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ULAM TYPE STABILITY FOR NONLINEAR HAHN

DIFFERENCE EQUATIONS WITH DELAY

KAI CHEN, JINRONG WANG

Abstract. In this article, we study the Ulam type stability of nonlinear Hahn

difference equations with delay over a finite interval. First, we use the Banach
fixed point theorem to prove the existence and uniqueness of a solution. Then

we establish the Ulam stability for first and second order nonlinear Hahn differ-

ence equations with delay. We also extend our analysis to n-th order nonlinear
Hahn difference equations with delay. To illustrate our theoretical findings, we

provide three examples.

1. Introduction

Hahn [10] developed a difference operator, by drawing from two well-known dif-
ference operators: the forward difference operator [4] and the Jackson q-difference
operator [3, 5, 6, 27]. Subsequently, Annaby et al. [2] extended the concept by in-
troducing the q, ω-integral a function, which encompasses both Nörlund sums and
Jackson q-integrals. Hamaz et al. [11, 16] explored the existence and uniqueness
of solutions to Hahn difference equations using the method of successive approxi-
mations and examined the stability of first-order Hahn difference equations. Ab-
delkhaliq et al. [1] investigated the stability of Hahn difference equations within
Banach spaces. Additional results on the Hahn difference operator can be found in
references [12, 14, 15, 17, 18, 22, 24].

Ulam stability originated from a query about stability addressed in [29], and was
later termed Ulam-Hyers stability by Hyers [19]. Rassias [25] further developed this
concept into Ulam-Hyers-Rassias stability by incorporating additional variables in
the form of functions. Following this, numerous studies have explored the Ulam
stability of various equations [8, 9, 20, 21, 26]. For instance, Rus [28] examined
Ulam stability in ordinary differential equations, Otrocol et al. [23] looked into the
Ulam stability of delay differential equations, and Hamaz et al. [13] studied the
Ulam stability of first-order linear quantum difference equations.

Inspired by [15, 28, 23], we consider the equation

Dq,ωx(s) = F (t, x(s), x(Θ(s))), s ∈ I1 = [ω0, b],

x(s) = y(s), s ∈ I2 = [ω0 − h0, ω0],
(1.1)
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where F : I1 × R2 → R and Θ : I1 → I3, I3 = I1 ∪ I2, are continuous at s = ω0,
Θ(s) ≤ s, h0 > 0 and y : I2 → R is the initial value condition. We demonstrate
both the existence and uniqueness of the solution to equation (1.1) on I3 using
the Banach fixed point theorem. Additionally, we explore the Ulam stability of
equation (1.1) on I3. Unlike [11], where the method of successive approximations
was used and the function f needed to be continuous on the plane I1 × R, our
approach requires f to be continuous specifically at s = ω0.

Secondly, we examine the equation

D2
q,ωx(s) = F (s, x(s),Dq,ωx(s), x(Θ(s))), s ∈ I1,

x(s) = y(s), Dq,ωx(s) = Dq,ωy(s), s ∈ I2,
(1.2)

where F : I1 × R3 → R is continuous at s = ω0. We analyze the existence and
uniqueness of the solution to equation (1.2) on I3 using the Banach fixed point
theorem. Subsequently, we establish the Ulam stability of equation (1.2) on I3
employing Gronwall’s inequality. Finally, we analyze the equation

Dn
q,ωx(s) = F (s, x(s),Dq,ωx(s), . . . ,D

n−1
q,ω x(s), x(Θ(s))), s ∈ I1,

x(s) = y(s), Dj
q,ωx(s) = Dj

q,ωy(s), s ∈ I2, i = 0, 1, . . . , n− 1,
(1.3)

where F : I1 ×Rn → R is continuous at s = ω0. We extend the results of the Ulam
stability to equation (1.3) on I3.

The remainder of this article is organized as follows: In Section 2, we present
notations and relevant preliminaries for the paper. Section 3 is dedicated to the
study of the Ulam stability of equation (1.1) on interval I3. In Section 4, we establish
the Ulam stability of equation (1.2) on interval I3, and provides direct results on the
Ulam stability of equation (1.3). Finally, Section 5 includes examples to illustrate
these theoretical findings.

2. Preliminaries

Throughout the article, R is the set of real numbers, R+ signifies the set of non-
negative real numbers, N+ refers to the set of positive integers, and I0 represents
any interval of R that includes ω0.

We define these function spaces

S(I3,R) = {f : I3 → R : f(s) is continuous at s = ω0 and bounded},
S(I3,R+) = {f : I3 → R+ : f(s) is continuous at s = ω0 and bounded}.

Let S(I3,R+) have a subspace S1(I3,R+) in which all functions are increasing.
Obviously,

S(I3,R) ⊇ S(I3,R+) ⊇ S1(I3,R+).

For S(I3,R), S(I3,R+) and S1(I3,R+), let the metric ρ be defined by

ρ(v1, v2) = max
s∈I3

|v1(s)− v2(s)|.

Then it is obvious that S(I3,R), S(I3,R+) and S1(I3,R+) are complete metric
spaces.

Definition 2.1. [10] Assume function f : I0 → R is continuous at s = ω0. Then
Hahn difference operator is defined by

Dq,ωf(s) =

{
f(qs+ω)−f(t)
s(q−1)+ω , t ̸= ω0,

f′(ω0), t = ω0,
.
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where 0 < q < 1 and ω > 0 are constants, ω0 = ω
1−q .

Definition 2.2. [2] Assume function g : I0 → R is continuous at s = ω0 and let
[a1, a2] ⊂ I0. Then the Hahn integral of g from a1 to a2 has the form∫ a2

a1

g(s1)dq,ωs1 =

∫ a2

ω0

g(s1)dq,ωs1 −
∫ a1

ω0

g(s1)dq,ωs1,

where∫ x

ω0

g(s1)dq,ωs1 = (x(1− q)− ω)

∞∑
j=0

qjg(σj(x)) =

∞∑
j=0

(σj(x)− σj+1(x))g(σk(x))

for x ∈ I0, and

σj(x) = qjx+ ω[j]q, x ∈ I0, [j]q =
1− qj

1− q
,

and the series (x(1− q)− ω)
∑∞

k=0 q
kg(σk(x)) converges at x = a1 and x = a2.

We can noted that

|
∫ a2

a1

g(s1)dq,ωs1| ≤
∫ a2

a1

|g(s1)|dq,ωs1, ∀a1, a2 ∈ I0, a1 < a2,

is not necessarily true [2]. However, for a1 = ω0, we can obtain

|
∫ a2

ω0

g(s1)dq,ωs1| ≤
∫ a2

ω0

|g(s1)|dq,ωs1, ∀a2 ∈ I0, a2 > ω0.

Additionally, we can obtain that∫ a1

ω0

|g(s1)|dq,ωs1 ≤
∫ a2

ω0

|g(s1)|dq,ωs1, ∀a1, a2 ∈ I0, ω0 < a1 < a2, (2.1)

is not necessarily true. If function |g| is increasing on I0, inequality (2.1) holds.

Definition 2.3. [2] Assume function ζ : I0 → R is continuous at s = ω0 and
1 − ζ(s)(s − σ(s)) ̸= 0, ∀ s ∈ I0. Then exponential functions eζ(s) and Eζ(s) are
given by

eζ(s) =
1∏∞

j=0(1− ζ(σj(s))qj(s− σ(s)))
, (2.2)

Eζ(s) =

∞∏
j=0

(1 + ζ(σj(s))qj(s− σ(s))). (2.3)

It is obvious that (2.2) and (2.3) are convergent since
∑∞

j=0 | ζ(σj(s)) | qj(s −
σ(s)) is convergent. For ζ(s) = a0 ∈ R for all s ∈ I0, we have

ea0
(s) =

1∏∞
j=0(1− a0qj(s− σ(s)))

=

∞∑
j=0

(a0(s− σ(s)))j

(q : q)j
, |s− ω0| <

1

|a0(1− q)|
,

(2.4)

and

Ea0
(s) =

∞∏
j=0

(1 + a0q
j(s− σ(s))) =

∞∑
j=0

q
1
2 j(j−1)(a0(s− σ(s)))j

(q : q)j
, s ∈ R, (2.5)
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where

(a : q)n =

{∏n
j=1(1− aqj−1), n ∈ N+,

1, n = 0.

The proofs of (2.4) and (2.5) can be found in [7].

Lemma 2.4 ([2]). Assume f, g : I0 → R are continuous at s = ω0. Then∫ b

a

g(s)Dq,ω(f(s))dq,ωs+

∫ b

a

Dq,ω(g(s))f(σ(s))dq,ωs = f(s)g(s)
∣∣b
a
, a, b ∈ I0.

Lemma 2.5 (Gronwall’s inequality). Assume f, g : I0 → R are continuous at
s = ω0 and ζ : I0 → R+ is continuous at s = ω0. Let 1− ζ(s)(s− σ(s)) > 0 for all
s ∈ I0. If

f(s) ≤ g(s) +

∫ s

ω0

ζ(s1)f(s1)dq,ωs1, ∀s ∈ I0,

then

f(s) ≤ g(s) + eζ(s)

∫ s

ω0

ζ(s1)E−s1(σ(s1))g(s1)dq,ωs1. (2.6)

Let ζ(s) = a0 ∈ R+, for all s ∈ I0. If

f(s) ≤ g(s) +

∫ s

ω0

a0f(s1)dq,ωs1, s ∈ [ω0, ω0 +
1

a0(1− q)
],

then

f(s) ≤ g(s) + a0ea0
(s)

∫ s

ω0

E−a0
(σ(s1))g(s1)dq,ωs1.

Lemma 2.6 ([23]). Assume (Y, d,≤) is an ordered metric space. V : Y → Y is an
increasing Picard operator (FV = {y∗V } denotes the fixed point set of operator V ).
Then, for y ∈ Y , we have

(i) if y ≤ V (y), then y ≤ y∗V ;
(ii) if y ≥ V (y), then y ≥ y∗V .

3. Ulam stability of equation (1.1)

Definition 3.1 ([28]). Assuming there is a real number c > 0, for for all ε > 0 and
for all y satisfy

|Dq,ωy(s)− F (s, y(s), y(Θ(s)))| ≤ ε, s ∈ I1, (3.1)

equation (1.1) has a solution x with

|y(s)− x(s)| ≤ cε, ∀s ∈ I3.

Then (1.1) has Ulam-Hyers stability on I3.

Definition 3.2 ([28]). Assuming there is a function θ : R+ → R+ and θ(0) = 0,
for each solution y of inequality (3.1), equation (1.1) has a solution x with

|y(s)− x(s)| ≤ θ(ε), ∀s ∈ I3.

Then (1.1) has generalized Ulam-Hyers stability on I3.
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Definition 3.3 ([28]). Assuming there is c > 0, for all y satisfy

|Dq,ωy(s)− F (s, y(s), y(Θ(s)))| ≤ εφ(s), s ∈ I1, (3.2)

equation (1.1) has a solution x with

|y(s)− x(s)| ≤ cεφ(s), ∀s ∈ I3.

Then (1.1) has Ulam-Hyers-Rassias stability with respect to φ on I3.

Definition 3.4 ([28]). Assuming there is c > 0, for all y satisfy

|Dq,ωy(s)− F (s, y(s), y(Θ(s)))| ≤ φ(s), s ∈ I1, (3.3)

equation (1.1) has a solution x with

|y(s)− x(s)| ≤ cφ(s), ∀s ∈ I3.

Then (1.1) has generalized Ulam-Hyers-Rassias stability with respect to φ on I3.

Remark 3.5. A function y satisfies inequality (3.1) if and only if there is a function
β : R → R such that

(i) |β(s)| ≤ ε for all s ∈ I1;
(ii) Dq,ωy(s) = F (s, y(s), y(Θ(s))) + β(s) for all s ∈ I1.

The same statements apply to inequalities (3.2) and (3.3).

In this article, we use the following assumptions:

(A1) there is a real number LF > 0 such that for all s ∈ I1, xj , yj ∈ R, j = 1, 2,

|F (s, x1, x2)− F (s, y1, y2)| ≤ LF

2∑
j=1

|xj − yj |.

(A2) b− ω0 < 1
2LF

.

(A3) φ : I1 → R is increasing and continuous at s = ω0.

Theorem 3.6. Under assumptions (A1), (A2), Equaton (1.1) has (i) a unique
solution on I3, and (ii) Ulam-Hyers stability on I3.

Proof. (i) Equation (1.1) is equivalent to the Hahn integral equation

x(s) =

{
y(s), s ∈ I2,

y(ω0) +
∫ s

ω0
F (s1, x(s1), x(Θ(s1)))dq,ωs1, s ∈ I1.

(3.4)

We consider the mapping G : S(I3,R) → S(I3,R) as

(Gx)(s) =

{
y(s), s ∈ I2,

y(ω0) +
∫ s

ω0
F (s1, x(s1), x(Θ(s1)))dq,ωs1, s ∈ I1.

For all v ∈ S(I3,R), we have

|(Gu)(s)− (Gv)(s)| ≤
∫ s

ω0

|F (s1, u(s1), u(Θ(s1)))− F (s1, v(s1), v(Θ(s1)))|dq,ωs1

≤
∫ s

ω0

2LF max
s∈I3

|u(s)− v(s)|dq,ωs1

≤ 2LF (b− ω0)max
s∈I3

|u(s)− v(s)|.

By (A2) and the Banach fixed point theorem, equation (1.1) has a unique solution
on I3.
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(ii) Let y satisfy (3.1) and x represent the unique solution of (1.1). Then we can
get (3.4). Consequently, by Remark 3.5, we obtain

|y(s)− x(s)|

≤
∫ s

ω0

|β(s1)|dq,ωs1

+ |
∫ s

ω0

F (s1, y(s1), y(Θ(s1)))− F (s1, x(s1), x(Θ(s1)))dq,ωs1|

≤ ε(s− ω0) +

∫ s

ω0

LF (|y(s1)− x(s1)|+ |y(Θ(s1))− x(Θ(s1))|)dq,ωs1.

(3.5)

Let us define V : S(I3,R+) → S(I3,R+) by

(V u)(s) =

{
0, s ∈ I2,

ε(s− ω0) +
∫ s

ω0
LF (u(s1) + u(Θ(s1)))dq,ωs1, s ∈ I1.

For all u, v ∈ S(I3,R+), we have

|(V u)(s)− (V v)(s)| ≤
∫ s

ω0

LF (|u(s1)− v(s1)|+ |u(Θ(s1))− v(Θ(s1))|)dq,ωs1

≤ 2LF (b− ω0)max
s∈I3

|u(s)− v(s)|.

Then V is a contraction mapping in S(I3,R+). For all u1, v1 ∈ S1(I3,R+), we can
also obtain

|(V u1)(s)− (V v1)(s)| ≤ 2LF (b− ω0)max
s∈I3

|u1(s)− v1(s)|.

Then V is also a contraction mapping in S1(I3,R+). Thus, according to Banach
fixed theorem, V has the unique fixed point u∗ ∈ S1(I3,R+) in S(I3,R+). We
obtain

u∗(s) = ε(s− ω0) +

∫ s

ω0

LF (u
∗(s1) + u∗(Θ(s1)))dq,ωs1, s ∈ I1.

Since u∗ ∈ S1(I3,R+) is increasing, we have

u∗(s) ≤ ε(s− ω0) +

∫ s

ω0

2LFu
∗(s1)dq,ωs1, s ∈ I1. (3.6)

By using Lemma 2.5 (Gronwall’s inequality), from (3.6) it follows that

u∗(s) ≤ ε(s− ω0) + e2LF
(s)2LF

∫ s

ω0

E−2LF
(σ(s1))ε(s1 − ω0)dq,ωs1.

Therefore, based on Lemma 2.4, we get

u∗(s) ≤ ε(s− ω0)− e2LF
(s)

∫ s

ω0

Dq,ω(E−2LF
(s1))ε(s1 − ω0)dq,ωs1

≤ ε(e2LF
(b)− 1)

2LF
.

Let u = |y − x|. According to (3.5), we have u ≤ V (u). By using Lemma 2.6, we
obtain

u(s) ≤ u∗(s), s ∈ I1.
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Then

|y(s)− x(s)| ≤ ε(e2LF
(b)− 1)

2LF
, s ∈ I1.

Thus equation (1.1) has Ulam-Hyers stability on I3. □

Corollary 3.7. Under assumptions (A1)–(A3), Equation (1.1) has generalized
Ulam-Hyers stability on I3.

Theorem 3.8. Under assumptions (A1)–(A3), Equation (1.1) has Ulam-Hyers-
Rassias stability with respect to φ on I3.

Proof. By Theorem 3.6 (i), equation (1.1) has the unique solution on I3. Let y
satisfy (3.2). We can obtain (3.4). Thus, by using Remark 3.5, we have

|y(s)− x(s)|

≤ ε(b− ω0)φ(s) + |
∫ s

ω0

F (s1, y(s1), y(Θ(s1)))− F (s1, x(s1), x(Θ(s1)))dq,ωs1|

≤ ε(b− ω0)φ(s) +

∫ s

ω0

LF (|y(s1)− x(s1)|+ |y(Θ(s1u))− x(Θ(s1))|)dq,ωs1.

(3.7)
As in the proof of Theorem 3.6 (ii), let the operator V : S(I3,R+) → S(I3,R+) be
defined by

(V u)(s) =

{
0, s ∈ I2,

ε(b− ω0)φ(s) +
∫ s

ω0
LF ((V u)(s1) + (V u)(Θ(s1)))dq,ωs1, s ∈ I1.

Then, V has a unique fixed point u∗ ∈ S(I3,R+) such that u∗ is increasing and

u∗(s) ≤ ε(b− ω0)φ(s) +

∫ s

ω0

2LFu
∗(s1)dq,ωs1. (3.8)

By Lemma 2.5, from (3.8) it follows that

u∗(s) ≤ ε(b− ω0)φ(s) + e2LF
(s)2LF (b− ω0)

∫ s

ω0

E−2LF
(σ(s1))εφ(s1)dq,ωs1

≤ (b− ω0)e2LF
(b)εφ(s).

Then according to Lemma 2.6, we obtain

|y(s)− x(s)| ≤ (b− ω0)e2LF
(b)εφ(s).

Thus, equation (1.1) has Ulam-Hyers-Rassias stability with respect to φ on I3. □

Corollary 3.9. Under assumptions (A1)–(A3), Equation (1.1) has generalized
Ulam-Hyers-Rassias stability with respect to φ on I3.

4. Ulam stability of equation (1.2) and (1.3)

4.1. Ulam stability of equation (1.2). In this section, let S(I3,R) be a Banach
space in which all u ∈ S(I3,R) with the norm

∥u∥q,ω = max
{
max
s∈I3

|u(s)|, max
s∈I3

|Dq,ωu(s)|
}
.
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Lemma 4.1. Equation (1.2) has a solution x : I3 → R in the form

x(s) =


y(s), s ∈ I2,

y(ω0) + (s− ω0)Dq,ωy(ω0)

+
∫ s

ω0
(s− σ(s1))F (s1, x(s1),Dq,ωx(s1), x(Θ(s1)))dq,ωs1, s ∈ I1.

(4.1)

Proof. Equation (1.2) is equivalent to the integral equation

x(s) =


y(s), s ∈ I2,

y(ω0) + (s− ω0)Dq,ωy(ω0)

+
∫ s

ω0

∫ s2
ω0

F (s1, x(s1),Dq,ωx(s1), x(Θ(s1)))dq,ωs1dq,ωs2, s ∈ I1.

(4.2)

Then, we have∫ s

ω0

∫ s2

ω0

F (s1, x(s1),Dq,ωx(s1), x(Θ(s1)))dq,ωs1dq,ωs2

=

∫ s

ω0

∞∑
j=0

(σj(s2)− σj+1(s2))

× F (σj(s2), x(σ
j(s2)),Dq,ωx(σ

j(s2)), x(Θ(σj(s2))))dq,ωs2

=

∞∑
j=0

∞∑
i=0

(σi(s)− σi+1(s))(σj+i(s)− σj+1+i(s))

× F (σj+i(s), x(σj+i(s)),Dq,ωx(σ
j+i(s)), x(Θ(σj+i(s))))

=

∞∑
j=0

∞∑
i=0

qi(s− σ(s))qj+i(s− σ(s))

× F (σj+i(s), x(σj+i(s)),Dq,ωx(σ
j+i(s)), x(Θ(σj+i(s))))

= (s− σ(s))2
[
F (s, x(s),Dq,ωx(s), x(Θ(s)))

+ q(1 + q)F (σ(s), x(σ(s)),Dq,ωx(σ(s)), x(Θ(σ(s))))

+ q2(1 + q + q2)F (σ2(s), x(σ2(s)),Dq,ωx(σ
2(s)), x(Θ(σ2(s))))

+ q3(1 + q + q2 + q3)F (σ3(s),Dq,ωx(σ
3(s)), x(σ3(s)), x(Θ(σ3(s)))) + . . .

]
= (s− σ(s))2

∞∑
j=0

qj(1− qj+1)F (σj(s), x(σj(s)),Dq,ωx(σ
j(s)), x(Θ(σj(s))))

1− q

=

∞∑
j=0

(σj(s)− σj+1(s))(s− σj+1(s))F (σj(s), x(σj(s)),Dq,ωx(σ
j(s)), x(Θ(σj(s))))

=

∫ s

ω0

(s− σ(s1))F (τ, x(s1),Dq,ωx(s1), x(Θ(s1)))dq,ωs1.

Thus, we obtain (4.1). □

Now we introduce two more assumptions:

(A4) there is a real number LF > 0 such that for all s ∈ I1, xj , yj ∈ R, j = 1, 2, 3,

|F (s, x1, x2, x3)− F (s, y1, y2, y3)| ≤ LF

3∑
j=1

|xj − yj |.
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(A5) (b− ω0)
2 < 1+q

3LF
.

Theorem 4.2. Assume (A4) and (A5) hold. Then (1.2) has the unique solution
on I3.

Proof. By Lemma 4.1, equation (1.2) has a solution x : I3 → R in the form of (4.1).
Let the mapping V : S(I3,R) → S(I3,R) be define by

V (x)(s) =


y(s), s ∈ I2,

y(ω0) + (s− ω0)Dq,ωy(ω0)

+
∫ s

ω0
(s− σ(s1))F (s1, x(s1),Dq,ωx(s1), x(Θ(s1)))dq,ωs1, s ∈ I1.

For all x, y ∈ S(I3,R), we obtain

|V (x)(s)− V (y)(s)|

≤
∫ s

ω0

(s− σ(s1))LF (|x(s1)− y(s1)|+ |Dq,ωx(s1)−Dq,ωy(s1)|

+ |x(Θ(s1))− y(Θ(s1))|)dq,ωs1

≤
∫ s

ω0

3LF (s− σ(s1))∥x− y∥q,ωdq,ωs1

≤ 3LF (s− ω0)
2

(1 + q)
∥x− y∥q,ω.

Then, we can get

∥V (x)− V (y)∥q,ω ≤ 3LF (b− ω0)
2

(1 + q)
∥x− y∥q,ω.

By (A5) and the Banach fixed theorem, (1.2) has the unique solution on I3. □

Lemma 4.3. Assume (A5) holds and η(s) = 3LF (s− ω0), s ∈ R. Then eη(s) > 0
is increasing on I1 and 1− η(s)(s− σ(s)) > 0, for all s ∈ I1.

Proof. According to the definition of Hahn integral, by calculation, we obtain∫ s

ω0

η(s)dq,ωs =
3LF (s− ω0)

2

(1 + q)
.

From condition (A5), for s ∈ I1, we have

∞∑
k=0

η(σk(s))(σk(s)− σk+1(s)) < 1.

Then, 1− η(σk(s))(σk(s)−σk+1(s)) ∈ (0, 1) for all k ∈ N0, s ∈ I1. Thus, eη(s) > 0
is increasing on I1 and 1− η(s)(s− σ(s)) > 0 for all s ∈ I1. □

Theorem 4.4. Assume (A4) and (A5) hold. Then equation (1.2) has Ulam-Hyers
stability on I3.

Proof. According to Theorem 4.2, we can know equation (1.2) has the unique so-
lution on I3. Let y satisfy the inequality

|D2
q,ωy(s)− F (s, y(s),Dq,ωy(s), y(Θ(s)))| ≤ ε, s ∈ I1.

Let x represent the unique solution to (1.2). Then, we obtain (4.1).
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For s ∈ I1, according to Remark 3.5, we obtain

|y(s)− x(s)|

≤
∫ s

ω0

∫ s2

ω0

ε+ LF (|y(s1)− x(s1)|

+ |Dq,ωy(s1)−Dq,ωx(s1)|+ |y(Θ(s1))− x(Θ(s1))|)dq,ωs1dq,ωs2.

(4.3)

Let

ϕ(s) = max
{

max
s1∈[ω0−h0,s]

|y(s1)− x(s1)|,

max
s1∈[ω0−h0,s]

|Dq,ωy(s1)−Dq,ωx(s1)|
}
.

Then ϕ is increasing and

|y(s1)− x(s1)| ≤ ϕ(s1), |y(Θ(s1))− x(Θ(s1))| ≤ ϕ(s1),

|Dq,ωy(s1)−Dq,ωx(s1)| ≤ ϕ(s1).

Consequently,

|y(s)− x(s)| ≤
∫ s

ω0

∫ s2

ω0

ε+ 3LFϕ(s1)dq,ωs1dq,ωs2

≤
∫ s

ω0

(ε+ 3LFϕ(s2))(s2 − ω0)dq,ωs2

=
ε(s− ω0)

2

1 + q
+

∫ s

ω0

3LFϕ(s2)(s2 − ω0)dq,ωs2.

For all s1 ∈ [ω0, s], we have

|y(s1)− x(s1)| ≤
ε(s1 − ω0)

2

1 + q
+

∫ s1

ω0

3LFϕ(s2)(s2 − ω0)dq,ωs2.

Then

ϕ(s) ≤ ε(s− ω0)
2

1 + q
+

∫ s

ω0

3LFϕ(s2)(s2 − ω0)dq,ωs2. (4.4)

Let η(s) = 3LF (s − ω0), s ∈ R. According to Lemma 2.5 and Lemma 4.3, from
(4.4) it follows that

ϕ(s) ≤ ε(s− ω0)
2

1 + q
+ eη(s)

∫ s

ω0

η(s2)E−η(σ(s2))
ε(s2 − ω0)

2

1 + q
dq,ωs2

≤ ε(b− ω0)
2

1 + q
eη(b).

Thus,

|y(s)− x(s)| ≤ ε(b− ω0)
2

1 + q
eη(b).

Then (1.2) has Ulam-Hyers stability on I3. □

Corollary 4.5. Under assumptions (A4), (A5), Equation (1.2) has generalized
Ulam-Hyers stability on I3.

Theorem 4.6. Assume (A3)–(A5) hold. Then (1.2) has Ulam-Hyers-Rassias sta-
bility with respect to φ on I3.
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Proof. According to Theorem 4.2, equation (1.2) has the unique solution on I3. Let
y satisfy the inequality

|D2
q,ωy(s)− F (s, y(s),Dq,ωy(s), y(Θ(s)))| ≤ εφ(s), s ∈ I1.

Let x represent unique solution to (1.2). According to Remark 3.5, we have

|y(s)− x(s)| ≤
∫ s

ω0

∫ s2

ω0

εφ(s1) + LF (|y(s1)− x(s1)|+ |Dq,ωy(s1)−Dq,ωx(s1)|

+ |y(Θ(s1))− x(Θ(s1))|)dq,ωs1dq,ωs2.

Let

ϕ(s) = max
{

max
s1∈[ω0−h0,s]

|y(s1)− x(s1)|,

max
s1∈[ω0−h0,s]

|Dq,ωy(s1)−Dq,ωx(s1)|}.

As in the proof of Theorem 4.4, we have

|y(s)− x(s)| ≤
∫ s

ω0

∫ s2

ω0

εφ(s1) + 3LFϕ(s1)dq,ωs1dq,ωs2

≤
∫ s

ω0

(εφ(s2) + 3LFϕ(s2))(s2 − ω0)dq,ωs2

≤ εφ(s)(s− ω0)
2

1 + q
+

∫ s

ω0

3LFϕ(s2)(s2 − ω0)dq,ωs2.

Then one has

ϕ(s) ≤ εφ(s)(s− ω0)
2

1 + q
+

∫ s

ω0

3LFϕ(s2)(s2 − ω0)dq,ωs2. (4.5)

By using Lemma 2.5, from (4.5) it follows that

ϕ(s) ≤ εφ(s)(s− ω0)
2

1 + q
+ ep(s)

∫ s

ω0

p(s2)E−η(σ(s2))
εφ(s2)(s2 − ω0)

2

1 + q
dq,ωs2

≤ (b− ω0)
2eη(b)εφ(s)

1 + q
.

Then

|y(s)− x(s)| ≤ (b− ω0)
2eη(b)εφ(s)

1 + q
.

Thus, (1.2) has Ulam-Hyers-Rassias stability with respect to φ on I3. □

Corollary 4.7. Assume (A3)–(A5) hold. Then (1.2) has generalized Ulam-Hyers-
Rassias stability with respect to φ on I3.

4.2. Ulam stability of equation (1.3). Based on the definitions of the Hahn
difference and q, ω-integral, it is clear that x : I3 → R satisfies (1.3) if and only if
x satisfies the corresponding integral equation

x(s) =


y(s), s ∈ I2,∑n−1

k=0
(1−q)k(s−ω0)

k

(q:q)k
Dk

q,ωy(ω0) +
∫ s

ω0

∫ sn
ω0

. . .
∫ s2
ω0

F (s1, x(s1),

Dq,ωx(s1), . . . ,D
n−1
q,ω x(s1), x(Θ(s1)))dq,ωs1 . . . dq,ωsn−1dq,ωsn, s ∈ I1.

Now we introduce the next assumptions
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(A6) there is a real number L > 0 such that for all s ∈ I1, xj , yj ∈ R, j =
1, 2, . . . , n,

|F (s, x1, x2, . . . , xn)− F (s, y1, y2, . . . , yn)| ≤ L

n∑
j=1

|xj − yj |.

(A7) (b− ω0)
n < (q:q)n

(n+1)L(1−q)n .

Consequently, analogous approaches can be used to establish Ulam stability for
equation (1.3) on I3. We now easily present these results without proofs.

Theorem 4.8. Assume (A6) and (A7) hold. Then (1.3) has the unique solution
on I3.

Theorem 4.9. Assume (A6) and (A7) hold. Then (1.3) has Ulam-Hyers stability
on I3 with

c =
(1− q)n(b− ω0)

neη(b)

(q : q)n
,

where η(s) = (n+1)L(1−q)n−1(s−ω0)
n−1

(q:q)n−1
, and s ∈ R.

Theorem 4.10. Assume (A6) and (A7) hold. Then equation (1.3) has generalized
Ulam-Hyers stability on I3.

Theorem 4.11. Assume (A3), (A6), (A7) hold. Then (1.3) has Ulam-Hyers-
Rassias stability and generalized Ulam-Hyers-Rassias stability with respect to φ on
I3.

5. Examples

Example 5.1. We consider the equation

D 1
3 ,6

x(s) =
2e−|x(s)| + sin(x(s− 10))

264
, s ∈ [9, b],

x(s) = s2, s ∈ [−1, 9],

(5.1)

and inequalities

|D 1
3 ,6

y(s)− 2e−|y(s)| + sin(y(s− 10))

264
| ≤ ε, s ∈ [9, b],

|D 1
3 ,6

y(s)− 2e−|y(s)| + sin(y(s− 10))

264
| ≤ εe 1

45
(s), s ∈ [9, b].

When 9 < b < 75, equation (5.1) has the unique solution on [−1, b]. Obviously,
equation (5.1) has Ulam-Hyers stability on [8, 75) with

c = 66(e1/66(75)− 1).

Equation (5.1) has Ulam-Hyers-Rassias stability with respect to e 1
45
(s) on [−1, 75)

with
c = 66e1/66(75).

Example 5.2. We consider the equation

D2
1
2 ,

1
2
x(s) =

5 cos(x(s)) + 8D 1
2 ,

1
2
x(s) + 8 sin(x(s− 5))

10240
+

sin(x(s))

16806
, s ∈ [1, b],

x(s) = s, D 1
2 ,

1
2
x(s) = 1, s ∈ [−4, 1],

(5.2)
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and inequalities∣∣D2
1
2 ,

1
2
y(s)−

5 cos(y(s)) + 8D 1
2 ,

1
2
y(s) + 8 sin(y(s− 5))

10240
− sin(y(s))

16806

∣∣ ≤ ε,

for s ∈ [1, b], and∣∣D2
1
2 ,

1
2
y(s)−

5 cos(y(s)) + 8D 1
2 ,

1
2
y(s) + 8 sin(y(s− 5))

10240
− sin(y(s))

16806

∣∣ ≤ εe 1
16
(s),

for s ∈ [1, b]. When 1 < b < 1 + 8
√
10, equation (5.2) has the unique solution

on [−4, b]. Then equation (5.2) has Ulam-Hyers stability on [−4, 1 + 8
√
10) and

Ulam-Hyers-Rassias stability with respect to e 1
16
(s) on [−4, 1 + 8

√
10) with

c =
1280

3
ep(1+8

√
10)(1 + 8

√
10),

where p(s) = 3(s−1)
1280 , s ∈ R.

Example 5.3. We consider the equation

Dn
1
5 ,8

x(s) =
3Dn−1x(s) + sin(

∑n−2
i=1 Di

q,ωx(s)) + 2e−|x(s)| + cos(x(s− 1))

885
,

s ∈ [10, b],

x(t) = s, D 1
5 ,8

x(s) = 1, Di
1
5 ,8

x(s) = 0, i = 2, 3, . . . , n− 1, s ∈ [9, 10],

(5.3)

and inequalities∣∣Dn
1
5 ,8

y(s)−
3Dn−1y(s) + sin(

∑n−2
i=1 Di

q,ωy(s)) + 2e−|y(s)| + cos(y(s− 1))

885

∣∣ ≤ ε,

for s ∈ [10, b], and∣∣Dn
1
5 ,8

y(s)−
3Dn−1y(s) + sin(

∑n−2
i=1 Di

q,ωy(s)) + 2e−|y(s)| + cos(y(s− 1))

885

∣∣ ≤ εs,

for s ∈ [10, b]. When 10 < b < n

√
295[n]q !
n+1 +10, equation (5.3) has the unique solution

on [9, b]. Therefore, (5.3) has Ulam-Hyers stability on [9, b] and Ulam-Hyers-Rassias
stability with respect to φ(s) = s on [9, b].
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