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INFINITELY MANY SIGN-CHANGING SOLUTIONS FOR AN

ASYMPTOTICALLY LINEAR AND NONLOCAL

SCHRÖDINGER EQUATION

RUOWEN QIU, RENQING YOU, FUKUN ZHAO

Abstract. In this article, we consider the nonlocal schrödinger equation

−LKu+ V (x)u = f(x, u), x ∈ RN ,

where −LK is an integro-differential operator and V is coercive at infinity, and
f(x, u) is asymptotically linear for u at infinity. Combining minimax method

and invariant set of descending flow, we prove that the problem possesses

infinitely many sign-changing solutions.

1. Introduction

The existence and multiplicity of sign-changing solutions are interesting topics
in the studies of nonlinear elliptic equations. Recently, much more attention has
been paid to such topics of the following classical elliptic equations

−∆u = f(x, u), x ∈ Ω, (1.1)

where Ω ⊂ RN is a bounded domain with smooth boundary. In fact, there are
different ways to obtain sign-changing solutions of the (1.1). Via a variational
argument and a version of deformation lemma, Castro, Cossio and Neuberger [10]
proved that (1.1), on a bounded domain Ω, possesses a sign-changing solution which
changes sign only once. Dancer and Du [12] considered the equation

−∆u = u|u|p−1 + g(u) in Ω,

u = 0, on ∂Ω,

where 1 < p < 2∗ − 1, g : R → R is Lipschitz continuous and

lim sup
u→0

g(u)

u
< λ1 , lim sup

|u|→∞

g(u)

|u|p
= 0.

The authors showed that the above problem has at least one sign-changing solution,
besides a positive solution and a negative solution, and their method based on a
topological degree argument combined with an priori bound of solutions. Suppose
f ′(0) < λ2 and f is superlinear but subcritical at infinity, Bartsch and Wang [3]
showed that there exists a solution u1 of (1.1) which changes sign, and if u2 is a
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second nontrivial solution then u2 > u1 (respectively, u2 < u1) implies that u2 is
positive (respectively, negative). They found that there is a critical point u1 whose
critical group Ck(J, u1) := Hk(J

c, Jc − {u1}) is not trivial for some k ≥ 2, then u1

can be never positive nor negative. In [6], by constructing invariant sets of descent
flow, Bartsch, Liu and Weth obtained a sign-changing solution with precisely two
nodal domains and infinitely many nodal solutions for the Schrödinger equation

−∆u+ V (x)u = f(x, u), x ∈ RN . (1.2)

In addition, there are many useful results about this equation, such as [4, 8, 38].
In almost the above-mentioned papers, the (AR) condition which introduced by
Ambrosetti and Rabinowitz [1] was imposed, i.e. for some µ > 2,

0 ≤ µF (x, u) ≡ µ

∫ u

0

f(x, s)ds ≤ f(x, u)u, ∀(x, u) ∈ RN × {R \ {0}}. (1.3)

We remark that inequality (1.3) is one of the main tools to prove the boundedness
of the PS sequence. By a simple calculation, (1.3) shows that f(x, u) must be
superlinear with respect to u at infinity, that is

lim
u→∞

f(x, u)

u
= +∞.

However, the study of many practical problems such as the self-trapping of an
electromagnetic wave, under some suitable assumptions, leads to some problems
related to (1.2), in which f(x, u) is asymptotically linear with respect to u at infinity,
the background and the results for some typical models can be found in [31, 32].

In the previus decades, some results about existence of positive solutions for
elliptic problems that are asymptotically linear at infinity have been obtained. In
[33], Stuart and Zhou obtained a positive radial solution by applying mountain pass
theorem, where the equation is radially symmetric and V is a constant. Liu, Su and
Weth [21] established the compactness of PS sequences for the associated energy
functional under general spectral-theoretic assumptions, and obtained existence of
three nontrivial solutions if the energy functional has a mountain pass geometry.
Asymptotically linear problems with steep potential well have been studied in [35,
36], in which multiple solutions were constructed without giving nodal information
about the solutions. Unlike with the superliear case, less was known about the sign-
changing solutions to the asymptotically linear case. Maia, Miyagaki and Soares
[22] investigated the problem

−∆u+ λu = f(u), x ∈ RN , (1.4)

where the nonlinearity f is asymptotically linear at infinity. The authors showed
the existence of a sign-changing solution of (1.4), which changes sign exactly once.

In this article, we are concerned with the existence and multiplicity of sign-
changing solutions of the nonlocal Schrödinger equation

−LKu+ V (x)u = f(x, u), x ∈ RN , (1.5)

where V (x) is a nonnegative potential function and f(x, u) is asymptotically linear
for u at infinity, and LK is an integro-differential operator defined as follow

LKu(x) :=

∫
RN

(u(x+ y) + u(x− y)− 2u(x))K(y)dy, x ∈ RN ,

and the kernel K which is a measurable function and satisfies the following assump-
tions:
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(A1) there is θ > 0 and s ∈ (0, 1) such that K(x) ≥ θ|x|−(N+2s) for any x ∈
RN\{0};

(A2) mK ∈ L1(RN ), where m(x) := min{|x|2, 1}.
If K(x) = |x|−N−2s, then −LK change into the fractional Laplacian operator

(−∆)s, and when s → 1−, (−∆)s → −∆, for more details we refer to the readers
to [13, 24] and the references therein. From a physical point of view, the nonlocal
operators play a crucial role in describing several different physical phenomena,
such as in the anomalous diffusion [27, 34], in the fractional quantum mechanics
[25] and so on.

Different from the operator −∆, the integro-differential operator LK is nonlocal,
which brings us some difficulties in applying variational methods. We refer the
reader to [28], and [29] for the variational setting and the existence of nontrivial
solution of such problem settled on a bounded domain of RN . It is worth mentioning
that there also are many interesting results related to nonlocal elliptic equations
with integro-differential operators in books [9, 24]. These result most focus on the
existence and multiplicity of nontrivial solutions or positive solutions.

However, to the best of our knowledge, there are few results concerning the exis-
tence of sign-changing solution for the nonlocal schrödinger equation (1.5). When
K(x) = |x|−N−2s, Wang and Zhou [37] obtained a radial sign-changing solution
of a fractional Schrödinger equation. Moreover, Chang and Wang [11] consid-
ered a fractional Laplacian equation and obtained the existence and multiplicity of
sign-changing solutions via applying the Caffarelli-Silvestre extension method and
invariant sets of descending flow. In [14, 15], by combining constraint variational
method and quantitative deformation, the authors prove the the equation

−LKu = f(x, u), in Ω,

u = 0, in RN \ Ω

possesses one least energy sign-changing solution and infinitely many sign-changing
solutions. The case with potential function can be seen [16]. We mention that
the above results are heavily based on the nonlinearity term f is superlinear and
subcritical. Simultaneously, the problem settled on a bounded domain.

Recall that a solution of (1.5) is called sign-changing if u± ̸= 0, where

u+(x) = max
{
u(x), 0

}
and u−(x) = min

{
u(x), 0

}
.

To state our main results, we need the following assumptions on V (x) and f :

(A3) V ∈ C(RN ,R) satisfies V0 := infx∈RN V (x) > 0;
(A4) For each M > 0, there exists r > 0 such that

meas({x ∈ Br(y) : V (x) ≤ M}) → 0 as |y| → ∞,

where meas denotes for the Lebesgue measure, and BR(x) denotes an open
ball of RN centered at x and of radius R > 0, while we simply write BR

when x = 0.

We assume f satisfies the following assumptions:

(A5) f ∈ C(RN × R,R) and f(x, u) = o(|u|) as u → 0 uniformly in x;
(A6) There is a constant a ∈ (0,+∞) such that f(x, u)u−1 → a as u → ∞

uniformly in x and

a > inf σ(−LK + V (x)),
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where σ(−LK + V (x)) denotes the spectrum of the operator −LK + V (x);
(A7) f(x, u)/|u| is a increasing function of u ̸= 0;
(A8) infx∈RN ,u∈R\{0} F (x, u) > 0;
(A9) limu→∞(f(x, u)u− 2F (x, u)) = +∞.

Theorem 1.1. If (A3)–(A9) hold, then (1.5) has infinitely many sign-changing
solutions.

Remark 1.2. Condition (A4), which is weaker than the coercive assumption:
V (x) → ∞ as |x| → ∞, was firstly introduced by Bartsch and Wang in [2] to
overcome the lack of compactness.

Remark 1.3. There are functions satisfying (A5)–(A9). For example, f(x, u) =
au3

1+u2 , where a is the constant can be found in (A6). By direct calculations, we know

F (x, u) = a[ 12u
2 − 1

2 ln(1 + u2)], it is easy to prove that function f(x, u) satisfies
the assumptions (A5)–(A9).

Notation. Throughout this paper, we denote by | · |p the usual norm of the space
Lp(RN ), 1 ≤ p < ∞. un ⇀ u and un → u mean the weak and strong convergence,
respectively, as n → ∞. Bρ = {u ∈ E, ||u|| < ρ}.

2. Preliminary lemmas

First, we shall introduce some notation. For any s ∈ (0, 1), we define

Xs(RN ) =
{
u : RN → R : u is Lebesgue measurable u ∈ L2(RN ) and the mapping

(x, y) 7→
(
u(x)− u(y)

)√
K(x− y) ∈ L2(RN × RN )

}
,

where the kernel K satisfies (A1) and (A2). The norm in Xs(RN ) is defined as

∥u∥Xs :=
(∫

RN

∫
RN

|u(x)− u(y)|2K(x− y) dx dy +

∫
RN

|u|2dx
)1/2

and
(
Xs(RN ), ∥ · ∥Xs

)
is a Hilbert space, we refer to [13, 29] for more properties of

Xs(RN ). Since there is a potential functional V (x) is involved in (1.5), we introduce
the following subspace E of Xs(RN )

E :=
{
u ∈ Xs(RN ) :

∫
RN

V (x)u2dx < +∞
}
,

which is a Hilbert space equipped with the inner product

(u, v) =

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))K(x− y) dx dy +

∫
RN

V (x)uv dx.

The norm on E induced by the above inner productis denoted by ∥u∥. We will look
for solutions of (1.5) in the space E. We say that u ∈ E is a weak solution of (1.5)
if ∫

RN

∫
RN

(u(x)− u(y))(v(x)− v(y))K(x− y) dx dy +

∫
RN

V (x)uv dx

=

∫
RN

f(x, u)v dx

for all v ∈ E. So the energy functional associated with (1.5) is

Ψ(u) =
1

2

∫
RN

∫
RN

(u(x)− u(y))2K(x− y) dx dy +
1

2

∫
RN

V (x)u2dx
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−
∫
RN

F (x, u) dx, u ∈ E.

Under our assumptions, it is standard to check that Ψ ∈ C1(E,R) and for v ∈ E,
it holds

⟨Ψ′(u), v⟩ =
∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))K(x− y) dx dy

+

∫
RN

V (x)uv dx−
∫
RN

f(x, u)v dx.

Next we prove some preliminary lemmas, which are crucial for proving our main
results. Firstly, to overcome the difficulties brought by the nonlocal feature of
operator LK , we need the following embedding result.

Theorem 2.1. If (A3), (A4) hold, then the embeddings E ↪→ Lp(RN ) are contin-
uous for p ∈ [2, 2∗s] and compact for p ∈ [2, 2∗s), where 2∗s = 2N

N−2s is the fractional
Sobolev critical exponent.

Proof. First, we show that E ↪→ Lp(RN ) for p ∈ [2, 2∗s]. In fact, by (A3) we know
that E ↪→ Xs(RN ) is continuous, from the [13, Theorem 6.5] and (A1) we obtain
Xs(RN ) ↪→ Lp(RN ) for p ∈ [2, 2∗s]. Then the conclusion follows.

Next we show that E ↪→ Lp(RN ) is compact for p ∈ [2, 2∗s). In fact, let {un} ⊂ E
be a bounded sequence of E, going if necessary to a subsequence we have un ⇀ u
in E and un → u in Lp

loc(RN ), p ∈ [2, 2∗s) and ∥un(x)∥+ ∥u(x)∥ ≤ C̄, where C̄ is a
positive constant. We first prove that un → u in L2(RN ), it suffices to prove that
|un|2 → |u|2.

Fix M > 0 and set AM (y) := {x ∈ RN : V (x) ≤ M} ∩ Br(y), where r > 0 is
given by (A4). When p = 2, un → u in L2

loc(RN ) implies that un → u in L2(BR)
for any R > 0. Now, we choose {yn} ⊂ RN such that RN ⊂

⋃∞
i=1 Br(yi) and each

x ∈ RN is covered by at most 2N balls. Denote the set CM (yi) := {x ∈ RN :
V (x) > M} ∩Br(yi), we have∫

RN\BR

|un(x)− u(x)|2 dx

≤
∞∑

|yi|≥R−r

∫
Br(yi)

|un(x)− u(x)|2 dx

=

∞∑
|yi|≥R−r

(∫
CM (yi)

|un(x)− u(x)|2 dx+

∫
AM (yi)

|un(x)− u(x)|2 dx
)
.

Using the definition of CM (yi) and Hölder inequality we obtain∫
CM (yi)

|un(x)− u(x)|2 dx ≤ 1

M

∫
Br(yi)

V (x)|un(x)− u(x)|2 dx,∫
AM (yi)

|un(x)− u(x)|2dx ≤
(∫

AM (yi)

|un(x)− u(x)|2tdx
)1/t(∫

AM (yi)

1t
′
)1/t′

= |un(x)− u(x)|2L2t(AM (yi))

(
measAM (yi)

)1/t′
,

where t ∈ (1, N
N−2s ) and

1
t +

1
t′ = 1. Hence,∫

RN\BR

|un(x)− u(x)|2dx
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≤
∑

|yi|>R−r

( 1

M

∫
Br(yi)

V (x)|un(x)− u(x)|2dx

+ sup
|yi|>R−r

(
measAM (yi)

)1/t′

|un(x)− u(x)|2L2t(AM (yi))

)
≤ 2N

M

∫
RN\BR−2r

V (x)|un(x)− u(x)|2dx

+ 2NC2
2 sup
|yi|>R−r

(
measAM (yi)

)1/t′

∥un(x)− u(x)∥2

≤ 2N C̄2

M
+ 2N (C2C̄)2 sup

|yi|>R−r

(
measAM (yi)

)1/t′

,

where C2 > 0 is the embedding constant. Now, for any ε > 0 we choose M > 0 so
large that

2N+1C̄2

M
< ε. (2.1)

For fixed M > 0, there exists RM > 0 such that

2N+1(C2C̄)2 sup
|yi|>RM−r

(
measAM (yi)

)1/t′

< ε, (2.2)

since

sup
|yi|≥R−r

(
measAM (yi)

)1/t′ → 0 as R → ∞.

For such RM , by (2.1) and (2.2) we have∫
RN\BRM

|un(x)− u(x)|2dx ≤ ε.

Hence,∫
RN

|un(x)− u(x)|2dx

=

∫
B(0,RM )

|un(x)− u(x)|2dx+

∫
RN\BRM

|un(x)− u(x)|2dx ≤ 2ε,
(2.3)

this proves that |un|2 → |u|2 in L2(RN ). Finally, by the Interpolation inequality
we have (up to renaming C)

|un − u|p ≤ C|un − u|θ2 |un − u|1−θ
2∗s

≤ C|un − u|θ2||un − u||1−θ

≤ C|un − u|θ2(||un||+ ||u||)1−θ,

(2.4)

where 1
p = θ

2 + 1−θ
2∗s

and θ ∈ (0, 1). Hence the right hand of (2.4) is small enough,

therefore, un → u in Lp(RN ) for p ∈ (2, 2∗s). □

Next, we consider the eigenvalues problem. As in [5, 29], we have the following
results.

−LKu+ V u = λu, x ∈ RN . (2.5)

Proposition 2.2. Let s ∈ (0, 1), N > 2s, and K : RN \ {0} → (0,+∞) be a
function satisfying assumptions (A1) and (A2). Then
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(1) (2.5) admits an eigenvalue λ1 that is positive, simple and that can be char-
acterized as follows:

λ1 = inf
u∈E, |u|2=1

{∫
RN

∫
RN

|u(x)− u(y)|2K(x− y) dx dy

+

∫
RN

V (x)u2(x) dx
}
.

(2.6)

(2) The set of the eigenvalues of (2.5) consists of a sequence {λk}k∈N with

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ λk+1 ≤ · · ·
and λk → +∞ as k → +∞. Moreover, for each k ∈ N, the eigenvalues can
be characterized as

λk+1 = inf
u∈X⊥

k , |u|2=1

{∫
RN

∫
RN

|u(x)− u(y)|2K(x− y) dx dy

+

∫
RN

V (x)u2(x) dx
}
,

(2.7)

where Xk := span{e1, e2, · · · , ek}.
(3) The sequence {ek}k∈N of eigenfunctions corresponding to λk is an orthonor-

mal basis of L2(RN ) and an orthogonal basis of E.

We give some properties of f(x, u) and F (x, u) in the following lemma.

Lemma 2.3. (1) If (A5) and (A6) hold, then for any p ∈ (2, 2∗s) and ε > 0,
there exists Cε > 0 such that for all u ∈ R,

|f(x, u)| ≤ ε|u|+ Cε|u|p−1 |F (x, u)| ≤ εu2 + Cε|u|p.
(2) If (A7) hold, then for any (x, u) ∈ RN × (R \ {0}), we have

1

2
f(x, u)u− F (x, u) ≥ 0,

where F (x, u) =
∫ u

0
f(x, s)ds.

Proof. Conclusion (1) is easy, so we omit it here. It follows from (A7) that, for any
t ≥ 0, u ∈ R \ {0}, one has

1− t2

2
uf(x, u) + F (x, tu)− F (x, u) =

∫ 1

t

[
f(x, u)

u
− f(x, su)

su

]
su2ds ≥ 0. (2.8)

Taking t = 0 in (2.8), we obtain for any (x, u) ∈ RN × (R \ {0}),
1

2
f(x, u)u ≥ F (x, u). (2.9)

This completes the proof of conclusion (2). □

Under conditions (A5)–(A7), we will show that Ψ(u) has a mountain pass geom-
etry, see Lemma 2.4 and Lemma 2.5, where Lemma 2.4 can be directly obtained
from the embedding result Theorem of 2.1 and Lemma 2.3.

Lemma 2.4. Suppose A3)–(A6) hold. Then Ψ(u) = 1
2∥u∥

2+o(∥u∥2), ⟨Ψ′(u), u⟩ =
∥u∥2 + o(∥u∥2) as u → 0 in E.

Lemma 2.5 ([17]). Suppose (A3)–(A8) hold. Then there is a v ∈ E with v ̸= 0
such that Ψ(v) < 0.



8 R. QIU, R. YOU, F. ZHAO EJDE-2025/07

Proof. By Proposition 2.2 we know that

inf σ(−LK + V (x))

= inf
u∈E, |u|2=1

{∫
RN

∫
RN

|u(x)− u(y)|2K(x− y) dx dy +

∫
RN

V (x)u2(x) dx
}
.

By (A6), we have an ũ ∈ E such that |ũ|2 = 1 and ∥ũ∥2 < a. Replacing ũ by |ũ|
(still renaming ũ ), we can suppose that ũ ≥ 0 a.e. on RN . To prove the Lemma,
it suffices to show that

lim
t→+∞

Ψ(tũ)

t2
< 0. (2.10)

First, we claim that

lim
t→+∞

∫
RN

F (x, tũ)

t2
dx =

1

2
a. (2.11)

To prove (2.11), without loss of generality we can assume that ũ is defined every-
where on RN and divide the argument into two situations: ũ(x) > 0 and ũ(x) = 0.
When ũ(x) > 0. By (f2), we obtain

lim
t→+∞

F (x, tũ)

t2
= lim

t→+∞

F (x, tũ)

(tũ)2
(ũ)2 =

1

2
a(ũ)2. (2.12)

When ũ(x) = 0, for all t > 0

F (x, tũ)

t2
= 0 =

1

2
a(ũ)2. (2.13)

In view of (2.12) and (2.13) we know that

lim
t→+∞

F (x, tũ)

t2
=

1

2
a(ũ)2 a.e. on RN . (2.14)

On the other hand, by (A6)–(A8), there exists a C > 0 such that

0 ≤ f(x, u)

u
≤ C for all u ∈ R \ {0},

and thus

0 ≤ F (x, u)

u2
≤ C

2
for all u ∈ R \ {0}.

Therefore,

0 ≤ F (x, tũ)

t2
≤ C

2
(ũ)2 for all u ∈ R \ {0}. (2.15)

Equations (2.14) and (2.15) allow us to apply Lebesgue dominated convergence
theorem to obtain

lim
t→+∞

∫
RN

F (x, tũ)

t2
dx =

a

2

∫
RN

(ũ)2dx =
a

2
,

that is claim (2.10). According to (2.10), we easily obtain that

lim
t→+∞

Ψ(tũ)

t2
=

1

2
∥ũ∥2 − lim

t→+∞

∫
RN

F (x, tũ)

t2
dx =

1

2

(
∥ũ∥2 − a

)
< 0,

so the Lemma is proved. □

Another difficulty that needs to be overcome is the lack of boundedness for
Palais-Smale sequences when the (AR) condition (1.3) is does not satisfy. As in
[33] our proof of the boundedness of {un} relies on the work of Lions [19, 20] on
the concentration compactness principle.
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Lemma 2.6. If (A3)–(A9) hold, and {un} ⊂ N is a sequence such that {Ψ(un)}
is bounded, then {un} is bounded.

Proof. Assuming that the statement does not hold, then we can suppose that there
exists a subsequence again denoted by {un} such that {Ψ(un)} is bounded but
∥un∥ → ∞ when n → ∞. By the definition of N , for all u ∈ N we obtain that

Ψ(u) = Ψ(u)− 1

2
⟨Ψ′(u), u⟩

=

∫
RN

(1
2
f(x, u)− F (x, u)

)
dx ≥ 0.

(2.16)

Then, up to a subsequence, Ψ(un) → l ≥ 0 by (2.16). If l > 0, we define vn :=
2
√
lun

∥un∥ , and ∥vn∥ = 2
√
l. If l = 0, we define vn := un

∥un∥ , so that ∥vn∥ = 1.

Now, we prove the following Claim.
Claim: There exist r, d > 0 and a sequence {yn} ⊂ RN such that

lim inf
n→∞

∫
Br(yn)

v2ndx ≥ d > 0. (2.17)

If the claim is not true, then by the nonlocal type Lions lemma, vn → 0 in Lp
(
RN

)
,

where 2 < p < 2∗s. Using Lemma 2.3 we obtain∣∣ ∫
RN

F (x, vn) dx
∣∣ ≤ ε

∫
RN

v2ndx+ Cε

∫
RN

|vn|pdx,

since {vn} ⊂ E is bound and the arbitrariness of ε > 0 we have

lim
n→∞

∫
RN

F (x, vn) dx = 0.

When l = 0, we have

lim inf
n→∞

Ψ(vn) = lim inf
n→∞

(1
2
∥vn∥2 −

∫
RN

F (x, vn) dx
)
=

1

2
. (2.18)

To obtain a contradiction, we need the inequality

Ψ(tu) ≤ Ψ(u), for t ≥ 0 and u ∈ N . (2.19)

Indeed, let u ∈ N and define the function

ξ(t) :=
t2

2
f(x, u)u− F (x, tu), t ≥ 0,

and for any t > 0

ξ′(t) = tf(x, u)u− f(x, tu)u = tu2
(f(x, u)

u
− f(x, tu)

tu

)
.

By (A7), for every t > 0, we know ξ(t) ≤ ξ(1). Then, after integration on RN and
using that ⟨Ψ′(u), u⟩ = 0, we have

Ψ(tu) = Ψ(tu)− t2

2
⟨Ψ′(u), u⟩

=

∫
RN

( t2
2
f(x, u)u− F (x, tu)

)
dx

≤
∫
RN

(1
2
f(x, u)u− F (x, u)

)
dx

= Ψ(u).
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This completes the proof of (2.19). On the other hand, taking t = 1
∥un∥ in (2.19),

we have

Ψ(vn) = Ψ(tun) ≤ Ψ(un) = l + on(1) = on(1),

which contradicts (2.18).
When l > 0,

lim inf
n→∞

Ψ(vn) = lim inf
n→∞

(1
2
∥vn∥2 −

∫
RN

F (x, vn) dx
)
= 2l,

and taking t = 2
√
l

∥un∥ in (2.19) we have

Ψ(vn) ≤ Ψ(un) = l + on(1),

getting the same contradiction, thus the Claim holds.
By the above claim we infer a contradiction in both cases: when {yn} is bounded

or unbounded. This will complete the proof.

Case 1. {yn} is bounded. Then there is r̃ > 0 such that {yn} ⊂ Br̃. By (2.17), we
have ∫

Br(yn)

v2ndx >
d

2
.

Thus we can choose r̂ > r + r̃ with Br(yn) ⊂ Br̂ and∫
Br̂

v2ndx >
d

2
.

Since {vn} is bounded in E, there exists a subsequence still denoted by {vn} such
that vn ⇀ v in E, vn → v in Lp(RN ) for 2 ≤ p < 2∗s, and vn(x) → v(x) a.e. on RN .
In particular, we have∫

Br̂

v2ndx →
∫
Br̂

v2dx and

∫
Br̂

v2dx ≥ d

2
> 0,

which implying that v ̸≡ 0. Thus there exists a set Ω ⊂ Br̂ with the meas(Ω) > 0
such that v(x) ̸= 0 for every x ∈ Ω. Hence for a fixed x ∈ Ω and the constant

t > 0, vn(x) =
tun(x)
∥un∥ ̸= 0 when n large enough which implied that un(x) ̸= 0. As

a consequence of ∥un∥ → ∞, |un(x)| → ∞. So |un(x)| → ∞ for every x ∈ Ω. Since

Ψ(un) =

∫
RN

(1
2
f(x, un)un − F (x, un)

)
dx ≥

∫
Ω

(1
2
f(x, un)un − F (x, un)

)
dx,

by (A9) and Fatou’s lemma, we have

lim inf
n→∞

Ψ(un) ≥
∫
Ω

lim inf
n→∞

(1
2
f(x, un)un − F (x, un)

)
dx = ∞,

which imply Ψ(un) → ∞, contradicting that Ψ(un) → l ∈ R.
Case 2. {yn} is unbounded. We set a new sequence ṽn(x) := vn(x − yn) and
∥ṽn∥ = ∥vn∥ is a constant. Thus, up to a subsequence ṽn ⇀ ṽ in E, ṽn → ṽ in
Lp

(
RN

)
for 2 ≤ p < 2∗s, and ṽn(x) → ṽ(x) a.e. on RN . From (2.17),

lim inf
n→∞

∫
Br(yn)

v2ndx = lim inf
n→∞

∫
Br

ṽ2ndx ≥ d

and hence ∫
Br

ṽ2dx ≥ d > 0,
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implying that ṽ ̸≡ 0. Therefore, there exists a subset Λ ⊂ Br with positive measure
such that ṽ ̸≡ 0 for every x ∈ Λ. Similar to Case 1, |un(x + yn)| → ∞ for every
x ∈ Λ as n → ∞. So

Ψ(un) =

∫
RN

(1
2
f(x, un)un − F (x, un)

)
dx

≥
∫
Br(yn)

(1
2
f(x, un)un − F (x, un)

)
dx

=

∫
Br

(1
2
f(x, un(x+ yn))un(x+ yn)− F (x, un(x+ yn)

)
dx

≥
∫
Λ

(1
2
f(x, un(x+ yn))un(x+ yn)− F (x, un(x+ yn))

)
dx.

Thus, we have the same contradiction with Case 1. □

Lemma 2.7. If (A3)–(A4) hold, then Ψ satisfies Palais-Smale condition at any
level c > 0.

Proof. Let {un} ⊂ E be a (PS)c sequence of Ψ, that is Ψ(un) → c, and Ψ′(un) → 0.
By Lemma 2.6, we know that {un} is bounded in E. So we can assume that up to
a subsequence, there exists a u ∈ E such that

un ⇀ u in E,

un → u in Lp(RN ) for p ∈ [2, 2∗s).

Observe that

∥un − u∥2 = ⟨Ψ′(un)−Ψ′(u), un − u⟩+
∫
RN

(f(x, un)− f(x, u)) (un − u) dx.

It follows from the Hölder inequality and Lemma 2.3 that∣∣ ∫
RN

(f(x, un)− f(x, u))(un − u) dx
∣∣

≤
∫
RN

(|f(x, un)|+ |f(x, u)|)|un − u| dx

≤
∫
RN

(ε|un|+ ε|u|+ Cε|un|p−1 + Cε|u|p−1)|un − u| dx

≤ 4ε(|un|22 + |u|22)|un − u|2 + Cε(|un|p−1
p + |u|p−1

p )|un − u|p.

Thus we have verified that un → u in E, that is Ψ satisfies (PS)c condition. □

3. Proof of Theorem 1.1

We define an operator A : E → E as

Au := (−LKu+ V u)
−1 ◦ h(u), u ∈ E,

where h(u) := f(x, u). When u ∈ E fixed, we consider the functional

J(v) =
1

2

∫
RN

∫
RN

|v(x)− v(y)|2K(x− y) dx dy+
1

2

∫
RN

V (x)v2dx−
∫
RN

F (x, u) dx.

It is easy to prove that J ∈ C1(E,R) and coercive, bounded below and strictly con-
vex in E. Therefore, by [23, Theorem 1.1], J(v) admits a unique global minimizer
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v = Au, and v = Au is the unique solution to the equation

−LKv + V (x)v = f(x, u), ∀u ∈ E

That is,∫
RN

∫
RN

(v(x)− v(y))(φ(x)− φ(y))K(x− y) dx dy +

∫
RN

V (x)vφ dx

=

∫
RN

f(x, u)φdx, ∀φ ∈ E.

(3.1)

Lemma 3.1. If (A3), (A4) hold, then the operator A satisfies:

(1) A is continuous and maps bounded sets into bounded sets.
(2) ⟨Ψ′(u), u−Au⟩ = ∥u−Au∥2
(3) ∥Ψ′(u)∥ ≤ ∥u−Au∥

Proof. (1) Let {un} ⊂ E such that un → u in E. Let vn := Aun and v := Au.
Then (3.1) implies that∫

RN

∫
RN

(vn(x)− vn(y)) (φ(x)− φ(y))K(x− y) dx dy +

∫
RN

V (x)vnφdx

=

∫
RN

f(x, un)φ(x) dx, φ ∈ E,

(3.2)

∫
RN

∫
RN

(v(x)− v(y))(φ(x)− φ(y))K(x− y) dx dy +

∫
RN

V (x)vφ dx

=

∫
RN

f(x, u)φ(x) dx, φ ∈ E.

(3.3)

In view of the Hölder inequality, Theorem 2.1 and (3.2), (3.3), we have

∥vn − v∥2

=

∫
RN

∫
RN

(vn(x)− vn(y)− v(x) + v(y))
2
K(x− y) dx dy +

∫
RN

V (x)|vn − v|2dx

=

∫
RN

f(x, un)vn dx+

∫
RN

f(x, u)vdx−
∫
RN

f(x, un)v dx−
∫
RN

f(x, u)vn dx

=

∫
RN

(f(x, un)− f(x, u)) (vn − v)dx

≤
(∫

RN

|vn − v|2
∗
sdx

) 1
2∗s
(∫

RN

|f(x, un)− f(x, u)|
2∗s

2∗s−1 dx
) 2∗s−1

2∗s

≤ C∥vn − v∥
(∫

RN

|f(x, un)− f(x, u)|
2∗s

2∗s−1 dx
) 2∗s−1

2∗s .

So,

∥vn − v∥ ≤ C
(∫

RN

|f(x, un)− f(x, u)|
2∗s

2∗s−1 dx
) 2∗s−1

2∗s .

It follows from the Lebesgue dominated convergence theorem that

lim
n→+∞

∫
RN

|f(x, un)− f(x, u)|
2∗s

2∗s−1 dx = 0,

hence,

∥vn − v∥ → 0, as n → +∞,
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which implies that A is continuous on E. Next, we prove the boundedness of A. In
(3.1), we taking φ = Au ∈ E and combining Lemma 2.3 and the Hölder inequality,
we know

∥Au∥2

=

∫
RN

f(x, u)Audx

≤ C
(∫

RN

|Au∥u|dx+

∫
RN

|u|p−1|Au|dx
)

≤ C
(∫

RN

|u|2dx
)1/2(∫

RN

|Au|2dx
)1/2

+ C
(∫

RN

|u|pdx
) p−1

p
(∫

RN

|Au|pdx
)1/p

≤ C∥Au∥
(
∥u∥+ ∥u∥p−1

)
.

Therefore, ∥Au∥ ≤ C
(
∥u∥+ ∥u∥p−1

)
, which implies that A maps bounded sets into

bounded sets.
(2) Taking φ = u−Au ∈ E into (3.1), we have∫

RN

∫
RN

(Au(x)−Au(y))(u(x)−Au(x)− u(y) +Au(y))K(x− y) dx dy

+

∫
RN

V (x)Au(u−Au) dx

=

∫
RN

f(x, u)(u−Au) dx.

Hence

⟨Ψ′(u), u−Au⟩

=

∫
RN

∫
RN

(u(x)− u(y))(u(x)−Au(x)− u(y) +Au(y))K(x− y) dx dy

+

∫
RN

V (x)u(u−Au) dx−
∫
RN

f(x, u)(u−Au) dx

=

∫
RN

∫
RN

(u(x)−Au(x)− u(y) +Au(y))2K(x− y) dx dy

+

∫
RN

V (x)(u−Au)2dx

= ∥u−Au∥2.

(3) By the Hölder inequality, for any φ ∈ E, we obtain

|⟨Ψ′(u), φ⟩|

=
∣∣∣ ∫

RN

∫
RN

(u(x)− u(y))(φ(x)− φ(y))K(x− y) dx dy

+

∫
RN

V (x)uφdx−
∫
RN

f(x, u)φdx
∣∣∣

≤
∫
RN

∫
RN

|(u(x)−Au(x)− u(y) +Au(y))(φ(x)− φ(y))K(x− y)| dx dy

+

∫
RN

|V (x)(u−Au)φ| dx
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≤
(∫

RN

∫
RN

|u(x)−Au(x)− u(y) +Au(y)|2K(x− y) dx dy
)1/2

×
(∫

RN

∫
RN

|φ(x)− φ(y)|2K(x− y) dx dy
)1/2

+
(∫

RN

V (x)|u−Au|2dx
)1/2(∫

RN

V (x)φ2dx
)1/2

≤
(∫

RN

∫
RN

|u(x)−Au(x)− u(y) +Au(y)|2K(x− y) dx dy

+

∫
RN

V (x)|u−Au|2dx
)1/2(∫

RN

∫
RN

|φ(x)− φ(y)|2K(x− y) dx dy

+

∫
RN

V (x)φ2dx
)1/2

= ∥u−Au∥∥φ∥,
which implies that ∥Ψ′(u)∥ ≤ ∥u−Au∥. □

As in [6], we consider the convex cones E+ := {u ∈ Xs : u ≥ 0} and E− := {u ∈
Xs : u ≤ 0}. For an arbitrary ε > 0, we define

D+
ε := {u ∈ Xs : dist(u,E+) < ε}, D−

ε := {u ∈ Xs : dist(u,E−) < ε},
where dist(u,E±) = infv∈E± ∥v − u∥.

Lemma 3.2. If (A3)–(A8) hold, then there exists ε0 > 0 such that for 0 < ε < ε0,
A(∂D+

ε ) ⊂ D+
ε , A(∂D−

ε ) ⊂ D−
ε .

Proof. Taking φ = v+ in (3.1), by the Hölder inequality and Lemma 2.3, we obtain
that

∥v+∥2 =

∫
RN

∫
RN

(
v+(x)− v+(y)

)2
K(x− y) dx dy +

∫
RN

V (x)
∣∣v+∣∣2 dx

≤
∫
RN

∫
RN

(
v+(x)− v+(y)

)2
K(x− y) dx dy +

∫
RN

V (x)vv+dx+
(
v+, v−

)
=

∫
RN

∫
RN

(v(x)− v(y))
(
v+(x)− v+(y)

)
K(x− y) dx dy +

∫
RN

V (x)vv+dx

=

∫
RN

f(x, u)v+dx

≤
∫
RN

f
(
x, u+

)
v+dx

≤
∫
RN

(
ε
∣∣u+

∣∣+ Cε

∣∣u+
∣∣p−1

)
v+dx

≤ ε
∣∣u+

∣∣
2

∣∣v+∣∣
2
+ Cε

∣∣u+
∣∣p−1

p

∣∣v+∣∣
p
.

Let u ∈ E and v = Au, by the Theorem 2.1, for any p ∈ [2, 2∗s], there exists Cp > 0
such that

|u±|p = inf
v∈E∓

|v − u|p ≤ Cp inf
v∈E∓

∥v − u∥ = Cp dist(u,E
∓). (3.4)

It is easy to know that dist(v,E−) ≤ ∥v+∥, combining with (3.4) we know there
exists C > 0 such that

dist(v,E−)∥v+∥ ≤ ∥v+∥2
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≤ ε|u+|2|v+|2 + Cε|u+|p−1
p |v+|p

≤ C
(
εCε dist(u,E

−) + CεC
p−1
p (dist(u,E−))p−1

)
∥v+∥.

Therefore,

dist(Au,E−) ≤ C(ε dist(u,E−) + Cε(dist(u,E
−))p−1),

where C > 0 is different from the previous line. Then there exists ε0 > 0 such that,
for all ε ∈ (0, ε0) and u ∈ ∂D−

ε

dist(Au,E−) < ε.

In particular, we have A (∂D−
ε ) ⊂ D−

ε . A (∂D+
ε ) ⊂ D+

ε can be proved analogously.
□

By the Lemma 3.1, we only know that A is continuous. Next, we construct a
locally Lipschitz continuous operator B which inherits the properties of A. Similar
to [7, Lemma 2.1], we have the following lemma.

Lemma 3.3. There is a locally Lipschitz continuous odd operator B : E\K → E
satisfies the following properties:

(1) B (∂D−
ε ) ⊂ D−

ε , B (∂D+
ε ) ⊂ D+

ε ;
(2) 1

2∥u−Bu∥ ≤ ∥u−Au∥ ≤ 2∥u−Bu∥;
(3) ⟨Ψ′(u), u−Bu⟩ ≥ 1

2∥u−Au∥2;
(4) ∥Ψ′(u)∥ ≤ 2∥u−Bu∥;

where K = {u ∈ E | Ψ′(u) = 0}.

By a similar arguments as [15, Lemma 3.4], we have the following Lemma.

Lemma 3.4. Suppose that N is a symmetric closed neighborhood of Kc := {u ∈
E | Ψ′(u) = 0 , Ψ(u) = c}. Then there exists ε1 > 0 such that for 0 < ε < ε′ < ε1,
and a continuous map σ : [0, 1]× E → E satisfying:

(1) σ(0, u) = u,∀u ∈ E.
(2) σ(t, u) = u,∀t ∈ [0, 1],Ψ(u) /∈ [c− ε′, c+ ε′].
(3) σ(t,−u) = −σ(t, u),∀(t, u) ∈ [0, 1]× E.
(4) σ (1,Ψc+ε\N) ⊂ Ψc−ε.

(5) σ(t,D+
ε ) ⊂ D+

ε , σ(t,D
−
ε ) ⊂ D−

ε .

In particular, if N is a symmetric closed neighborhood of Kc\W , where W = D+
ε ∪

D−
ε , then there exists ε1 > 0 such that for 0 < ε < ε1 there will be a continuous

map η : E → E such that

(6) η(−u) = −η(u),∀u ∈ E.
(7) η|Ψc−2ε = id.
(8) η (Ψc+ε\(N ∪W )) ⊂ Ψc−ε.

(9) η(D+
ε ) ⊂ D+

ε , η(D
−
ε ) ⊂ D−

ε .

Proof of Theorem 1.1. Let λi, i = 1, 2, . . . be the ith eigenvalue of (2.5) and ei be
the eigenfunction corresponding to λi, Xj = span {e1, e2, · · · , ej}. Firstly, we define

M := {u ∈ E | 1
4
∥u∥2 >

∫
RN

F (x, u) dx} ∪Bρ,

where ρ > 0 such that

{u ∈ E | 1
4
∥u∥2 =

∫
RN

F (x, u) dx} ∩ ∂Bρ ̸= ∅.
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By Lemma 2.3, the interpolation inequality and the definition of λi, which is defined
in Proposition 2.2, for all u ∈ ∂M ∩ X⊥

j−1, there exists different constants C > 0
such that ∫

RN

F (x, u) dx ≤
∫
RN

(
ε|u|2 + Cε|u|p

)
dx

≤ C

∫
RN

|u|pdx

≤ C
(∫

RN

|u|2dx
)pθ/2(∫

RN

|u|2
∗
sdx

) p(1−θ)
2∗s

≤ Cλ
− pθ

2
j ∥u∥pθ∥u∥p(1−θ)

= Cλ
− pθ

2
j

(∫
RN

F (x, u) dx
)p/2

,

where θ ∈ (0, 1) satisfying 1
p = θ

2 + 1−θ
2∗s

, thus∫
RN

F (x, u) dx ≥ Cλ
pθ

p−2

j . (3.5)

By (3.5), for any u ∈ ∂M ∩X⊥
j−1, we have

Ψ(u) =
1

2
∥u∥2 −

∫
RN

F (x, u) dx =

∫
RN

F (x, u) dx ≥ Cλ
pθ

p−2

j .

Sincep pθ
p−2 > 0, we obtain

inf
u∈∂M∩X⊥

j−1

Ψ(u) ≥ Cλ
pθ

p−2

j → +∞ as j → +∞.

By similar arguments to those in Lemma 2.4, we can choose Rj large enough such
that Ψ(u) < 0 for u ∈ Xj \BRj

. Like in [18], we define

cj = inf
D∈Γj

sup
u∈D\W

Ψ(u),

where

Γj =
{
H

(
Xj+1 ∩BRj+1

)
: H ∈ C

(
Xj+1 ∩BRj+1

, E
)
, H is odd and

H
∣∣
Xj+1∩∂BRj+1

= id
}
.

Next, we assert that

(D\W ) ∩X⊥
j−1 ∩ ∂M ̸= ∅,∀D ∈ Γj , j ≥ 2.

In fact, by the definition of Γj , when D = H
(
Xj+1 ∩BRj+1

)
, we know H ∈

C
(
Xj+1 ∩BRj+1 , X

)
, H is odd and H|∂BRj+1

∩Xj+1 = id. Let Ô = {u ∈ Xj+1 ∩
BRj+1 | H(u) ∈ intM} and O be the connected component of Ô containing 0.
Clearly O is a bounded symmetric neighborhood of 0 in Xj+1 and O ∩ Xj+1 ∩
∂BRj+1

= ∅. By Borsuk’s theorem [30],

γ(∂O) = j + 1 and H(∂O) ⊂ ∂M,

where γ(∂O) denote the genus of ∂O, readers can learn more about the properties
of genus from [26, 30]. Now, we define I : W ∩ ∂M → R by

I(u) =

∫
RN

F
(
x, u+

)
dx−

∫
RN

F (x, u−) dx. (3.6)
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It is easy to see that I is an odd continuous map and 0 /∈ I(W ∩ ∂M). Indeed,
if 0 ∈ I(W ∩ ∂M), then there exists u ∈ W ∩ ∂M such that

∫
RN F (x, u+) dx =∫

RN F (x, u−) dx. When u ∈ W , we know∫
RN

F (x, u+) dx =

∫
RN

F (x, u−) dx ≤ Cε.

But when u ∈ ∂M , there exists C > 0 such that∫
RN

F (x, u) dx ≥ C > 0,

which is a contradiction when ε is small enough. As a consequence, γ(∂M∩W ) = 1.
Thus, γ((I(∂O)\W )∩∂M) ≥ j+1−1 = j, which is contradict to codim

(
X⊥

j−1

)
=

j − 1 < j. So H(∂O) \ W ∩ ∂M ∩ X⊥
j−1 ̸= ∅, since H(∂O) \ W ⊂ D \ W , then

the claim holds. To complete the proof, we only need to prove Kcj \W ̸= ∅, j ≥ 2.
Otherwise, it follows from Lemma 3.4 that there exists ε > 0 and an odd continuous
map η : E → E such that

η|Ψcj−2ε = id,

η(Ψcj+ε \W ) ⊂ Ψcj−ε,

η(D±
ε ) ⊂ D±

ε .

Hence, regarding the ε mentioned above, there exists D0 ∈ Γj such that

sup
u∈D0\W

Ψ(u) < cj + ε,

that is D0\W ⊂ Ψcj+ε. Let U := η (D0), it is easy to verify that U ∈ Γj and
cj ≤ supu∈U\W Ψ(u). Note that

U\W = η(D0)\W ⊂ (η(D0\W )∪η(W ))\W ⊂ η(D0\W )\W ⊂ η(Ψcj+ε\W ) ⊂ Ψcj−ε.

Thus

cj ≤ sup
u∈U\W

Ψ(u) ≤ cj − ε,

which is a contradiction. The proof is complete. □
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298-305.

[26] P. H. Rabinowitz; Minimax methods in critical point theory with applications to differential
equations, CBMS Regional Conf. Ser. in Math., Conference Board of the Mathematical

Sciences, Washington, 1986.

[27] M. Ralf, K. Joseph; The random walk’s guide to anomalous diffusion: a fractional dynamics
approach, Phys. Rep., 339 (2000), 1-77.

[28] R. Servadei, E. Valdinoci; Mountain pass solutions for non-local elliptic operators,

J. Math. Anal. Appl., 389 (2012), 887–898.
[29] R. Servadei, E. Valdinoci; Variational methods for non-local operators of elliptic type, Dis-

crete Contin. Dyn. Syst., 33 (2013), 2105–2137.
[30] M. Struwe; Variational methods. Applications to nonlinear partial differential equations and

Hamiltonian systems, Ergeb. Math. Grenzgeb.(3), Springer-Verlag, Berlin, 2008.
[31] C. A. Stuart; Self-trapping of an electromagnetic field and bifurcation from the essential

spectrum, Arch. Rational Mech. Anal., 113 (1990), 65–96.

[32] C. A. Stuart, H. Zhou; A variational problem related to self-trapping of an electromagnetic

field, Math. Methods Appl. Sci., 19 (1996), 1397–1407.
[33] C. A. Stuart, H. Zhou; Applying the mountain pass theorem to an asymptotically linear

elliptic equation on RN , Comm. Partial Differential Equations, 24 (1999), 1731–1758.
[34] A. Sumiyoshi, T. Stefan; Anomalous diffusion in view of Einstein’s 1905 theory of Brownian

motion, Physica A, 356 (2005), 403-407.

[35] F. Van Heerden; Multiple solutions for a Schrödinger type equation with an asymptotically

linear term, Nonlinear Anal., 55 (2003), 739–758.



EJDE-2025/07 TRAVELING WAVES FOR A CHEMOTAXIS MODEL 19

[36] F. Van Heerden, Z.-Q. Wang; Schrödinger type equations with asymptotically linear nonlin-

earities, Differential Integral Equations, 16 (2003), 257–280.

[37] Z. Wang, H. Zhou; Radial sign-changing solution for fractional Schrödinger equation, Discrete
Contin. Dyn. Syst., 36 (2016), 499–508.

[38] T. Weth; Energy bounds for entire nodal solutions of autonomous superlinear equations,

Calc. Var. Partial Differential Equations, 27 (2006), 421–437.

Ruowen Qiu
Department of Mathematics, Yunnan Normal University, Kunming, 650221, China

Email address: 1239814486@qq.com

Renqing You

Department of Mathematics, Yunnan Normal University, Kunming, 650221, China

Email address: 1768332868@qq.com

Fukun Zhao (corresponding author)

Department of Mathematics, Yunnan Normal University, Kunming, 650221, China
Email address: fukunzhao@163.com


