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GLOBAL BOUNDEDNESS IN AN INDIRECT
CHEMOTAXIS-CONSUMPTION MODEL WITH
SIGNAL-DEPENDENT DEGENERATE DIFFUSION

CHUN WU

ABSTRACT. In this article, we consider the consumption chemotaxis system
ut = A(wv®) +au —bu”, (z,t) € Q x (0,00),
ve = Av —uvw, (z,t) € Q x (0,00),
wy = —0w+u, (z,t) € Qx(0,00),
on a smooth bounded domain Q@ C R™, n > 2 with homogeneous Neumann
boundary conditions, where a > 0, b > 0, v > 2, and § > 0. We shown that for

sufficiently regular initial data, the associated initial-boundary value problem
possesses global bounded classical solutions.

1. INTRODUCTION

In 1971, Keller and Segel [16] proposed the model
up = Au — xV - (uVo) + f(u), z€Q, t>0,

1.1
vp=Av—uv, x€Q t>0, (1.1)

to describe the movement of bacteria toward oxygen, and at the same time, oxygen
is consumed by the bacteria, where u = u(z,t) denotes the density of the bacteria,
where v = v(z,t) represents the oxygen concentration, and x € R represents the
chemotactic sensitivity coefficient. In the above system and its various variants, we
know that chemotaxis is the directed movement of cells or organisms in response
to a concentration gradient of a chemical stimulus, and it plays a crucial role in
a wide variety of biological processes. For f(u) = 0, Zhang and Li [54] proved
that admits a global classical solution (u,v) and that this solution converges
exponentially to (@,0) as t — oo if either N < 2 or

1
N + 1)[Jvoll £ ()

x§6( , N=>3,

where ug := \Q% fQ ug. The global weak solution in a three-dimensional domain has

been studied by Tao and Winkler [31]. In [31,[54], and Baghaei and Khelghati in [3]
improved the result and showed that system (1.1)) has a globally bounded classical
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s

< —.
T xV2(N+1)
uf(v), where f € C1([0,00)) is nonnegative with f(0) = 0, the global generalized
solution was proved by Winkler [43] in any dimension. In the case of N > 1,

solution under the condition ||vo| () When we replace uv by

b>Cy (N)”XUO”L%OO(Q) + CQ(N)HXUOH%]XC(Q), a global bounded classical solution of
the system (1.1)) was obtained by Lankeit and Wang [23] in 2017. In addition, the
variant of (|1.1)) has been studied in [44] [45] 46} [47].

In regard to , the utilization of chemotaxis signal by cells may be more
complex in realistic situations. The signal may originate from external substances
produced indirectly, or consist of several signals produced by different mechanisms,
as noted in [33]. In particular, a chemotaxis system with an indirect consumption
of signals has been taken into consideration in [I1]:

up=Au—V - (uVv)+ f(u), z€Q,t>0,
v =Av—vw, x€Qt>0, (1.2)
wy = —0w+u, x€t>0.

When f(u) = 0, assuming that n < 2 or n > 3 with ||vg||~() < 3=, Fuest [11]
proved that admits a globally bounded classical solution, which converges
to the constant steady state (ig,0,%p/0) as time goes to infinity. When f(u) =
pu(l—w), p > 0, if p is suitably large, Li et al. [21] proved that has a globally
bounded classical solution. Many of the results related to the qualitative analysis
of indirect signal mechanisms can be found in [5] [12] [19].

Recently, the research interest of scholars has gradually shifted to chemotaxis sys-
tems with signal-dependent movements [4, 25]. For example, the following Keller-
Segel production models with signal-dependent motility

u = A(y(w)u) + f(u), z€Qt>0,
nw=Av—v+u, x€cQ,t>0.

If f(u) =0 and k, <~(s) < K, for all s > 0, where k,, K, > 0, in the case of two
dimensions, Tao and Winkler [34] proved that has global bounded classical
solutions; However, has global weak solutions in the high-dimensional case. In
particular, under the conditions v(s) = co/s*(co, k > 0), if ¢y is small enough, the
existence of global classical solutions has been investigated in [53]. If v(s) = s™¢
with a > 0, scholars have also obtained some results on the global existence of
classical solutions [Il [, @, 15, [40]. If v(s) = e~* for all s > 0, [7, 4] show a
phenomenon of critical mass for in the two-dimensional case. Further results
on can be found in [2, 10, 48]. If f(u) = pu(l —u), u > 0 and 7(s) satisfies
7(s) > 0,4'(s) < 0 and lims_ 400 7' (s)/7(s) exists, in the two-dimensional settings,
Jin et al. [13] proved the existence of a global classical solution to . Similar
results in higher dimensions were proved by [22] 41]. For some other results on
(L3), see [6] 26] 27, 28].

On the other hand, if the signal is degraded rather than produced by the cells,
the consumption of chemotaxis with signal-dependent motility has also been taken
into account.

(1.3)

up = A(y(v)u) + f(u), x €, t>0, L4
vy=Av—uv, €, t>0. (14)

If f(u) = 0,  is strictly positive on [0, 00), the existence of global bounded classical
solutions has been shown by Li and Zhao [18], provided that ||vg || (q) is sufficiently
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small. In the case of n = 2, the smallness assumption of v ||z () Was removed by
Li and Winkler [20], who showed that has global classical bounded solutions.
When n > 1, possesses global very weak solutions for some weaker regularity
properties on . If v(s) = s7* «a > 0, Tao and Winkler [35] proved that there
are global weak solutions to provided that 2 < n < 5 and a > % If
v(s) = s*, a > 0 for all s > 0, there are some other results in [50, 52} 51].

When f(u) = au—bu', a > 0, b > 0, Wang [37] proved that if one of the following
3 conditions is satisfied: (i) n < 2and ! > 1, (ii) n > 3 and I > 2, (iii)) n > 3,
I = 2 and b is sufficiently large; then there exists a bounded classical solution in
(1.4), while in the case of n > 3 and I € (1, 2], (1.4) admits at least one global weak
solution which becomes smooth after some waiting time. If v(s) = s*, a > 1, Wang
established a global classical solution in [38]. Conversely, admits at least one
global weak solution in the case a > 0 if v has rather mild regularities. Moreover, if
~ is suitably smooth with a > 1, then the above weak solutions eventually become
smooth. Some scholars have also studied the system in other situations, we
refer the reader to [24] 29 [39).

Recently, Wang [36] studied the chemotaxis system

u = Au—xV - (uVv) +nu —u™), zcQ,t>0,
v = Av—ulvw, e, t>0, (1.5)
0O=Aw—-—w+u® z€Q t>0

and obtained bounded classical solutions of the corresponding initial value problem.
With the above work as a motivation, in this article we consider the p(v) = v®
for a > 0, and the system
up = Aw) +au—bu”, z€Q, t>0,

vy = Av —uvw, x €, t>0,

wy = —dw+u, x€Q t>0,

ou  Ov

— =—=0, e 0N, t >0,

ov  Ov “

u(z,0) = up(x), v(z,0)=vo(z), w(z,0)=wo(z) z€Q,
where 2 C R” is a smooth and bounded domain, % denotes the derivative with
respect the outer normal of 02, and a > 0,a > 0,b > 0, > 2. The initial data
satisfy

ug € C°(Q) with ug > 0 in Q,

) (1.7)
vg, wog € W ’OO(Q) with vg > 0, wg > 0 in .

Our main goal is to study the initial boundary value problem of (|1.6|) and consider
its global bounded solutions in the classical sense. This is stated in the following
theorem.

Theorem 1.1. Let Q C R", n > 1, be a bounded domain with smooth boundary,
the parameters a,b,6 > 0 and o > 1. Suppose that the initial data satisfy (1.7,
if on of the following 8 cases holds: (i) v > 2, (ii) n < 3 and v = 2, (iii) n > 4,
v =2 and

n—2 n+2 2(n+2) a(nt2)—2

nrs - n 4 n
) (= 1) V)R oo e

b>(
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225 (n 4 4 1) (n =2+ V) *F
5 (n+2)(n—1)%
then has a global bounded classical solution (u,v,w) with
u € C%Q x [0,00)) NCHHQ x (0,00)),
v € Ng>nC?([0,00); WH(Q)) N C*1(Q x (0, 0)),
w e CY(Q x [0,00)) NC%(Q x (0,00)).

+

lvoll Los ()

Remark 1.2. When n > 2, reference [36] shows the existence of classical solutions
for system . For , if the first and third equations are replaced by u; =
A(uwv®) 4+ au — bu?, wy = —dw + u and § = 1 respectively, this paper considers
the global boundedness for an indirect chemotaxis-consumption model with signal-
dependent degenerate diffusion.

2. PRELIMINARIES
We first present a criterion for existence and extensibility of local solutions.

Lemma 2.1. Let Q C R™ (n > 1) be a bounded domain with smooth boundary, and
leta,b,0,a0 > 0. Assume that holds. Then model possesses a nonnegative
local classical solution (u,v,w) with u € C%(Q x [0, Thax)) N C%1(Q x (0, Timax)),
v € NgsnCO([0, Tinax); WH2(2)) N C21(Q x (0, Tinax)) and w € CO(Q x [0, Tiax)) N
COH(Q x (0, Tiax)). Moreover, if Tyax < o0, then

lim sup [[u(-, )| oo (@) = 00
t

max

Based on the established parabolic theory, the proof of the above lemma is similar
o [13]. We omit it here.

Lemma 2.2. Let the hypotheses of (1.7) hold. Then there exists C > 0 such that

|u(- )L < C  for allt € (0, Tiax), (2.1)
0<v < lvollpeen) i Q2 x (0, Thax), (2.2)
t+e

/ / u?’ < C  forallt € (0,Tmax — €), (2.3)

t Q

where € = min{1, %Tmax}.

Proof. Integrating the first equation in (1.6 yields
d 1
— [ u= a/ ufb/ u’ < a/ ufb|Q|1*7(/ u) for all t € (0, Trmax), (2.4)
dt Jo Q Q Q Q

upon an ODE comparison argument implies (2.1). By the non-negativity of u, v
and w, using the maximum principle for the second equation of system (1.6|) leads

to (2.2)). By integrating (2.4]), we can easily obtain (2.3). a

Lemma 2.3 ([49, Lemma 3.4]). Assume p > 2 and ¢ € C?(Q) is positive with g—f
on 0. Then

/ ¢ PV < (p+ v/n)? / ¢~ PTEVoP2 D Ing|?,
Q Q

/ PV D) < (p+ VR +1)° / ¢~ PT3V [P 2D In .
O Q
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Lemma 2.4 ([32]). Let T € (0,00], to € (0,T), A > 0, k > 0. Assume that
y:[0,T) — [0,00) is absolutely continuous and that

y'(t) + My(t) < h(t) forallt e (0,T)
with the nonnegative function h € L} .([0,T)) fulfilling

loc
t+to
/ h(s)ds <k forallte (0,T —to).
t

Then
y(t) < max {y(O) +k,2k + i} for allt € (0,T).
Ato

Lemma 2.5 ([49, Lemma 3.5]). Suppose p > 2 and p > 0. Then there exists
C = C(p, ) > 0 such that for every positive ¢ € C*(Q) with % =0 on 9 we have

_ _ 8|V¢|2
p+1 Y o|P 2
/ag¢ Vel ov

<u / 6P VP 1 / 6PV D + C / s,
Q Q Q

Lemma 2.6. Assume that the initial value satisfies (1.7) and q € [1,7]. Then
there exists C' > 0 such that

/ wi(-,t) < C  for allt € (0, Tiax)- (2.5)
Q

Proof. Using w?~! to test the third equation of (1.6) and integrating gives

1d
- wq:f(?/qur/qu*l
qdt Jo Q Q

5 (2.6)
S—(S/wq—l—f/wq—i—C/uq
Q 2 Ja Q

for all t € (0, Tinax) which implies (2.5) with (2.3) and Lemma O

Lemma 2.7. Let T' € (0, Tywax). For some p > 3, there exists Cy > 0 such that
H’lU('7t)HLp(Q) < fO’f‘ allt € (O,Tmax). (27)

Then there exists Co(T) > 0 such that

v(z,t) > Co(T) for all ¢ € (0,7). (2.8)

Proof. Let z(z,t) :=In U(%t) Then, using the second equation in (1.6]), we see that

2 =Mz — V2P +uw, z€Q, t>0,

0z
1
= =In—— Q.
z(x,0) = zo(x) =In (@) S

We use the variation-of-constants formula for the first equation of (2.9) to obtain

t
2(-,t) < Pz +/ et =D ds for all t € (0,7T).
0
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Then, by (2.7)), (2.18) and the smoothing properties of the Neumann heat semigroup
(e2);>0 defined on Q [42, Lemma 1.3], we can find constants 1, c2 > 0 such that

[2( )l o= ()

t
< ||etAZO||LoC(Q)+/ ||e(t_s)Au(-,s)w(~,s)||Loo(Q) ds
0
t
< Dol +er [ {1+ (= 9)7F Y ule sl ) oo ds 210
i |
t
< laallzmion +en [ 11+ (= 5wt} aro ot )l ds

T
g||z0HLoo(Q)+cQ/ (140 %)do forallt € (0,T).
0

From the definition of z, in view of p > 5 and using (2.10), we can easily derive

23). O

Lemma 2.8. Let the initial value satisfy (1.7). If there exists C > 0 and g > 1
such that ¢ > 5 and

lu(-, )l ey £ C forallt € (0,T). (2.11)
Then for all T € (0, Tmax), there exists C(T) > 0 such that

lu(, )l Lo ) + I D)llwie @) + lw(- )|z < C(T)  forallt € (OvTrElax)-)
2.12

Proof. Testing the third equation in (1.6) with qw?~! and applying Young’s in-
equality to find a positive constant ¢; such that

d
— [ w! —qé/wq—l—q/qu_l
dt Jo Q Q

qd

(2.13)
< f—/ w? +cl/ u?  for all t € (0, Tynax)-
2 Ja Q
From ([2.11)) and (2.13)), it follows that for some ¢y > 0,
/ w? < ¢y forall t € (0, Tinax)- (2.14)
Q

From ¢ > n/2, we have (nf3)+ > n. So, we can pick © > max{l, 5} such that

(nfg)Jr > 20 > n. By applying and [I7, Lemma 1.2], we conclude that there
exists a positive constant cz such that ||[Vu(-,t)|[126q) < ¢z for all t € (0, Tinax)-
Moreover, for arbitrary T € (0, Tyax), and Lemma imply v > ¢4(T) for
some ¢4(T) > 0in Q x (0,7).

For all p > 1, multiplying the first equation of by puP~! and employing
Young’s inequality, we can arrive that

(T -1
i/up+w/up—2‘vu|2+/up
dt Jo 2 Q Q

2 _
< LCVIPPT ) es(T)p(p— 1) / up|Vv\2+(ap+1)/ uP
Q Q

(2.15)

- 2
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for all t € (0,Tmax), where c5(T) = max{||v0||(z;2(ﬂ),CZ‘_Q(T)}. It is clear from

the previously mentioned range of © that 92—?1 < (nfg)+, using an Ehrling type

inequality and Lemma one can find ¢7 = ¢7(p) > 0 such that

P 2 L) 2
o [ IVOR < ol ge,  I90Ereqey

< e5c3|u’ ||2L(_)291 @

< 04/ |Vu§|2 + 7
Q

for all ¢t € (0,Tmax). By combining (2.15) and (2.16) and applying an ODE ar-
gument, we conclude that there exists a constant cg = cs(p,7") > 0 such that

lu(-, )|l ey < g forall t € (0, Tiax). Using [I7, Lemma 1.2] again, we can find
that ¢g > 0 such that

[V o) < cg forall t € (0, Thax). (2.17)

(2.16)

In accordance with [30, Lemma A.1], we can find a positive constant c¢19(7") such
that

||u(7t)HL°C(Q) S ClO(T) for all ¢ S (O,Tmax)~ (218)

Applying the variation-of-constants formula for w, we have
t
w(-,t) = e tw +/ e 0=y (., 5) ds,
0

which implies from ([2.18]) that there exists c11(T") > 0 such that

lw(-, )| L) < c11(T) for all t € (0, Thax)- (2.19)
Thus, by (2.17)—(2.19)) and the extensibility criterion from Lemma the proof is
complete. O

3. EXISTENCE OF GLOBAL SOLUTIONS
In this section, we will provide a proof of the main theorem.

Lemma 3.1. Assume that the initial value satisfies (1.7). If v > 1, then for all
p > 1, there exist C1,Cy > 0 such that

d -1 p(p—1
—/uerM/up*zv'ﬂVuF < M/u”va72|Vv|2+ap/up

- bp/ uP™ 7Y for all t € (0, Thay)
Q
(3.1)

and

1 2
i/ wPt + M/ wPt < (f)p/ uPt for all t € (0, Thax), (3.2)

where
_ MAXg<s<|vol| oo (o) |¢l(8)|

\/minOSSSHUOHLOO(Q) (s)
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Proof. Multiplying the first equation of (1.6) by puP~! and applying Young’s in-
equality, we obtain

d

— | wP = —p(p— 1)/ uP 20| Vo|?* — ap(p — 1)/ uP "IV - Vo
dt Q Q Q

+ap/ u”—bp/ upt -t
Q Q

-1 Zp(p—1
<-pe-l )/up-%ﬂw%ia s )/upva—2|w|2
2 Q 2 Q

(3.3)

+ ap/ uP — bp/ uPt =1 for all ¢ € (0, Thnax),
Q Q

which results in (3.1)).
The third equation in the system (1.6]) is tested using (p + 1)wP, then applying

Young’s inequality to this resultant ensures that (3.2)) is true. 0

Lemma 3.2. Under the assumptions of (1.7), for all p > 2, we have

d

— vfp+1|Vv\p—|—p(p—1)/ v P3| VP2 | D Inv|?
dt Jo Q

; v (3.4)
< f/ oty AV oy \/ﬁ)/ wu=P 2| Vp[P=2| D%
2 Joq v Q

for all t € (0, Tinax)-

Proof. Applying integration by parts to the second equation in (1.6)) and using the
well-known equation 2Vv - VAv = A|Vv|? — 2|D?v|?, we find that

4
dt Jg

= p/ V! VP2V - V(A — uvw) — (p — 1)/ v P |VoulP (Av — uvw)
Q Q

V! TP | VolP

= g/ 0P|V |PT (A Vol - 2|D?0|?) fp/ V! 7P|V |PT2 Ve - V (uvw)
Q Q
—(p— 1)/ v P|VulPAv + (p — 1)/ wvl 7P| Vu|P
Q Q
:p(p—l)/ vTP|VolP 2V - V|Vu)? —p/ V7P| VP2 D)2
Q Q

-2
P22 [ g VR - - 1) [ vl
Q Q

Ov 2
+p/ wv P2 Vo2 Av — (p — 1)2/ wvl P |VulP.
Q Q

2 —
+ g/ V! TP | VolP2 bl + pp—2) / wu P2V~ Vo - V|Vo|?
a0 Q
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The pointwise identity [49, Lemma 3.2] and V|Vv|? = 2D?v - Vv imply that

p(p — 1)/ vP|VolP 2V - V|Vo|? —p/ VP Vo|P~2| D?w|?
Q Q

-2
H2 22 [T Ve o - 1) [ o7 T
¢ . L . (3.6)
— —p+3 —2 4 2 212
——p(p—l)/gv PRIV (Vo = 5 Ve VIV + 5[ D)

=—p(p— 1)/ v P3| VP72 | D? Inw|?.
Q

Using the well-known inequality |Av| < \/n|D?v|, the sixth and seventh summands
on the right hand side of (3.5 can be estimated as

-2
plp—2) / wv P2 |VoulP~ 4V - V|Vl +p/ wu P2 |VoulP2 A
2 Ja o (3.7)

< plp—2+ ) / wu=P 2 Vp[P=2| D%,
Q
Substituting (3.6) and (3.7) into (3.5) yields the result of this lemma. a

Lemma 3.3. Lety > 1 and p > 1. If ¢ > 2 satisfies ¢ < 2(p+ v — 2). Then there
exists a constant C > 0 such that

a 2)6 0 b

/ u' < (212)3. (5)9/%. 2/ uPTL 4 C for allt € (0, Tiax),  (3.8)
[9) 8k1 2 4 O

where ki is a positive constant.

Proof. From q < 2(p + v — 2), we have % < p+ v —1. Thus, we derive from

24 (p+y—2-4)=p+~—1 that
q+2
;()—Fv—l—sz—&-v—2—g > 0.
Applying Young’s inequality to (qgfé) 5 % fQ %, it is easy to see that for some
c> 0,

8k 2 b
a1 J < Zp/ W e forall £ € (0. ) (39)
Q
The proof is complete. O

Lemma 3.4. Let o > 1, v > 1 and p > 2 satisfying q¢ > %. Then one can find
a positive constant C such that

p(p—l)( ag—1) )—2/q wn HM/ pa+2)
« Vol s u
2 \2p(p—1)(g+ V) e g

<b£/up+v—1+c
4 Jo

(3.10)

for all t € (0, Tmax).
Proof. From q > =, we have ¢(v — 1) — 2p > 0, then

2 —1)g -2
plg+2) (v ()Jq P

pty—1-



10 C. WU EJDE-2025/09

Thus, we apply Young’s inequality to

p(p—1) ( q(g—1) )—2/4 2(a+2) ‘% / p(a+2)
o 4 U u a
2 \2p(p—1)(g +vn)? e

we show that there exists ¢ > 0 such that

p(p—1) ( q(¢g—1) )—2/4 2(a+2) ‘% / pla+2)
o 4 U u a
2 \2p(p—1)(g +Vn)? e

b
< —p/ uP™ "t e for all t € (0, Thax)-
Q

Therefore, we obtain the desired result. O

Lemma 3.5. Assume (1.7)) holds, o > 1, v > 2. Then, for allp > 1 and q¢ > 2,
one can find a positive constant C such that

lu(-, )l ey < C forallt € (0, Tax)- (3.11)

Proof. Tt follows from Lemms [3.1] and [3:2] that

d
7</up+/1]*q+1|vv|q)+/up+/qu+1|vv|q
dt\ Jo Q Q Q

+q(q - 1)/ v I3V 2| D? Inv|?
Q

2 -1
<D [t s wpr ) [ [0 3
2 Q Q Q

talg—2+ \/ﬁ)/ wu= T2V |1-2| D2y
Q

o 2
—I—g/ v vylT2 . [Vel +/v_q+1\Vv|q.
2 o0 31/ Q

Using Young’s inequality and Lemma [2.3] we see that for any ¢ > 0,
2

=) [ e
2 Q

< p(p - I)C‘Izﬂ / ,qu71|vv|q+2
2 Q

P(pQ— 1)C_4T+2a2(qq+2) / RLCORECHE (3.13)
Q

71 2 q+2
p(p )(;]*x/ﬁ) C%/v—ﬁswv‘q—zwzlnv‘z
Q

p(p—1) _atz 26t2) M/ pat2)
PP~ % u

+

<

+ 5 ¢ aa « ‘UOHLOO((;)) a

By selecting

q(q - 1) )qzﬁ
2p(p — 1)(q + v/n)?

¢=(
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and applying (3.13)), we estimate that

2

a p(p—l) / upva_2|Vv\2
2 Q

—1
< %/v7q+3|Vv|q72|D2]nv|2 (3.14)
Q

p(p — 1) Q(q - 1) —2/ 2(q+2) ale+2)=2 / p(g+2)
+ qOZ q U, o a u 9 .
> - g+ v Ioollioeay

For any 11, n2 > 0, we can see from Young’s inequality that

ala =2+ Vi) [ wo (T2 Dt
Q
<o [ 0TS DR o g - 24 Vi) [ g
Q Q

<m(qg++vn+ 1)2/ v 93| Vu|77 2| D? Inv|?
Q
a+2

+07' P (g — 2+ Vn)Png 7 / v V|2
Q

-1.2 2 —13% af2
+ 0 (g —2+Vn)n, * /w v
Q

q+2
<(g+vn+1)*m +77I1q2(q—2+\/5)2775‘2}Av‘q+3|Vvlq‘2|D2lnvl2

q+2

_g+2
+n7' P (g -2+ Vn)?n, HvollLoom)/w i
Q

(3.15)
If we let
m = q(q B 1) o = ( (q B 1)2 )g%;
8(q+vn+1)%’ 64(¢+vn+1)*(g —2++/n)? ’
then (3.15)) can be simplified as
alg—2+ \/ﬁ)/ wu= T2V | 12| D2y
Q
< W1 [ s g2 D? o (3.16)
4 Q
L 874+ Vit 1) g = 2+ V) "5 e 1 () / e
(¢ —1)u/? Q '
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Substituting (3.14)) and (3.16) into (3.12)) yields

/u” / _q+1|Vv| +/up+/v_q+1|Vv|q

1
+q7)/v 4+3|7p|9-2| D2 In o2
2 Q

p(p—1) q(g—1) _9/q . 2at2) algt2)-2 / pla+2)
a7 ||vgll; e u 3.17

a 2
+ ky / w'T 4 g/ A AV L 7\V1}|
0 2 a0 51/

—I—/ v_q+1|VU|q—|—(ap+1)/ up—bp/ uP Tt
Q Q Q

89/2q(g + v+ 1)7(q — 2+ vn) F||vo 1)
(¢ —1)2/2
Then, we estimate the second and third terms on the right-hand side of (3.17)). By

(2.2), Lemmas and Young’s inequality, we find that for any ¢ > 0, there
exists a positive constant c¢; such that

Q/ U*q+1‘vv|q72 . 8|Vv\2
2 le) 8V

SQ/v_q_l\Vv|q+2+g/v_q+1|Vv|q_2|D21)|2—|—cl/v (3.18)
Q Q Q

where

k1=

<2(qg++vn+ 1)2g/ v_q+3\VU|q_2\D2 lnv|2 + c1|Q||vo || L= ()
Q

/ v IVl
Q

a+2

<"t [ v V|t 4 o / v (3.19)
Q Q

and

4o 7 _ _at2
< (@ VAPe' [ o Tl D2 o + o el o
Q

Because
b
(ap + 1)/ uf — bp/ uPtl < f—p/ uPt T ey (3.20)
Q Q 2 Ja

for some c¢p > 0, by selecting a suitably small ¢ and substituting (3.18])—(3.20] into
|) we obtain

" /up / _q+1\Vv| +/up+/v_q+1|Vv\q
t )

-1) q(g—1) _9/q a2 alet2)-2 / pla+2)
a « Vol 7 oo U q 3.21

a b
+ k1 / w%2 — ?p uP™ T 4 O
Q Q
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Multiplying the third equation of the system (L.6) by (£ + 1)w?/? gives

4 +1 5/ = +1)/ Wiy, (3.22)
dt o

With the help of Young S 1nequahty, we have

q 2 ((J+2)5/ 241 2q /2/ 441
=41 /wq/ U< —— [ w2+ a u?
(2 ) Q 4 Q ((Q+2)5) Q

(3.23)
2)o q 2 a
S(q—z)/ﬂwz'ﬂ_,_(é)QQ/Quz‘H_
Collecting (3.22)) and (| -, we obtain
i w%”+7<q+2>6/ ER S(Q)Q/Q/uq%. (3.24)
Multiplying % in the both sides of (3.24)), we have
8k d q+2 q+2 8k 2 q+2
C— 2k < ——(= qﬂ/ : 3.25
(q+2)0 dt/Qw T 1/9“’ NI i A (8.25)
Inserting (3.25)) into (3.21]), we see that
d _ 8k1 a+2
el P atlg7y |9 )
dt /“*/” |”|+(q+2>/ 2
/up /v q+1\VU|q+k1/ @2
W=D e 22 e O
<75 (2p( v e Il
8ki 2 gtz bp _
+ fQ/Z/u2 ——/up+”’1—|—0,
(Q+2)5(5) Q 2 Jo
where k7 is defined as in (3.17)). Because
2 2 —2)(yv—1) — 2(y—2 -1
dpty—2)— 2P [(p+y=26y=V=-p 200=2+y-1 _
v—1 v—1 vy—1
Then, by selecting ¢ > 2, we have
2
Tfl <qg<2p+vy-—2). (3.27)

Moreover, in Lemma taking k = k1 and combining Lemma with (3.26]), we
obtain

d 8
GULas [ormiwne S ot
2)o
+in {1, 020 /“/““iw 8’“5/ ) <o

for some ¢y > 0. Thus, using a standard ODE comparison parameter gives (3.11]).
|

Lemma 3.6. Let vy =2, n >4, p>1 and assume that (1.7)) holds, and b satisfies

a(ptl)—1

ol + H2(p 1000 e o). (3.28)

2(;7

b> pi(p,n)o
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where
pmlp.n) = (p =17 2+ vVi)F (2p — 1) 75, (3.29)
patpn§) = ZCELEL TSI
Then one can find C > 0 such that
[u( )l Lry < C for all t € (0, Trax)- (3.31)

Proof. Since v = 2, from ([3.29)), (3.30) and setting ¢ = 2p in (3.26]), we deduce that

d 4k
il P 1-2p 2p 1 p+1
dt(/Q“ +/Q” Vel™ + 8

+ / i / 2P|V Ry / wh ! (3.32)
Q Q Q

(>+1) alptl)—1

p 2 P
< 2{o— e ool ey~ el } [ 0 C
Q

for all ¢ € (0, Tyax)- Using (3.28)), (3.32)) can be reduced to

4k
P 1-2p 2 1 p+1
a(fws oo s s o)

+ min {1, p+1 / p+/ 1207y 2 4 (p+1) /wp+1) (3.33)

<C.

Thus, a standard ODE comparison argument leads to (3.31)). ([l

Lemma 3.7. Let v =2 and n = 2,3, Then, for all T > 0, there exists C(T) > 0
such that

lu(-, )2 < C  for allt € (0, Tinax)- (3.34)

Proof. Letting p =2 in (3.1), we have

d
—/u2+/va|Vu|2+/u2 §a2/va_2u2|VU\2+(2a+1)/u2- (3.35)
dt Jo Q Q Q Q

For v = 2, (2.5) and Lemma show that for any 7" > 0, there exists a constant
c1(T) > 0 such that v > ¢1(T) in Q x (0,T). Thus (3.35) can be rewritten as

c(lit u? + (T /|Vu|2 /u2§a202(T)/u2|Vv|2+(2a+1)/u2 (3.36)
Q Q

with ¢o(T) := max {c‘f (1), ||110H%;2(Q)}. Using v = 2, n = 2,3, in conjunction
with (2.5)) and [I7, Lemma 1.2], one can find ¢z > 0 such that

lo(-, t)|[lwia) < ez forall t € (0, Tinax)- (3.37)



EJDE-2025/09 CHEMOTAXIS-CONSUMPTION MODEL 15

Using n = 2,3, (2.1), (3.37) and applying Holder’s inequality and Ehrling type
inequality, we estimate taht for some ¢4(T) > 0,

aQCQ(T)/uQ\VU|2—I—(2a+1)/u2
Q Q

(3.38)

[Vul® + ca(T)
Q
for all t € (0, Tyax)- Collecting (3.38) and (3.36), we estimate

(T
i/u%M/ |Vu|2—|—/u2 <e(T) forallte (0, Tme).  (3.39)

We complete the proof of (3.34) by using an ODE argument. O

Lemma 3.8. Let v > 1. Then, for all n > 1, if one of the following 3 con-
ditions is true: (i) 1 > 2; (i)l =2 and n < 3; (W)l = 2,n > 4 and b >

" 2(n+2) a(n22)72 N ]
pi(g,n)a m ool e )+ p2(5 1, 0)||voll Lo (o), where piy po are defined as in

(3:29) and (3.30).
Then for all T € (0, Tinax), one can find C(T) > 0 such that

[u( Dl @) + 0GB lwroe @) + w8l Lo @) < C(T) - for all t € (0,T).

Proof. Let p > 1 such that p > 5. For the parameter v, the following three cases
are discussed. If v > 2, we know that [[u(-,?)||z»(q) is bounded from Lemma If
v = 2, from and Lemma we obtain that |lu(-,t)||z1(q) is bounded under
the condition n = 1 and |lu(-,t)||z2(q) is bounded under the condition n = 2,3. If
v = 2andn > 4, since p > 7, using Lemma @ with respect to b, we also get
that ||u(:,t)||Lr(q) is bounded for all ¢ € (0, Tinax). Finally, we use Lemma to
complete the proof. O

Now Theorem follows directly from Lemmas and
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