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WEIGHTED (p, q)-EQUATIONS WITH GRADIENT DEPENDENT

REACTION

ZHAO JING, ZHENHAI LIU, NIKOLAOS S. PAPAGEORGIOU

Abstract. We consider a weighted (p, q)-equation with a parametric reaction
depending on the gradient. Using truncation and comparison techniques and

the theory of nonlinear operators of monotone type, we show that for all small

values of the parameter, the problem has a positive smooth solution.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this article we
study the parametric Dirichlet problem

−∆a1
p u(z)−∆a2

q u(z) = f(z, u(z)) + λ|Du(z)|p−1 in Ω,

u|∂Ω = 0, 1 < q < p < N, λ > 0, u > 0.
(1.1)

If a ∈ C0,1(Ω) with 0 < ĉ ≤ a(z) for all z ∈ Ω and s ∈ (1,∞), then by ∆a
s we

denote the weighted s-Laplace differential operator defined by

∆a
su = div(a(z)|Du|s−2Du), for all u ∈W 1,s

0 (Ω).

In problem (1.1) the equation is driven by the sum of two such operators with differ-
ent exponents q < p and in general different weights (a weighted (p, q)-differential
operator). So, the differential operator in (1.1) is not homogeneous. The reaction
(right hand side) of (1.1) is gradient dependent. Combining varational tools from
critical point theory, with the theory of nonlinear operators of monotone type, we
show that for all small values of parameter λ > 0, problem (1.1) has a positive
small solution.

Nonlinear elliptic equations with gradient dependence, such as (1.1), were exam-
ined by Candito-Gasiński-Papageorgiou [1], Faria-Miyagaki-Motreanu [4], Tanaka
[16], Zeng-Papageorgiou [17]. All the aforementioned works deal with equations
driven by autonomous differential operators and their method of proof is based on
the fixed point theory. Our approach here is different and it is partly motivated
by the work of Deuel-Hess [2] (see also Liu-Papageorgiou [10] on double phase
equations).
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2. Mathematical background, hypotheses

In the analysis of (1.1) the main spaces are the Sobolev space W 1,p
0 (Ω) and the

Banach space C1
0 (Ω) = {u ∈ C1(Ω) : u|∂Ω = 0}. On account of the Poincaré

inequality, on W 1,p
0 (Ω) we can use the following equivalent norm

∥u∥ = ∥Du∥p for all u ∈W 1,p
0 (Ω).

The space C1
0 (Ω) is an ordered Banach space with positive (order) cone C+ =

{u ∈ C1
0 (Ω) : u(z) ≥ 0 for all z ∈ Ω}. This cone has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n
|∂Ω < 0

}
where ∂u

∂n = (Du,n)RN with n(·) being the outward unit normal on ∂Ω.

Let a ∈ C0,1(Ω) with a(z) ≥ ĉ > 0 for all z ∈ Ω and 1 < s < ∞. We consider
the following nonlinear eigenvalue problem

−∆a
su(z) = λ̂|u(z)|s−2u(z) in Ω, u|∂Ω = 0.

This problem was examined by Liu-Papageorgiou [11] (see the Appendix in [11]),

who established the existence of a smallest eigenvalue λ̂a1(s) > 0 which has the
following variational characterization

λ̂a1(s) = inf
{ϱα,s(Du)

∥u∥ss
: u ∈W 1,s

0 (Ω), u ̸= 0
}
, (2.1)

where ϱα,s(Du) =
∫
Ω
a(z)|Du|s dz for all u ∈ W 1,s

0 (Ω). This eigenvalue is isolated

in the spectrum and simple (that is, if û, v̂ ∈ W 1,s
0 (Ω) are two eigenfunctions

corresponding to λ̂a1(s) > 0, then û = ϑv̂ for some ϑ ∈ R\{0}). So, the eigenspace

corresponding to λ̂a1(s) is one-dimensional and its elements have fixed sign. In fact

λ̂a1(s) is the only eigenvalue with eigenfunctions of constant sign. All the other
eigenvalues have nodal (sign changing) eigenfunctions. The infimum in (2.1) is

realized on the one dimensional eigenspace of λ̂a1(s). By û1 = û1(s) ∈W 1,s
0 (Ω), we

denote the positive, Ls-normalized (that is, ∥û1∥s = 1) eigenfunction corresponding

to λ̂a1(s). The nonlinear regularity theory and the nonlinear maximum principle (see
Gasiński-Papageorgiou ([5], p.738), imply that û1 ∈ intC+.

These properties of the principal eigenvalue λ̂a1(s) > 0 and of its eigenfunctions,
lead to the following result (see Liu-Papageorgiou [11, Proposition 4.2])).

Proposition 2.1. If ϑ ∈ L∞(Ω), ϑ(z) ≤ λ̂a1(s) for a.a. z ∈ Ω and ϑ ̸≡ λ̂α1 (s), then
there exists, c0 > 0 such that

c0∥u∥s ≤ ϱα,s(Du)−
∫
Ω

ϑ(z)|u| dz for all u ∈W 1,p
0 (Ω).

Suppose u : Ω → R is a measurable function. We define

u+(z) = max{u(z), 0}, u−(z) = max{−u(z), 0} for all z ∈ Ω.

We have u = u+ − u−, |u| = u+ + u− and if u ∈ W 1,s
0 (Ω), then u± ∈ W 1,s

0 (Ω).
Also by | · |N we denote the Lebesgue measure on RN .

If u, v : Ω → R are measurable functions and u(z) ≤ v(z) for a.a. z ∈ Ω, then
we define

[u, v] = {h ∈W 1,p
0 (Ω) : u(z) ≤ h(z) ≤ v(z) a.a. z ∈ Ω}.
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If X is a Banach space and φ ∈ C1(X), then Kφ = {u ∈ X : φ′(u) = 0}
(the critical set of φ). Suppose X is a reflexive Banach space and E : X → X∗

a bounded nonlinear map. We say that E(·) is “pseudomonotone”, if it has the
following property:

If un
w−→ u in X, E(un)

w−→ u∗ in X∗ and lim supn→∞⟨E(un), un−
u⟩ ≤ 0, then u∗ = E(u) and ⟨E(un), un⟩ → ⟨E(un), u⟩.

(see Gasiński-Papageorgiou [5, p.330]). Here by ⟨·, ·⟩ we denote the duality brackets
for the pair (X∗, X). A maximal monotone operator is pseudomonotone. We say
that E(·) is “strongly coercive”, if

⟨E(u), u⟩
∥u∥X

→ +∞ as ∥u∥X → +∞.

The next theorem reveals the importance of pseudomonotone maps.

Theorem 2.2. If X is a reflexive Banach space and E : X → X∗ is a strongly
coercive pseudomonotone map, then E(·) is surjective.

Let Aa
s : W 1,s

0 (Ω) → W−1,s′(Ω) = W 1,s
0 (Ω)

∗
( 1s + 1

s′ = 1) be the nonlinear map
defined by

⟨Aa
s(u), h⟩ =

∫
Ω

a(z)|Du|s−2(Du,Dh)RN dz for all u, h ∈W 1,s
0 (Ω).

From Gasiński-Papageorgiou [6] (p.279), we have the following properties for this
map.

Proposition 2.3. Aa
s : W 1,s

0 (Ω) → W−1,s′(Ω) is bounded (that is, maps bounded
sets to bounded sets), continuous, strictly monotone (thus maximal monotone too)

and of type (S)+, that is: if un
w−→ u inW 1,s

0 (Ω) and lim supn→∞⟨Aa
s(un), un−u⟩ ≤

0, then un → u in W 1,s
0 (Ω).

Our hypotheses on the data of problem (1.1), are the following:

(H0) a1, a2 ∈ C0,1(Ω) and 0 < ĉ ≤ a1(z), a2(z) for all z ∈ Ω.
(H1) f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for a.a.

z ∈ Ω and
(i) for every ϱ > 0, there exists aϱ ∈ L∞(Ω) such that

0 ≤ f(z, x) ≤ aϱ(z) for a. a. z ∈ Ω and all 0 ≤ x ≤ ϱ;

(ii) there exists a function ϑ̂ ∈ L∞(Ω) such that

ϑ̂(z) ≤ λ̂a1
1 (p) for a.a. z ∈ Ω, ϑ̂ ̸≡ λ̂a1

1 (p)

lim sup
x→+∞

f(z, x)

xp−1
≤ ϑ̂(z) uniformly for a.a. z ∈ Ω;

(iii) there exist τ ∈ (1, q) and δ > 0 such that

cxτ−1 ≤ f(z, x) for a.a. z ∈ Ω, all 0 ≤ x ≤ δ, some c > 0.

Remark 2.4. Since we are looking for positive solutions and the above hypotheses
concern the positive semiaxis R+ = [0,∞) without any loss of generality we may
assume that f(z, x) = 0 for a.a. z ∈ Ω, all x ≤ 0.
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3. Auxiliary problems

In this section we examine the following auxiliary parametric Dirichlet problem,
with parameter µ > 0

−∆a1
p u(z)−∆a2

q u(z) = µcu(z)τ−1 in Ω,

u|∂Ω = 0, u > 0, µ > 0, 1 < τ < q < p < N.
(3.1)

For this problem we have the following result.

Proposition 3.1. If (H0) holds, then for every µ > 0 problem (3.1) has a unique
positive solution such that: uµ ∈ intC+, {uµ}µ>0 is nondecreasing, and

uµ → 0 in C1(Ω) as µ→ 0+.

Proof. Consider the C1-functional ψµ :W 1,p
0 (Ω) → R defined by

ψµ(u) =
1

p
ϱa1,p(Du) +

1

q
ϱa2,q(Du)−

µc

τ
∥u+∥ττ for all u ∈W 1,p

0 (Ω).

Since τ < q < p, we see that ψµ(·) is coercive. Also, using the Sobolev embedding
theorem, we see that ψµ(·) is sequentially weakly lower semicontinuous. So, by the

Weierstrass-Tonelli theorem, we can find uµ ∈W 1,p
0 (Ω) such that

ψ′
µ(uµ) = min{ψµ(u) : u ∈W 1,p

0 (Ω)} < 0 = ψµ(0) (since τ < q < p)

⇒ uµ ̸= 0.
(3.2)

Then we have

⟨ψµ(uµ), h⟩ = 0 for all h ∈W 1,p
0 (Ω),

⇒ ⟨V (uµ), h⟩ =
∫
Ω

µc(u+µ )
τ−1h dz for all h ∈W 1,p

0 (Ω).
(3.3)

Here V = Aa1
p + Aa2

q : W 1,p
0 (Ω) → W−1,p′

(Ω) and on account of Proposition 2.3
this map is bounded, continuous, strictly monotone (thus maximal monotone too)

and of type (S)+. In (3.3) we use the test function h = −u−µ ∈W 1,p
0 (Ω) and obtain

ϱa1,p(Du
−
µ ) ≤ 0 =⇒ ĉ∥Du−µ ∥pp ≤ 0 =⇒ uµ ≥ 0, uµ ̸= 0.

From Ladyzhenskaya-Uraltseva [8, Theorem 7.1, p.286], we have uµ ∈ L∞(Ω). Then
the nonlinear regularity theory of Lieberman [9], implies that uµ ∈ C+\{0}. Since
∆a1

p uµ + ∆a2
q uµ ≤ 0 in Ω, from the nonlinear maximum principle of Pucci-Serrin

[15, pp.111, 120], we have that uµ ∈ int C+.

Next we show the uniqueness of this positive solution. So, let v ∈ W 1,p
0 (Ω) be

another positive solution of (Qµ). Again we have vµ ∈ int C+ We introduce the

integral functional j : L1(Ω) → R̄ = R ∪ {+∞} defined by

j(u) =

{
1
pϱa1,p(Du

1/q) + 1
qϱa2,q(Du

1/q) if u ≥ 0, u1/q ∈W 1,p
0 (Ω),

+∞ otherwise.

From Diaz-Saa [3], see also Papageorgiou-Rădulescu [12] (proof of Proposition 3.5),
we know that j(·) is convex. Let domj = {u ∈ L1(Ω) : j(u) < +∞} (the effective
domain of j(·)). Let h = uqµ−vqµ ∈ C1

0 (Ω̄). Since uµ, vµ ∈ intC+, using Proposition
4.1.22, p.274, of Papageorgiou-Rădulescu-Repovš [14], we have that

uµ
vµ

∈ L∞(Ω) and
vµ
uµ

∈ L∞(Ω).
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Then if t ∈ (0, 1) is small, we have

uqµ + th ∈ dom j and vqµ + th ∈ dom j.

Using the convexity of j(·), we can compute the directional derivatives of j(·)
at uqµ and at vqµ in the direction h. A direct computation involving the nonlinear
Green’s identity (see [14, pp.34-35]) gives

j′(uqµ)(h) =
1

q

∫
Ω

−∆a1
p uµ −∆a2

q uµ

uq−1
µ

h dz =
1

q

∫
Ω

µc

uq−τ
µ

h dz,

j′(vqµ)(h) =
1

q

∫
Ω

−∆a1
p vµ −∆a2

q vµ

vq−1
µ

h dz =
1

q

∫
Ω

µc

vq−τ
µ

h dz.

The convexity of j(·) implies the monotonicity of the directional derivative j′(·).
So, we have

0 ≤
∫
Ω

(
1

uq−τ
µ

− 1

vq−τ
µ

)(uqµ − vqµ) dz ≤ 0, =⇒ uµ = vµ.

This proves the uniqueness of the positive solution uµ ∈ intC+ of (Qµ) for all µ > 0.
Next we show the monotonicity of the family {uµ}µ>0. So suppose that 0 < µ <

η. We have
−∆a1

p uη −∆a2
q uη ≥ ηcuτ−1

η ≥ µcuτ−1
η in Ω. (3.4)

We introduce the Carathéodory function gµ(z, x) defined by

gµ(z, x) =

{
µc(x+)z−1 if x ≤ uη(z)

µcuη(z)
τ−1 if uη(z) < x.

(3.5)

We set Gµ(z, x) =
∫ x

0
gµ(z, x)ds and consider the C1-functional σµ :W 1,p

0 (Ω) → R
defined by

σµ(u) =
1

p
ϱa1,p(Du) +

1

q
ϱa2,q(Du)−

∫
Ω

Gµ(z, u) dz for all u ∈W 1,p
0 (Ω).

From (3.5) it is clear that σµ(·) is coercive. Also it is sequentially weakly lower

semicontinuous. So, we can find u∗µ ∈W 1,p
0 (Ω) such that

σµ(u
∗
µ) = inf{σµ(u) : u ∈W 1,p

0 (Ω)}. (3.6)

Let u ∈ C+\{0}. Since uµ ∈ intC+, we can find t ∈ (0, 1) small such that
0 ≤ tu ≤ uµ (see [14, p.274]). Then

σµ(tu) =
tp

p
ϱa1,p(Du) +

tq

q
ϱa2,q(Du)−

tτ

τ
µc∥u∥ττ .

Since τ < q < p, choosing t ∈ (0, 1) even smaller if necessary, we have that

σµ(tu) < 0 =⇒ σµ(u
∗
µ) < 0 = σµ(0) (see (3.6))

=⇒ u∗µ ̸= 0.

From (3.6), we see that u∗µ ∈ Kσµ
and so

⟨V (u∗µ), h⟩ =
∫
Ω

gµ(z, u
∗
µ)h dz for all h ∈W 1,p

0 (Ω). (3.7)

In (3.7). We choose the test function h = −(u∗µ)
− ∈W 1,p

0 (Ω) and obtain

ĉ∥D(u∗µ)
− ∥pp≤ 0 (see hypotheses (H0)),
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=⇒ u∗µ ≥ 0, u∗µ ̸= 0.

Also, we test (3.7) with h = (u∗µ − uη)
+ ∈W 1,p

0 (Ω). We have

⟨V (u∗µ), (u
∗
µ − uη)

+⟩ =
∫
Ω

µcuτ−1
η (u∗µ − uη)

+
dz (see (3.5))

≤ ⟨V (uη), (u
∗
µ − uη)

+⟩ (see (3.4)),

which implies u∗µ ≤ uη (since V (·) is strictly monotone).
So, we have proved that

u∗µ ∈ [0, uη], u
∗
µ ̸= 0, =⇒ u∗µ = uµ ≤ uη (see (3.6) and (3.7)).

This proves the monotonicity of {uµ}µ>0. Standard Moser iteration, gives

∥uµ∥∞ ≤ c1∥u1∥
1

p−1
∞ for some c1 > 0, all µ ∈ (0, 1].

Then the nonlinear regularity theory of Lieberman [9], implies that there exist
α ∈ (0, 1) and c2 > 0 such that

uµ ∈ C1,α
0 (Ω) = C1,α(Ω) ∩ C1

0 (Ω), ∥uµ∥C1,α
0 (Ω) ≤ c2 for all µ ∈ (0, 1].

Recall that C1,α
0 (Ω) ↪→ C1

0 (Ω) compactly (Arzela-Ascoli theorem). Therefore,

uµ → 0 in C1
0 (Ω) as µ→ 0+.

□

Next we consider another auxiliary Dirichlet probem,

−∆a1
p u(z)−∆a2

q u(z) = f(z, u(z)) + 1 in Ω,

u|∂Ω = 0, u > 0.
(3.8)

Proposition 3.2. Under Assumptions (H0) and (H1), problem (3.6) has a smallest
positive solution u ∈ intC+.

Proof. We consider the nonlinear map E : W 1,p
0 (Ω) → W−1,p′

(Ω) = W 1,p
0 (Ω)

∗

defined by

E(u) = V (u)−Nf (u
+) for all u ∈W 1,p

0 (Ω),

with Nf (v)(·) = f(·, v(·)) for all v ∈ W 1,p
0 (Ω) (the Nemytski map corresponding

to f(z, x)). Note that on account of hypotheses H1(i), (ii) Nf (v) ∈ Lp′
(Ω) for all

v ∈W 1,p
0 (Ω) and Lp′

(Ω) ↪→W−1,p′
(Ω) continuously, see [5, p. 141].

Evidently E(·) is bounded and continuous.

Claim 1: E(·) is pseudomonotone. We consider a sequence {un}n∈N ⊆ W 1,p
0 (Ω)

which satisfies

un
w−→ u in W 1,p

0 (Ω), E(un)
w−→ u∗ in W−1,p′

0 (Ω) =W 1,p
0 (Ω)

∗
,

lim sup
n→∞

⟨E(un), un − u⟩ ≤ 0.
(3.9)

From (3.9) and since W 1,p
0 (Ω) ↪→ Lp(Ω) compactly, we have that

un → u in Lp(Ω), as n→ ∞,

=⇒ ⟨Nf (u
+
n ), un − u⟩ =

∫
Ω

f(z, u+n )(un − u) dz → 0 as n→ ∞

(see (H1)(i), (H1)(ii)),
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=⇒ lim sup
n→∞

⟨V (un), un − u⟩ ≤ 0(see (3.9)),

=⇒ un → u in W 1,p
0 (Ω) (since V (·) is of type (S)+).

Therefore u∗ = E(u) (since E(·) is continuous) and ⟨E(un), un⟩ → ⟨E(u), u⟩. So,
E(·) is pseudomonotone and this proves Claim 1.

Claim 2: E(·) is strongly coercive. Hypotheses (H1) (i), (ii) imply that given
ε > 0, we can find cε > 0 such that

0 ≤ f(z, x) ≤ (ϑ̂(z) + ε)xp−1 + cε for a.a. z ∈ Ω and all x ≥ 0. (3.10)

We have that

⟨E(u), u⟩ = ⟨V (u), u⟩ −
∫
Ω

f(z, u+)u dz

≥ ϱa1,p(Du)−
∫
Ω

ϑ̂(z)|u|p dz − ε∥u∥pp − cε|Ω|N (see (3.10))

≥ [c0 −
ε

λ̂a1
1 (p)

]∥u∥p − cε|Ω|N (see Proposition 2.1 and (2.1)).

Choosing ε ∈ (0, λ̂a1
1 (p)c0), we infer that

⟨E(u), u⟩ ≥ c3∥u∥p − c4 for some c3, c4 > 0 =⇒ E(·) is strongly coercive.

This proves Claim 2.
Claims 1 and 2, permit the use of Theorem 2.2. So, we have that the map E(·)

is surjective. Hence we can find u ∈W 1,p
0 (Ω)\{0} such that

E(u) = 1 in W−1,p′
(Ω) =W 1,p

0 (Ω)
∗
.

With −u− ∈W 1,p
0 (Ω), we obtain

ĉ∥Du−∥pp ≤ 0 =⇒ u ≥ 0, u ̸= 0.

So u ∈W 1,p
0 (Ω) is a solution of (3.8) and as before the nonlinear regularity theory

and the nonlinear maximum principle (see [9], [15]), imply that u ∈ intC+.
We show that there is a smallest positive solution of (3.8). Let S+ be the set of

positive solutions of (3.8). We have just seen that

∅ ≠ S+ ⊆ intC+.

The set S+ is downward directed (that is, if u1, u2 ∈ S+, then we can find u ∈ S+

such that u ≤ u1, u ≤ u2; see [13, Proposition 7]). So, by Theorem 5.109, p.308, of
Hu-Papageorgiou [7], we can find a decreasing sequence {un}n∈N ⊆ S+ such that

inf S+ = inf
n∈N

un.

We have

⟨V (un), h⟩ =
∫
Ω

[f(z, un) + 1]h dz for all h ∈W 1,p
0 (Ω) and all n ∈ N, (3.11)

0 ≤ un ≤ u1. (3.12)

If in (3.11), we choose h = un ∈ W 1,p
0 (Ω), then using (H0), (H1)(i) and (3.12), we

obtain

ĉ∥un∥p ≤ c5 for some c5 > 0, all n ∈ N,

=⇒ un}n∈N ⊆W 1,p
0 (Ω) is bounded.
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As before, the nonlinear regularity theory of Lieberman [9] implies that we can
assume that

un → u in C1
0 (Ω) as n→ ∞.

If u = 0, then we can find n0 ∈ N such that

0 ≤ un(z) ≤ δ for all z ∈ Ω and all n ≥ n0,

=⇒ cun(z)
τ−1 ≤ f(z, ūn(z)) for a.a. x ∈ Ω and all n ≥ n0.

(3.13)

We introduce the Carathéodory function kn(z, x) defined by

kn(z, x) =

{
c(x+)τ−1 if x ≤ un(z), n ≥ n0.

cun(z)
τ−1 if un(z) < x, n ≥ n0.

(3.14)

Now we consider the Dirichlet problem

−∆p
α1
u(z)−∆q

α2
u(z) = kn(z, u(z)) in Ω

u|∂Ω = 0, u > 0.
(3.15)

As before, using the Weierstrass-Tonelli theorem and since τ < q < p, we can find
ũ1 ∈ intC+ solution of (3.15) and 0 ≤ ũ1 ≤ un (see (3.14), (3.13)). Hence

ũ1 = u1 (see Proposition 3.1) =⇒ u1 ≤ un for all n ≥ n0,

which contradicts our hypothesis that u = 0. So, u ̸= 0 and then

u ∈ S+ ⊂ intC+, u = inf S+. □

4. Positive solutions

Let u ∈ intC+ be the minimal positive solution of (3.8) produced in Proposition
3.2. We can find λ0 > 0 such that λ|Du(z)| ≤ 1 for all z ∈ Ω, all 0 < λ ≤ λ0. We
have

−∆α1
p u−∆α2

q u = f(z, u) + 1 ≥ f(z, u) + λ|Du|p−1 (4.1)

in Ω for all 0 < λ ≤ λ0.
Also, using Proposition 3.1 and the fact that u ∈ intC+, we can find µ ∈ (0, 1]

small such that
0 ≤ uµ ≤ min{δ, u(z)} for all z ∈ Ω. (4.2)

So, we have

−∆α1
p uµ −∆α2

1 uµ = µcuτ−1
µ ≤ cuτ−1

µ (since 0 < µ ≤ 1)

≤ f(z, uµ) + λ|Duµ| in Ω for all λ > 0
(4.3)

(see (4.2)).
Using that uµ ≤ u (see (4.2)), we introduce the truncation map τ0 : Lp(Ω) →

Lp(Ω) defined by

τ0(u)(z) =


uµ(z) if u(z) < uµ(z),

u(z), if uµ(z) ≤ u(z) ≤ u(z),

u(z) if u(z) < u(z).

(4.4)

Clearly τ0(·) is bounded and continuous. In fact we can say more. Note that

if u ∈ W 1,p
0 (Ω), then τ0(u) ∈ W 1,p

0 (Ω) (see Papageorgiou- Rădulescu-Repovš [14,

Proposition 1.4.5, p 23]). So, we can consider the map τ0 :W 1,p
0 (Ω) →W 1,p

0 (Ω).

Proposition 4.1. τ0 :W 1,p
0 (Ω) →W 1,p

0 (Ω) is bounded and continuous.
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Proof. We know that

Dτ0(u)(z) =


Duµ(z) if u(z) < uµ(z),

Du(z), if uµ(z) ≤ u(z) ≤ u(z) for all u ∈W 1,p
0 (Ω)

Du(z) if u(z) < u(z).

(4.5)

(see [14, p.23]). From (4.5) it is clear that τ0 : W 1,p
0 (Ω) → W 1,p

0 (Ω) is bounded.
We show that τ0(·) is also continuous. To this end let {un}n∈N such taht un → u

in W 1,p
0 (Ω) as n→ ∞. So, we can assume that

un(z) → u(z) in R, Dun(z) → Du(z) in RN for a.a. z ∈ Ω,

|un(z)|, |Dun(z)| ≤ ĥ(z) for a.a. z ∈ Ω, all n ∈ N, with ĥ ∈ Lp(Ω).
(4.6)

Then from (4.6) and (3.13), (3.14) it follows that

τ0(un)(z) → τ0(u)(z) in R, Dτ0(un)(z) → Dτ0(u)(z) in RN (4.7)

for a.a. z ∈ Ω as n→ ∞.
Moreover, from Gasinski-Papageorgiou[6, Problem 1.4, p.35]) we have that

{|un − u|p}n∈N, {|D(un − u)|p}n∈N ⊆ L1(Ω), (4.8)

are both unifirmly integrable. Then (4.7), (4.8) and Vitali’s theorem (see [7, The-
orem 2.147, p.91]), imply that

τ0(un) → τ0(u) in L
p(Ω), Dτ0(un) → Dτ0(u) in L

p(Ω,RN )

=⇒ τ0(un) → τ0(u) in W
1,p
0 (Ω).

So, we have proved the continuity of τ0 :W 1,p
0 (Ω) →W 1,p

0 (Ω). □

The above result is due to Deuel-Hess[2, Lemma on p.53]. We have reproduced
the proof, since in the proof of [2] there is a small gap, since they state that
|τ0(un)(z)| ≤ |un(z)| for a.a. z ∈ Ω (see [2, p.54]), which is not true in general.

For λ > 0, we introduce the Caratheodory function f̂λ(z, x, y) defined by

f̂λ(z, x, y) = f(z, x) + λ|y|p−1 for all x ∈ Ω, all x ∈ R, and all y ∈ RN .

Also let τ̂0 :W 1,p
0 (Ω) → Lp(Ω)× Lp(Ω,RN ) be defined by

τ̂0(u) = (τ0(u), Dτ0(u)) for all u ∈W 1,p
0 (Ω).

By Proposition 3.2, τ̂0(·) is bounded and continuous. Then we consider Kλ :

W 1,p
0 (Ω) → Lp′

(Ω) ↪→W−1,p′
(Ω)∗ defined by

Kλ(u) = (Nf̂λ
◦ τ̂0)(u) for all u ∈W 1,p

0 (Ω).

Then Kλ(·) is bounded and continuous.
Following Deuel-Hess [2], we introduce also the Caratheodory function

b(z, x) =


−(uµ(z)− x)p−1 if x < uµ(z)

0, if uµ(z) ≤ x ≤ u(z)

(x− u(z))p−1 if u(z) < x.

(4.9)

Let Nb : L
p(Ω) → Lp′

(Ω) be the Nemytski map corresponding to b(z, x), that is,

Nb(u)(·) = b(·, u(·)) for all u ∈ Lp(Ω).
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Evidently Nb(·) is bounded and continuous. In what follows by (·, ·)pp′ , we denote

the duality brackets for the dual pair (Lp′
(Ω), Lp(Ω)). We state the next proposition

in a more general setting than the one we have here and so the estimate can be
used in other more general situations. So, for the purposes of the next proposition,
uµ and u are general functions in W 1,p

0 (Ω)∩L∞(Ω) not necessarily positive (as the
case here), which satisfy uµ ≤ u.

Proposition 4.2. (Nb(u), u)pp′ =
∫
Ω
b(z, u)u dz ≥ c6∥u∥pp − c7 for some c6, c7 > 0

all u ∈W 1,p
0 (Ω).

Proof. We have

(Nb(u), u)pp′ =

∫
{u>u}

(u− u)p−1u dz −
∫
{u<uµ}

(uµ − u)p−1udz.

On {u > u} we have

|u|p−1 = |(u− u) + u|p−1 ≤ [(u− u) + |u|]p−1 ≤ ĉ1[(u− u)p−1 + |u|p−1]

for some ĉ1 > 0. This implies

1

ĉ1
|u|p−1 − |u|p−1 ≤ (u− u)p−1.

If u(z) > 0, then on {u > u} we have

(u− u)p−1u ≥ 1

ĉ1
|u|p − |u|p−1|u| (since |u(z)| = u(z) > 0). (4.10)

If u(z) < 0, then on {u > u} we have u < u < 0 ⇒ |u| < |u|.
It follows that( |u|

|u|

)p−1

−
( |u|
|u|

− 1
)p−1

≥ ĉ2 > 0,

=⇒ |u|p−1

|u|p−1
− (u− u)p−1

|u|p−1
≥ ĉ2 > 0

(since (|u| − |u|)p−1 = (u− u)p−1 on {u < u < 0})
=⇒ |u|p−1 − (u− u)p−1 ≥ ĉ2|u|p−1

=⇒ ĉ2|u|p − |u|p−1|u| ≤ (u− u)p−1u on {u < u < 0}.

(4.11)

From (4.10) and (4.11), we see that∫
{u>u}

(u− u)p−1u dz ≥
∫
{u>u}

[ĉ3|u|p − |u|p−1|u|]dz for some ĉ3 > 0. (4.12)

Next we estimate the set {u < uµ}. If u(z) < 0, then on {u < uµ} we have

−(uµ − u)p−1u = (uµ − u)p−1|u|
= |uµ − u|p−1|u|
≥ ĉ4|u|p − ĉ5|uµ|p−1|u| for some ĉ4, ĉ5 > 0.

(4.13)

If u(z) > 0, then uµ > u > 0 on {u < uµ} and so

−(uµ − u)p−1u ≥ up − ĉ7u
p−1
µ u with ĉ7 > 0. (4.14)
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From (4.13) and (4.14), it follows that∫
{u<uµ}

b(z, u)udz ≥
∫
{u<uµ}

[ĉ8|u|p − ĉ9|uµ|p−1|u|]dz (4.15)

for some ĉ8, ĉ9 > 0. Using (4.12) and (4.15), we see that∫
Ω

b(z, u) dz

≥
∫
{u>u}

[ĉ3|u|p − |u|p−1|u|]dz +
∫
{u<uµ}

[ĉ8|u|p − ĉ9|uµ|p−1|u|]dz

≥ ĉ10∥u∥pp − ĉ10

∫
{uµ≤u≤u}

|u|p dz − ĉ11

∫
Ω

[|uµ|p−1 + |u|p−1]|u|dz

for some ĉ10, ĉ11 > 0

≥ ĉ10∥u∥pp − ĉ12∥u∥ − ĉ13 for some ĉ12, ĉ13 > 0.

(4.16)

Using Young’s inequality with ε ∈ (0, ρĉ10), from (4.16) we obtain

(Nb(u), u)pp′ ≥ c6∥u∥pρ − c7 for some c6, c7 > 0. □

We introduce the map Gλ :W 1,p
0 (Ω) →W−1,p′

(Ω)∗ defined by Gλ(u) = V (u) +

θNb(u) − Kλ(u) for all u ∈ W 1,p
0 (Ω), all 0 < λ ≤ λ0, θ > 0. Evidently Gλ(·) is

bounded and continuous.

Proposition 4.3. If (H0), (H1), 0 < λ ≤ λ0 and θ > 0 hold, then Gλ(·) is
pseudomonotone.

Proof. We consider a sequence {un}n∈N ⊆W 1,p
0 (Ω) such that

un
w→ u in W 1,p

0 (Ω), Gλ(un)
w→ u∗ in W−1,p′

(Ω) =W 1,p
0 (Ω)∗

lim sup
n→∞

⟨Gλ(un), un − u⟩ ≤ 0.
(4.17)

From this and the fact thatW 1,p
0 (Ω) ↪→ Lp(Ω) compactly, we have un → u in Lp(Ω)

as n→ ∞.
Then using Hölder’s inequality, we obtain∫

Ω

b(z, un)(un − u)dz → 0 as n→ ∞,∫
Ω

f̂λ(z, τ0(un), Dτ0(un))(un − u)dz → 0 as n→ ∞.

From (4.17) it follows that

lim sup
n→∞

⟨V (un), un − u⟩ ≤ 0

=⇒ un → u in W 1,p
0 (Ω) (since V (·) is an (S)+-map).

Therefore, u∗ = Gλ(u) and ⟨Gλ(un), un⟩ → ⟨Gλ(u), u⟩. This proves that Gλ(·) is a
pseudomonotone map. □

Proposition 4.4. If (H0), (H1) hold and 0 < λ ≤ λ0, then for θ > 0 large the map
Gλ(·) is strongly coercive.
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Proof. For every u ∈W 1,p
0 (Ω), we have

|⟨Kλ(u), u⟩|
= |(Kλ(u), u)pp′ |

=
∣∣ ∫

Ω

[f(z, τ0(u)) + λ|Dτ0(u)|p−1]u dz
∣∣

≤
∫
Ω

[f(z, τ0(u)) + λ0|Dτ0(u)|p−1]|u| dz

≤ c8[∥u∥p + λ0∥Dτ0(u)∥p−1
p ∥u∥p] for some c8 > 0 (use hölder’s inequality)

≤ c9[∥u∥+ λ0(∥u∥p−1 + 1)∥u∥p] for some c9 > 0

(recall that W 1,p
0 (Ω) ↪→ Lp(Ω) continuously and see (4.5))

≤ c10[∥u∥+ λ0∥u∥p−1∥u∥p] for some c10 > 0

≤ c11[∥u∥+ λ0(ε∥u∥p +
1

ε
∥u∥pp)] for some c11 > 0

(use Young’s inequality with ε > 0).

(4.18)
From Proposition 4.2 we have

θ⟨Nb(u), u⟩ = θ(Nb(u), u)pp′ ≥ θc6∥u∥pp − θc7 for all u ∈W 1,p
0 (Ω). (4.19)

Using (4.18), (4.19), and hypotheses(H0), we have

⟨Gλ(u), u⟩ ≥ [ĉ− λ0c11ε]∥u∥ρ + [θc6 −
λ0c11
ε

]∥u∥pp − θc7. (4.20)

First we choose ε ∈ (0, ĉ
λ0c11

). So, ĉ − λc11ε > 0. Then using this choice of ε > 0,

we choose θ > λ0c11
εc6

. From (4.20), we see that

⟨Gλ(u), u⟩ ≥ c12∥u∥ρ − θc7 for some c12 > 0 and all u ∈W 1,p
0 (Ω)

implies that Gλ(·) is strongly coercive. □

We can now state and prove the existence theorem for problem (1.1)

Theorem 4.5. If (H0), (H1) hold and 0 < λ ≤ λ0, then problem (1.1) has a
positive solution ûλ ∈ intC+.

Proof. Proposition 4.3 and 4.4 permit the use of Theorem 2.2. So Gλ(·) is surjective
and we can find ûλ ∈W 1,p

0 (Ω) such that

Gλ(ûλ) = 0 in W−1,p′
(Ω)∗ =W 1,p

0 (Ω)∗

=⇒ ⟨V (ûλ), h⟩+ θ

∫
Ω

b(z, ûλ)hdz =

∫
Ω

[f(z, τ0(u)) + λ|Dτ0(u)|p−1]hdz

for all h ∈W 1,p
0 (Ω).

(4.21)

In (4.21) first we used the test function h = (ûλ − u)+ ∈W 1,p
0 (Ω). Then

⟨V (ûλ), (ûλ − u)+⟩+ θ

∫
Ω

(ûλ − u)p−1(ûλ − u)+ dz

=

∫
Ω

[f(z, u) + λ|Du|p−1](ûλ − u)+dz (see (4.9), (4.4), (4.5))

≤ ⟨V (u), (ûλ − u)+⟩ (see (4.1))
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which implies

⟨V (ûλ)− V (u), (ûλ − u)+⟩ ≤ −θ
∫
Ω

(ûλ − u)p−1(ûλ − u)+ dz ≤ 0,

which in turn implies ûλ ≤ u.
Next, we test (4.21) with h = (uµ − ûλ)

+ ∈W 1,p
0 (Ω). We have

⟨V (ûλ), (uµ − u)+⟩ − θ

∫
Ω

(uµ − u)p−1(uµ − ûλ)
+ dz

=

∫
Ω

[f(z, uµ) + λ|Duµ|p−1](uµ − ûλ)
+dz (see (4.9), (4.4), (4.5) )

≥ ⟨V (uµ), (uµ − ûλ)
+⟩ (see (4.3))

which implies

⟨V (V (uµ)− ûλ), (uµ − ûλ)
+⟩ ≤ −θ

∫
Ω

(uµ)− ûλ)
p−1(uµ)− ûλ)

+ dz ≤ 0,

which in turn implies uµ ≤ ûλ. So, we have proved that

ûλ ∈ [uµ, u]. (4.22)

From (4.22), (4.9), (4.4), (4.5), and (4.21), it follows that

−∆p
α1
ûλ −∆1

α2
ûλ = f(z, ûλ) + λ|Dûλ|p−1 in Ω

implies ûλ ∈ inf C+ (see [9], (4.22) and recall that uµ ∈ intC+). □
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