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DELAY-DEPENDENT STABILITY CONDITIONS FOR DELAY

DIFFERENTIAL EQUATIONS WITH UNBOUNDED

OPERATORS IN BANACH SPACES

MICHAEL GIL’

Abstract. We consider the equation du(t)/dt = Au(t) + Bu(t − h) where

t > 0, h is a positive constant, and A is a linear unbounded and B is a
linear bounded operators. We establish explicit delay-dependent conditions

for exponential stability, and present applications to partial integro-differential

equations with delay.

1. Introduction and statement of the main result

In this article we suggest delay-dependent stability conditions for delay differen-
tial equations with unbound operators in a Banach space.

The basic method for the stability analysis of functional differential equations
is the Lyapunov-Krasovskij method [4, 13]. By that method, many results have
been obtained. Recently, that method has been extended to functional differential
equations in a Hilbert space, see [1, 6, 14, 15] and references given therein. In
[8, 10] the delay-dependent stability conditions for equations in a Banach space
with bounded operators have been derived. To the best of our knowledge, the delay-
dependent stability conditions for equations in a Banach space with unbounded
operators are not investigated in the available literature.

It should be noted that finding the Lyapunov-Krasovskij type functionals or
solving the corresponding operator inequalities are often connected with serious
mathematical difficulties,

To the contrary, the stability conditions presented in this paper are explicitly
formulated in terms of the coefficients and delays. The literature on the delay-
dependent stability criteria is rather rich, but mainly equations in a finite dimen-
sional space are considered, see [2, 3, 13].

Everywhere below, X is a complex Banach space with a norm ∥ · ∥X = ∥ · ∥
and the unit operator IX = I. By B(X ), we denote the set of all bounded linear
operators in X . For a linear operator T , σ(T ) is the spectrum and ∥T∥X = ∥T∥ is
the operator norm of T if it is bounded.
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Furthermore, C(J,X ) is the space of X -valued functions f defined and continuous
on a finite or infinite real segment J, and equipped with the finite norm.

∥f∥C(J) = ∥f∥C(J,X ) := sup
t∈J

∥f(t)∥X .

In addition, W (J,X ) is the space of X -valued functions f defined and strongly
continuously differentiable on J, and equipped with the norm

∥f∥W (J) = ∥f∥W (J,X ) := max{sup
t∈J

∥f ′(t)∥X , sup
t∈J

∥f(t)∥X }.

Denote also R+ = [0,∞) and Rη = [−η,∞) for a finite η > 0.
Throughout this article A is a closed linear operator with a dense domainD(A) ⊆

X , generating a strongly continuous semigroup eAt on X , and B ∈ B(X ) maps X
into D(A).

Our main object is to study the equation

y′(t) = Ay(t) +By(t− h) (t > 0; 0 < h = const.∞) (1.1)

with the initial condition

y(t) = ϕ(t) (−h ≤ t ≤ 0), (1.2)

where ϕ ∈W ([−h, 0],X ) ∩D(A) is given.
Various integro-differential equations with differential operators A and integral

operators B are examples of (1.1).
A solution of problem (1.1), (1.2) is defined as a continuous function y(t) defined

on Rη with values in D(A), having a continuous derivative for all t > 0 and the
right derivative at zero, and satisfying (1.1), and (1.2).

Let ∫ ∞

0

∥eAs∥Xds <∞. (1.3)

Since AB is defined on the whole X , due to the Banach theorem [12, Section 2] AB
is bounded, and consequently,

ψA :=

∫ ∞

0

∥eAsAB∥Xds <∞.

In addition, put M = A+B and assume that∫ ∞

0

∥eMs∥Xds <∞. (1.4)

Therefore

ψM :=

∫ ∞

0

∥eMsB∥Xds <∞.

Now we are in a position to formulate the main result of the paper.

Theorem 1.1. Let conditions (1.3),(1.4) and

hψM (ψA + ∥B∥X ) < 1 (1.5)

hold. Then problem (1.1), (1.2) with ϕ ∈ W (−h, 0) ∩D(A) has a unique solution
y(t), which satisfies the inequality ∥y∥C(R+) ≤ c0∥ϕ∥W (−h,0), where the constant
c0 ≥ 1 does not depend on ϕ.
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The proof of this theorem is presented in the next section. Theorem 1.1 gives us
the conditions for the Lyapunov stability with respect to W (−h, 0).

We will say that (1.1) is exponentially stable with respect to W (−h, 0), if there
are constants α > 0 and c1 ≥ 1 independent of ϕ ∈W (−h, 0), such that

∥y(t)∥X ≤ c1e
−αt∥ϕ∥W (−h,0) (t ≥ 0)

for any solution of (1.1), (1.2).
Assume that the semigroups eAt and eMt are exponentially stable:

∥eAt∥X ≤ cAe
−αAt and ∥eMt∥X ≤ cMe

−αM t, (1.6)

where t ≥ 0, αA > 0, αM > 0, cA ≥ 1, cM ≥ 1. Then

ψA ≤ ∥AB∥X
∫ ∞

0

cAe
−αAtdt = cA∥AB∥X /αA, ψM ≤ cM∥B∥X /αM .

So (1.5) is provided by the inequality

hcM∥B∥X
αM

(cA∥AB∥X
αA

+ ∥B∥X
)
< 1. (1.7)

Now Theorem 1.1 implies

∥y∥C(R+) ≤ c2∥ϕ∥W (−h,0), (1.8)

where c2 does not depend on ϕ.
In the next section we also show that Theorem 1.1 implies the following result.

Corollary 1.2. Let conditions (1.6) and (1.7) hold. Then (1.1) is exponentially
stable with respect to W (−h, 0).

This corollary is sharp: if B = 0, then its conditions are necessary for the
exponential stability. Moreover, its conditions are necessary if h = 0 and A = 0.

2. Proofs of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. According to [9, Theorem 1], problem (1.1), (1.2) has a
unique differentiable solution y(t). Since y(t) ∈ D(A), by the variation of con-
stants formula [5, Sect. III.1], (1.1) is equivalent to the equation

y(t) = eAtϕ(0) +

∫ t

0

eA(t−s)By(s− h)ds.

Consequently, in view of (1.1),

dy(t)/dt = Ay(t) +By(t− h) = A(eAtϕ(0) +

∫ t

0

eA(t−s)By(s− h)ds) +By(t− h).

Since AB is bounded the integral
∫ t

0
eA(t−s)ABy(s − h)ds (0 < t < ∞) converges

and

A

∫ t

0

eA(t−s)By(s− h)ds =

∫ t

0

eA(t−s)ABy(s− h)ds.

Thus, (1.1) can be written as

dy

dt
= AeAtϕ(0) +

∫ t

0

eA(t−s)ABy(s− h)ds+By(t− h).

Hence, with the notation

|y|t := sup
0≤s≤t

∥y(s)∥X (0 < t <∞) and a0 := sup
t≥0

∥eAt∥X ,
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we can write

|y′|t ≤ a0∥Aϕ(0)∥X +

∫ t

0

∥eA(t−s)ABy(s− h)∥Xds+ ∥B∥X sup
0≤s≤t

∥y(s− h)∥X ,

and therefore

|y′|t ≤ a0∥Aϕ(0)∥X + (ψA + ∥B∥X ) sup
0≤s≤t

∥y(s− h)∥X ,

i. e.
|y′|t ≤ a0∥Aϕ(0)∥X + (ψA + ∥B∥X )(∥ϕ∥C(−h,0) + |y|t). (2.1)

From (1.1) and (1.2) it follows that

ϕ′(0) = Aϕ(0) +Bϕ(−h).
Hence,

∥Aϕ(0)∥X ≤ (1 + ∥B∥X )∥ϕ∥W (−h,0).

Now (2.1) yields

|y′|t ≤ a0(1 + ∥B∥X )∥ϕ∥W (−h,0) + (ψA + ∥B∥X )∥ϕ∥C(−h,0) + (ψA + ∥B∥X )|y|t
and thus

|y′|t ≤ ĉ∥ϕ∥W (−h,0) + (ψA + ∥B∥X )|y|t, (2.2)

where
ĉ = a0(1 + ∥B∥X ) + ψA + ∥B∥X .

Furthermore, we rewrite (1.1) as

y′(t) =My(t) +B(y(t− h)− y(t)) (t > 0). (2.3)

Recall that M = A+B. from the above mentioned variation of constants formula,

y(t) = eMtϕ(0) +

∫ t

0

eM(t−s)B(y(s− h)− y(s))ds.

Hence,

|y|t ≤ m0∥ϕ(0)∥X +

∫ t

0

∥eM(t−s)B∥Xds sup
s≤t

∥y(s− h)− y(s)∥X , (2.4)

where m0 := supt≥0 ∥eMt∥X , and therefore

|y|t ≤ m0∥ϕ(0)∥X + ψM sup
0≤s≤t

∥y(s− h)− y(s)∥X . (2.5)

Note that

∥y(s− h)− y(s)∥X = ∥
∫ s

s−h

y′(s1)ds1∥X

≤ h∥y′∥C(−h,t)

≤ h∥ϕ′∥C(−h,0) + h|y′|t (s ≤ t).

Using (2.5), we arrive at the inequality

|y|t ≤ m0∥ϕ(0)∥X + ψMh(∥ϕ′∥C(−h,0) + |y′|t).
Now (2.2) implies

|y|t ≤ ∥ϕ∥W (−h,0)(m0 + ψMh+ hψM ĉ) + hψM (ψA + ∥B∥X )|y|t,
or

|y|t ≤ ĉ2∥ϕ∥W (−h,0) + hψM (ψA + ∥B∥X )|y|t,
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where ĉ2 = m0 + ψMh+ hψM ĉ. According (1.5) we obtain

|y|t ≤ ĉ2∥ϕ∥W (−h,0)(1− hψM (ψA + ∥B∥X ))−1.

Hence, letting t→ ∞, we obtain

∥y∥C(R+) ≤ (1− hψM (ψA + ∥B∥X ))−1ĉ2∥ϕ∥W (−h,0).

This proves the required result. □

Proof of Corollary 1.2. Substitute

y(t) = e−ϵtyϵ(t) (2.6)

with ϵ > 0 into (1.1). We obtain the equation

y′ϵ(t) = (A+ ϵI)yϵ(t) +Beϵhyϵ(t− h) (t > 0). (2.7)

Put M(ϵ) = A+ ϵI +Beϵh. We have

eM(ϵ)t − eMt =

∫ t

0

eM(t−s)(M(ϵ)−M)eM(ϵ)sds

= −
∫ t

0

eM(t−s)(ϵI +B(eϵh − 1))eM(ϵ)sds.

Hence,

∥eM(ϵ)t∥ ≤ ∥eMt∥+
∫ t

0

∥eM(t−s)∥δ(ϵ)∥eM(ϵ)s∥ds

≤ e−αM t + δ(ϵ)

∫ t

0

e−αM (t−s)∥eM(ϵ)s∥ds,

where δ(ϵ) = ∥ϵI +B(eϵh − 1)∥ → 0 as ϵ→ 0. Thus we obtain

∥e(M(ϵ)+αMI)t∥ ≤ 1 + δ(ϵ)

∫ t

0

∥e(M(ϵ)+αMI)s∥ds.

Now the Gronwall lemma yields

∥eM(ϵ)t∥ ≤ e−αM (ϵ)t,

where αM (ϵ) = αM − δ(ϵ). So αM (0) = αM . If (1.6), (1.7) hold, then for small
enough ϵ > 0,

hcMe
ϵh∥B∥

αM (ϵ)

(cAeϵh∥AB + ϵB∥
αA − ϵ

+ eϵh∥B∥
)
< 1.

From inequality (1.8), which follows from Theorem 1.1, a solution of (2.7) with the
initial function ϕ ∈ W (−h, 0) satisfies the inequality ∥yϵ∥C(R+) ≤ cϵ∥ϕ∥W (−h,0),
where cϵ does not depend on ϕ. Hence, (2.6) yields

∥y(t)∥C(R+) ≤ cϵe
−ϵt∥ϕ∥W (−h,0) (t ≥ 0).

This proves the exponential stability. □
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3. Example

In this section X = L2(0, 1), where L2(0, 1) = L2 is the traditional Hilbert space
of complex-valued functions defined on [0, 1] with the scalar product

(f, f1) =

∫ 1

0

f(x)f1(x)dx (f, f1 ∈ L2).

We consider the equation

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
+ b(x)u(t, x) +

∫ 1

0

K(x, s)u(t− h, s)ds (3.1)

for 0 ≤ x ≤ 1 and t ≥ 0, where b(x) is a complex valued function defined and
bounded on [0, 1]; K(x, s) is defined on [0, 1]×[0, 1], twice continuously differentiable
in x ∈ [0, 1], and bounded and measurable in s, and K(0, s) = K(1, s) = 0 (s ∈
[0, 1]).

We consider the boundary conditions

u(0, t) = u(1, t) = 0 (t ≥ 0). (3.2)

We will consider problem (3.1), (3.2) in L2(0, 1) with

D(A) = {f ∈ L2(0, 1) : f ′′ ∈ L2(0, 1), f(0) = f(1) = 0},

A and B are defined by

(Af)(x) =
d2f(x)

dx2
+ b(x)f(x) (f ∈ D(A)),

(Bf)(x) =

∫ 1

0

K(x, s)f(s)ds (f ∈ L2).

Thus B maps L2(0, 1) into D(A). Also

(ABf)(x) =

∫ 1

0

[K ′′(x, s) + b(x)K(x, s)]f(s)ds (f ∈ L2(0, 1)).

Simple calculations show that the largest eigenvalue of the self-adjoint operator d2

dx2

on D(A) is −π2 and

sup
f∈D(A)

Re(Af, f)/(f, f) ≤ ν̂A := −π2 + sup
x

Re b(x).

Note that the function w(t) = eAtw(0) with w(0) ∈ D(A) satisfies

d

dt
(w(t), w(t)) = (w′(t), w(t)) + (w(t), w′(t))

= (Aw(t), w(t)) + (w(t), Aw(t))

≤ 2ν̂A(w(t), w(t)).

Hence
d

dt
∥w(t)∥ ≤ ν̂A∥w(t)∥

and therefore

∥eAt∥ ≤ eν̂At (t ≥ 0). (3.3)

With

ν̂A = −π2 + sup
x

Re b(x) < 0
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we have

ψA =

∫ ∞

0

∥eAtAB∥dt ≤ ∥AB∥/|ν̂A|. (3.4)

Furthermore, with M = A+B, we obtain

sup
f∈D(A)

Re(Mf, f)/(f, f) ≤ ν̂M := ν̂A + ν̂B

where

ν̂B :=
1

2
sup

f∈L2(0,1)

((B +B∗)f, f)/(f, f) <∞,

where B∗ is the adjoint of B, i.e. ν̂B is the largest eigenvalue of the self-adjoint
operator (B +B∗)/2. With ν̂M < 0 similarly to (3.3) and (3.4) we have

∥eMt∥L2 ≤ eν̂M t (t ≥ 0),

ψM =

∫ ∞

0

∥eMtB∥dt ≤ ∥B∥L2/|ν̂M |.
(3.5)

According to (3.3) and (3.5) cA = cM = 1. Using Corollary 1.2, we arrive at the
following result.

Theorem 3.1. Let ν̂A < 0, ν̂M < 0 and

h∥B∥L2

ν̂M

(∥AB∥L2

ν̂A
+ ∥B∥L2

)
< 1 .

Then (3.1), (3.2) is exponentially stable with respect to W (−h, 0).

Acknowledgments. The author is very grateful to the anonymous referee for
his/her helpful remarks.

References

[1] O. Arino, M.L. Hbid, E.H. Dads (eds.); Delay Differential Equations and Applications,
Springer, Dordrecht, The Netherlands, 2006.

[2] L. Berezansky, E.Braverman; On exponential stability of linear delay equations with oscilla-

tory coefficients and kernels. Differential and Integral Equations, 35, no. 9-10 (2022), 559–580
.
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