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OUTPUT TRACKING FOR A 1-D WAVE EQUATIONS WITH

SPATIALLY VARYING COEFFICIENTS AND SUBJECT TO

UNKNOWN DISTURBANCES

YAN-NA JIA, CAN JIN, XIU-FANG YU

Abstract. In this article, we study the output tracking problem for a wave
equation with variable coefficients, and subject to boundary control matched

disturbances. Both the disturbances and the reference signal are unknown

harmonic signal. The performance output is non-collocated with the control
input. Initially, we establish an undisturbed auxiliary system and devise an

appropriate internal model dynamic to reformulate the tracking error. Sub-
sequently, we introduce an error-based feedback controller, leveraging an in-

vertible transformation to achieve output tracking. The well-posedness and

stability of the closed-loop system are established by applying semigroup the-
ory approach. Finally, we illustrate the effectiveness of these theoretical results

with numerical simulations.

1. Introduction

Output tracking is one of the most fundamental challenges in control theory. In
numerous engineering scenarios, the primary focus lies in ensuring that the out-
put signal of the control system asymptotically converges to the desired references,
even in the presence of disturbances. Additionally, it is imperative that all internal
loop states remain within a suitable range. Over the past few decades, extensive re-
search has been conducted on output tracking within the context of beam equations
[11, 14, 19], heat equations [12, 17, 29], wave equations [4, 5, 31], and various other
partial differential equations (PDEs) [15, 16]. A highly effective method for ad-
dressing the output tracking problem is the internal model principle (IMP), which
has been established in the literature since [3, 8, 24]. Through the application of
the IMP, the task of achieving robust output tracking is significantly streamlined
by constructing a dynamic tracking error feedback control system that incorporates
a p-copy of the exosystem, where p ∈ N+ represents the dimension of the output
[21]. Furthermore, several classic results have been extended to infinite-dimensional
systems, as demonstrated in studies such as [1, 4, 5, 18, 24], among many others.

On the other hand, the most challenging aspect of output tracking lies in man-
aging disturbances. Various strategies have been devised to tackle disturbances
or uncertain parameters in PDEs control problems. These methods include active
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disturbance rejection control [9, 32], sliding mode control [10, 26], adaptive control
[13, 30], and IMP [8, 24]. In [5, 6], the authors address regulation problems by
identifying unique solutions to regulator equations, from which compensators can
be formulated based on kernel equations. Recently, in [7], a control system based on
an observer framework was developed for a one-dimensional wave equation, incor-
porating non-collocated disturbances through the application of approach. In [28],
the issue of output tracking for one-dimensional wave equations, which are sub-
ject to unknown harmonic disturbances and reference signals, is tackled through
the utilization of an adaptive internal model and an adaptive frequency estimation
technique.

In this paper, we investigate the output tracking for a wave equation with variable
coefficients subject to boundary control matched harmonic disturbance. The system
is governed by the PDEs

Γtt(x, t) = (a(x)Γx(x, t))x, x ∈ (0, 1), t > 0,

Γx(0, t) = mΓt(0, t), t ≥ 0,

Γx(1, t) = U(t) + d(t), t ≥ 0,

Γ(x, 0) = Γ0(x), Γt(x, 0) = Γ1(x), x ∈ [0, 1],

yp(t) = Γ(0, t), t ≥ 0,

(1.1)

where Γ(·, t) represents the state of the entire system, yp(t) is the performance
output, U(t) is the control input. m is a known positive constant. Define a(·) ∈
C1[0, 1] as follows

a(x) = g1x+ g2, g1 > 0, g2 > 1. (1.2)

For a given reference signal r(t), we aim at finding a controller U(t) so that

lim
t→∞

e(t) = lim
t→∞

(yp(t)− r(t)) = 0. (1.3)

The disturbance d(t) and reference signal r(t) are generated by the following finite-
dimensional exosystem

v̇(t) = Qv(t), v(0) = v0, t > 0,

d(t) = F1v(t), r(t) = F2v(t), t > 0,
(1.4)

where Q ∈ R2q×2q is known but the initial value v0 and Fj ∈ R1×2q, j = 1, 2 are
unknown, which makes the disturbance d(t) and reference signal r(t) unknown. To
achieve output tracking, the following assumptions are required:

Assumption 1.1. The tracking error e(t) and its derivative ė(t) are available
measurements.

Assumption 1.2. The spectrum of Q is {±iωj , j = 1, 2, . . . , q}, where 0 < ω1 <
ω2 < · · · < ωq are distinct known parameters.

Under Assumption 1.2, the disturbance and reference signal can be rewritten as

d(t) =

q∑
j=1

(A1j sinωjt+B1j cosωjt) , (1.5)

r(t) =

q∑
j=1

(A2j sinωjt+B2j cosωjt) , (1.6)
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where {ωj} represent known frequencies and {A1j}, {B1j}, {A2j}, {B2j} are un-
known amplitudes.

The rest of thisarticle is organized as follows. In Section 2, we reconstruct the
measurable tracking error using the undisturbed auxiliary system and the proper
internal model dynamic. In Section 3, we focus on the construction of error-based
feedback controller. In Section 4, we prove the well-posedness and stability of the
closed-loop system. Finally, we present some numerical simulations in Section 5,
and our conclusions are concluded in Section 6.

2. Estimation

Before we design the controller to reject unknown disturbances and achieve out-
put tracking, it is necessary to estimate these disturbances. Frist we construct an
auxiliary system based on the measurable tracking error and its derivative

Γ̂tt(x, t) = (a(x)Γ̂x(x, t))x,

Γ̂x(0, t) = −k1(e(t)− Γ̂(0, t)) + k2Γ̂t(0, t) + (m− k2)ė(t),

Γ̂x(1, t) = U(t),

(2.1)

where k1, k2 > 0. For simplicity, in system (2.1) and hereafter we omit the initial
value when there is no confusion. Let

Γ̃(x, t) = Γ(x, t)− Γ̂(x, t). (2.2)

Then

Γ̃tt(x, t) = (a(x)Γ̃x(x, t))x,

Γ̃x(0, t) = k1Γ̃(0, t) + k2Γ̃t(0, t)− (k1F2 + k2F2Q+mF2Q)v(t),

Γ̃x(1, t) = F1v(t).

(2.3)

Now we introduce a new system

wtt(x, t) = (a(x)wx(x, t))x,

wx(0, t) = k1w(0, t) + k2wt(0, t),

wx(1, t) = 0,

(2.4)

where k1, k2 > 0 and a(x) satisfies (1.2). We consider system (2.4) in the state
space H = H1(0, 1)× L2(0, 1) equipped with the inner product

⟨(µ1, ν1), (µ2, ν2)⟩H =

∫ 1

0

[a(x)µ′
1(x)µ

′
2(x) + ν1(x)ν2(x)] dx+ k1µ1(0)µ2(0). (2.5)

System (2.4) can be easily rewritten as an evolution equation in H:

d

dt
(w(·, t), wt(·, t)) = A (w(·, t), wt(·, t)) , (2.6)

where operator A : D(A) ⊂ H → H is defined by

A(f, g) = (g, (af ′)′), ∀(f, g) ∈ D(A),

D(A) =
{
(f, g) ∈ H2(0, 1)×H1(0, 1) | f ′(1) = 0, f ′(0) = k1f(0) + k2g(0)

}
.
.

(2.7)
According to [23], we can see thatA generates an exponentially stable C0-semigroup
on H, that is, there exist two constants ζ0, ι0 > 0 such that

∥eAt∥H ≤ ζ0e
−ι0t, ∀t ≥ 0. (2.8)
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Theorem 2.1. Let k1, k2 > 0. Then for any initial state (Γ̃(·, 0), Γ̃t(·, 0)) ∈ H,

system (2.3) admits a unique solution (Γ̃, Γ̃t) ∈ C([0,∞);H). Moreover, there exists
a vector γ ∈ R1×2q such that

χ1(t) = Γ̃(0, t)− γv(t), (2.9)

satisfying

lim
t→∞

χ1(t) = 0, (2.10)

exponentially. Furthermore, the following hidden regularity holds

eι1·χ̇1(·) ∈ L2([0,∞);R), (2.11)

where ι1 is a positive constant.

Proof. A direct computation shows that the adjoint operator A∗ of A satisfies

A∗(f, g) = (−g,−(af ′)′) , ∀(f, g) ∈ D(A∗),

D(A∗) =
{
(f, g) ∈ H2(0, 1)×H1(0, 1) : f ′(1) = 0, f ′(0) = −k1f(0)− k2g(0)

}
.

(2.12)
System (2.3) can be rewritten as

d

dt

(
Γ̃(·, t), Γ̃t(·, t)

)
= A

(
Γ̃(·, t), Γ̃t(·, t)

)
+ Bv(t), (2.13)

where B = (0, −(k1F2 + k2F2Q+mF2Q)δ(·) + F1δ(· − 1)) with the Dirac distribu-
tion δ(·). Since v(t) satisfies (1.4), we have Bv(t) ∈ H1

loc([0,∞); [D(A∗)]′). Hence,

by [25], system (2.3) admits a unique solution
(
Γ̃, Γ̃t

)
∈ C([0,∞);H). Now we

show (2.9)-(2.11). Let

Ω(x) = (Ω1(x), Ω2(x))
T ∈ R2×2q, x ∈ [0, 1]. (2.14)

By recalling (1.4) and (2.13), we have

d

dt

[
Γ̃(·, t)− Ω1(·)v(t)
Γ̃t(·, t)− Ω2(·)v(t)

]
= A

[
Γ̃(·, t)− Ω1(·)v(t)
Γ̃t(·, t)− Ω2(·)v(t)

]
+ (AΩ(·)− Ω(·)Q+ B)v(t).

(2.15)
Since eAt is exponentially stable, it must have Reλ < 0 for any λ ∈ σ(A). This
together with Assumption 1.2 implies that σ(A) ∩ σ(Q) = ∅. Furthermore, from
A ∈ L(X1, [D(A∗)]′) and B ∈ L(R, [D(A∗)]′), it follows from [22] that the Sylvester
equation AΩ − ΩQ = −B admits a solution Ω ∈ L(R2q, [D(A∗)]′). Then, the

exponential stability of eAt implies that limt→∞ Γ̃(·, t) = Ω1(·)v(t) exponentially.
Letting γ := Ω1(0), we conclude that (2.9)-(2.11) hold. The proof is complete. □

Combining equations (2.2) and (2.9), we have

e(t) = Γ̂(0, t) + p(t) + χ1(t), (2.16)

where p(t) = (γ−F2)v(t). By Assumption 1.2, the term p(t) = (γ−F2)v(t) contains
the sinusoids of no more than q distinct frequencies. Then p(t) can be expressed as

p(t) =

q∑
j=1

(A3j sinωjt+B3j cosωjt), (2.17)

where {A3j} and {B3j} are uncertain parameters.
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Lemma 2.2. The p(t) = (γ − F2)v(t) can be generated by the exosystem

Ż(t) = ΥZ(t), Z(0) = Z0,

p(t) = F̂Z(t),
(2.18)

where Z(t) = (z1(t), z2(t), . . . , z2q(t))
⊤ ∈ R2q,

Υ =

(
0(2q−1)×1 I(2q−1)×(2q−1)

−ϖ1 0 −ϖ2 0 . . . −ϖq 0

)
,

F̂ = (1, 0, 0, . . . , 0),

(2.19)

the I(2q−1)×(2q−1) denotes (2q − 1) × (2q − 1) identity matrix, and ϖ1, . . . , ϖq are
chosen so that

l2q +ϖql
2q−2 +ϖq−1l

2q−4 + · · ·+ϖ1 = (l2 + ω2
1) . . . (l

2 + ω2
q ). (2.20)

Proof. We choose ϖ1, . . . , ϖq to satisfy (2.20). By (2.17), we obtain

ϖ1p(t) +ϖ2p
′′(t) + · · ·+ϖqp

(2q−2)(t) + p(2q)(t) = 0.

Let Z(t) =
(
p(t), ṗ(t), · · ·, p(2q−1)(t)

)⊤
, and then we show that Z(t) satisfies (2.18).

The proof is complete. □

From (2.16) and (2.18), the output tracking of system (1.1) is converted into
a new output tracking problem for system (2.1) and (2.18). However, p(t) is not
suitable for the controller design since the initial state Z(0) of the exosystem (2.18)
is unknown. To overcome this, we introduce the internal model dynamic

˙̂
Φ(t) = ΞΦ̂(t) + K̂(e(t)− Γ̂(0, t)), (2.21)

where Φ̂(t) =
[
ϕ̂(t), ϕ̂′(t), . . . , ϕ̂(2q−1)(t)

]⊤
∈ R2q×1,

Ξ =

(
0(2q−1)×1 I(2q−1)×(2q−1)

−η1 −η2 −η3 . . . −η2q−1 −η2q

)
,

K̂ = (0, 0, . . . , ξ)⊤,

(2.22)

where the parameter η = (η1, η2, η3, . . . , η2q) is chosen so that Ξ is Hurwitz and
ξ > 0.

Before we proceed, we need the following Lemma 2.3 from [2].

Lemma 2.3. Suppose that (S, F ) is observable and (Ξ, K̂) is controllable, where

S, Ξ ∈ R2q×2q and F ∈ R1×2q, K̂ ∈ R2q×1. The Sylvester equation

PS − ΞP = K̂F, (2.23)

admits a unique invertible matrix P .

Lemma 2.4. Consider system (2.21) with the controller pair (Ξ, K̂), where Ξ ∈
R2q×2q and K̂ ∈ R2q×1 are given by (2.22). Then, there exists a unique nonsingular
matrix P such that

χ2(t) = p(t)− F̂P−1Φ̂(t) (2.24)

tends to zero exponentially as t goes to infinity.
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Proof. Since (Υ, F̂ ) is observable, we can replace (S, F ) of Lemma 2.3 by the (Υ, F̂ ).
Then, the Sylvester equation

PΥ− ΞP = K̂F̂ , (2.25)

has a unique invertible matrix P by Lemma 2.3. We define the error

Z̃(t) = PZ(t)− Φ̂(t). (2.26)

From (2.16), (2.18) and (2.21), we have

˙̃Z(t) = ΞZ̃(t)− K̂χ1(t). (2.27)

Since P has its invertible matrix, Ξ is a Hurwitz, and χ1(t) satisfies Theorem 2.1,

we have that Z̃(t) tends exponentially to zero and so does for χ2(t) = F̂P−1Z̃(t).

Furthermore, by differentiating (2.27) with respect to t, we obtain Z̃ ′′(t) = Ξ ˙̃Z(t)−
K̂χ̇1(t). Owing to Ξ is Hurwitz and χ1(t) satisfies (2.11), there exists ι2 > 0 such
that

eι2· ˙̃Z(·) ∈ L2([0,∞);R), eι2·χ̇2(·) ∈ L2([0,∞);R). (2.28)

The proof is complete. □

Substituting (2.24) into (2.16), we obtain

e(t) = Γ̂(0, t) + F̂P−1Φ̂(t) + χ(t), (2.29)

where χ(t) = χ1(t)+χ2(t) converges exponentially to zero as t → ∞. In particular,
from (2.11) and (2.28), we deduce that

eι·χ̇(·) ∈ L2([0,∞);R), ι > 0. (2.30)

Next, we determine the matrix P of (2.25). Let Pj , j = 1, 2, . . . , 2q denote the jth

row of P . Then expanding PΥ− ΞP = K̂F̂ gives
P1Υ− P2

P2Υ− P3

...
P2q−1Υ− P2q

P2qΥ+
∑2q

j=1 ηjPj

 =


0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0
ξ 0 0 . . . 0

 . (2.31)

By a straightforward calculation, one gets

P = ξ
(
η1I + η2Υ+ · · ·+ η2qΥ

2q−1 +Υ2q
)−1

. (2.32)

Substituting (2.29) into (2.21) and using (2.25), we obtain

˙̂
Φ(t) = PΥP−1Φ̂(t) + K̂χ(t). (2.33)

Noting that ΥP−1 = P−1Υ, we rewrite (2.33) as

˙̂
Φ(t) = ΥΦ̂(t) + K̂χ(t). (2.34)

Remark 2.5. Solving (2.34) gives

Φ̂(t) = eΥtΦ̂(0) +

∫ t

0

eΥ(t−τ)K̂χ(τ)dτ.

Since χ(t) converges exponentially to zero and Υ has eigenvalues ±iω1, ±iω2,. . . ,

±iωq, we can conclude that Φ̂(t) is bounded, i.e., ∥Φ̂(t)∥ < ∞.
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3. Controller design

From Section 2, the tracking error e(t) can be represented by the state Φ̂, Γ̂ and

Γ̂t. Since the state Φ̂, Γ̂ and Γ̂t are available for the controller design and χ(t)
converges exponentially to zero, we can design a feedback control for system (2.1)
and (2.21) such that

lim
t→∞

ê(t) = lim
t→∞

(
Γ̂(0, t) + F̂P−1Φ̂(t)

)
= 0. (3.1)

Then, this controller has the same control effect on system (1.1). Motivated by
[20], we introduce the transformation

y(x, t) = Γ̂(x, t)− Σ(x)Φ̂(t), (3.2)

where Σ(x) satisfies

(a(x)Σ′(x))′ = Σ(x)Υ2,

Σ′(0) = −F̂P−1(k1I + (k2 −m)Υ),

Σ(0) = −F̂P−1.

(3.3)

Substituting (3.2) into (2.1) and using (2.29) and (2.34), we obtain

ytt(x, t) = (a(x)yx(x, t))x − Σ(x)ΥK̂χ(t)− Σ(x)K̂χ̇(t),

yx(0, t) = myt(0, t)− k1χ(t)− k2(F̂P−1K̂χ(t) + χ̇(t)) +mχ̇(t),

yx(1, t) = U(t)− Σ′(1)Φ̂(t),

y(0, t) = ê(t).

(3.4)

Evidently, the output regulation problem of Γ̂(0, t)− p(t) → 0 has been converted
into a stabilization problem y(·, t) → 0 when t goes to infinity. Then, we propose
the output feedback control as follows:

U(t) = −kyt(1, t)− y(1, t) + Σ′(1)Φ̂(t)

= −kΓ̂t(1, t)− Γ(1, t) + kΣ(1)ΥΦ̂(t)− Σ(1)Φ̂(t) + Σ′(1)Φ̂(t),
(3.5)

where k is a positive constant. Under the controller (3.5), system (3.4) becomes

ytt(x, t) = (a(x)yx(x, t))x − Σ(x)ΥK̂χ(t)− Σ(x)K̂χ̇(t),

yx(0, t) = myt(0, t)− k1χ(t)− k2(F̂P−1K̂χ(t) + χ̇(t)) +mχ̇(t),

yx(1, t) = −kyt(1, t)− y(1, t),

y(0, t) = ê(t).

(3.6)

Lemma 3.1. Suppose that m, k > 0. When χ(t) ≡ 0, system (3.6) is exponentially
stable in H.

Proof. When χ(t) ≡ 0, system (3.6) reads

ytt(x, t) = (a(x)yx(x, t))x,

yx(0, t) = myt(0, t),

yx(1, t) = −kyt(1, t)− y(1, t).

(3.7)
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Let ỹ(x, t) = y(1− x, t). Then, ỹ(x, t) satisfies

ỹtt(x, t) = (a(x)ỹx(x, t))x,

ỹx(0, t) = kỹt(0, t) + ỹ(0, t),

ỹx(1, t) = −mỹt(1, t).

(3.8)

We define the energy of system (3.8) as

E(t) =
1

2

∫ 1

0

a(x)ỹ2x(x, t) + ỹ2t (x, t)dx+
a(0)

2
ỹ2(0, t). (3.9)

The derivative of E(t) along (3.8) satisfies

Ė(t) = −ma(1)ỹ2t (1, t)− ka(0)ỹ2t (0, t). (3.10)

We establish the energy multiplier as follows:

φ(t) =

∫ 1

0

(x−1)ỹx(x, t)ỹt(x, t)dx+2sỹ(0, t)

∫ 1

0

(1−x)ỹt(x, t)dx+ lỹ2(0, t), (3.11)

where s, l > 0 to be determined later. Obviously, |φ(t)| ≤ ME(t), M > 0. A direct
computation shows that

φ̇(t) =
1

2
ỹ2t (0, t) +

1

2
a2(0)ỹ2x(0, t)−

1

2

∫ 1

0

[
a(x)ỹ2x(x, t) + ỹ2t (x, t)

]
dx

+
1

2

∫ 2

0

a′(2)(x− 1)ỹ2x(x, t)dx+ 2sỹt(0, t)

∫ 1

0

(1− x)ỹt(x, t)dx

+ 2lỹ(0, t)ỹt(0, t)− 2sa(0)ỹ(0, t)ỹx(0, t) + 2sỹ(0, t)

∫ 1

0

a(x)ỹx(x, t)dx

≤
(1
2
− 2sa(0)k + lr

)
ỹ2t (0, t) +

(
a2(0) + s− 2sa(0) +

l

r

)
ỹ2(0, t)

− 1

2

∫ 1

0

[
a(x)ỹ2x(x, t) + ỹ2t (x, t)

]
dx,

where r > 0 is chosen so that 1
2 −2sa(0)k+ lr > 0. Since a(0) > 1/2, we can choose

sufficiently large s such that a2(0) + s − 2sa(0) + l
r < 0. Therefore, there exists

M0 > 0 such that φ̇(t) ≤ ( 12 − 2sa(0)k + lr)ỹ2t (0, t)−M0E(t). Let

Π(t) = E(t) +
µ

M
φ(t), µ > 0. (3.12)

Then

(1− µ)E(t) ≤ Π(t) ≤ (1 + µ)E(t), Π̇(t) ≤ − M0µ

M(1 + µ)
Π(t), (3.13)

for all sufficiently small µ > 0. This shows that

E(t) ≤ 1 + µ

1− µ
e−

M0µ

M(1+µ)
tE(0). (3.14)

The proof is complete. □

Lemma 3.2. Suppose that k > 0. For any initial state (y(·, 0), yt(·, 0)) ∈ H, system
(3.6) admits a unique solution (y, yt) ∈ C([0,∞);H), which is exponentially stable.
Moreover, limt→∞ |ê(t)| = 0.
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Proof. System (3.6) can be written abstractly as

d

dt
(y(·, t), yt(·, t)) = A1(y(·, t), yt(·, t)) +B1χ(t) +B2χ̇(t), (3.15)

where

B1 =
(
0,−Σ(·)ΥK̂ − k1δ(·)− k2F̂P−1K̂δ(·)

)
, B2 =

(
0,−Σ(·)K̂ − (k2 −m)δ(·)

)
with the Dirac distribution δ(·). Thanks to the result of Lemma 3.1, A1 gener-
ates an exponentially stable C0-semigroup on H, and B1, B2 are admissible for
eA1t (see [25]). Therefore, by [27] and Lemma 2.4, system (3.15) is exponentially
stable, which admits a unique solution (y, yt) ∈ C([0,∞);H). Besides, we obtain
limt→∞ |ê(t)| = 0. □

Lemma 3.3. Equation (3.3) admits a unique solution Σ(·) ∈ C∞([0, 1];R2q).

Proof. It is clear that (3.3) is an initial value problem, so we prove the existence of
its solution. □

4. Closed-loop system

In this section, we consider the following closed-loop system which is composed
of (1.1), (2.1) and (2.21):

Γtt(x, t)− (a(x)Γx(x, t))x = 0,

Γx(0, t) = mΓt(0, t),

Γx(1, t) = U(t) + d(t),

Γ̂tt(x, t) = (a(x)Γ̂x(x, t))x,

Γ̂x(0, t) = −k1(e(t)− Γ̂(0, t)) + k2Γ̂t(0, t) + (m− k2)ė(t),

Γ̂x(1, t) = U(t),

˙̂
Φ(t) = ΞΦ̂(t) + K̂(e(t)− Γ̂(0, t)),

e(t) = yp(t)− r(t),

U(t) = −kΓ̂t(1, t)− Γ̂(1, t) + kΣ(1)ΥΦ̂(t)− Σ(1)Φ̂(t) + Σ′(1)Φ̂(t).

(4.1)

Now we study system (4.1) in the Hilbert space X = H×H× R2q.

Theorem 4.1. Let k, k1, k2 > 0. Suppose that d(t) and r(t) satisfy (1.5) and
(1.6), respectively. Then, for any initial state(

Γ(·, 0),Γt(·, 0), Γ̂(·, 0), Γ̂t(·, 0), Φ̂(0)
)
∈ X , (4.2)

the closed-loop system (4.1) admits a unique solution(
Γ,Γt, Γ̂, Γ̂t, Φ̂

)
∈ C([0,∞);X ), (4.3)

satisfying

|e(t)| < Le−ωt, (4.4)

for some constants L > 0 and ω > 0. Moreover,

(i) the state of the closed-loop (4.1) is uniformly bounded

sup
t∈[0,∞)

∥∥(Γ(·, t),Γt(·, t), Γ̂(·, t), Γ̂t(·, t), Φ̂(t)
)∥∥ < ∞; (4.5)
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(ii) when d(t) ≡ 0 and r(t) ≡ 0, there exist positive constants ζ1 and ι1 such
that∥∥(Γ(·, t),Γt(·, t), Γ̂(·, t), Γ̂t(·, t), Φ̂(t)

)∥∥
H×H×R2q ≤ ζ1e

−ι1t, ∀t > 0. (4.6)

Proof. According to (2.2) and (2.16), we just need to consider that

Γ̂tt(x, t) = (a(x)Γ̂x(x, t))x,

Γ̂x(0, t) = −k1(p(t) + χ1(t))− k2(ṗ(t) + χ̇1(t)) +mė(t),

Γ̂x(1, t) = −kΓ̂t(1, t)− Γ(1, t) + kΣ(1)ΥΦ̂(t)− Σ(1)Φ̂(t) + Σ′(1)Φ̂(t),

(4.7)

and
˙̂
Φ(t) = ΞΦ̂(t) + K̂(p(t) + χ1(t)), (4.8)

where χ1(t) is given by (2.9) and p(t) = (γ − F2)v(t). By Remark 2.5 and the
transformation (3.2), we obtain that

˙̂
Φ(t) = ΥΦ̂(t) + K̂χ(t),

ytt(x, t) = (a(x)yx(x, t))x − Σ(x)ΥK̂χ(t)− Σ(x)K̂χ̇(t),

yx(0, t) = myt(0, t)− k1χ(t)− k2(F̂P−1K̂χ(t) + χ̇(t)) +mχ̇(t),

yx(1, t) = −kyt(1, t)− y(1, t),

(4.9)

where Σ(x) is given by (3.3). The well-posedness and exponential stability of (y, yt)-
part has been shown in Lemma 3.2. Therefore, the state of the system (4.1) is
uniformly bounded. According to (2.29) and transformation (3.2), we see that
e(t) = y(0, t) + χ(t). This implies that e(t) exponentially converges to zero as time
goes to infinity.

When d(t) ≡ 0 and r(t) ≡ 0. Φ̂(t) is given by

˙̂
Φ(t) = ΞΦ̂(t) + K̂χ1(1). (4.10)

Since Ξ is Hurwitz and χ1(t) is exponentially stable, we obtain Φ̂(t) is exponentially

stable. Similarly to Lemma 3.2, the (Γ̂, Γ̂t)-part of system admits a unique solution

(Γ̂, Γ̂t) ∈ C([0,∞);H), and it follows from transformation (3.2) that (Γ̂, Γ̂t) is
exponentially stable. By (2.16), we conclude that e(t) decays exponentially to zero.
Therefore, the estimate (4.4) holds. The proof is complete. □

5. Numerical simulations

In this section, we present some numerical simulations to validate the theoretical
results. The numerical results are programmed in MATLAB. The space step and
time step are taken as dx = 0.001 and dt = 0.999dx, respectively. Let a(x) = 1 and
the initial states are chosen as

Γ(x, 0) = cos(2πx)− 1,

Γt(x, 0) = Γ̂(x, 0) = Γ̂t(x, 0) = 0,

Φ̂(0) = 0,

v0 = (1, 1, 1, 1)⊤.

(5.1)

The parameters are chosen as

m = 0.5, k = 1, k1 = 1, k2 = 0.9, η = (4, 6, 4, 1), (5.2)
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and the matrix Q is

Q = bdiag

{(
0 1
−1 0

)
,

(
0 4
−1 0

)}
. (5.3)

In this case, the solution of equation (1.4) is v(t) = (sin t, cos t, sin 2t, cos 2t)⊤. The
corresponding parameters are chosen as

F1 = (1, 1, 2, 1), F2 = (1, 2, 1, 2). (5.4)

The solution of PDE-part of the closed-loop system (4.1) is depicted in Figure 1.
The control law Φ(t) and the state U(t) are plotted in Figure 2. It is seen that
all states of the closed-loop system are uniformly bounded. Figure 3 shows that
tracking error e(t) converges to zero as time goes to infinity, and F̂P−1Φ̂(t) can
gradually synchronize with p(t), respectively. Both of them converge effectively.

(a) state of Γ(x, t) (b) state of Γ̂(x, t)

Figure 1. Solution of closed-loop system (4.1)
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Figure 2. state of Φ(t) and U(t)
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Figure 3. Tracking performance

6. Conclusions

In this article, we address the output tracking problem of a wave equation with
variable coefficients subjected to boundary control matched with harmonic distur-
bances. The performance output is non-collocated with the control input. First,
we establish an auxiliary system using measurable tracking error and its derivative.
Subsequently, we construct an internal model dynamics to estimate the unknown
disturbances. As a result, we reformulate the tracking error dynamics by integrating
the internal model and the auxiliary system. Following this, we design an error-
based feedback control mechanism for the auxiliary system, employing an invertible
transformation for this purpose. Finally, we prove the boundedness of the closed-
loop system and tracking error converges to zero exponentially, and demonstrate
the effectiveness of our proposed controller by some numerical simulations.
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