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STRUCTURE AND STABILITY OF GLOBAL ATTRACTORS FOR A
CAHN-HILLIARD TUMOR GROWTH MODEL WITH CHEMOTAXIS

SEMA YAYLA

ABSTRACT. In this article, we analyze the long-time dynamics of a Cahn-Hilliard tumor growth
model, focusing on the geometric structure and stability of its global attractors. Using a
Lojasiewicz-Simon type inequality, we first prove that every full trajectory in the global attrac-
tor converges to a single stationary point as ¢ — co and to another stationary point as t — —oco.
As a result, we show that the global attractor is the union of the unstable manifolds emanating
from the stationary points. We also examine the rate of convergence to these stationary points
and provide specific polynomial and exponential rates under certain conditions. Additionally,
we demonstrate that the global attractors of the corresponding tumor growth model exhibit
upper-semicontinuity with respect to small perturbations of the chemotaxis parameter. Finally,
by restricting chemotaxis within a certain interval, we establish the lower-semicontinuity of the
global attractors for this model.

1. INTRODUCTION

Tumor growth and its associated dynamics have long been a subject of significant interest in the
fields of biology, medicine and mathematical modeling. One class of mathematical models that has
proven particularly useful in this context is the diffuse interface models. The key mathematical
equation used in diffuse interface models for tumor growth is the Cahn-Hilliard equation,

¢t — A(=A¢ + f(¢)) = 0. (1.1)
Cahn-Hilliard equations were originally developed to describe the phase separation processes in
binary materials (see [2]), but they have found applications in wide range of biological systems,
including tumor growth.
In this context, the following Cahn-Hilliard system was introduced in [I8] to describe tumor
growth as a continuum-mixture process.

B0 = div (@) V1) + p(0) (xo0 + Xs(1 — ) — 1) in (0,T) x 2, (12)
p=—-A¢p+¥(¢p)—xgo in (0,T)xQ, (1.3)

01 = div(n(6) (xe Vo — xo¥9)) — p(@)(xo0 + Xs(1 — &) — ) in (0.T) x 0,  (L4)
Oy =0, =0,0=0 on (0,T) xT. (1.5

Here, Q C R? is a bounded domain with smooth boundary I" and 9, in stands for the normal
derivative where v is the outer unit normal to I'.

Equation is a Cahn-Hilliard equation where the order parameter ¢ ranges between —1
and 1, representing the tumorous and healthy phases respectively, with p denoting the chemical
potential for ¢. Additionally, equation is a reaction-diffusion equation where o represents
the chemical concentration acting as a nutrient for the tumor. The terms m(¢) and n(¢) represent
positive mobilities indicating the diffusivity of the binary mixture and the chemicals. Moreover, ¥
is a potential function characterized by two minima at +1. Lastly, x4 > 0 stands for the constant
representing chemotaxis and active transport, while x, > 0 denotes the chemical mobility.
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To the best of our knowledge, system 7 was first analyzed in the mathematical sense
in [I0] in the case x4 = 0 and m(¢) = n(¢) = x» = 1, where the authors proved the well-posedness
of the problem and the existence of a global attractor. Subsequently, problem 7 with
an additional viscosity regularization term was considered in [8, ©]. In [§], the well-posedness
of strong solutions was established, and the long-time behavior of the corresponding dynamical
system was studied using the concept of the w-limit set. In [9], some results from [8] were extended
to scenarios where the viscosity parameters are independent of each other. Additionally, we refer
to [19], where the formal matched asymptotic limit of a quasi-static variant of f was
explored.

Among other valuable contributions in the literature related to similar tumor growth models,
we can cite [T, 12} 13| [T4]. In [14], a Cahn-Hilliard-Darcy model was introduced for tumor growth
with chemotaxis and active transport. In [I1] also a Cahn-Hilliard—Darcy system was investigated,
and the existence of global weak solutions was established in both two- and three-dimensional cases.
In [I3], the following tumor growth model was analyzed,

b1 = div(m(B)Vi) + (o — A)R(9) in 9 x (0,T),
p =AU (¢) — BAp — xp0 in Qx(0,7T),
koy = div(n(¢)(xe Vo — x4 V@) — Acoh(¢) in Q x (0,T),
Viu-v=V¢-v=0, n(¢)xoeVo-v=K(0x—0) onI x(0,T).

(1.6)

Here, k = 1, A, B and K are positive constants. The parameters A,, A, and . are nonnegative
constants representing, respectively, the proliferation rate, the apoptosis rate of the tumor cells,
and the nutrient consumption rate. The function h(¢) is an interpolation function, and o, denotes
the nutrient amount on the boundary. Additionally, m(¢), n(¢), x4 and x, represent the same
quantities as in system 7. In that paper, well-posedness of the model and its quasi-
static version (k = 0) was established for regular potentials with quadratic growth. On the other
hand, in [12], the well-posedness of problem with Dirichlet boundary conditions was obtained
for regular potentials with higher polynomial growth and even for the singular potentials.

Global attractors are essential tools for analyzing the long-time behavior of infinite-dimensional
dynamical systems. Since they are compact, invariant sets that attract all bounded trajectories,
understanding their structure and stability is key to gaining deeper insight into the overall dy-
namics of the system. Some studies have advanced our understanding of global attractors in
systems with hyperbolic stationary points, where the number of stationary points is finite [3] 4].
These systems can be described using gradient-like semigroups, where all trajectories move be-
tween stationary points, and there are no homoclinic orbits. However, the set of stationary points
is generally infinite and those results do not directly apply.

To overcome this limitation, [I] shows a novel approach based on the Lojasiewicz-Simon in-
equality. In systems where the set of stationary points is infinite, their technique allows one to
show that all full trajectories in the global attractor originate from a stationary point as t — —oo
and converge to another as t — co. As a result, the attractor can be described as the union of the
unstable manifolds of all stationary points.

This article introduces new results concerning the structure and the stability of the global at-
tractors for problem 7, in the case x4 > 0, differing from the approach in [I0] and related
works. Some foundational results concerning the existence of a global attractor and its charac-
terization as an unstable manifold emanating from the set of stationary points were previously
established in [I5], in the case x4 > 0. In this paper, we aim to present new findings regarding
the geometric structure and stability of the global attractors for problem (1.2)—(L.5). The main
contributions of this paper can be summarized as follows.

e Inspired by [1], and using a Lojasiewicz-Simon type inequality, we prove that every full
trajectory within the global attractor converges to a single stationary point as ¢ — oo and to
another stationary point as ¢t — —oo. We then show that the global attractor is equal to a union
of the unstable manifolds emanating from the stationary points, even when the set of stationary
points is infinite (see Remark [3.3).
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e We obtain the rate of convergence to equilibrium for the full trajectories in the global attractor,
in the space (H(2))* x (H'(Q))* (see Proposition . Then, by imposing suitable restrictions
on the chemotaxis, we obtain that the every full trajectory in the global attractor converges
exponentially to equilibrium (Corollary .

o In the case where the Lojasiwicz-Simon exponent 0 < 6 < %, we prove that the full trajectories
in the global attractor maintain the same convergence rate, established in (H'(Q))* x (H*(Q))*
also in the space Z);. This result is not straightforward and requires careful analysis and detailed
estimates beyond standard arguments.

e By considering the chemotaxis and active transport parameter x4 as a perturbation parame-
ter, we obtain a family of global attractors. We first prove that this family of global attractors is
uppersemicontinuous as x4 — 0. Moreover, restricting the chemotaxis on a suitable interval, we
obtain the lower semicontinuity of the global attractors as x4 — 0.

This article is organized as follows. In Section 2, we introduce the problem and present several
foundational results from [I5]. In Section 3, we conduct a detailed analysis of the geometric
properties of the global attractor, along with convergence of trajectories to equilibrium. Section
4 is dedicated to examining the rate of convergence to equilibrium. Finally, in Section 5, we
investigate the upper and lower-semicontinuity properties of the global attractors.

2. SETTING OF THE PROBLEM AND THE PREVIOUS RESULTS

In the rest of this paper, to simplify the notation, we will denote chemotaxis and active trans-
port by x instead of 4. Furthermore, since the choice of x, does not affect the subsequent
mathematical analysis, we will assume y, = 1. Additionally, we consider the mobilities to be
constant, i.e. m(¢) =n(¢) = 1. Hence, we reformulate the problem 7 as follows.

op = ApX +p(¢*)(oX + x(1 = ¢¥) = p¥), in (0,T) x Q, (2.1)

pX = —AgX + V' (¢X) — xoX, in (0,T) x ©Q, (2.2)

o = AcX — xAP* — p(¢¥)(oX + x(1 — ¢*) — pX), in (0,T) x Q, (2.3)
BupX = 8,¢% = B,0X =0, on (0,T) x T, (2.4)

where x > 0.
We consider this problem with the following assumptions, which are identical to those in [15].

(A1) The potential ¥ € C?(R) can be written as
U(s) = Wo(s) + A(s) (2.5)

where ¥y € C%(R) and A\ € C%(R) satisfies |\’(s)| < «, for all s € R, and for some
constant o > 0. Moreover, we assume that

cr(1+[s]7%) < Ug(s) < ea(1+ |s|772), (2.6)
\I/(S) Z R1|8|2 - RQ

for all s € R, with ¢, c2, R; > 2x?, Re € R and with p € [2,6).
(A2) The interpolation function p € C'(R) satisfies

loc
p>0 and [p(s)| < ca(l+]s"") (2.8)

for all s € R, with ¢4 > 0 and with ¢ € [1,4].
We also assume the following in the proof of the Lojasiewicz-Simon type inequality.
(A3) The potential ¥ € C*°(R) is an analytic function.

Remark 2.1. Assumption (2.7)) is only needed if p = 2.

Notation. We now introduce some notation that will be used throughout the paper. For a
Banach space X, we denote its norm by || - ||x, its dual space by X*, and the duality pairing
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between X* and X by ((-,-)). Additionally, we will use (-,-) x for inner product in X. The inner
product in L?(Q) will be written as (-, -). For every u € (H(Q))*, we define the mean value as:
(

Q
(u) := L<<u, 1)) for every u € (H*(Q))*.

9]
Moreover, we introduce the operator A : H*(2) — (H'(2))* such that
Au=—Au+u and D(A)={p€ H*(Q):0,0=0onT}.

It is worth noting that the restriction of A on D(A) is an isomorphism from D(A) onto L?(12),
i.e. D(A) = A~1(L?(Q2)). In addition, the following identities hold:

((Au, A= ")) = ((v*,u)) for every u € H'(Q),v* € (H'(Q))*,
((u*, A7 M%)y = (u*,v*) (i (a))-  for every u*,v* € (H'(Q)),
where (-, ) (g1 ()« is the dual inner product in (H'(£2))* corresponding to the usual inner product

in H(€). Domain of the inverse operator A=! is defined as D(A™1) = (D(A))* (see [22]). Also,
we have

((v*,u)) = / viu  if v* € L (),
Q
and J
%HU*H%HI(Q))* = 2((d,v*, A~w*))  for every v* € HY(0,T; (H'(Q))*).
We now define the weak and strong solutions to the problem ((2.1)—(2.4)).

Definition 2.2 ([I5]). Let (¢o,00) € HY(Q) x L?(Q2) and T € (0,00) be given. A pair (¢X,0X),
satisfying the properties

(X, %) € L™=(0,T; H'(Q) x L*(Q)) N L*(0, T; H*(Q) x H'(Q)),
(6F,0%) € L7(0,T; D(A™") x D(A™1),
pr = —APX 4 W' (¢X) — xoX € L*(0,T; H' (),
(¢X(0),*(0)) = (¢0, 00),
for some r > 1, is called a weak solution of problem 7 on [0,T] x Q, if
(8%, m) + VX, Vi) = (p(¢*)(0X + x (1 — ¢¥) — pX),m)
({03, 6)) + ((VoX —=xVX), VE) = —(p(¢X) (0 + x(1 — ¢¥) — p*), &)

holds on (0,T) x Q, for every n, £ € D(A).
If the pair (¢X,oX) also satisfies the properties

¢ € L=(0, T H*(Q), ¢ € L*(0,T; H'(Q)),
oX € L>(0,T; H' () N L*(0,T; H*(R)), of € L*(0,T;L*(Q)),
pX € L>=(0,T; H'(Q)) N L*(0,T; H*(R)),
then it is called a strong solution of problem 7 on [0,7] x Q.

(2.9)

The following results on the well posedness of solutions was obtained in [I5].

Theorem 2.3 ([15]). Let conditions (A1), (A2) hold. Then for every (¢g,00) € H*(2) x L?(Q)
and for every T > 0, problem (2.1)—(2.4) has a weak solution such that

¢* € L*(0,T; H*(Q)), W(¢¥) € L>(0,T; L' (),
VNox € L2(0,T; L*(Q)),  /P(¢X)(Nox — p¥) € L*(0,T; L*(Q)),
or € L*(0,T; (H'(Q))), of € L*(0,T; (H'(2))").

Moreover, the following energy identity holds for the weak solutions,

Ex(X(t),aX(1)) +/0 /Q(|V/ML><|2 + |V NG |? 4 p(¢X) (Nox — piX)?) da dr = E, (o, 00)  (2.10)
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where ) i
£0(6:0) = 5 V0l e + [ ¥(0) + G0l +x [ a1 - )

and NX = oX + x(1 — ¢X). Furthermore, for every initial data (¢o,00) € H3(2) x HY () with
Oy =0 on T and for every T > 0, problem (2.1)—(2.4)) has a strong solution.
Theorem 2.4 ([15]). Let conditions (Al), (A2) hold. Then, for every initial data (¢o,00) €

HY(Q) x L*(Q) and for every T > 0, the weak solution of problem [2.1)—(2.4) specified by Theorem
is unique. Moreover, if (¢F,0)), i = 1,2 are weak solutions of problem (2.1))—(2.4) with initial

RaE?

data (¢oi, 00;) € HY(Q) x L%(Q), respectively, then
193 (8) = &Y Dl () + o3 () = o1 Ol @)+ + 193 () = X D22 0,61 ()
+ oz (t) = o ()| L2 (0.,22()

< A®) (1168 — 31 o @+ + 9% — ol - )

where A is a continuous positive function which depends on the norms of the initial data and ¥,
p, QandT.

As a result of Theorems and problem ([2.1)—(2.4]) generates a weakly continuous semi-
group {SX(t)}+>0 in H' () x L?(Q), according to the formula SX(t)(¢o, 00) = (¢X(t),X(t)). Here,
(¢X(t),0X(t)) denotes the weak solution determined by Theorem

Exploiting (2.4)), it is easy to see that problem (2.1)—(2.4) satisfies the total mass conservation
as

/Q (6X(t) + o (1)) dr = / (60 + 00)dir Vit > 0.

Hence, we need to introduce the following subspaces:

2y 1= {(60) € HY(@) < 2(@) s [ (6+0)do = |01}, (2.11)

Zy = {(¢,0) € HT(Q) x H"(Q) : /Q(¢+0) de =|QIM}, r>0, (2.12)

which are equipped with the usual norms of H*(Q) x L?(Q) and H?*"T1(Q) x H"(f), respec-
tively. Thus, restricting the phase space of the problem to Z;;, we obtain the dynamical system
(Zm, 5% (1)), where {S),(t)}1>0 denotes the restriction of {SX(¢)};>0 on Zas. Moreover, we will
denote the weak solution of problem (2.1)—(2.4) in Zy by S¥,(t)(¢0,00) = (¢3,(t), 0%, (2)).
Now, let us define the set of stationary points,
J>\(/I ={(¢,0) € Zm : S?\%(t)((ﬁ,g) = (¢,0),Vt > 0},
for problem (2.1)—(2.4) in Z)s. The set of stationary points N3, as indicated in [15], is a nonempty,
bounded subset of Z,;, consisting of solutions to the stationary problem
—AGK () X0 = i,
X+ x(1 = ¢X) = g, (2.13)
€q (¢ + oX)dx = |QM,

where

i = [ @) e xiol [ o
o Ja A

For convenience of the reader, we state some results from [I5], which are used in some steps of
this paper.

Proposition 2.5 (Asymptotic compactness, [I5, Lemma 5.1]). Assume that (A1), (A2) are satis-
fied and B is a bounded subset of H' (2)x L*(Q). Then, every sequence of the form {SX(tx)(dx, ok)} 31,
where {(¢x, 0%)}32, C B, tp — oo has a convergent subsequence in H'(Q) x L().

Proposition 2.6 (Gradient Property, [I5, Lemma 5.2]). Under conditions (A1), (A2), the dy-
namical system (H'(Q) x L*(Q),SX(t)) is a gradient system, i.e. the energy functional &, is a
strict Lyapunov function on the whole phase space H'(Q) x L?(Q).



6 S. YAYLA EJDE-2025/100

Proposition 2.7 ([I5, Lemma 5.3]). Assume that conditions (Al), (A2) are satisfied. Then,
energy functional £ (¢, ) has at least one minimizer (¢, 0.) € Zy such that

E(by,00) = inf &(¢,0).
(P, 04) o (9,0)

Proposition 2.8 ([15, Lemma 5.4]). Let conditions (Al), (A2) hold and (¢«,0.) be a minimizer
of Ex(¢,0) in Znr. Then (¢, 04) € H2(Q2) x H*(Q) is the strong solution of the problem (2.13).

Proposition 2.9 ([I5] Lemma 5.5]). Assume that (A1), (A2) are satisfied. Then the set of
stationary points N3y, is nonempty and bounded in Zp;.

Before stating the main result of [I5], we recall the following definitions.
Definition 2.10. Let {S(¢)}:>0 be a semigroup on a metric space (X,d). A set A C X is called

a global attractor for the semigroup {S(¢)};>o, if

e A is a compact set.

o A is invariant, i.e. S(t)A= A, Vt > 0.

o lim; . distx(S(¢)B, A) = 0, for each bounded set B C X,
where dist(+, -) is the Hausdorff semidistance defined as

distx (4, B) = 21613 bigg d(a,b).

Definition 2.11. Let N be the set of stationary points of the dynamical system (X, S(¢)). We
define the unstable manifold M*(N') emanating from the set A/ as a set of all y € X such that
there exists a full trajectory v = {u(t) : ¢ € R} with the properties

w(0) =y and t_l}r_n dist x (u(t),N) = 0.

The following theorem is the main result of [I5] regarding the existence and the regularity of
the global attractor.

Theorem 2.12 ([I5, Theorem 5.9, Theorem 5.10]). Assume that (A1), (A2) are satisfied. Then
the semigroup {S¥;(t)}+>0 generated by the weak solutions of the problem (2.1)—(2.4) possesses a
global attractor Ay, in Zyr, and A%, = M™(N3;). Moreover, the global attractor A}, is bounded
in Zi,.

3. FURTHER GEOMETRIC PROPERTIES OF THE GLOBAL ATTRACTOR

Recalling the definition of the unstable manifold and exploiting the result [7, Theorem 7.5.6],
we observe that the global attractor A%, consists of full trajectories vy, = {(¢%,(t),0%,(t)) : t € R}
such that

Jim distz,, (6}, (1), 0}, (1), A%) =0 and  lim_distz,, (6}, (1), 0} (1), %) = 0. (3.)
In this section, we aim to improve (3.1)) by proving the following result.

Theorem 3.1. Let assumptions (A1)—(A3) hold. Then for any full trajectory
N = {(@%(),0%(t) : t € R} in the global attractor AY, there exist (P, 04), (Pux, Oux) € N3y
such that

Jim distz;, (6%, (1), 03 (1), (900.)) = 0. (3.2)
and
Jlim_distz, (65, (6), 03 (1), (Bur000) =0, (33)

where r € [0,1).

As a consequence of Theorem we obtain the following geometric property of the global
attractor.

Corollary 3.2. Under assumptions (A1)—(A3), the global attractor A%, equals to the union of the
unstable manifolds of its stationary points, i.e.,

Arr = Yo, onyeny M (64, 0.)).- (3.4)
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Remark 3.3. We already know that when the set of stationary points N3, is finite, the equality
(3-4) holds (see for example [7, p.361]). In this section, we demonstrate that the global attractor

7 of the problem (2.1)—(2.4) retains the property (3.4), even if the set of stationary points N3,

is infinite.

Remark 3.4. In our framework, the dynamical system associated with problem 7 is a
gradient system, i.e. the energy functional E, (¢}, 0},) serves as a strict Lyapunov functional (see
Proposition . Hence, the system admits no heteroclinic cycles. The present work goes beyond
establishing the existence of a Lyapunov structure; it also aims to characterize the geometric
structure of the global attractor. From Theoremmwe obtain that A%, consists of full trajectories
connecting distinct equilibrium points, which correspond to heteroclinic orbits.

It is important to emphasize that this geometric structure of the attractor is not a direct
consequence of the gradient property itself. Systems whose attractors possessing the properties
and are often referred to as gradient-like systems. Although many gradient systems
become gradient-like under additional analytical tools, such as the existence of Lojasiewicz-Simon-
type inequalities, not every gradient system is necessarily gradient-like (see [I]).

To prove Theorem [3.1] we first present some properties of the limit sets. Subsequently, we
will derive an appropriate uniform bLojasiewicz-Simon type inequality. Finally, by using these
establishments, we prove Theorem [3.1}

3.1. Properties of limit sets. Let us start with definitions of the limit sets.
Definition 3.5. For any (¢g,00) € Zas the w-limit set of (¢g, ) is defined by
wir((¢0,00)) = {(¢x,0.) € A}y + H{(d3; (tk), o} (t)) }iZs, such that
(#3,(0),0%,(0)) = (¢0,00),tr /00 and (¢%;(tk), 03 (tk)) = (¢x, 04) strongly in ZM}.
Moreover, for any (¢o,00) € A}, the a-limit set of (¢, 0g) can be defined as follows:
ar((60,00)) = {($ss o) € A}y H(@F; (tr), 03, (1)) }7Z1, such that
(¢37(0),0%,(0)) = (¢0,00), tr \« —00 and (¢, (tr), 0% (tk)) = (Gsx, 04i) strongly in ZM}.
On account of the above definitions, we deduce the following lemma.

Lemma 3.6. Let (¢o,00) € A}, and (¢},(t), 0%,(t)) be the full trajectory passing through (¢o, 09).
Then, the sets wy;((¢o,00)) and oy, ((¢o,00)) are nonempty, compact, invariant subsets of Zy;

and there exist constants 5J>fj°°+ and £5°° such that
. oot
E(62,00) = lim E(@% (0,05 (1) = £ V(n.a.) € why((dos 00,
E(Benroes) = T E(O} (1,03 (1) = EF™ W(berr0r) € aly((d0100)).

Moreover, wy;((¢o,00)) C N3; and o, ((¢o,00)) C N3

(3.5)

Proof. By using the asymptotic compactness property stated in Proposition one can see that
for any (¢o, 09) € A}, the sets wy,((¢o, 00)) and o, ((¢o, 00)) are nonempty, compact and invariant
subset of Zjs (see for example [7, p. 339)]).

On the other hand, since &, ( )ﬁﬁ o}, (t)) is a non-increasing functional which is bounded from

v oot
above and below (cf. Proposition [2.6) Proposition , we infer that there exist constants £33

and 51)\200, such that
+

Jim £, (64, 0%, (1) = 5
lim_ £ (0% (1), 0% () =
Moreover, for any (¢.,0.) € wY;((¢o,00)) there exists ¢, — oo (as n — oo) such that

HILII;O(QSXM(tn)’UJ)\(Atn)) = (¢s, 04). (3.7)

(3.6)
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Similarly, for any (¢, ow) € a};((do,00)) there exists £, — —oo (as n — o) such that

im (65 (Fn), 0% (Fa)) = (G 0)- (3.8)

n—oo

From ({3.6)-(3.8) we obtain that (3.5]) is satisfied. Now, using the invariance property of wy, ((¢o,00))
and oy, ((¢o,00)), from (3.6)-(3.8) it can be deduced that

E(SX, (1) (s, 04)) = 5l>\</i°°+ V(s 04) € WX, ((90,00)), Vt>0, 39)
Ex(SXi () (hrx001)) = EFT Vsw, 0i) € @)y (B0, 00)), Yt >0,
which yields

EX(SJ)\<4(t)(¢*aO—* ) = EX(((ZS*aO—*)) V(¢*,U*) € w%/f(((ﬁo,do)), Vt Z 07
Ex (S (1) (Buns 0ux)) = Ex((Pans Ou))  V(u, 04x) € @} ((0,00)),  VE20.

Hence, using that &, (¢}, (t), o), (t)) is a strict Lyapunov functional (see Proposition, we have
(¢4,04), (Pux, 04x) € N3y, which completes the proof. O

)
)

3.2. Lojasiewicz-Simon type inequality. In the proof of Theorem [3.1] Lojasiewicz-Simon type
inequality assumes a pivotal position. Its derivation primarily stems from the theoretical frame-
work developed in Chill [5] and Chill et al. [6]. Let us now proceed with the definition of the
pertinent spaces, which are obtained by setting M = 0 in and :

Zy:={(¢.0) € H'(Q) x L*() : /(¢+a) dz =0},

Q
z = {00 € FU @ < H7@): [ @+ )do=0}, >0,

These spaces are Hilbert spaces equipped with usual norms of H!(Q) x L?(Q) and H* *1(Q) x
H"(Q), respectively. Furthermore, introducing the Hilbert space

Ho = {(¢,0) € L*(Q) x L*() : /(¢+a)dx=0}, (3.10)
Q

we obtain the Hilbert triple Zy — Ho = H§ — Z.

It can be inferred from Theorem that the every full trajectory v¥, = {(¢%;(t),0%(t)) :
t € R} in the global attractor A),, and thus the set of stationary points N}, is bounded in Z},,
r € [0,1].

Now, for any solution pair (¢},,07},) of the problem (2.1)—(2.4) in the phase space Zp, let us
define the shifted pair

(@Xr:03r) = (8X; — c1, 0} — ¢2)

where ¢; = (llté)XM and ¢y = ff;fx. Since
c1+ece=M and xc —(1+ x)e2 =0, (3.11)

the shifted pair (¢,,0,) is in Zy and solves problem (2:1)-(2:4) written for the functions

M M
U= V(- + 1+X) and par = p(-+ 1+X)

instead of ¥ and p. Hence, without lose of generality we can study on the spaces Z7, r € [0,1].
Notation. From this point onward, for simplicity of notation, we will denote the solution pair in
Zy as (¢X,0X) instead of (¢, o)), and the full trajectory in Z} as vX = {(¢X(t),0X(t)) : t € R}
instead of 7 = {(¢3(¢), 05 (t)) : t € R}. Additionally, we will refer to the set of stationary points
in Z} as N'X instead of Ng.

We firstly state the following auxiliary lemma for the energy functional £, , which can be proved
by using similar assertions in [6, Lemma 6.2] and arguing as in the proof of Proposition
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Lemma 3.7. The energy functional &, is twice continuously Frechet differentiable. For every
(¢,0), (1,€) € Zo, it holds

((Ex(¢,0), (0, 0))z, = /Q(WW?? + (¥'(¢) = xo)n + (0 + x(1 — 9))¢) dz. (3.12)

Moreover, fOT’ every (¢>0)7 (nlagl)a (772752) € ZO; we have

(EL(D,0)(m, &), (2, €2)) 2, = /Q(vanz + U (@)mmna — x6am + E1&2 — x&mz) dx. (3.13)

Now, we will prove a suitable version of the Lojasiewicz-Simon type inequality which can be
proved by adapting the abstract result [B, Corollary 3.11]. At this point, it worths to mention that
every critical point of the energy functional £, in Z is a stationary point and also bounded in Z}
(see Proposition (2.8))). The proof of the inequality will be done by arguing as in [6, Proposition
6.6]. We will state the proof for the convenience of the reader.

Lemma 3.8. Suppose that (A3) is satisfied and (¢, 0.) € 23 is a critical point of the functional
Ey. Then, there exist constants 6 € (0, %] and C, 8 > 0 depending on (¢«,0.) such that

[Ex(d,0) = Ex(bs,0:)[' 70 < ClIEL(8,0) 25 (3.14)
for all (¢,0) € Zy such that ||(¢p,0) — (d«, 04)|| 2z, < B-

Proof. Firstly, Sobolev embedding theorem yields that Z¢ € L>(Q) x L?(£2). Hence, the restric-
tion of £ to Zj is an analytic function with values in Hy (see e.g. [5, Corollary 4.6]). On the
other hand, the associated bilinear form of the linearization S;g (¢,0) is continuous, symmetric,
elliptic operator. Hence, applying Lax-Milgram theorem, 5)2’ (¢, 0) has a nonempty resolvent set.
Additionally, since the embeddings Zo < Z; and Zj < H, are compact, £ (¢, o) and E/(¢, o)lz
have compact resolvents on Z§ and Hg, respectively. Then, from the Fredholm alternative the
kernel ker £7/(¢, o) is finite dimensional and the ranges Rg €}/(¢, o) and Rg&(¢,0)|z are closed
in Z5 and Ho. Moreover, Zg (resp. Ho) is a direct orthogonal sum of ker £/(¢, o) and Rg £/ (¢, o)
(resp. Rg&Y(#,0)|z1). Hence we can define a continuous orthogonal projection P : Zo — Zo
with Rg P = ker 5)2’ (¢, 0). Consequently, we can complete the proof by applying the results in [5l
Corollary 3.11] with choice of X = Z}, V = Z,, Y = Ho, W = Z;. O

Now, we will prove the uniform version of the Lojasiewicz-Simon type inequality, which anni-
hilates the dependence of the constants on the choice of the critical points, for the limit sets.

Lemma 3.9. Assume that (A1)—(A3) are satisfied.

(i) For each (¢o,00) € 2o, there exists an open neighborhood U C Zf,r < 1 of w((¢o,00))
and the constants 6 € (0, 3] and C' > 0 such that

oot 11—
Ex(d,0) =X [0 < ClIE(9,0)]

s (3.15)

for all (¢,0) €U, where 53"00+ is already determined in Lemma .
(ii) Moreover, for any (¢o,00) € Ay - ZL, there exists an open neighborhood V C Z7,r < 1
of ay((¢o,00)) and the constants 6 € (0, %] and C > 0 such that

Ex(d,0) = &5 [0 < CE(,0) | 2 (3.16)
for all (p,0) €V, where EX™ s already determined in Lemma .

Proof. (i) As a result of Lemma for every (¢oj,00;) € wi((¢o,00)) there exist constants
0; € (0, 3] and Cj, B; > 0 such that

[Ex(9,0) = Ex(d05,00)|' ™" < CilIEx(#,0))

for all (¢,0) € 2y such that ||(¢,0) — (¢os, 005)| 2, < B;-
Furthermore, since wy((¢o, o)) is bounded in Z}, it is compact in Z for all r < 1. Therefore,
it can be covered by a finitely many balls in Zj. Therefore, taking ¢ as the union of these balls,

25
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we achieve the existence of uniform constants 6 € (0, 3] and C' > 0 such that (3.15) holds for all
(¢,0) €U.

(ii) We can establish (3.16]), by using the compactness of o ((¢o,00)) in Z§ for all » < 1 and
arguing as in the proof of i. U

Now, we are in a position to prove Theorem

Proof of Theorem[3.1 As previously discussed, it is sufficient to consider the case M = 0. Assume
that (¢o,00) € Ay C Z§ and that {(¢X(t),0X(t)) : t € R} denotes the corresponding full trajectory
passing through the point (¢o, ). To prove the theorem, it is enough to show that w{ ((¢o, 00))
and o ((¢o,00)) consist of a single point. From Lemma it follows that the energy functional
& (.,.) is constant on w ((¢o,00)) and af ((¢o,00)). Furthermore, the following holds.

™" = lim E,(8X(1),0X(1)) = E(d.0.), for all (6.,0) €w(du.00)).  (3.7)
X7 = lim_ E(6¥(1),0X(1) = E(dun, o), for all (6ue,02) € 03 (d0,00)).  (318)

Moreover, we have proved in Lemma that there exist open neighborhoods U of w ((¢o, o))

and V of o ((¢o, 00)) such that the inequalities (3.15)) and (3.16]) are satisfied on ¢ and V), respec-
tively. Besides, the definition of the limit sets (Definition [3.5]) yields that there exists Ty > 0 such

that

(OX(1),0X(t)) €U C ZF, 1 <1, Vt>Ty, (3.19)
(pX(—t),0X(=t)) eV C Zj, r<1,Vt>Tp. (3.20)
Thus, we obtain from Lemma [3.9] that
[E(@X (1), (1) — &% ' < CEL(@*(®), X (B)llz;  VE > To, (3.21)
(@ (—1), 0% () = 8 70 < CIE(@X (1), 0X ()| ¥t > T, (3.22)

We separate the following part of the proof into two steps. In the first step, we present a
detailed proof of forward convergence to equilibrium, namely (3.2)) stated in the theorem. In the
second step, we will establish the backward convergence ([3.3)), mainly referring to the method used

in the first step.

Step 1: Proof of (3.2). First we assume that there exists a time ¢, such that &, (¢X(t.), 0X(t.)) =
Eé“ooJr. Since the energy functional &, (¢X(t),0X(t)) is a strict Lyapunov functional, there exists
a unique limit (¢X,,0X) € NX such that

(¢0,00) = (¢X(t),0X(t)) = (¢¥(ts),0X(ts)) = (0%, 0%)-
Hence, the proof of (3.2)) is complete in this case.

Now, we assume that &, (¢X (), 0X(t)) > 88"°°+ for all ¢ > 0. Integrating by parts on ([3.12), we
obtain that

EL. T, 1)z, = [ wnde+ [ Nyeda (3.23)
for every (n, &) € Zy. Moreover, since (1,£) € Zy, denoting ¢ := M we have
//and$+/ NX¢&dx
Q Q

:/Q(Mx—c)ndx—k/Q(Ng‘—C)fdf

1 1
=5 [ = = o+ [ (= (V) + N = ()¢ da
Q Q
< (X = WM 2 @) + 0% = N llL2@) + 1IN = (N L20) (Inllz2@) + 1€z @)-
Considering the previous inequality in (3.23)), we have

1€(¢, 09l zg < Cllw* = (L2 + 10X = N¥ @) + [INF = (N L2(0)- (3.24)
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Furthermore, recalling the embedding H?(2) < C(Q2) and (A2), we obtain

1
[1X = NX |20 < I;IEE%(( m)llvp(aﬁx)(u" = N2 < Clivp(@X) (X — N 22(q)-

Therefore, applying the Poincare-Wirtinger inequality and considering the last estimate in (3.24)),
we deduce that

1€5 (X (2), X ()]

25

(3.25)

< (1B @)z + VN Lz + VP@I 0 (0) ~ NXE) 1 ).

for all t € R. Considering (3.25) to estimate the right-hand side of , we have
E(&X(1), 0% (1) = X |10 < OT\ (1) V=T, (3.26)

where

1) = (IVE¥0) 2@ + IVNEOll ey + VEEXE) (¥(2) — NXW) 2oy

On the other hand, rewriting the energy identity (2.10]) in the differential form, we infer that

1/2

d
T E(@¥®), 0% (1) = —(Tx(t)* VteR. (3.27)
Recalling that &, (¢X(t),0X(t)) — €3<’°°+ > 0 and using (3.27) in (3.26), we obtain

2(1—6

T (X0, 0) - €57 ) + 0 (86X (0. (0) - 5 ) ‘<o wizT (328)

dt
Now, let us examine the ordinary differential inequality
d
—u(t) +C (y)21=9 <0, y(t)>0 Vt>Ty. (3.29)
In the case 6 = %,
d
VO +C @) <0, y()>0 Vi=T,
this yields
y(t) < Ke C0=T0) v > Ty,

for some constant K depending on Tj.
In the case 0 < § < 1, defining v(t) := (y(t))?’~*, we obtain
V() +(20—-1)C >0 Vt>Tp.
Integrating from Tj to t, we infer that
o(t) >v(To)+ (1 —20)C(t —To) > (1 —20)C(t —Tp), ¥Vt > Ty,
since v(Tp) > 0. From the last estimate, it follows that
y(t) < K(t—To) =, vt >T,

for some constant K depending on the exponent ¢ and Tj.
In the following, we will denote by C, K and K the generic constants depending on 6 and Tj.
Since the inequality in (3.28]) can be written in the form of (3.29)), we deduce that

(5x(¢>"(t), oX(t)) — €3<’°°+) < Ke 07T jf g = %

. (3.30)

(El@*(®),04(1) - E5™") < K@t —To) ™= it0 € (0,5

).

Recalling the weak formulation formula (2.9)), we obtain
T

T
2
/t (@2 (), a2 D 11 ey a1 () 85 < /t (Yy(s))?ds VT >t >T,. (3.31)
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Next, integrating (3.27) from ¢ to T, we have

T
/t (T (3)) ds = Ex (X (1), 0¥ (1)) — E(6X(T), X(T)) VT >t > To.

Considering the last equality in (3.31), we infer that

T
/t 1), XN sy a1y 5 < Ex(@X(0). (1)) — Ex(X(T), 0X(T)) VT >t > T,

Passing to limit as T'— oo in the previous estimate, and using (3.30)), we deduce that

oo 5 - -
/t H(¢i<(8)7O—ic(s))H(HI(Q))*X(HI(Q))* ds < Ke Ct=To) vt > To,

> =, it
/t ([(22(5), X ()P a1 () x (ot ey ds < K (= To) ™20 vt > Ty,

Then, arguing as in [17, Lemma 3.2, Lemma 3.3], it follows from the last estimate that

[ee) B _ . 1
/ ||(¢?(8)7o—g((s))||(H1(Q))*X(H1(Q))* ds < Ke Clt=To) if 0 = 57
¢ (3.32)

o0 - o . 1
/ ||(¢i<(5)a gg(s))||(H1(Q))*X(H1(Q))* ds < K(t - TO) = iffe (07 5)7
t

for all t > Tj.
Furthermore, we have

T
H(qsx(t)?(jx(t)) - (¢X(T)7UX(T))H(Hl(Q))*X(H1(Q))* < /t H((bi((s%JtX(S»H(Hl(Q))*X(H1(Q))* ds.

Hence, with the help of (3.32) and using Cauchy criterion for the existence of limits, we obtain
that there exists (¢, 0.) € wi((¢o,00)) such that

Jim [[(@(2), 0% (@) = (90, 2Dl o112y 1+ =0 (3.33)
Furthermore, recalling that the global attractor is bounded in Z} and using interpolation between
the spaces (H'(Q))* x (H'(Q))* and Z}, we can complete the proof of (3.2)).
Step 2. By using the analogous observations (3.18]), (3.20)), (3.22)) and following the similar steps

demonstrated in Step 1, we can prove the backward convergence to equilibrium (3.3). Conse-
quently, proof is complete. O

4. RATE OF CONVERGENCE TO EQUILIBRIUM

From the proof of Theorem [3.1) we can deduce the rate of convergence in the space (H*(£2))* x

(H' ()"

Proposition 4.1. Assume that (A1)~(A3) hold, and 6, 0 are the Lojasiewicz exponents fized in
Lemmal3-9 Let Ty > 0 be the time fized in the proof of Theorem[3.d. Then for any full trajectory
vy = (@3 (8),0%,(t)) : t € R} in the global attractor AY,, there exist (¢s,0.) € N3, and positive
constants C, K1, Ky such that

H(¢3\</[(t)70-1>\(/1(t) - (¢*7U*))||(H1(Q))*X(H1(Q))* < Kl e—C(t—To)’ Zfe =

~ =0 .
@3 (0,8 — (G20 sy arr ey < K (E=To) 50 if0 <0
for allt > Tp. . .
Moreover, there exist (¢ux, 04x) € N3y and positive constants C, Ko, Ko such that

_&(t— L1
H(QS?\(J(_t)aO—])&(_t) - (¢**7U**))||(H1(Q))*X(H1(Q))* < Kse ot T0)7 Zf9 = 5,
_ - -
||(¢3\<4(_t)70—XM(_t) - (d)**?o—**))H(Hl(Q))*X(HI(Q))* < K (t - TO) =20 af0< 6
for all t > Ty.

1
2 (4.1)
<3

L (42
57
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Proof. As discussed previously, it is sufficient to prove the case M = 0. We have already obtained
in Theorem that such equilibrium points exist. We will only prove (4.1)), since (4.2) can be
established in the same manner. First, recall the inequality

T
[(¢X(8), 0% (1)) — (d’X(T)aUX(T))H(HI(Q))*x(Hl(Q))* = /t H((bi((s)’Jg(s))H(Hl(Q))*X(Hl(ﬂ))* ds,

established in the proof of Theorem [3.1] Passing to limit as T — oo in this inequality and
considering (3.32)) proved in Theorem we complete the proof of (4.1)). O

Now, let Ay denote the second eigenvalue of Laplace operator with Neumann boundary condi-
tion. By imposing an additional assumption on the chemotaxis and active transport term y, we
obtain exponential convergence to equilibrium.

Corollary 4.2. Let (A1)-(A3) hold, and let Ty > 0 be the time fized in the proof of Theorem .
Suppose x* < min(As + ¢1 — o, 1)). Then, for any full trajectory vy, = {(¢3,(t), 0%,(1)) : t € R}
in the global attractor Ay, there exist (¢.,0.) € N3, and positive constants C, K1 such that

150,05 0) = Ger 0D | gy arreye < Kr e O™,
forallt > Tj.

Proof. As mentioned previously, we consider the case M = 0. To prove the corollary, it is sufficient
to prove that Lojasiewicz-Simon inequality is satisfied with the exponent § = % To this
end, we will examine the kernel of the linearization £)/(¢, o). If (,§) € ker £/(¢, o), then it solves
the problem

—An+¥"(¢) —x§ =0, (4.3)
&E—xn=0. (4.4)
Testing (4.3) with n and (4.4) with £, we obtain

V0720 + /Q () n1f* dz — QX/Qﬁﬁdff + [1€ll72(0) = 0,

which yields

(A2 +er—a—=x)nl* + (1 - x?)lgl* = o.
Recalling the assumptions on the parameter x, we infer that (n,£) = (0,0), which means that
ker £/(¢,0) = {(0,0)}. Hence, using [5, Corollary 3.12], we deduce that the Lojasiewicz-Simon

inequality ([3.14) is satisfied with the exponent 6 = % O

Remark 4.3. The stationary point (¢., o) € N7 is called hyperbolic if the linearization EL (P, 04)

is invertible, i.e., ker £/(¢«, 0.) = {(0,0)}. Therefore, under the assumptions of the Corollary
all stationary points are hyperbolic.

4.1. Rate of convergence in Z); for 0 < 6 < 1/2. In this section, we will demonstrate that
when 0 < 6 < 1/2, the full trajectories in the global attractor maintain the same convergence rate
as established in (H'(Q))* x (H(Q))* (see Proposition within the space Zj;.

First, note that (—A)~! denotes the inverse of the minus Laplace operator associated with
Neumann boundary conditions, acting on functions with zero spatial average. Namely, the norm
[(=A)=Y2 |12y is a norm on {v € (H*(Q2))* : (v) = 0}, which is equivalent to the usual norm
of (H'(€))*. Furthermore, [[(=A)Y2 - |12(0) = |V - |lr2(0) is equivalent to the usual norm on
HY(Q).

In the following theorem, we use the ideas in [21].

Theorem 4.4. Assume (A1)—(A3) hold, and 6,0 € (0, %) are the Lojasiewicz exponents fized in
Lemmal3-9. Let Ty > 0 be the time fized in the proof of Theorem[3.4l Then, for any full trajectory
N = (@3 (8),0%,(t) : t € R} in the global attractor A%, there exist (¢.,0.) € N3y and k>0
such that

(@Y (1), 0% () = (@, 0D 5, < 5 (8= To) ™50, (4.5)
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for all t > T,. Moreover, there exist (o, 04) € N3y and & > 0 such that

1% (1), X (—8) = (Dus )| 5, < 7 (t — T) T3, (4.6)
for allt > Tj.

Proof. As previously discussed, it is sufficient to consider the case M = 0. We will only prove
and do not present the proof of , as it can be established following the same steps.
From Proposition we know that for any full trajectory X = {(¢X(t),0X(t)) : t € R} in the
global attractor AX, there exist (¢, 0x) € NX such that is satisfied.
Defining ¢X := ¢X — ¢, X := 0X — 0, and pX := p — ,uo, we obtain from ) that

(X, m) + (Vux, V) = (p(¢X)(0X — x¢X — pX),n), (4.7)
X = —AgX + W' (¢X) — W'(¢) — x0X, (4.8)
(0%, &) + (VoX, V&) = x(VX, VE) — (p(¢X)(0X — xdX — pX),n), (4.9)

for all n, ¢ € H'(2). Choosing n = (—A)"1¢X in [£.7) and ¢ = (—A)"1oX in ([£.9), and summing

the obtained identities, we infer that
1d
2dt

= 2x/5Xq;X dx + (p(¢X) (X — xdX — pX), (—A)~Lpx) (4.10)
— (p(¢¥) (0% = x X — pX), (=A) " 1o¥X).

Now, we will evaluate the terms on the right-hand side of (4.10). First, let us observe that for any
n € HY(Q), since ¢X € H3(Q) C L*, it holds

[{p(¢X) (0% = XX — ), m)| < [loX — XX — ¥ 2oy Il L2 () < Cllnlla -

—(10X1 21 )+ + 10X e yy-) + 10X ) + 06X (1 72q) + (¥'(¢%) — ¥/ (¢.), %)

Then
[(p(¢X)(0% — x&X — i), (=A)T1oX)| + [(p(¢X) (0% — xdX — pX), (=A) 1)
< lp(¢*) (0% = x¢X — 1) || 1 )= 10X Nz ) + 1ol ez (2)-) (4.11)
< C(loxllcar > + NoXllcar@y-)-

On the other hand, for the first term on the right-hand side of , we have

- - _ 1, -
2| /QUX¢X da| < 420X P10y + ZH(bXH%{l(Q)' (4.12)
Moreover, since ¥, is monotone and A’ is Lipschitz continuous, for the nonlinear term we obtain
(W'(¢X) = (), 9X) = (T (¢X) — Vo), 9X) + (A (¢Y) = A'(¢), X)
_ 1 - _
> —all¢X|72 > _EH(bX”%Il(Q) — cllX (1T ey

for some ¢ > 0.
In the following, C' denotes a generic constant, which may vary from line to line and even within
the same line. Now, considering the estimates (4.11)), (4.12) and (4.13) in (4.10)), we obtain

1d
5 75 (18X sy + 191 sy ) + 16031y + 1o 2

< C(1Xllcar e+ + NloX Nl aray-)-
Next, testing (4.7) with px and ([£.9) with oX — x¢X, we infer that

o (319 + 13 + x [ 3 )
+%(/Q\I/(@C)dxf/Q\If(gﬁ*)der/Q\Il/(qS*)qb*dx7/Q\j[/’(¢*)¢xd$) (4.15)

4 [ (I + [96% = XTGP + (g0 — 1 — 59)?) dx =0,
Q

(4.13)

(4.14)
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Using the Newton-Leibniz formula and recalling that ¢X, ¢, € H3(2) C L (),

’/Q‘I’wx)dﬂf*/Q‘I’(Qs*)dxﬂL/Q‘I’/(éf)*)(ﬁ*dx—/Q\I/’(qb*)qsxdx’

1,1
S‘/Q/o /0 W//(TS¢+(1—TS)¢*)(¢X—¢*)2deTd$‘ (4.16)
< X320

1 _
< §||¢X\|12r{1(9) + ClloX|1Fe - -

Furthermore,

_ - - 1, - -
|X/UX¢X da| < ClloX[ 220y < 2l0X1 3 @) + Cllo*IEm )~ (4.17)

Now defining,
1 - 1, - o
B(t) i= 5V ey + 5%y + x [ P da
+ [ w@de— [ W)t [ 90,6 ds
Q Q Q

1, - _
= [ W68 do+ S8 s oy + 1 s

Q
we deduce from (4.16)) and (4.17)) that

|©(t) — CUI0X]I72 () + 10X Z2@))] < N6XI[E k1 0y + 10X T2 - (4.18)
Therefore, adding (4.14]) and (4.15]), we obtain
d - _
(@) +B2() < Clox Nz @y + lloXlarrn-), (4.19)
for some 8 > 0. Considering (4.1]) in (4.19)), we have
d

Z(@(0) + B2(1) < C (¢~ To) ™.
Using that the exponential function grows faster than any polynomial, it follows from the last
inequality that

t
D(t) < @(To)e—ﬁ(t—To) + e PtC eBT(T B To)% dr

To

<Ce P4 C(t—Ty) T (4.20)

S K1 (t - TO)%a
for some k1 > 0. Then, recalling (4.18]), we obtain from (4.1) and (4.20) that

= - = - =0
10X 0y + 0¥ 01720 < @) + 16X 1 Earr )+ + 10X F ey < 2 (8= To) =27, (4.21)
for some ko > 0. Hence, we conclude that (4.5)) is satisfied in 2y, i.e.,
=6

[(@%(t), 0X(8) = (¢4, 04))| 5, < K (t—To)™==7, (4.22)

for some k > 0. O

5. STABILITY OF THE ATTRACTORS

In this section, we consider the chemotaxis and active transport parameter y as a perturbation
parameter. Then, from Theorem there exists a family of global attractors { A%}, >0 for the
family of the semigroups {S},},>0 acting on the phase space Zy;. Since M is fixed and has no
effect on the following calculations, we omit M from the notation for the sake of simplicity. In the
following part of the paper, we will use the notations {AX}, >o and (25, SX) instead of { A}, }y>0
and (Zyr, S¥;), respectively. Here, it is worth recalling that A% and S° denote the global attractor
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and the semigroup, respectively, in the case where chemotaxis and active transport are neglected
(x =0). We investigate the stability of the family of the global attractors {AX},>q as x — 0.

Definition 5.1. Let X be a Banach space, and I be a metric space. The family of global attractors
{A“}qer is called upper semicontinuous at the point ag € T if

lim distx (A%, A%) =0,

a—roo

and it is called lower semicontinuous at the point ag € I if
lim distx (A%, A%) =0,
a—roo
where distx (-, ) is the Hausdorff semidistance defined in Definition

We exploit the following abstract result proven in [20] to obtain the upper semicontinuity of
the family of global attractors {AX},>¢ as x — 0.

Theorem 5.2. Suppose that a dynamical system (X, S*(t)) possesses a global attractor A* for
every a € I, where I is a complete metric space. Assume that the following conditions hold:

(1) There exists a compact set K such that UIA"‘ CK,
(¢S
(2) If a, — oo, z € A% and x, — o, then S¥ (to)xy — S (to)xo for some tg > 0.

Then, the family of attractors is upper semicontinuous at the point cy.

We begin by proving the following lemma, which states the continuous dependence of the
solutions on the parameter Y.

Lemma 5.3. Assume that (A1), (A2) are satisfied and {xn}tnen € [0,x0], Xn — 0 as n — oo.
For any initial datum (g, 00) € Znr, we have

SXn () (o, 00) = S°()(bo, 00)  strongly in C([0,T]; L*(2) x L*(Q)).

Proof. Let us denote (¢, 0,) := SX"(t)(¢o,00). Applying the same procedure used in the proof
of [I5, Theorem 3.1] to the problem

(o m)) + (VX V) = (p(¢X ) (0¥ + xn (1 — ¢X*) — pX™), n),
(X m) = (VX Vi) + (W), n) — (xno™", 1), (5.1)
(o1, 6) + (VoXm = xn V¢ ), VE) = —(p(¢*" ) (0*" + xn (1 — ¢*") — p*), ),
we obtain the uniform bounds
Pnll Lo (0,7: 857 (@))nz20,m;m32) < Cs N éntll 20,151 (2))) < C
lonllLos 0.2 @)nz2o,mm1 @) < Cs NonillL2 0,151 @)+ < C,
ltnllz0, 101 (02)) < C,

where p,, = puX~.
Therefore, from the Banach-Alaoglu theorem it follows that up to a subsequence,

(¢nyom) = (6,6) weakly-star in L>(0,T; H* () x L*(Q)),
(¢t ont) = (¢, 61) weakly in L2(0,T; (H'(Q))* x (H'(Q))),
(¢n,0n) — (6,6) weakly in L2(0,T; H*(Q) x H'(Q2)),
pin — i weakly in L2(0,T; H'(Q)),
where
¢ € L>(0,T; H'(Q)) N L*(0, T; H (%)),
6 € L>(0,T; L*(Q)) N L*(0,T; H'()),
fr€ L*(0,T; H' (),
b1, 6¢ € L2(0,T; (HY(Q))*).
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From (|5.2)), using the Aubin-Lions lemma, we infer that (up to a subsequence)

¢n — ¢ strongly in C([0,T]; L*(£2)), for 2 < k < 6. (5.3)
Moreover, from (5.2), using the Lions-Magenes lemma, we infer that (up to a subsequence)
on — & strongly in C([0,T]; L*(Q)). (5.4)
Then, arguing as in [I5, Theorem 3.1], we obtain (up to a subsequences)
p(én) — p(¢), strongly in L2(0,T; L5/5(Q)) (5.5)
and
(0% 4 xn(1 — ¢Xn) — pXn) — (6 — 1), weakly in L(0,T; L5(Q)). (5.6)

Hence, we can pass to the limit in the term (p(¢X")(X" 4 x, (1 — $Xn) — pXn), n) with the help of
(5.5) and . Thanks to all of the convergence results established above, we can pass to the limit
in the problem and deduce that (¢Z7 G, f) is a weak solution of the problem f without
chemotaxis and active transport, i.e., with the parameter xy = 0. Then, using the uniqueness of
weak solutions to the problem 77 we deduce that (é,&) = S%(t)(¢o,00). Consequently,
every convergent subsequence of {(¢n, 05)}nen has the same limit, so we conclude that and
are satisfied by the whole sequence. Hence, the proof is completed. O
Now, we prove that the U AX is relatively compact.

0<x<xo0
Lemma 5.4. Assume that (A1), (A2) are satisfied and x € [0, xo]. Then, the family of the global
attractors {AX }o<y<y, for problem 7 is relatively compact in Z3,;. Namely, there exists
a compact set I C Zys such that

Uo<x<xoA* C K.

Proof. In [15], it was shown that the global attractor AX is bounded in Z1,. Exactly, using the
regularization of weak solutions, it can be observed that for all ¢ > 0 (cf. the proof of [I5, Theorem

t+1
[ (1650 sy + 1040l @y ) < €,
t

where C' is independent of y and depends on yg. Hence, by following the same steps in [I5]
Theorem 5.10], we readily obtain that the family of the global attractors {.AX}o<y <y, is uniformly
bounded in Z},. Precisely, there exist B € Z}, such that

Uo<x<xoA* C B.

g1 2
Hence, by choosing K = B (<L (Q), we obtain that K is bounded in H3(Q) x H'(Q). Then,

by the compact embedding H3(Q2) x H'(Q) — H'(Q) x L?*(), the set K is compact in Z,s, and
the proof is complete. O

Lemma 5.5. Under the assumptions of Lemmal[5.]), for every bounded set B C Zy, there exists
a time To(B) > 0 such that

sup  sup [|[SX(t)(¢,0) |3 xH () < R, YVt >To(B),
0<x<xo (¢,0)eB

for some constant R > 0.
Proof. From Lemma we observe that there exists a bounded absorbing set B in H3(Q) x H!(2)
such that for all 0 < x < xo and for every bounded set B C 2, there exists a time t3(B) > 0
such that

SX(t)B C B for all t > t§(B).
Since for any t > 0, the state SX(¢) depends continuously on the parameter y (Lemma , we
infer that the time ¢3(B) also depends continuously on y. Therefore, we deduce that

Uo<y<xoSX(t)B C B for all t > Ty(B) := , ax ty(B).
<x<xo0

We complete the proof of the lemma by choosing R as the diameter of the absorbing set 5. O
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Lemma 5.6. Let the assumptions of Lemma[5.4) hold and let B € Zp be a bounded set. Then,
for any (¢1,01), ($2,02) € B, there exists a time To(B) > 0 such that the semigroup {SX(t)}t>0,
generated by the weak solution of the problem (2.1)—(2.4), satisfies

[1SX(t)(¢1, 1) — SX(t) (@2, 02) [ 1 (@) x L2 ()
1/2 1/2
< (61 = bl + llor = o2l ) V= To(B),
where C' is independent of x.
Proof. Using the interpolation inequality, we have
1S (8)(p1,01) = SX(t)(h2, 02) 11 () x 12 (0
< |[S* () (p1,01) — SX () (D2, 02) | 3 () x 1 () 19X (£) (D1, 1) — SX () (b2, 02) | (12 ()= x (111 (2)) -
From Lemma there exists a time Ty(B) > 0 such that
15X () (p1, 1) — SX(t)(h2, 02) |31 () x 12 (0
< 2R[|SX(t)(¢1,01) — SX()(d2, 02) || (1 () x (1 () Tt = To(B).
Taking into account Theorem [2.4]in (5.7)), we complete the proof. O

Lemma 5.7. Let the assumptions of Lemma hold. Then, If xn, = 0, (¢n,0n) € AX" and
(ny0n) = (Po,00), then SXn(tg)(dn,on) — S°(to)(¢o,00) for some ty > 0.
Proof. Firstly, from Lemma we have

SXn () (o, 00) — S°(t)(¢po,00) strongly in L?(2) x L*(Q) Vt > 0. (5.8)

On the other hand, Lemma[5.5] implies that there exists Ty > 0 such that the sequence
{SX () (¢0,00) : Xn € [0,X0], t > Tp} is uniformly bounded in H3(2) x H(2). Therefore, (5.8)
yields

(5.7)

SXn (1) (o, 00) — SU(t)(¢o,00) strongly in H*(Q) x L*(Q) Vt > Tp. (5.9)
Finally, applying the triangle inequality and Lemma we have
15 (£) (¢ o) — S°(£) (B0, 00) | 1 () x L2(02)
< |[S* () (@n, o) — S* (1) (@0, 00) || 1 (@) x L2()
+ 18X () (¢, 00) — S°(t) (0, 00) || 111 () x L2(02) (5.10)
< O (Il = doll 0y + llom = ool )

+ (18X (£) (0, 00) — S° () (b0, 00) | () xr2(02)  VE = To.
Hence, taking into account (5.9) in (5.10) and choosing ty > Ty, we obtain the desired result of
the lemma. O
Now, we are in a position to prove the main result of this section.
Theorem 5.8. Let the conditions of Lemma hold. Then the family of global attractors
{AX}o<y<xo 1S upper-semicontinuous as x — 0, i.e.,
. . X 0y _
ilg{)dlStZM(A ,AY) =0.
Proof. Lemmas and verify that all assumptions of Theorem are satisfied. Therefore,
the proof is completed by applying Theorem introduced in [20]. O

As mentioned in Remark if the chemotaxis parameter satisfies y? < min(A\y + ¢1 — a, 1)),
all stationary points in A/X are hyperbolic. Consequently, by applying the well-known result [16]
Theorem 3.8.9], we also observe the lower-semicontinuity of the set of global attractors.

Theorem 5.9. Assume that (A1)—(A3) are satisfied, and let x* < min(\s + c¢1 — , 1)). Then,
the family of global attractors {AX}o<y<y, 15 lower-semicontinuous as x — 0, i.e.,

. . 0 b% .
iliI%)dlStzM(.A ,AX) = 0.
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