Aw|dz. Using the Young and
Gagliardo-Nierenberg inequalities in the integrals, we obtain

8 6

/RS v|Av|dz < C(el4)Collvoll{ | Avll5 + €14 Av]f3, (2.33)
8 )

/RB w|Aw|dz < C(e5)Chlwollf [Awl3 + €15 ]| Aw]3. (2.34)

Next, we estimate the integral [y, u|z|dz. Using the Young, Gagliardo-Nierenberg
and Sobolev inequalities in the integral, we obtain

/ ulz|dz < Cosllulls |lzlls < exsllullg + Clere) V23
R3 2

14+2a

2
T+ Clews) V213 (23)

3410a
< Ca5Cs]luolly”™™ [[Vu

142a

3410«
< Ca5Chsllug |7 (er7[|Vu "2 |3 + Clerr)) + Clews) V=I5
1420
= Cas + Cor|[Vu 2 |54 Clews) V213,

3+10c 3+10a
where 026 = 616055||UO||12+60‘ 0(617) and 027 = 616055H’UJ0||12+GQ €17. Here we used

that 1 < & <346 and 0 < 575 < 2. Substituting (2:25) — 2.35) in (2.24), we
have

L]
dt
142a

ral 1ta
+ CO(HVU 34 IVu 2 |3+ | Av|3 + |Aw||3 + ||Vz||§) (2.36)

( / u(logu+2()) do + [uli5 + Vol + | Vwll3 + [12]3)

—
< Co(1+ IVl + [ Vwll3).

Integrating the above with respect to ¢, we obtain ([2.6)).

Case (ii): 1/3 < o < 1. First, multiplying (2.2)); by logu and integrating we
obtain

d 4 1ta
7 Rsulogudm—i—mHVu 2 ||§:/Rs Vu-(xVv) de— . Vu-((Vw) dz. (2.37)
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First, we evaluate the RHS of (2.37)) as follows:

v
/, Vu- (xVv)dz < ] _:( <61||Vu %+ C(el)/ 17Q|VU|2dx)
R R (2.38)

— Czs“VuHTa ||§ + 029/ ul’“|Vfu|2 dz,
RS

where ng = Xa and ng = 72)(0(61). Following the same procedure as above, we
14+« 14+ g p ’
obtair

R3

Using (2.8), (2.38) and (2:39) in (2:37), we have

d o
—/ ulogudx+c32||vu%||§
dt oo

— | Vu-({Vw)dx < C’30||VUHTQ 13+ 031/ u' ™| Vwl|? d. (2.39)
R3

(2.40)
Sczg/ Ul*a\Vv|2de+C’31/ ul | V| dz.
R3 R3

where Cs3y = 1_;%! — Cys + C39. Now, multiply (2.2); by u® and integrating we
obtain
D itz + 200E D gy 2
1+ a1t (1+2a)2 2 (2.41)
= Vu® - u(xVo)de — [ Vu® - u(Vw)dz
R3 R3

The last term in RHS of (2.16) is evaluated as
/ u| Vo2 dr < Cg/ [Vu||Vu| + u]Av| dz
R3 R3

2Cy /
<
- 1+Ol R3

2Cy
1+«

ulga’VuHTa“Vde—i—Cg/ u|Av| dx
R3

IN

(518HVU1+TQ 15 + 0(618)/ ut Y| Vol dx)
RS
+ 09/ u|Av| dz.
RS
Using above in (2.16), the first term in RHS of (2.41]) is evaluated as

Vu® - u(xVv)dz < Csl|Vu' 2 3 + Caa|[ V5|13
R (2.42)
+C35/ u1*a|Vfu\2dz+Cgﬁ/ u|Av| dz,
R3 R3

_ 2C 6309618 _ 2C 63090(613)
where CX = 1+a7 033 =C 0(63) 034 = 7X1+a 5 035 = —=x———1" Tta and

Cs6 = Cye3Cy. Following the same procedure as above, we obtain

— [Vt u(€Vw) de < x| VuE |3 + Car | Va5 |3
R (2.43)
—l—ng/ ul_o‘|Vw|2dx+ng/ u|Aw| dz.
R3 R3
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Using (2.42) and (2.43) in (2.41]), we have

142

d (0%
S lullifs + Croll V™S

I3 — Can | Ve 5|13
SC'35/ ul_a|Vv\2dac+ng/ u|Av|dx (2.44)
R3 R3

—|—C’38/ ul_O‘|Vw|2dx+C'39/ u|Awldz,
RS RS

where Cyg = 48(:%&) C33 —eg0 and Cyq1 = Csz7+Csy. It is clear that (2.2)),, (2.2)),

and (2.2), are independent of a and therefore, adding (2:21)-([2:23) with ([2.40),
(2.13), (2.44), we obtain

a
dt
+ Cia (|5 | + | V™

SC’43(/ u17a|Vv|2d:C+/ u17a|Vw|2dx+/ u|Av| dx
R3 R3 R3

/u|Aw|dz+/ U|Av\dx+/ w|Aw|dm+/ u\z|dz)
R3 : R3 R3

As0<l-ax< %, using the Young’s, Holder and Sobolev inequality, we obtain

( / ullogu+2(z)) do + [ull {5 + [ Vol3 + Vel + 1213)

1+2a

I3 + 1 A0]l3 + | Aw]3 + [[V2]13 )

/ W=\ V|2 do < Js (Clex) + enw??)|Vo?dz if 1/3 < a <1,
R? IVoll3 if @ = 1.

(2.46)

_ JCe2)IVoll3 + enlluol P2 Av]F if 3 < <1,
2 if o= 1.

Following the same procedure as above, we obtain

/ oGl de < { CIVUlE + alluo P AwlE 13 <a<t, o
- = ||va% if o =1.

As O < 52— < 2and 1 < 6/5 < 3+ 6, following the same procedure as ,
obtamed and from previous case, we have

/]R u|Av|dzx < Cyq + C45||Vu El ||2 + ea3]|Av|)3,
/Rs ulAw|dz < Cag + Car [V |2 + e | Aw 2,
[, vlavlds < cle)Coliolf 180l + €A
|, wlaulds < C@s)Cillunlf|awl + sl Aul,

/ ulz] dz < Cag + Cor [V 2% 3 + Clers) | V22
RS
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Substituting (2.46)), (2.47)) and the above estimates in (2.45)), we obtain

d o
pr (/ u(logu + 2{x)) dx + Hu||ﬁa + [|[Vol|2 + || Vw3 + HzH%)
R3

+ T (| Va5 3 + [ V™
< Cg (L + [Voll3 + [Vw]3).

2.48
2+ Aol + awld+|va3) )

Integrating above with respect to ¢, we obtain (2.6)).
Case (iii): o > 1. First, multiplying (2.2)); by logu and integrating we obtain

d 4 1ta
7 Rsulogudm—i—mHVu 2 ||§:/Rs Vu-(xVv) de— . Vu-((Vw) dz. (2.49)

Using the assumption ', & € L, we obtain

loc

Vu- (xVv)de < C’44/ u|Vol? dr + C44/ u|Av| dz
R3 R3 R3

— | Vu-({Vw)dx < 045/ u|Vw|? dz + C45/ u|Aw| dx.
R3 R3 R3

Using the above in (2.49)), we obtain
d 4 1ta
pn RSulogudx—i— mHVu = |3
< C’44/ u|Vv|2dx—|—C45/ u|Vw|? dz (2.50)
R3 R3
+C'44/ u|Av|da:+C’45/ u|Aw|dz.
R3 R3

Now, multiplying (2.2));, by u® and integrating we obtain

D jupie + 20Uy 2
1+a
1+ dt 1+ 2a)2 (2.51)
< Vu® - u(xVo)de — [ Vu® - u(Vw)dz
RS RS

From ([2.16)), we obtain

/ Vu® - u(xVv) dr < C50||Vu E “2 +C’51/ u|Vo|? d, (2.52)

RS RS

where Csg = Cye3 and Cs1 = C, C(e3). Following the same procedure as previous,
we obtain

— 3 cu(EVw) de < C52||Vu 7 H2—|—C53/3u|Vw|2 dzx. (2.53)
R R

Substituting (2.52)) and (2.53)) in (2.51)), we obtain

d
aHuH%ig + C’49||Vu 2 < Cs /3 u|Vo|? dx + Cs3 /R3 u|Vw|*dr,  (2.54)
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da(14a)?

where C)g = Troayr — Cs0 + Csz. Adding (2.50), (2.13)), (2.54) and (2.21))-(2.23)),

we obtain

d (03
(] wogu 26 do + [ull 22+ 19013 + [Vl + |-13)

1+2a

1to
+ Coa (1965 13+ [V 3 + A0l + | Awl + | V213)
< Css (/ u|Vv|2dsc+/ u\Vw\Qda:—&—/ u|Av|dw—|—/ u|Aw| dx
R3 R3 R3 R3

—l—/ U|Av|dx+/ w|Aw|d$+/ u|z\dm)
RS RS RS

Next, we estimate the first integral fRB u|Vv|? dx of RHS. As HTC‘ > 1, using Young’s

inequality, we obtain u < €96 + C(€QG)UH—TO. Using the previous equation and
Young’s inequality, we obtain

/ u|Vo|2dz

]R3

Sezeuwu%ae%)/ W Vol de
R3

(2.55)

= 0(626)/ w V- Vodr + e26]| V|3 (2.56)
R3

< 0(626)056(/ VUHTQ -Vou + UHTQA’U dl‘) + 626||V1}||§
R3

14+

< Cleas) O (| V5 I3+ 9013 + [[ull 15 + 1 A0]3) + excl| V3.
Now, we estimate the third term of RHS of above. Using the Gagliardo-Nierenberg
and Young inequality, we obtain

I+a e Lo S06o La o
lulliTo < Csrlluolly ™ [[Vu™2 || < Cs57C(e27) + e27]| Vu 2 ||3.

Here, we have used that 2_?_30‘ < 2. Substituting the above in (2.56)), we obtain

[, Vol do < Cha+ Ol V0¥ 5+ Chal Vol + Cllaolly, (25)
where Cf, = C(€e26)C(€27)C56Cs7, Cis = Cle26)Cs6+C(€26) Csp€27, Chg = C(€26)Crp+
e and Cf, = C(e26)Cs6. Following the same procedure as in the previous estimate,
and from previous case, we obtain

[ ulVul de < G+ CTuH [ + Cipl Vol + i [ Awll,
RS
1t2a
/ ulAv|dx < Cyy + Cy5||Vu 2 ||§ + 623HA’UH§,
]Rf}

142

/ u|lAw|dx < Cys + Cy7||Vu—2 % + 624HA'IU||§,
]R3

8 6
/RS v|Av|dz < C(e14)Collvoll] [Av]l3 + €14l Av]3,

8 6
/W w|Aw|dz < C(e5)Chlwoll{ [Awl3 + €5 Aw]3,
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1424
/ ulz] dz < Cog + Cor|[ VU2 |2 + Clers) | V|2
R3

Substituting the above estimates and (2.57)) in , we have

d .
([ wogu+26e) do + Jull 22+ 19013 + [Vl + 1213)
J— 14 142« .
+ Caa (1765 B + 96528 + 803 + | Awl3 + 215 (2.58)
< T (14 Vol + [ Vl3).
Integrating above with respect to ¢, we obtain ({2.6]). O

Lemma 2.3. Let (u,v,w,z) be a classical solution of [2.2), for e € (0,1) and
initial data (ug,,vo,,wo,, 20,) satisfies the following conditions, independent of e,
(1) uo(1+ [z] + [logug|) € L' (R?),
(2) uo € L' (R?),

(3) Vo, Wo € LOO(RS) N Hl(R?’),
(4) 2o € L*(R3).

Assume that

a>0, peW* (R, x.&eLi, withx'()=x0 ()=&  (2.59)

for some constant xo > 0,&9 > 0. Then, given t € (0,T], we have

t
sup E(T) —|—/ D(r)dr < C, (2.60)
0<r<t 0

where C' > 0 is a constant solely depends on initial data.

Proof. Tt is sufficient to prove only for 0 < a < 1/6. Further, for « > 1/6 is already
established in the previous lemma. Multiplying (2.2), by logu and integrating we
obtain

d 4 1ta o

— | wlogudr+——Vu = |5 < Vu-(xVv)dz— | Vu-(§Vw)dz. (2.61)

dt Jgrs 14+« R3 R3

The first term in RHS of the above is evaluated using our assumption and Young’s
inequality as

/ Vu - (xVv)dx
R3
= —/ (| Vo[> + xAv)u dx
R3
< —){1/ u|Vv\2dx+C5g/ |Vul||Vo| dz (2.62)
R3 R3
< —Xo/ u|Vv\2dx+C58C’59/ ukTa|VuHTa’|Vv|dx
R3 R3

< _XO/ u|Vv\2d;v+CGO||VuHTa||§+061/ u1_0‘|Vv|2 dx,
R3 R3
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Where 060 = 058059526 and 061 = 0580590(626)- Here we used that \Vu\ =

2u P
1+a

}Vu 2 | Similarly, we obtain

- Vu - (§Vw)dz
R3 1 (2.63)
< —go/ W[ Vl? dz + Cly [V |12 +cg1/ WO Vw2 da.
R3 R3

Using (2.62) and (2.63) in ([2.61]), we obtain

d 1ia

—/ ulogudm—l—C’GQHVu%H%—l—Xo/ u\Vv|2dm+§0/ u|Vw|? dx

dt R3 R3 R3 (2 64)

SCGl/ ut | Vol? dx—l—C’él/ u' | Vw|dz,
R3 R3

where Cgo = 1_%& — Cs0 — Co- Now, multiplying (2.2)); by u® and integrating we
obtain
1+2a

@ juite + 220 E0)
1+a ( +2)

= Vu® - u(xVv) de — Vu® - u(€Vw) dz
R3 R3
Now, we estimate the first integral of RHS. Using Young’s inequality, we obtain

(2.65)

+2a

vua.u(xvv)dxgcx/ Va2 |(u? | Vo) de
R3

R (2.66)

< Coal| Va2 |2 + O / u[Vol? dz,
]RS

where X := supgs |x(c)|, Cyy = fi’é, Css = Cyea7, and Cg3 = C,C(e27). Following

the procedure above, we obtain

—/ Vu® - u(EVw) dz < Cga||Vu 2"
RS

Using (|2.66)) and (2.67)) in (2.65]), we obtain

d o
e+ Cal VS5 < Gy [ alVePdas Gy [ uiVuP s, (268)
R3 R3

—|—C’64/ u|Vw|? dz. (2.67)

Where Cer = % Ce3 — Cea. As a does not affect (2.2),, (2.2), and (2.2),,

in previous Lemma 2.2 holds. Adding (2.64)), (2-13), (2:68) and (2:21)-(2-23),
we have

d (0%
% ([ ultogu+ 20a)) do -+l + Vol + [Vl + 1a17)
R3

+ Con( [ Vol ulds + [V 3+ 932
R3

+ 103 + lAw]3 + 1 V213) (2.69)

SC()‘S(/ ul_o‘|Vv|2dm—|—/ ul_a|Vw|2dx—/ u|Av|dz
R3 R3 R3

—/ u|Aw|d:E—|—/ v|AU|dm—|—/ w|Aw|dm+/ u|z|d:lc)
R3 R3 R3 R3
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Now, we estimate the first integral of the of RHs. Using u'~ < C/(eag) + €2gu in
the integral and choosing sufficiently small €35, we obtain

/ u' |Vl da < Cog||Vo]|3. (2.70)
R3

Similarly, we obtain
/ WVl de < Clo|[ V2. (2.71)
R3
From the previous Lemma, we have

8 6
/]RS v|Av|dz < C(14)Collvoll{ [|AV|13 + €14 Avlf3,
8 6
/]RS w|Aw|dz < C(€5)Cy[|wol|] | Awl|5 + €5 ]| Awl|3,
1420
/3 ulz| dz < Cag + Cor | VU2 |2 + Clers) | V2|12
R

Using (2.70)), (2.71)) and the above estimates in (2.69)), we obtain

d [e3
(] wogu+20e) do + [ull 22+ 19013 + [Vl + |213)

— 14a 142« 2 2
+ Cor (1765 B + 19652 8 + 803 + | Awl3 + 215 (2.72)

< Cos (1 +[[Vol3 + [[Vwl3).
Integrating the above with respect to ¢, we obtain (2.60)).. O

Now, we are ready to state the primary finding of this paper.

Theorem 2.4. Suppose that the initial data (ug, v, wo, 20) satisfies the following:
(1) uo(l + |z| + [logue|) € L*(R?),
(2) ug € L'T*(R?),
(3) Vo, Wo € LOO(RS) N Hl(RB),
(4) 29 € L*(R3),
and either one of the assumptions (2.5) or (2.59) holds. Then for any T > 0, (2.2)

possesses a weak soluion (u,v,w, z) that satisfies

sup ([ ullogul +2(0) do -+ ullF2 + [Vl + [ Twl + [:13)
0<t<T \JR3 (2.73)

T
+ / (V™5 3+ 9072 3 + | Av]3 + | Awlf + [V2]3)dt < C,

where C' is a constant that solely depends on initial data.

Proof. Recall that, the solutions of (2.2) in R® x [0,7) with initial conditions
(up, ,vo,, wo,, 20, ) is given by

Ug, = Ge ¥ Uy, Vo, = Qe ¥ Vg, Wo, = e ¥ Wy, 20, = Pe * 20,

where ¢, is a usual mollifier with € € (0,1). The uniformity of the estimates
obtained in Lemma [2:2] regardless of the value of €, is ensured by the convergence
of (ug_,vo,,wo,, 20.). In other words, it means that the constant C' in can be
selected without dependence on €. In a similar way, we obtain constants such that
for ¢ < oo,
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ue bounded in L>((0,T) x R?),
gto

)
) Vue? bounded in L2((0,7T) x R3),

) Ve, We, ze bounded in L>°(0, T; WH4(R3)),
) Ve, We, 2 bounded in LI(0, T; W24(R3)),
) Ve,, We,, 2¢, bounded in L7(0, T; L4(R?)).

Our estimate allowed the local solution to be extended to arbitrary (0,7) (as in [22]
27,[11,[7]). Let k > 2+a be chosen. Then u,, and u¥ belong to L' (0, T; W~22(R?))
(as in [22]), where the dual space of W22(R?) is denoted by W~22(R?). Using the
Aubin-Lions compactness lemma, we have a weak limit (u,v,w, z) as e — 0 which
is a weak solution. O

The above theorem can indeed be proven for a bounded domain with Neumann
boundary conditions for u, v, and w, as well as no-slip boundary conditions for z. To
be more specific, suppose we have a smooth boundary for the bounded domain £2,
and we are considering the system within Q x [0,7"), with the aforementioned
boundary conditions as

ou Ov Ow
%757570’ z=0 on 09. (2.74)

Theorem 2.5. Suppose that the initial data (ug,vo, wo, 29) satisfies the following:

(1) up, € L*(2) N L1F(Q),
(2) wo, and wy, € L>®(Q) N H (),
(3) 20, € L2(Q).

and either one of the assumptions [2.5) or ([2.59) holds by replacing R® by Q. Then
for each T > 0, system (2.2) with boundary conditions (2.74) possesses a weak
soluion (u,v,w, z) that satisfies

sup ([ allogalda + [ull 112 + Vel + [Vwl + |213)
0<t<T \Jq

(2.75)

T
+ [ (190 1+ 19022 -+ ol + | Awl + 213 < C.

where C' is a constant that solely depends on initial data.

Proof. We address only the modification to be done in above proof, as the proof is
similar. As |Ju 11 (q) takes care the negative part of [, ulogu, L' estimate of u(x)

(2.13) is not needed. Also, (2.31)) can be replaced by

142 ||

1+6a 6
lull3 < ColluollF** V=" |37 + Collull1. (2.76)

The rest of the proof is completed by employing similar ideas as those in Theorem
and hence omitted. O
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3. EXISTENCE OF BOUNDED WEAK SOLUTIONS

We consider the model the attraction-repulsion chemotaxis Stokes system, that
is, (1.6) with 7 = 0, in this section as

ug + 2 - Vu = Aurt* — V- (x(v)uVv) + V - ((w)uVw),
v+ z - Vo = Av + Pu — v,

wy + 2z - Vw = Aw + du — nu, (3.1)
zt+ Vp=Az —uVo,
divz =0.

This section first defines the bounded weak solution for . For the rationale
outlined in previous section, we introduce the suitable approximation problem for
(3.1). Before demonstrating our main finding, namely bounded weak solutions to
(3.1) in bounded domain with smooth boundary, we first establish a key lemma
used to substantiate our main findings.

Definition 3.1. For « > 0 and T € (0,00), a weak solution (u,v,w, z) as intro-
duced in Definition is termed as a bounded weak solution of (3.1)) if

pto

(1) Givenp € [1,00), we haveu € L>=((0,T);R3) and Vu" 2 € L*(0,T; L?(R?)),
(2) Given q € [2,00), we have v,w,z € LI(0,T;W2%4(R3)) and vy, ws, 2 €
L9(0, T; L9(R3)),

We define an approximation problem for the above system as

Ue, + 2ze - Ve = Alue + €)' = V- (x (v )uc Vo) + V - (€(we)u V),
Ve, + Ze Vv = Ave + Bue — YVe,

We, + 2z¢ - VW = Aw, + due — nwe, (3.2)
Zey + Vpe = Aze - ’U/CV(b,
divze =0

with initial conditions

Ug, = Qe * Uy, Vo, = Qe ¥ Vg, Wo, = e * Wo, 20, = Pe * 20,

where ¢, is a usual mollifier with € € (0,1). According to the standard theory
of existence and regularity, for every € > 0, equation admits a local-in-time
classical solution. The proof for this assertion is not provided here because it
follows a similar methodology as in [2 23]. Hereafter, we use the unknowns (u.,
Ve, We, and z) as (u,v,w,z) for simplicity of notation. First, we deduce some
estimates, independent of €, of the solution to which are uniform in nature.
Using those estimates, local bounded weak solution is extended to arbitrary (0,7)
and we construct bounded weak solution of (3.1]).

Lemma 3.2. Suppose that (u,v,w,2) is a classical solution of (3.2), for all € €
(0,1) and the initial data (uo,,vo,,wo,,z0,) satisfies (1) — (4) of Lemma [2.9 along
with ug, € L®(R3) and vo,,wo,, 20, € WH4(R3) for any q € [2,00). Furthermore,
assume that
o> §7 Y=n= 07 X/,gl € Lﬁfc with X/() > X0 fl() > '503 (33)

for some positive constants xo, &. Then, for each t € (0,T], we have:
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(1) For1<p<oo,
we L0, T; LP(R®)) and Vu™" € L2(0,T; L*(R%)), (3.4)
(2) For2 < q < oo,
v,w,z € L0, T; WH9(R3)) N LI(0, T; W>9(R?)), (3.5)
(3) For2 < q < oo,
v, wy, 2z € LU0, T; LY(R?)). (3.6)

Proof. For 1 < p <1+ «, by Lemma (3.4) holds. It is sufficient to show that

for a > &, u satisfies (8.4), as (3.4) — (3.6) follows from that. Multiplying (3.2), by
uP~! and integrating it by parts, we have

EEHUHZ +/ Vupfl . V(’U, 4 6)1+o¢ dor
pdt ke (3.7)
= —/ uPIV - (xuVv) do +/ PV - (EuVw) da.
R3 R3
Also, we have
4(p — 1)(1 pto
VuP~t . V(u+ €)'t de > w||Vu%\|§, (3.8)

RS (p+a)?

pto

by using that VuP~! . Vult™™ = (p — 1)(1 + a)uP~27*|Vu|? and [Vu = 3 =
2

%ul"m_ﬂVuP. The first term in RHS of (3.7) is evaluated using Young’s

inequality as

—/ uPTIV - (xuVv) de

2x pta, p—a
< X / [Vu 2 lu"= |Vv|dz
R3

(p+a) (3.9)
2% pto 9 / _ 2 ’
e — Vu 2 C = Vol*d )
< ray (Va3 + Clew) | w1 VoPde
< c7o||w”%“||§+cn/ WP |V da,
R3
by using that |Vu| = Z)J%aupga |Vup+Ta\ where X = supgs o, X(v), Cro = (25;2&9)
and C7; = ZY(ET(ZZ;’). Similarly, we have
/ uP7IV - (EuVw) dx < C72||Vup+Ta||§ + C’73/ uP~ | Vw|? d. (3.10)
R3 R3

Using — in , we have

1 d pto —a
f—||u||§+C74||VuTH§§C71/ P |Vv|2dx+073/
pdt R3

uP~ | Vw|? dz (3.11)
R3
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where Cry = % — C79 — C79. The first term in RHS of the above is

evaluated using the Hdélder, Sobolev and Young inequalities as

/up70‘|Vv\2dm
R3
< [l [Vl 2 (3.12)

— (&%
< Cpulully 18012 g < Con (5 +

p—«
HUIli) 1A% 6
2p+3

Similarly, we have

[oweivelas < 6 (S + oS ulp) Al g o (313
R3 p 2p+3a
Using (3.12) and (3.13) in (3.11)), we have
1 d P pta 2 2 P
gl Crall V™ < O (I180)2 o+ 1 Aw] o, )l

+Cra (1807 e + 1AW o
+3a 3a

Using the Gronwall inequality above, we have

Jully < exp / 180(5) 2 g+ ([ Aw(s)|P g ds)
+3a p+3a

(3.14)
X / [Av($)]12 6p + [|Aw(s)]|” e, ds + [Juol}.
0 2p+3a 2p+3a
Hence, (3.4) holds, whenever the following holds
T
/ [[Av(s )||2 o+ [|Aw(s )H2 op ds <00, 14+ a<p<oc. (3.15)
0 +3a p+3a

We prove the above statement in two case: (i) > 1/3 and (ii) 1/8 < o < 1/3.

Case (i): a > . The first term in (3.15) is evaluated using the standard maximal
regularity estimate of heat equation. In (2.2)),, we have

T
/ A0(s) 2 o, _ds
0 p+3a

. . (3.16)
< Cra IVl g+ [ T2 s+ [ 11z Vol y_as).
2p+3a 0 p+3 2p+3a
For p > 1 + «, using an interpolation inequality, we have
T ) t 2_(1+22a)1(4§—3a) (1+22a)1(4§) 3a)
| )1 g ds < G [ )T )l i s
0 (3.17)

4
S )| as,

§C76/ |[Vu"2
0
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The last term in RHS of (3.16) is evaluated using z € L>(0,T; L°(R?)) and the
maximal regularity estimate for the heat equation in (3.2)), as

T
/|wvsz@
0 2p+3a

T
séwww@wwm2p@
T
sc/|mmm&yw
0 pto
T T

<CC (Il + [ ()P ds+ [z Vo, ds)

pta 0 pta 0 pta (318)

T T
s@+@/mew2p@+@/‘W@miw
0 +3 0 pto

T
< Cy+ C3/ Vo(s)||? ey ds
0 p13a

3(142a)(p—a) 3(1+2a)(p—a)

T
o_30420)(p—) 3(14+2a) (p—a)
+CaCs [l T )y ds
0

g T o B—a)
§02+03/ V()12 en_ ds+06/ Vw7 (5)[| 207 ds.
0

The above holds because o« > 1 / 3 Similarly we obtain the same estimate for
fOT [[Aw( )||2 ds. Therefore ) holds for p € (max{l + «,3a},c0) and it
3

can be extended forp e (1+ «, oo) Also it implies the following holds for every
1 <p < oo: Given ¢ < 0o, we have

vg, V20, wy, V2w, 2, V22 € LY((0,T) x R?), Vo, Vw € L>=((0,T) x R?).
Using the above in (3.11) and an interpolation inequality, we have

d oo w F(P—:Xl—l)
Zillullp < Crrllullp=s < Corllully™ lull, ™" < Crallull, ™

Using Gronwall’s inequality above, we have

lu(®)llp < (Crep®t)/? + |fuoll,, < T
Letting p — oo, we have u € L>(0,T; LP(R3)) for p € (1 + a, o).
Case (ii): é <a< % We prove by showing that holds, by deriving
for p 6 [1 1+ 4a) We estimate the first term in RHS of (3.11]) using ‘Vup_a‘ =
Cou® el ’Vu 2 ’ and Young’s inequality as

/ up_o‘|Vv|2dx=/ uPT Vo - Vo de
R3 R3

gcg(/R3 |vup*a||vu|dx+/w uP=| A de

< c()( / Cou™
-

§C7g||Vup+Ta||2+C'79/ up73a|Vv|2d:c+C'6/ uP~ % Av|dx.
RS RS

MHVM dx + / uP~ % Av| d:z:)
R3
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Similarly, we have

/ uP~ | Vwl|? dx
R3

pto

< ChellVu = || + C'/?g/ uP 73| Vw|? dr + C / uP~ | Aw| dx.
R3 R3
Using the above estimates in (3.11]), we have

d pto
Sl + €I VuE |3

SCgO/ up_3a|Vv|2dm+Cgl/ uP~ Av| dx
R3 R3

(3.19)
+ Csa / uP 3\ V| dr + ng/ uP~ Aw| dx.
R3 R3
Integrating the above with respect to t, we obtain
¢ P+
||u||g + C// (IVu = 2ds
0
t t
< 080/ / uP~3%|Vo|? dx ds + C’Sg/ / uP 3| Vw|? dx ds (3.20)
o JRr3 o JRr3

t t
—a+1 —a+1 —a+l
+Cl / =t ds + Cy / JAulE=HE 1 [ Aw|E= s + [l 2.

Evaluating first term of RHS using the Holder inequality and a maximal regularity
estimate, we obtain

t
/ / uP =3 Vo> drds
R3

o TR R—
(3.21)
<CS4CSS/ ||A’U H 6+5,,3

5+14a

< saCs (IV00I_gs0n_ / P / I Vol gya_ds)

5+14a—3p

for all p satisfying 1 + o < p < 14 4a. Above, we used that 1/8 < o < 1/3 and
€(1,14+4a). Asl+a< % < 3p+ 3a and using interpolation inequality,
the second term in RHS of (3.21) is evaluated as

t
(1—t pt+
[ 1 g5 < [ s < [ 90

o A1
T s (3.22)
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where t; = %. The third term in RHS of (3.21)) is estimated using
the Gagliardo-Nierenberg inequality and maximal regularity estimate as

t
/ 2+ Voll? oron_ds
0 5+14a—3p

t
<l [ 190 500
O P

44+13a—3

t
!
< Cis [ 180] zgze,
, . (3.23)
< Clo(IVenlsze + [ ol gz ds+ / 2~ Vol ayzds)
3+ba—p 0 2+5a—p 2+5a—p

8(1+a)

t
< ClslVin g +Cs [ [70F

t
+086/ IV0l2 oren  ds.
0 5+ 140—3p

Substituting (3.22)) amd (3.23)) in (3.21)), we have

¢
//up*3a|Vv|2d:cds
o Jrs

t
§087||wo||§+afag + CoslVoulagae +Coo [ 90"
o

t _ 8(4a)
4 Cog / |Vut / IV gi0n
0

Proceeding as above, we obtain

t
//up73°‘|Vw|2da:ds
0 Jr3

t
< Clrl Vol gyan -+ Chal Vol g0+ Ciy [ IV

5177 4 (3.24)
B3 S :

o At
|3 ds (3.25)

t 8(1+a)
+C{)0/ ”vum||(p+a)<2+5a P) ds+c«91/ vaH 6%@
0 3p

Similarly, we deduce
t t
a4l —a+1 +1
Cho [ Il s+l [ A=t + Jawlp=et as
< Cor || Vool [5=51 + Coa| Vo [5=0T1 + Cosl|Vvoll 3a e
"Fr—o

a—+1
(3.26)

6(p—2a)

+094||V1U0||6(1+p a) +Cg5||vu7”2a+3p T

1+5a 5p 3(p—a—1) 3(p—a—1)

2 4 Cor || Awg |l "~ + Cogl| Awg |7~

+ CQGHVup?

Using the above estimates in (3.19)) and Young’s inequality, for p € (14 «, 1 + 4«)
we have

p+a

¢
[Jullh + Cél/ [Vu™= |3ds < Cf,, 0<t<T. (3.27)
0
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Here we used the facts i € (0,2) and 57355%5 € [2,6] for 1/8 < a < 1/3 and
14+ a < p < 1+4a. Hence, we have holds for p € (%71 + 404)7 Also,
the above can be extended for p € (1 + «,1 + 4a). Choose sg = % - %. Then
from above, u € L>(0,T; L% (R3)) as 1 < sg < 1 + 4a. To prove holds for
a € [1/8,1/3), we choose s; = 2;_17’73& such that s; € (sg,3s0 + 3a) for p > 1+ a.
Then by the standard maximal regularity estimate and using Holder inequality, we
have

T T T
/ HAUHSISCQQ/ ||u|\§1ds+/ Iz Vo2, ds. (3.28)
0 0 0

The first term in RHS of above evaluated using interpolation inequality as

T ) T 9 (so+a)2(?2;;fip;0;3aso) (so+a)2(?2'pvfip;0>f3aso)
/0 Jul, ds < Coy / luls ; i~ ds

p(12—4sg) —6asg

T
SC’gl/ ||Vu‘0’:r o 7E0F ds (3.29)
0

2p(3a+4s—6)+6as

r sote 2_4444§47f447
= C'91/ Va2, e ds.
0

The second term in RHS of (3.28]) evaluated using maximal regularity estimate as

T
/0 Iz - Vv||f1ds

T
<c, / | Av|2s, ds
0 pta

T T
<oy (1INl + [ Nl ds+ [ 112+ TolPay ds) (3.30)
pta 0 pta 0 pta
, , T (a+l)(3c?§)2a$:;)+6ap+p) 3(2&«#1)(((15(&::21))«#(&71);))
SO+ Chy [ Ml 7 ulggea T ds

Lioe  Bla=D(a=p)

T
ey / )

As (B.15) holds for o > £, we have u € L>(0,T; LP(R?)) for p € (14 a,00). As
similar to the above, we have u is bounded in L*°-norm. O

Theorem 3.3. Suppose that the initial data (ug,vo, wo, 20) satisfies (1)-(4) of The-
orem along with uy € L*>®(R3) and vg,wo, 20 € WH4(R3) for all q € [2,00).
Furthermore, assume that holds. Then for each T > 0, system (3.2]) possesses
a bounded weak solution (u,v,w,z) that satisfies

el oo (0,7 xR) + 11V "2 || L2 (0,7 xR9)

+ vl Laorwea(s)) + |wllLarw2a@s)) + |2l Lao,m;w20(rs))

+ 10wl Lao, ;e (r2)) + 10cw || Lao, ;L9 (r2)) + 102]| Lao,1;La(m2)) < C,
where C' is a constant depending on the initial data.

Proof. The existence of local weak solutions for model (3.1]) can be obtained as for
model (2.1). Therefore, we omit the proof here for the sake simplicity. Now, it is
sufficient to prove that the system admits bounded weak solution. From Lemma
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[3:2) and using the Aubin-Lions compactness lemma we have a weak solution, which
indeed is a bounded weak solution for (3.1)). O

The above theorem can be proven for a bounded domain 2 with Neumann bound-
ary conditions for u, v, and w, as well as no-slip boundary conditions for z as
specified in (2.74). Further, we have the result for bounded domain as corollary.

Corollary 3.4. Suppose that the initial data (ug,vo,wo, z0) satisfies (1)-(4) of
Theorem when replacing R3 by Q, along with ug € L*(Q) and vo,wo, 20 €
W4(Q) for any q € [2,00). Furthermore, assume that holds when replacing
R3 by Q. Then for each T > 0, system with boundary conditions
possesses a bounded weak solution (u,v,w,z) that satisfies

pho
lull Lo 0.1y x0) + VU2 [ L20,7)x ) + [Vl Lago, T2 (02))

+ llwllLao,mw2a(0)) + 12l Lao,rswza@)) + 100l Lago,riLa0))
+ 10sw|| La(o,1;La()) + 10¢2]| Lago, 1309 (0)) < Cs

where C' is a constant depending on the initial data.
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