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ENTIRE SOLUTIONS FOR NON-LINEAR

DIFFERENTIAL-DIFFERENCE EQUATIONS

HARINA P. WAGHAMORE, MANJUNATH BANAGERE ERAJIKKAPPA

Abstract. In this article, we investigate the entire solutions of the non-linear

differential-difference equation

fn(z) + ωfn−1(z)f ′(z) + q(z)eQ(z)D(z, f) = p1(z)e
λz + p2(z)e

−λz ,

where D(z, f) =
∑k

i=0 bif
(ti)(z + ci) ̸≡ 0, with bi, ci ∈ C, ti being non-

negative integers, c0 = 0, t0 = 0. Here, n is an integer, λ, p1, p2 are non-zero
constants, ω is a constant, and q ̸≡ 0, Q(z) are polynomials such that Q(z)

is non-constant. Our results improve upon and generalize some previously

established findings in this area.

1. Introduction

Assuming the reader’s familiarity with conventional notation and core outcomes
of Nevanlinna’s theory on meromorphic functions [9], in this article, we consis-
tently refer to meromorphic functions as those meromorphic in the entire complex
plane C. For a meromorphic function f and a ∈ C = C ∪ {∞}, any z such that
f(z) = a is termed an a-point of f . In 1926, the Finnish mathematician Rolf
Nevanlinna made a noteworthy breakthrough in complex analysis by investigating
meromorphic functions over the complex plane. He demonstrated that a noncon-
stant function can be uniquely determined by five distinct pre-images, including
infinity, without considering multiplicities. This finding is particularly interesting
because it has no counterpart in the real function theory. Later, Nevanlinna went
on to prove that when multiplicities are taken into account, four points are ade-
quate for determining the uniqueness of a pair of meromorphic functions. In such
cases, either the functions coincide, or one is a bilinear transformation of the other.
These seminal discoveries marked the beginning of research into the uniqueness of
pairs of meromorphic functions, especially when one function is related to the other.
Two meromorphic functions f(z) and g(z) share a CM (Counting multiplicity) or
IM (Ignoring multiplicity) if f − a and g − a have the same set of zeros counting
multiplicities or ignoring multiplicities, respectively. Further recall that the order
of f is defined by

ρ(f) = lim sup
r→∞

log T (r, f)

log r
.
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The exponential of convergence of zeros of f is defined by

λ(f) = lim sup
r→∞

logN
(
r, 1

f

)
log r

= lim sup
r→∞

log n
(
r, 1

f

)
log r

.

Establishing the existence of solutions for complex differential equations poses a
significant and challenging problem. The Nevanlinna theory has been widely used
to analyze the characteristics of complex differential equations. In recent times, an
increasing number of researchers have employed Nevanlinna theory to investigate
the solutions of complex differential equations [2, 4, 12]. Additionally, the difference
analogs of Nevanlinna theory have been applied to explore topics related to complex
difference equations or complex nonlinear differential-difference equations [3, 22, 26].
In 1964, Hayman [9] examined the behavior of nonlinear differential equations of
the form

fn + Pd(z, f) = g(z), (1.1)

where Pd(z, f) is a differential polynomials in f of degree d with meromorphic
coefficients of growth S(r, f) and n ≥ 2 is an integer.

Theorem 1.1 ([9]). If non-constant meromorphic functions f(z) and g(z) satisify

N(r, f) + N
(
r, 1

g

)
= S(r, f) and d ≤ n − 1 in (1.1), then g(z) = (f(z) + γ(z))n,

where γ(z) is a meromorphic function and a small function of f(z).

Theorem 1.1 represents an expanded form of the Tumura-Clunie theory, which
finds its foundation in a theorem initially proposed by Tumura [18]. However, the
complete proof was later provided by Clunie [7]. Following its introduction, the
nonlinear differential equation (1.1) has undergone extensive study over the years,
as evidenced by the works [16, 17, 20, 24] and the references contained therein.

Li and Yang [11], in their 2006 study, explored the outline where the function g(z)
in equation (1.1) takes the specific form p1(z)e

α1(z)+p2(z)e
α2(z). Their investigation

led to the following results.

Theorem 1.2. Let n ≥ 4 be an integer and Pd(f) denotes an algebraic differential
polynomial in f of degree d ≤ n−3. Let p1, p2 be two non zero polynomials, α1 and
α2 be two non zero constants with α1

α2
not rational. Then, the differential equation

fn(z) + Pd(z, f) = p1(z)e
α1(z) + p2(z)e

α2(z) (1.2)

has no transcendental entire solutions.

When n = 3, Yang and Li [21] determined the precise forms of solutions for
(1.2) under specific conditions. Furthermore, Li [10] and Liao, Yang, and Zhang
[12] obtained entire or meromorphic solutions for cases where n ≥ 2 (resp. n ≥ 3)
and d ≤ n− 2 in equation (1.2). Other research papers, such as [1] and [27], have
also explored the structure of solutions for various differential equations.

In 2014, Liao and Ye [13] investigated the differential equation

fnf ′ + Pd(z, f) = u(z)ev(z), (1.3)

with non-zero rational function u and nonconstant polynomial v and obtained the
following result.

Theorem 1.3 ([13]). Suppose that f is a meromorphic solution of (1.3), which
has finitely many poles. Then

Pd(f) ≡ 0, f(z) = s(z)ev(z)/(n+1)
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for n ≥ d+ 1 and s is a rational function satisfying sn[(n+ 1)s′ + v′s] = (n+ 1)u.

Now, we define two classes of transcendental entire functions:

Γ0(z) = {eα(z) : α(z) is a non constant polynomial}.

Γ0(z) = {eα(z) + d : α(z) is a non constant polynomial and d ∈ C}.
Exponential polynomials are crucial in exploring nonlinear complex differential
equations, highlighting numerous intriguing properties. As an illustration, in 2012,
Wen, Heittokangas, and Laine [19] conducted an investigation and classification of
finite-order entire solutions f(z) for the equation

fn + q(z)eQ(z)f(z + c) = P (z) (1.4)

in terms of growth and zero distribution, where n ≥ 2 is an integer, q(z), P (z), Q(z)
are polynomials and c ∈ C \ {0}.

Following the aforementioned study, Liu [14] investigated the cases in which
f(z+c) in equation (1.4) was substituted by f (k)(z+c). Additionally, Liu, Mao, and
Zheng [15] examined cases involving the replacement of f(z+c) with ∆cf(z). Their
investigations led to specialized forms of solutions for the corresponding equations.

Upon examining the results above, it becomes evident that the left-hand side
of all the above equations contains only one dominant term, fn. Consequently, an
exciting area of inquiry arises when studying equations that may have two dominant
terms. Inspired by equation (1.4) and some of the previously discussed equations,
the objective of this paper is to explore the finite-order entire solutions of the
differential-difference equation

fn(z) + ωfn−1(z)f ′(z) + q(z)eQ(z)D(z, f) = p1(z)e
λz + p2(z)e

−λz (1.5)

where D(z, f) =
∑k

i=0 bif
(ti)(z+ ci)( ̸≡ 0), such that bi, ci ∈ C, ti are non negative

integers, c0 = 0, t0 = 0, n is an integer, λ, p1, p2 are non zero constants ω is a
constant, and q ̸≡ 0, Q(z) are polynomials such that Q(z) is not a constant.

Theorem 1.4. If f(z) is a transcendental entire solution with finite order of (1.5)
then the following conclusions hold:

(1) If n ≥ 4 for ω ̸= 0 and n ≥ 3 for ω = 0, then every solution f satisfies
ρ(f) = deg(Q(z)) = 1.

(2) If n ≥ 1 and f is a solution of (1.5) which belongs to Γ0, then

f(z) = e
−λ
n z+B, Q(z) =

(n+ 1)

n
λz + b

or

f(z) = e
λ
n z+B, Q(z) =

−(n+ 1)

n
λz + b,

where b, B ∈ C

Theorem 1.4 represents a generalized and enhanced form of Theorem 1.3, origi-
nally established by Chen et al. [5]. To demonstrate the precision of our findings,
we now present an illustrative example.

Example 1.5. Let D(z, f) = f (2)(z + c). Then the function f(z) = e2z satisfies
the equation

f3 + f2(z)f ′ +
1

4
e−8zf (2)(z + c) = 3e6z + 4e−6z.

Obviously, the conclusion ρ(f) = deg(Q(z)) = 1 holds.
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2. Preliminaries

To prove our results, we first give some Lemmas as follows: The first Lemma
presents the difference analogs of the Logarithmic Derivative Lemma, a crucial tool
in investigating complex difference equations. The following version represents a
special case.

Lemma 2.1 ([6]). Let f(z) be a non constant meromorphic function with finite
orderσ and c1, c2 be two complex numbers such that c1 ̸= c2 then for each ϵ > 0

m
(
r,
f(z + c1)

f(z + c2)

)
= O

(
rσ−1+ϵ

)
.

Lemma 2.2 ([9]). Let f(z) be a nonconstant meromorphic function and let k ≥ 1.
Then, if the growth order of f(z) is finite, we have

m
(
r,
f (k)

f

)
= O(log(r)).

nd if the growth order of f(z) is infinite, we have

m
(
r,
f (k)

f

)
= O(log(T (r, f)) + log(r)), as r → ∞

possibly outside a set of finite linear measure.

Lemma 2.3 ([24]). If fk(z), 1 ≤ k ≤ m, and gk(z), 1 ≤ k ≤ m, m ≥ 2 are entire
functions that meet conditions listed below:

(1)
∑m

i=0 fk(z)e
gk(z) ≡ 0,

(2) The orders of fk(z) are less than that of eg1(z)−gn(z) for 1 ≤ k ≤ m, 1 ≤
k ≤ l < n ≤ m, then fk ≡ 0 for 1 ≤ k ≤ m

Lemma 2.4 ([8]). Let f be a non constant meromorphic solution of fn(z)P (z, f) =
Q(z, f), where P, Q are difference polynomials in f with small meromorphic coef-
ficients and let c ∈ C, δ < 1. If the total degree of Q(z, f) as a polynomial in f
and its shifts are at most n, then

m(r, P (z, f)) = o
(T (r+ | c |, f)

rδ

)
+ o(T (r, f))

for all r outside a possible exceptional set with finite logarithmic measure.

Lemma 2.5 ([10]). Suppose that f(z) is a transcendental meromorphic function,
p, a, r and s are small functions of f with prs ̸≡ 0. If pf2 + aff ′ + r(f ′)2 = s,
then

r(a2 − 4pr)
s′

s
+ q(q2 − 4rp)− r(a2 − 4rp)′ + (a2 − 4rp)r′ ≡ 0.

Lemma 2.6 ([23]). Let fj(z), j = 1, 2, 3 be meromorphic functions and f1(z) is

not a constant. If
∑3

j=1 fj(z) ≡ 1 and

3∑
j=1

N
(
r,

1

fj

)
+ 2

3∑
j=1

N(r, fj) < (λ+ o(1))T (r), r ∈ I,

where λ < 1, T (r) = max1≤j≤3{T (r, fj)} and I represents a set of r ∈ (o, ∞) with
infinite linear measure. Then f2 ≡ 1 or f3 ≡ 1.
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3. Proof of main results

Proof of Theorem refTh1. Let us consider a case where f is a transcendental entire
solution of finite order for equation (1.5). The following discussion will establish
our conclusion (1) stated in Theorem 1.4. To begin, we shall examine the case
where ω ̸= 0.

Case 1. If ρ(f) < 1. Using Lemma 2.1 and Lemma 2.2 and from (1.5), we obtain

T (r, eQ(z)) = m(r, eQ(z))

= m
(
r,
p1(z)e

λz + p2(z)e
−λz − fn(z)− ωfn−1(z)f ′(z)

q(z)D(z, f)

)
≤ m

(
r,

1

q(z)eQ(z)D(z, f))

)
+m(r, p1(z)e

λz + p2(z)e
−λz)

+m
(
r, fn(z) + ωfn−1(z)f ′(z)

)
+O(1)

≤ 2T (r, eλz) + (n+ 1)T (r, f) + S(r, eλz),

then deg(Q(z)) ≤ 1, and Observing that deg(Q(z)) ≥ 1, we can deduce that
deg(Q(z)) = 1. Let us represent Q(z) as Q(z) = az + b, where a ∈ C \ 0 and
b ∈ C. With this representation, we can rewrite equation (1.5) in the form

fn(z) + ωfn−1(z)f ′(z) + q(z)eaz+b)D(z, f) = p1(z)e
λz + p2(z)e

−λz. (3.1)

Differentiating (3.1), we obtain

nfn−1f ′ + (n− 1)ωfn−2(f ′(z))2 + ωfn−1f (2) + α(z)eaz+b

= λ(p1(z)e
λz − p2(z)e

−λz).
(3.2)

Eliminating eλz and e−λz from (3.1) and (3.2), yields

(n− λω)fn−1f ′ + (n− 1)ωfn−2(f ′)2 + ωfn−1f (2)

− λfn + [α(z)− λq(z)D(z, f)]eaz+b

= 2λp1e
λz

(3.3)

Subcase 1.1 If a ̸= λ, by (3.3) and Lemma 2.3, we have 2λ ≡ 0, which is a
contradiction.

Subcase 1.2 If a = λ, by (3.3) we have

(n− λω)fn−1f ′ + (n− 1)ωfn−2(f ′)2 + ωfn−1f (2)

− λfn + [(α(z)− λq(z)D(z, f))eb + 2λp1]e
λz = 0.

(3.4)

From (3.4) and Lemma 2.3, we have

(n− λω)fn−1f ′ + (n− 1)ωfn−2(f ′)2 + ωfn−1f (2) − λfn = 0. (3.5)

Dividing by fn on both sides, we obtain

(n− λω)
f ′

f
+ (n− 1)ω

(f ′

f

)2

+ ω
(f ′′

f

)
− λ = 0. (3.6)

Since f ′′

f =
(

f ′

f

)′
+
(

f ′

f

)2

, we obtain a Riccati differential equation

(n− λω)t+ ωt′ + nωt2 − λ = 0, (3.7)
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where t = f ′/f . Through simple computations, we derive

t =
( 1
n

) [ −n
λ+n/ω e

−(λ+n/ω)z + C1]
′

−n
λ+n/ω e

−(λ+n/ω)z + C1
+

λ

n
,

which consequently leads to

fn = C2

[ −n

λ+ n/ω
e−(λ+n/ω)z + C1

]
eλz,

where C1, C2 are constants.
Considering the case where C2 = 0, we arrive at fn = 0, which presents a

contradiction. On the other hand, if C2 ̸= 0, then we obtain ρ(f) = 1, contradicting
the given condition that ρ(f) < 1.

Case 2. Let us consider the case where ρ(f) > 1. We denote P(z) = p1(z)e
λz +

p2(z)e
−λz and H(z) = q(z)D(z, f). It is evident that ρ(f) = 1, implying T (r,P) =

S(r, f). Consequently, equation (1.5) can be rewritten as

fn(z) + ωfn−1(z)f ′(z) +H(z)eQ(z) = P(z). (3.8)

Differentiating (3.8), yields

nfn−1f ′ + ω(n− 1)fn−2(f ′)2 + ωfn−1f (2) + G(z)eQ(z) = P ′(z), (3.9)

where G(z) = H′ +Q′H. Eliminating eQ(z) from (3.8) and (3.9), we obtain

fn−2
[
Gf2 + (ωG − nH)ff ′ − ωHff (2) − (n− 1)ωH(f ′)2

]
= PG − P ′H. (3.10)

It is important to note that n − 2 ≥ 2, and PG − P ′H represents a differential-
difference polynomial in f with a total degree of at most 1. By Lemma 2.4, we
obtain

m(r,Gf2 + (ωG − nH)ff ′ − ωHff (2) − (n− 1)ωH(f ′)2) = S(r, f)

and

m(r, f [Gf2 + (ωG − nH)ff ′ − ωHff (2) − (n− 1)ωH(f ′)2]) + S(r, f).

If Gf2 + (ωG − nH)ff ′ − ωHff (2) − (n− 1)ωH(f ′)2 ̸≡ 0, since f is transcendental
entire function, then

T (r, f) = m(r, f)

≤ m
(
f [Gf2 + (ωG − nH)ff ′ − ωHff (2) − (n− 1)ωH(f ′)2]

)
+m

(
r,

1

Gf2 + (ωG − nH)ff ′ − ωHff (2) − (n− 1)ωH(f ′)2

)
≤ T (r,Gf2 + (ωG − nH)ff ′ − ωHff (2) − (n− 1)ωH(f ′)2) + S(r, f)

= S(r, f),

which yields a contradiction.
If Gf2 + (ωG − nH)ff ′ − ωHff (2) − (n − 1)ωH(f ′)2 ≡ 0, from (3.10), we have

PG − P ′H ≡ 0. Then
P ′

P
=

q′

q
+

D′(z, f)

D(z, f)
+Q′.
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Through the process of integration, it becomes evident that there exists a non-zero
constant C3 ∈ C \ 0 such that

P = C3qD(z, f)eQ. (3.11)

Substituting (3.11) into (1.5), yields

fn + ωfn−1f ′ =
(
1− 1

C3

) [
p1(z)e

λz + p2(z)e
−λz

]
. (3.12)

Given that f is a transcendental entire function with ρ1(f) < ρ(f), the Hadamard
Decomposition Theorem allows us to express f in the form

f(z) = Π(z)eh(z). (3.13)

In this representation, Π(z) denotes the canonical product constructed from the
zeros of f(z), while h(z) is a non-constant polynomial satisfying the condition

deg(h) = ρ(f) > 1. (3.14)

Substituting (3.13) into (3.12), we have

enhΠn−1(z) [Π(z) + ωΠ′(z) + ωh′Π(z)]

=
(
1− 1

C3

) (
p1(z)e

λz + p2(z)e
−λz

)
.

(3.15)

By combining (3.14) and (3.15), we observe that the left-hand order of (3.15)
exceeds 1, whereas the right-hand order is 1, which is a contradiction. Therefore
ρ(f) = 1. From (1.5) and Lemma 2.4, we obtain

T (r, eQ(z)) = m(r, eQ(z))

= m
(
r,
p1(z)e

λz + p2(z)e
−λz − fn(z)− ωfn−1(z)f ′(z)

q(z)D(z, f)

)
≤ m

(
r, p1(z)e

λz + p2(z)e
−λz

)
+m

(
r, fn(z) + ωfn−1(z)f ′(z)

)
+m

(
r,

1

q(z)D(z, f)

)
≤ (n+ k + 1)T (r, f) + 2T

(
r, eλz

)
+ S

(
r, eλz

)
.

Note that deg(Q(z)) > 1. Then

1 ≤ deg(q) = ρ(eQ) ≤ max{ρ(eλz), ρ(f)} = 1,

i.e., ρ(f) = deg(Q) = 1. The conclusion (1) is proved.
Next, we establish the conclusion (2). Suppose f ∈ Γ0, and observe that ρ(f) =

deg(Q) = 1. In this case, we define f(z) = eγ(z), where γ(z) is a non-constant
polynomial. Substituting this representation of f(z) into equation (1.5), we obtain

enγ [1 + ωγ′] + qeQ(z)+kγ(z)
( k∑

i=0

bie
∆ci

γ(z)
)
= p1(z)e

λz + p2(z)e
−λz (3.16)

Dividing both sides by p2e
−λz, we obtain(1 + ωγ′

p2

)
enγ+λz +

( q

p2

)
eQ(k+1)γ(z)+λz

( k∑
i=0

bie
∆ci

γ(z)
)
− p1

p2
e2λz = 1. (3.17)
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It is evident that the expression −p1

p2
e2λz is not a constant. Consequently, by

Lemma 2.6, we can deduce that

1 + ωγ′

p2
= 1 or

( q

p2

) k∑
i=0

(
bie

Q(z)+∆ci
γ(z)+(k+1)γ(z)+λz

)
= 1.

We will now examine two separate cases.

If 1+ωγ′

p2
= 1, then it is straightforward to observe that γ = −λz

n +B, where B is

a constant. Furthermore, we have

( q

p2

) k∑
i=0

(
bie

Q(z)+∆ci
γ(z)+(k+1)γ(z)+λz

)
=

p1
p2

e2λz, (3.18)

which implies that

Q =
( (n+ 1)λ

n

)
z + b,

where b is a constant.
If ( q

p2

) k∑
i=0

(
bie

Q(z)+∆ci
γ(z)+(k+1)γ(z)+λz

)
= 1

by (3.17), we have

1 + ωγ′

p2
enγ+λz =

p1
p2

e2λz.

This case leads to the conclusion that γ = λz
n + B, where B is a constant.

Moreover, we can further deduce that

Q =
−(n+ 1)λ

n
z + b,

where b is a constant. The above analysis fully establishes the proof of conclusion
(2). □

Limitations

First, our theoretical framework is predominantly applicable to meromorphic
functions of finite order, which creates inherent restrictions when considering func-
tions exhibiting infinite order growth behavior. Additionally, our analysis is con-
fined to one-dimensional equations, leaving open questions about the behavior of
multi-dimensional systems and coupled differential-difference equations that might
demonstrate fundamentally different characteristics. Furthermore, while our re-
search addresses particular non-linear forms, there exists a broader spectrum of non-
linear equations that may require alternative analytical methods and approaches.

Acknowledgments. The authors would like to thank the anonymous referees for
their valuable comments and suggestions.
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