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EXACT CONTROLLABILITY FOR DEGENERATE AND

SINGULAR WAVE EQUATIONS

GUANG ZHANG, SHUGEN CHAI

Abstract. In this article, we study exact controllability for degenerate and

singular wave equations with a general coefficient. We estimate the observabil-
ity inequality by the multiplier method and determine the observability time.

We also deduce the exact controllability of the corresponding degenerate and

singular control problem at a sufficiently large time, employing the Hilbert
uniqueness method.

1. Introduction

Control issues for non-degenerate parabolic and hyperbolic problems have been
a mainstream topic over the past several years, and a lot of attention has led to
numerous developments being pursued (see [10, 20, 22, 23, 25, 26, 28, 32]).

Let us recall that exact controllability for the nondegenerate wave equation,
which is characterized by the system of equations

utt − uxx = 0, (t, x) ∈ (0, T )× (0, 1),

u(t, 0) = 0, u(t, 1) = f(t), t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, 1),

ut(0, x) = u1(x), x ∈ (0, 1),

(1.1)

where u is the state, f acts as a boundary control and is used to drive the solution
to zero at a given time T . To be more precise, for given the initial data (u0, u1) in
a suitable space, we look for a control f such that

u(T, x) = ut(T, x) = 0, ∀x ∈ (0, 1). (1.2)

Because of the finite speed of propagation of solutions to the wave equation, exact
controllability can only be achieved at a sufficiently large time T (in the parabolic
case, we have null controllability at any final time T ). As a general conclusion, we
consider (1.1) to represent exact controllability if T > 2.

The degenerate wave equations began to receive some attention within the past
decade, and had developed rapidly [4, 5, 7, 29]. Different from the case non-
degenerate equations, the main difficulty with degenerate wave equations is in-
troducing a suitable function space to deal with degenerate terms, requiring the
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development of new rules for analyzing observability and controllability. Gueye
[19] considered the boundary control about the degenerate wave equation

utt − (xαux)x = 0, (t, x) ∈ (0, T )× (0, 1). (1.3)

We also refer to the work of Zhang and Gao [30, 31] for additional controllability
results obtained through the use of a locally distributed control. Later, Alabau-
Boussouira et al. [1] consider the equation

utt − (aux)x = 0, (t, x) ∈ (0, T )× (0, 1), (1.4)

where a is positive on (0, 1] and a(0) = 0. The degeneracy of (1.4) at x = 0 is
measured by the parameter µa defined by

µa := sup
0<x≤1

x|a′(X)|
a(X)

< 2, (1.5)

and say the function a is weakly degenerate (WD) if µa ∈ [0, 1), strongly degenerate
(SD) if µa ∈ [1, 2). The authors establish observability inequalities for weakly as
well as strongly degenerate equations, and prove a negative result when the diffusion
coefficient degenerate too violently (µa ≥ 2). Moreover, the authors prove observ-
ability (or controllability) time blows up as µa approaches 2 from below. Finally,
using the Hilbert Uniqueness Method (HUM), they deduce the exact controllability
for corresponding control system when µa ∈ [0, 2).

In recent years, great attention has been given to control issues for parabolic
equations with both degenerate and singular terms. However, this paper will not
delve into the details here; instead, we note that a common strategy to demonstrate
controllability is through the proof of global Carleman estimates. For regular de-
generate coefficients, the Carleman estimates and null controllability properties are
discussed in [2, 6, 8, 9, 24], for non-smooth degenerate coefficients in [14, 15], and
for equations with both degenerate and singular coefficients in [13, 16, 27].

In [3] the authors were the first to study the boundary controllability of the
wave equation with degenerate and singular, where the singularity occurs at the
same point as the degeneration of the leading coefficient. To be more precise, they
consider the problem

ytt − (xαyx)x − µ

x2−α
y = 0, (t, x) ∈ Q := (0, T )× (0, 1),

y(t, 1) = f, t ∈ (0, T ),

y(t, 0) = 0, α ∈ [0, 1), t ∈ (0, T ),

xαyx(t, 0) = 0, α ∈ [1, 2), t ∈ (0, T ),

y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ (0, 1),

(1.6)

where α and µ are two parameters such that α ∈ [0, 2)\{1}, µ ≤ (1 − α)2/4.
Furthermore, the problem is weakly degenerate if α ∈ [0, 1), strongly degenerate
if α ∈ [1, 2). The authors prove the observability estimate for the corresponding
adjoint system by means of the multiplier method and new Hardy-type inequalities.
Moreover, the null controllability is proved for sufficiently large time by HUM. Note
that the degeneracy and singularity coefficient are not general in (1.6). Therefore,
the purpose of this paper is to study the controllability and boundary observability
of a degenerate wave equation with a singular term(in fact, it is an open question
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in reference [3]). To be more precise, we consider the degenerate/singular wave
equation

ytt − (a(x)yx)x − λ

b(x)
y = 0, (t, x) ∈ Q := (0, T )× (0, 1),

y(t, 1) = f, t ∈ (0, T ),

y(t, 0) = 0, if Ka ∈ [0, 1), t ∈ (0, T ),

lim
x→0+

ayx(t, x) = 0, if Ka ∈ [1, 2), t ∈ (0, T ),

y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ (0, 1),

(1.7)

where a(degenerate coefficient) and b(singular coefficient) positive on (0, 1] and
vanish at zero, λ ∈ R and u0, u1 are the initial values, the parameter Kg defined by
(1.8). The control function f acts on non-degenerate and non-singular boundary
which is used drive the solution to zero at a sufficiently large time T .

Definition 1.1. Let g(x) ∈ C1((0, 1]) ∩ C([0, 1]) be a function satisfying g(x) > 0
on (0, 1], g(0) = 0 and

sup
0<x≤1

x|g′(X)|
g(X)

= Kg. (1.8)

When the function g as a degenerate coefficient, we say that g is weakly degenerate
at 0 if Kg ∈ [0, 1), g is considered strongly degenerate at 0 if Kg ∈ [1, 2).

Remark 1.2. Clearly, when g(X) ∼ xK , it is considered weakly degenerate if
K ∈ [0, 1), strongly degenerate if K ∈ [1, 2). Furthermore, the case where Kg ≥ 2
is not considered because it does not achieve controllability, as discussed in [1] when
λ = 0.

Finally, we point out that studies like ours are significant, particularly in the
fields of medical research [18], materials science for invisible materials [12, 21], and
climate science [17].

This article is organized as follows. Section 2 presents some function spaces and
preliminary results. In Section 3, we employ the Lax-Milgram theorem and semi-
group theory to address the dual problem and investigate the well-posedness of the
associated problem under Dirichlet and Neumann boundary conditions. In Section
4, an energy estimate is established and the direct inequality is proven, which will
eventually lead to the controllability result. Section 5 introduces the observable
inequality and determines the observable time. In Section 6, the controllable result
is obtained. We conclude the paper with a summary in the final section.

2. Preliminaries

Assumption 2.1. The functions a, b belong to C1((0, 1]) ∩ C([0, 1]) and satisfy

a(x), b(x) > 0 ∀x ∈ (0, 1], a(0) = b(0) = 0,

Ka ∈ [0, 2) \ {1},Kb ∈ [0, 2] and Ka +Kb ≤ 2.
(2.1)

From Definition 1.1 and Assumption 2.1, it is easy to draw the following conse-
quences.

Remark 2.2. By integrating the inequality

sg′(s) ≤ Kgg(s), ∀s ∈ (0, 1]
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over [x, 1], we obtain
g(x) ≥ g(1)xKg , ∀x ∈ [0, 1].

Hence, for all x ∈ [0, 1] we deduce that

a(x) ≥ a(1)xKa , b(x) ≥ b(1)xKb . (2.2)

Proposition 2.3 (Hardy-Poincare inequality). Under Assumption 2.1, there exists
Ca,b > 0 such that∫ 1

0

u2

b
dx ≤ Ca,b

∫ 1

0

a(u′)
2
dx, ∀u ∈ C∞

c (0, 1), (2.3)

where

Ca,b =
4

a(1)b(1)(1−Ka)2
.

Proof. By Remark 2.2 and generalized Hardy inequality [11, chap. 5.3],

(1−Ka)
2

4

∫ 1

0

u2

x2−Ka
dx ≤

∫ 1

0

xKau2
x dx ∀u ∈ C∞

c (0, 1),

we have∫ 1

0

u2

b
dx ≤ 1

b(1)

∫ 1

0

u2

xKb
dx ≤ 1

a(1)b(1)

∫ 1

0

a
u2

xKa+Kb
dx

≤ 1

a(1)b(1)

∫ 1

0

a
u2

x2
dx ≤ 4

a(1)b(1)(1−Ka)2

∫ 1

0

a(u′)
2
dx.

(2.4)

□

Assumption 2.4. The constant λ ∈ R satisfies

λ <
1

Ca,b
. (2.5)

Under Assumptions 2.1 and 2.4, as in [1] and [3], we introduce the following
spaces with related inner product

V 1
a (0, 1) = {u ∈ L2(0, 1) ∩H1

loc(0, 1] :
√
au′ ∈ L2(0, 1)},

∥u∥2V 1
a (0,1) =

∫ 1

0

u2 + a(u′)
2
dx, ∀u ∈ V 1

a (0, 1),

⟨u, v⟩V 1
a (0,1) =

∫ 1

0

uv + au′v′ dx, ∀u, v ∈ V 1
a (0, 1),

V 2
a (0, 1) = {u ∈ V 1

a (0, 1)|au′ ∈ H1(0, 1)};
and

V 1
a,b(0, 1) = {u ∈ L2(0, 1) ∩H1

loc(0, 1]|a(u′)
2 − λ

b
u2 ∈ L1(0, 1)},

∥u∥2V 1
a,b(0,1)

=

∫ 1

0

u2 + a(u′)
2 − λ

b
u2 dx, ∀u ∈ V 1

a,b(0, 1),

⟨u, v⟩V 1
a,b(0,1)

=

∫ 1

0

uv + au′v′ − λ

b
uv dx, ∀u, v ∈ V 1

a,b(0, 1),

V 2
a,b(0, 1) = {u ∈ V 1

a,b(0, 1)|(au′)′ − λ

b
u ∈ L2(0, 1)}.

Under the boundary conditions of (1.7), we introduce the space H1
a,b(0, 1).
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(i) If Ka ∈ [0, 1),

H1
a,b(0, 1) = {u ∈ V 1

a,b(0, 1)|u(0) = u(1) = 0};

(ii) If Ka ∈ (1, 2),

H1
a,b(0, 1) = {u ∈ V 1

a,b(0, 1)|u(1) = 0}.

Also, H−1
a,b (0, 1) denotes the conjugate space of H1

a,b(0, 1). We set

H2
a,b(0, 1) = V 2

a,b(0, 1) ∩H1
a,b(0, 1).

From Assumption 2.4, when λ > 0 there exists θ ∈ (0, 1) such that

λ =
1

Ca,b
− θ

Ca,b
. (2.6)

Further, one can prove the next result.

Lemma 2.5. Under Assumptions 2.1 and 2.4, we have∫ 1

0

a(u′)
2
dx ≤ 1

Cθ

∫ 1

0

a(u′)
2 − λ

b
u2 dx, (2.7)

where Cθ = θ if λ ∈
(
0, 1

Ca,b

)
, Cθ = 1 if λ ≤ 0.

Proof. (i) If λ ∈
(
0, 1

Ca,b

)
, then by (2.3) (2.6), we deduce that∫ 1

0

a(u′)
2 − λ

b
u2 dx ≥

∫ 1

0

a(u′)
2
dx− (1− θ)

∫ 1

0

a(u′)
2
dx = θ

∫ 1

0

a(u′)
2
dx.

(ii) If λ ≤ 0, obviously, ∫ 1

0

a(u′)
2 − λ

b
u2 dx ≥

∫ 1

0

a(u′)
2
dx.

□

Assumption 2.6. Under Assumptions 2.1 and 2.4, the function

x → xKb

b(x)

is nondecreasing in a right neighborhood of x = 0.

Remark 2.7. It is clear that, if Assumption 2.6 holds, then

lim
x→0+

xγ

b(x)
= 0, γ > Kb. (2.8)

In particular,

lim
x→0+

x2

b(x)
= 0. (2.9)

Lemma 2.8. Under Assumption 2.6, for all u ∈ H1
a,b(0, 1), we have

lim
x→0+

x

b(x)
u2 = 0. (2.10)
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Proof. If 0 ≤ Ka < 1, using that u(0) = 0, we have

|u(x)| ≤
∫ x

0

|u(ξ)|dξ ≤
√
x∥u′∥L2(0,1).

Then
x

b(x)
u2(x) ≤ x2

b(x)
∥u′∥L2(0,1).

By equation (2.9), the lemma follows.
If 1 < Ka < 2, then 0 ≤ Kb < 1, the conclusion follows directly from Remark

2.7. □

3. Well-posedness

First, we consider the degenerate/singular wave problem with Dirichlet/Neumann
boundary conditions:

utt − (a(x)ux)x − λ

b(x)
u = 0, (t, x) ∈ (0, T )× (0, 1),

u(t, 1) = 0, t ∈ (0, T ),

u(t, 0) = 0, Ka ∈ [0, 1), t ∈ (0, T ),

lim
x→0+

aux(t, x) = 0, Ka ∈ (1, 2), t ∈ (0, T ),

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (0, 1).

(3.1)

Let us recall the typical abstract setup of semigroup theory, which provides
weak and classical solutions for the above system. Consider the Hilbert space
H = H1

a,b(0, 1)× L2(0, 1) endowed with the inner product

⟨(u, v), (ũ, ṽ)⟩H =

∫ 1

0

vṽ + au′ũ′ − λ

b
uũ dx, ∀(u, v), (ũ, ṽ) ∈ H.

By Assumption 2.4 and the Hardy-Poincare inequality (2.3), we have

⟨(u, v), (u, v)⟩H =

∫ 1

0

v2 + a(u′)
2 − λ

b
u2 dx ≥ 0, ∀(u, v) ∈ H.

Thus, ⟨·, ·⟩H forms the scalar product.
Arguing as for the classical wave equation, the unbounded operator A : D(A) ⊂

H → H is defined by

A(u, v) =
(
v, a(u′)′ +

λ

b
u
)
, ∀(u, v) ∈ D(A) (3.2)

with

D(A) = H2
a,b(0, 1)×H1

a,b(0, 1),

if Ka ∈ [0, 1), or

D(A) = {(u, v) ∈ H2
a,b(0, 1)×H1

a,b(0, 1) : aux(0) = 0},

provide Ka ∈ (1, 2).

Proposition 3.1. Under Assumption 2.6, the operator A is maximally dissipative
on H.
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Proof. Let (u, v) ∈ D(A). Then

⟨A(u, v), (u, v)⟩H =

∫ 1

0

(
a(u′)′v +

λ

b
uv + au′v′ − λ

b
uv

)
dx = 0.

Therefore, A is dissipative. It remains to be proved that the operator is maximally
dissipative, which is equivalent to showing that I −A is surjective. Specifically, for
any (g1, g2) ∈ H, we need to find (u, v) ∈ D(A) such that the problem

v = u− g1,

u− a(u′)′ − λ

b
u = g1 + g2.

(3.3)

So far that, we consider the bilinear form β : H1
a,b(0, 1) ×H1

a,b(0, 1) → R given by

β(u, φ) =
∫ 1

0

(
uφ+ au′φ′ − λ

b uφ
)
dx, and the linear functional L : H1

a,b(0, 1) → R
given by Lφ =

∫ 1

0
(g1 + g2)φdx. One can verify that β is a continuous and coercive

bilinear functional on H. Also, L is a continuous linear functional. Consequently,
by the Lax-Milgram theorem, there exist a unique solution u ∈ H1

a,b(0, 1) to the
variational problem

β(u, φ) = Lφ, ∀φ ∈ H1
a,b(0, 1). (3.4)

Since C∞
c (0, 1) ⊂ H1

a,b(0, 1), we have∫ 1

0

(
uφ+ au′φ′ − λ

b
uφ

)
dx =

∫ 1

0

(g1 + g2)φdx, ∀φ ∈ C∞
c (0, 1). (3.5)

By duality, this implies that

u− a(u′)′ − λ

b
u = g1 + g2

in the sense of distributions. Thus, u ∈ H2
a,b(0, 1) and u − a(u′)′ − λ

b u = g1 + g2
almost everywhere in (0, 1). Setting v = u − g1, we conclude that (u, v) ∈ D(A)
and the problem (3.3) is solved. □

Therefore A is the generator of a contraction semigroup in H, denoted by etA.
For any U0 = (u0, u1) ∈ H, U(t) = etAU0 can be seen as the solution of the Cauchy
problem

U ′(t) = AU(t),

U(0) = U0.
(3.6)

Hence, as in [1] or [3], we have the following conclusions.

Corollary 3.2. Assume Assumption 2.6, for given (u0, u1) ∈ H1
a,b(0, 1)×L2(0, 1),

there exist a unique mild solution u to the problem (3.1) satisfying

u ∈ C1([0, T ];L2(0, 1)) ∩ C([0, T ];H1
a,b(0, 1));

If (u0, u1) ∈ D(A), then the solution u is classical, in the sense that

u ∈ C2([0, T ];L2(0, 1)) ∩ C1([0, T ];H1
a,b(0, 1) ∩ C([0, T ];H2

a,b(0, 1)).
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4. Energy estimate

In this section, we establish an estimate of the energy and a direct inequality
associated to the solution of the initial value problem, which will be used to prove
a controllability in Section 6.

Definition 4.1. Using Assumption 2.6, we define the generalized energy of a mild
solution u of (3.1) as follows,

Eu(t) =
1

2

∫ 1

0

(
u2
t + au2

x − λ

b
u2

)
dx, ∀t ≥ 0. (4.1)

Computations show that the conservation of the energy Eu remains valid in the
degenerate and singular situation.

Proposition 4.2. Under Assumption 2.6 and considering (u0, u1) ∈ H1
a,b(0, 1) ×

L2(0, 1), The energy Eu(t) of the mild solution u of (3.1) is constant in time, that
is,

Eu(t) = Eu(0), ∀t ≥ 0. (4.2)

Proof. First, suppose that u is a classical solution. Then, multiplying the equation
by ut and integrating over (0, 1), we obtain

0 =

∫ 1

0

ut(t, x)

(
utt(t, x)− (a(x)ux(t, x))x − λ

b(x)
u(t, x)

)
dx

=

∫ 1

0

(
ut(t, x)utt(t, x)− a(x)ux(t, x)utx(t, x)−

λ

b(x)
u(t, x)ut(t, x)

)
dx︸ ︷︷ ︸

= d
dtEu(t)

− [a(x)ux(t, x)ut(t, x)]
1
0.

(4.3)

Using the boundary conditions and Alabau-Boussouira et al. [1, Proposition 2.5],
we have that the boundary a(x)ux(t, x)ut(t, x) vanishes at x = 1 and x = 0. Now,
let u be the mild solution associated with the initial data (u0, u1) ∈ H1

a,b(0, 1) ×
L2(0, 1). Consider a sequence {un

0 , u
n
1}n∈N ⊂ D(A) = H2

a,b(0, 1) × H1
a,b(0, 1) that

approximates (u0, u1), and let un be the classical solution of (3.1) associated to
(un

0 , u
n
1 ). u

n satisfies (4.2) and un
x is a Cauchy sequence in L2(0, 1). Therefore, we

extend (4.2) to the mild solution. □

To facilitate the subsequent proof of controllability results, we prove the following
direct inequality.

Proposition 4.3. Under Assumption 2.6, if u is a classical solution of (3.1), then

a(1)

∫ T

0

u2
x(t, 1)dt =

∫
Q

(
u2
t + (a− xa′)u2

x + λ
b− xb′

b2

)
dx dt

+ 2
[∫ 1

0

xuxutdx
]T
0
.

(4.4)
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As a consequence, if u is a mild solution, then ux(·, 1) ∈ L2(0, T ) for every T > 0
and

a(1)

∫ T

0

u2
x(t, 1)dt

≤ 4max{ 1

a(1)Cθ
, 1}Eu(0) +

2T

Cθ
(1 +Ka + Ca,b|λ|(1 +Kb))Eu(0).

(4.5)

Proof. Suppose first that (u0, u1) ∈ H2
a,b(0, 1) ×H1

a,b(0, 1), so that u is a classical

solution of (3.1). Then, multiplying (3.1) by xux and integrating over Q, we obtain

0 =

∫
Q

xux

(
utt − (aux)x − λ

b
u
)
dx dt

=
[∫ 1

0

xuxutdx
]T
0
−
∫
Q

xuxtut dx dt

−
∫
Q

(
xa′u2

x + xauxuxx +
λ

b
xuux

)
dx dt

=
[∫ 1

0

xuxutdx
]T
0
−
∫
Q

xa′u2
x dx dt

−
∫
Q

(
x
(u2

t

2

)
x
+ xa

(u2
x

2

)
x
+

λ

2

x(u2)x
b

)
dx dt.

(4.6)

Arguing as in the proof of Alabau-Boussouira et al. [1, Lemma 3.2],[
x
u2
t

2

]1
0
= 0,

[xau2
x]

1
0 = a(1)u2

x(t, 1).

From the boundary conditions and Lemma 2.8, we have[xu2

b

]1
0
= 0.

Hence, ∫
Q

x
(u2

t

2

)
x
dx dt = −1

2

∫
Q

u2
t dx dt, (4.7)∫

Q

xa
(u2

x

2

)
x
dx dt = −1

2

∫
Q

(a+ xa′)u2
x dx dt+

1

2
a(1)

∫ T

0

u2
x(t, 1)dt, (4.8)

λ

2

∫
Q

x(u2)x
b

dx dt = −λ

2

∫
Q

b− xb′

b2
u2 dx dt . (4.9)

Then (4.4) follows by inserting (4.7)–(4.9) into (4.6). Next, we estimate the term
on the right side of equation (4.4) separately. According the Hölder inequality and
Lemma 2.5, we have

2

∫ 1

0

xuxutdx ≤
∫ 1

0

(
x2u2

x + u2
t

)
dx

≤ 1

a(1)Cθ

∫ 1

0

(
au2

x − λ

b
u2

)
dx+

∫ 1

0

u2
t dx

≤ 2max
{ 1

a(1)Cθ
, 1
}
Eu(0).

(4.10)
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Moreover, Using the definition of Kg and Hardy’s inequality (2.3), we have∫ 1

0

(a+ xa′)u2
xdx ≤ (1 +Ka)

∫ 1

0

au2
x dx ≤ (1 +Ka)

Cθ
Eu(0), (4.11)

and

λ

∫ 1

0

b− xb′

b2
u2 dx ≤

∫ 1

0

λ

b

(
1− xb′

b

)
u2dx

≤
∫ 1

0

|λ|
b
(1 +Kb)u

2dx

≤ 2Ca,b|λ|(1 +Kb)

Cθ
Eu(0).

(4.12)

Hence, by (4.4) and the inequalities (4.10)–(4.12), we obtain (4.5). As before,
to extend (4.5) to the mild solution associated with the initial data (u0, u1) ∈
H1

a,b(0, 1)×L2(0, 1), it suffices to approximate such data by (un
0 , u

n
1 ) ∈ H2

a,b(0, 1)×
H1

a,b(0, 1), and thanks to (4.5), we can show that the normal derivatives of the

corresponding classical solutions give a Cauchy sequence in L2(0, 1). □

5. Boundary observability

Lemma 5.1. Under Assumption 2.6, for any mild solution u of (3.1) and every
T ≥ 0, we have∫

Q

(
a(x)u2

x − u2
t −

λ

b(x)
u2

)
dx dt+

[∫ 1

0

uut dx
]T
0
= 0. (5.1)

Proof. As before, suppose that u is the classical solution of (3.1). Multiplying (3.1)
by u and integrating over the domain Q = (0, T )× (0, 1), we obtain

0 =

∫ 1

0

u
(
utt − (a(x)ux)x − λ

b(x)
u
)
dx

=

∫
Q

(
a(x)u2

x − u2
t −

λ

b(x)
u2

)
dx dt+

[∫ 1

0

uut dx
]T
0
−
∫ T

0

[a(x)uux]
1
0 dt.

(5.2)

Thanks to the boundary conditions and Alabau-Boussouira et al. [12, Proposition
2.5], we have that auux also vanishes at x = 0 and at x = 1. The conclusion can
be extended to mild solution by an approximation argument. □

Theorem 5.2. Under Assumption 2.6, let u be a mild solution of (3.1). Then, for
every T ≥ 0,

a(1)

∫ T

0

u2
x(t, 1)dt ≥ −

(
4max{ 1

a(1)θ
, 1}+ 2Ka

1√
θa(1)

)
Eu(0)

+ T{(2−Ka) + λCa,bθ (2−Ka −Kb)}Eu(0),

(5.3)

for λ ∈ (0, 1
Ca,b

), and

a(1)

∫ T

0

u2
x(t, 1)dt ≥ −

(
4max{ 1

a(1)
, 1}+ 2Ka

1√
a(1)

)
Eu(0)

+ T{(2−Ka)− |λ|Ca,b (2−Ka −Kb)}Eu(0),

(5.4)

for λ ∈ (−∞, 0], where the constants Ca,b and θ are given in (2.3) and (2.6),
respectively.
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Proof. As usual, let us suppose that u is a classical solution of (3.1). Multiplying
both sides of equation (5.1) by Ka

2 and summing the corresponding ones to both
side of equation (4.4), we obtain

a(1)

∫ T

0

u2
x(t, 1)dt

= 2
[∫ 1

0

xuxutdx
]T
0
+

Ka

2

[∫ 1

0

uut dx
]T
0
+

(
1− Ka

2

)∫
Q

u2
t dx dt

+

∫
Q

[(
1 +

Ka

2

)
a− xa′

]
u2
x dx dt+

∫
Q

λ

b

(b− xb′

b
− Ka

2

)
u2 dx dt

=

∫
Q

(
1− Ka

2

)
u2
t +

[(
1 +

Ka

2

)
a− xa′

]
u2
x +

(
1− Ka

2

)λ
b
u2 dx dt

+ 2
[∫ 1

0

xuxutdx
]T
0
+

Ka

2

[∫ 1

0

uut dx
]T
0
+

∫
Q

λ

b

(
2− xb′

b
−Ka

)
u2 dx dt.

(5.5)

Using Remark 2.2 and the inequality xa′ ≤ Kaa, we have∫
Q

(
1− Ka

2

)
u2
t +

[(
1 +

Ka

2

)
a− xa′

]
u2
x +

(
1− Ka

2

)λ
b
u2 dx dt

≥
(
1− Ka

2

)∫
Q

(
u2
t + au2

x − λ

b
u2

)
dx dt

≥ (2−Ka)TEu(0).

(5.6)

By (4.10), we obtain

2
[∫ 1

0

xuxutdx
]T
0
≤ 4max{ 1

a(1)Cθ
, 1}Eu(0). (5.7)

Furthermore, applying the Hardy inequality in its pure degenerate form (see [1]),
we obtain ∫ 1

0

u2dx ≤ 4

a(1)

∫ 1

0

au2
xdx, ∀u ∈ C∞

c (0, 1),

from which we can deduce that∫ 1

0

uut dx ≤ 1

2

∫ 1

0

(√Cθa(1)

2
u2 +

2√
Cθa(1)

u2
t

)
dx

≤ 1

2

∫ 1

0

(
2

√
Cθ

a(1)
au2

x +
2√

Cθa(1)
u2
t

)
dx

≤ 1√
Cθa(1)

∫ 1

0

(
u2
t + au2

x − λ

b
u2

)
dx

=
2√

Cθa(1)
Eu(0).

(5.8)

Finally, if λ ∈
(
0, 1

Ca,b

)
, we have∫

Q

λ

b

(
2− xb′

b
−Ka

)
u2 dx dt ≥

∫
Q

λ

b
(2−Kb −Ka)u

2 dx dt

≥ λCa,bCθ (2−Ka −Kb)TEu(0);

(5.9)
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If λ ∈ (−∞, 0], then∫
Q

λ

b

(
2− xb′

b
−Ka

)
u2 dx dt ≤

∫
Q

|λ|
b

(2−Kb −Ka)u
2 dx dt

≤ |λ|Ca,bCθ (2−Kb −Ka)TEu(0).

(5.10)

Notice that Cθ = θ if λ ∈ (0, 1
Ca,b

); Cθ = 1 if λ ∈ (−∞, 0]. Therefore, (5.3) and

(5.4) by substituting (5.6)-(5.10) into (5.5). □

We recall that (3.1) is said to be observable in time T ≥ 0 via the normal
derivative at x = 1, if there exists a constant C > 0 such that for any (u0, u1) ∈
H1

a(0, 1)× L2(0, 1), the mild solution of (3.1) satisfies∫ T

0

u2
x(t, 1) dt ≥ CEu(0). (5.11)

Moreover, any constant satisfying (5.11) is called an observability constant for (3.1)
in time T ≥ 0. The supremum of all observability constants for (3.1) is denoted by
CT , namely,

CT := sup{C > 0, C satisfies (5.11)}.
We said that (3.1) is observable if

CT = inf
(u0,u1) ̸=(0,0)

∫ T

0
u2
x(t, 1)dt

Eu(0)
> 0. (5.12)

From the definition of observability, and Theorem 5.2, we have following corollary.

Corollary 5.3. Under Assumption 2.6 and λ > 0, (3.1) is observable in time T ,
provided that

T > Ta,b :=
C2

C1
.

In this case,

CT ≥ 1

a(1)
(C1T − C2),

where

C1 = (2−Ka) + λCa,bθ (2−Ka −Kb) ,

C2 =
(
4max{ 1

a(1)θ
, 1}+ 2Ka

1√
θa(1)

)
.

Corollary 5.4. Under Assumption 2.6, Ka−2
Ca,b(2−Kb−Ka)

< λ ≤ 0, and λ ≤ 0 if

Ka +Kb = 2. We have that (3.1) is observable in time T , provided that

T > Ta,b :=
C4

C3
.

Moreover,

CT ≥ 1

a(1)
(C3T − C4),

where

C3 = {(2−Ka)− |λ|Ca,b (2−Ka −Kb)},

C4 =
(
4max{ 1

a(1)
, 1}+ 2Ka

1√
θa(1)

)
.
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6. Controllability

In this section, we study the problem of exact controllability for (1.7). By its
linearity and reversibility, it is straightforward to verify that exact controllability
will hold as long as it is valid for any initial data (y0, y1) and a zero final state.
Equivalently, given (y0, y1) ∈ H1

a,b(0, 1) × L2(0, 1), we seek a control function f ∈
L2(0, T ) such that the solution of (1.7) satisfies (y, y′)(T, ·) ≡ 0.

Definition 6.1. Let f ∈ L2
loc(0, T ) and (y0, y1) ∈ L2(0, 1)×H−1

a,b (0, 1) be arbitrarily

fixed. We say that y is a solution by transposition of (1.7) if
y ∈ C1([0, T ];H−1

a,b (0, 1) ∩ C([0, T ];L2(0, 1)) and for any T > 0,

⟨yt(T ), w0
T ⟩H−1

a (0,1)×H1
a(0,1)

−
∫ 1

0

y(T )w1
T dx

= ⟨y1, w(0)⟩H−1
a,b(0,1)×H1

a,b(0,1)
−

∫ 1

0

y(0)w′(0) dx+ a(1)

∫ T

0

f(t)wx(t, 1) dt

(6.1)

for all (w0
T , w

1
T ) ∈ H1

a,b(0, 1) × L2(0, 1), where w is the solution of the backward
equation

wtt − (a(x)wx)x − λ

b(x)
w = 0, (t, x) ∈ (0, T )× (0, 1),

w(t, 1) = 0, t ∈ (0, T ),

w(t, 0) = 0, Ka ∈ [0, 1), t ∈ (0, T ),

a(x)wx(t, 0) = 0, Ka ∈ (1, 2), ]; t ∈ (0, T ),

w(T, x) = w0
T (x), wt(T, x) = w1

T (x), x ∈ (0, 1).

(6.2)

By setting y(t, x) = w(T − t, x), we leverage the time reversibility of the wave
equation to assert that the solution y maintains the same regularity as w for
t ≤ 0. Consequently, the backward equation (6.2) admits a unique solution w ∈
C1([0, T ];L2(0, 1) ∩ C([0, T ];H1

a,b(0, 1)) which depends continuously on the initial

data WT = (w0
T , w

1
T ) ∈ H. By Proposition 4.2, the energy Ew(t) of w is conserved

through time, which implies that the direct inequality (4.5) and observabilities in-
equality (5.3) and (5.4) remain valid for w. Therefore, there is a unique solution
by transposition w ∈ C1([0, T ];H−1

a,b (0, 1)) ∩ C([0, T ];L2(0, 1)).
Now, consider the bilinear form Λ : H×H → R defined as

Λ(WT , W̃T ) = a(1)

∫ T

0

wx(t, 1)w̃x(t, 1)dt, (6.3)

where wx, w̃x are the solution of (1.7) associated with the final dataWT := (w0
T , w

1
T ),

W̃T := (w̃0
T , w̃

1
T ), respectively. To prove that (1.7) is exactly controllable, the fol-

lowing Lemma is key.

Lemma 6.2. Under Assumption 2.6, the bilinear form Λ is continuous and coer-
cive.
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Proof. By the direct inequality and the result of energy conservation,

|Λ(WT , W̃T )| ≤ a(1)

∫ T

0

|wx(t, 1)w̃x(t, 1)| dt

≤
(
a(1)

∫ T

0

w2
x(t, 1) dt

)1/2(
a(1)

∫ T

0

w̃2
x(t, 1) dt

)1/2

≤ CE1/2
w (T )E

1/2
w̃ (T )

≤ C∥WT ∥H∥W̃T ∥H.

(6.4)

By the observability inequality, we have

Λ(WT ,WT ) = a(1)

∫ T

0

w2
x(t, 1) dt ≥ CTEw(T ) = C∥WT ∥2H. (6.5)

□

Theorem 6.3. Under Assumption 2.6, for all T > Ta,b and for all (y0, y1) ∈
L2(0, 1) ×H−1

a,b (0, 1), there exists a control f ∈ L2(0, T ) such that the solution (in

the sense of transposition) satisfies

y(T, x) = yt(T, x) = 0, ∀x ∈ (0, 1).

Proof. We define the continuous linear map

L(WT ) =

∫ 1

0

y0wt(0) dx−⟨y1, w(0)⟩H−1
a,b(0,1)×H1

a,b(0,1)
, ∀WT ∈ H1

a,b(0, 1)×L2(0, 1).

Thanks to Lemma 6.2 and the Lax-Milgram theorem, there exists a unique WT ∈
H1

a,b(0, 1)× L2(0, 1) such that

Λ(WT , W̃T ) = L(W̃T ), ∀W̃T ∈ H1
a,b(0, 1)× L2(0, 1). (6.6)

We set f = wx(t, 1) and denote by y the solution by transposition of (1.7). Then
we have

a(1)

∫ T

0

f(t)w̃x(t, 1) dt

= a(1)

∫ T

0

wx(t, 1)w̃x(t, 1)dt = Λ(WT , W̃T ) = L(W̃T )

=

∫ 1

0

u0w̃t(0) dx− ⟨u1, w̃(0)⟩H−1
a,b(0,1)×H1

a,b(0,1)
,

(6.7)

for all (w̃0
T , w̃

1
T ) ∈ H1

a,b(0, 1)×L2(0, 1). On the other hand, by the definition of the

solution by transposition, for all (w̃0
T , w̃

1
T ) ∈ H1

a,b(0, 1)× L2(0, 1) we have

a(1)

∫ T

0

f(t)w̃x(t, 1) dt =

∫ T

0

y(T )w̃1
T dt− ⟨yt(T ), w̃0

T ⟩H−1
a,b(0,1)×H1

a,b(0,1)

+ ⟨y1, w̃(0)⟩H−1
a (0,1)×H1

a,b(0,1)
−
∫ 1

0

y(0)wt(0) dx.

(6.8)

By equations (6.7) and (6.8), we deduce that

⟨yt(T ), w̃0
T ⟩H−1

a,b(0,1)×H1
a,b(0,1)

=

∫ T

0

y(T )w̃1
T dt, ∀(w̃0

T , w̃
1
T ) ∈ H1

a,b(0, 1)× L2(0, 1).
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Hence, we conclude that

y(T, x) = yt(T, x) = 0, ∀x ∈ (0, 1). □

7. Conclusion

In this article, we have considered the controllability of degenerate and singu-
lar wave equations, and obtained the exact controllability of the system under
certain assumptions. We have adopted the coefficient settings from Reference [1],
enhanced the equation system from Reference [3], and replaced the particular expo-
nential form of the degenerate and singular coefficients presented in [3] with a more
generalized form. Furthermore, we do not necessitate the relationship between the
generalized coefficients to be as stringent as in [3]; it is only necessary that their
sum falls within a certain range (Ka +Kb ≤ 2). This allows for the application of
diverse technical approaches when addressing the singular term, leading to various
trade-offs in parameter λ selection. From this perspective, article [3] can be viewed
as a special case of this paper, which is also one of the novel aspects of this work.
To more intuitively illustrate this point, we have provided an example other than
xα as follows.

Example. Let θ ∈ (0, 2) be given, we construct the functions a(x), b(x) as follows

a(x) =

{
xθ

(
1 + sin2(lnxα)

)
if x ∈ (0, 1]

0 if x = 0,

where α ∈ (0, 1− θ/2);

b(x) =

{
x2−θ

(
1 + sin2(lnxβ)

)
if x ∈ (0, 1]

0 if x = 0,

where β ∈ [θ/2 − 1,−α]. Then the functions a(x), b(x) satisfy Assumption 2.1.
Indeed,

a′(x) = θxθ−1
(
1 + sin2(lnxα)

)
+ 2αxθ−1 sin(lnxα) cos(lnxα)

so that Ka ≤ θ+ 2α < 2. It is also easy to discover that Ka is not always equal to
1.

b′(x) = (2− θ)x1−θ
(
1 + sin2(lnxβ)

)
+ 2βx1−θ sin(lnxβ) cos(lnxβ)

so that Kb ≤ 2− θ + 2β ≤ 2, and Ka +Kb ≤ 2 + 2α+ 2β ≤ 2.
We summarize the comparison between this paper and existing literature as

follows.

Degenerate term Singular term

In [3] xα, α ∈ [0, 2) \ {1} x2−α µ ≤ (1−α)2

4

Here
Ka := sup0<x≤1

x|a′(X)|
a(X)

Ka ∈ [0, 2) \ {1}

Kb := sup0<x≤1
x|b′(X)|
b(X)

Kb ∈ [0, 2]

Ka +Kb ≤ 2

Ka−2
Ca,b(2−Kb−Ka)

< λ < 1
Ca,b

or λ < 1
Ca,b
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