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EXISTENCE OF NORMALIZED SOLUTIONS TO KIRCHHOFF-BOUSSINESQ

EQUATIONS IN THE SUBCRITICAL AND SUPERCRITICAL REGIME

CHUNLING TAO, LINTAO LIU, KAIMIN TENG

Abstract. In this article we study the existence of normalized solutions to the Kirchhoff-
Boussinesq equation under the mass constraint ∥u∥2 = c. In the L2-subcritical regime, we

apply Ekeland’s variational principle and concentration compactness method to minimize the

energy functional on the mass-constrained manifold. In the L2-supercritical regime, we introduce
a Pohožaev-constrained minimization approach, combined with scaling arguments to recover

compactness. To handle the additional difficulties posed by q-Laplacian, we treat distinct ranges
of q separately.

1. Introduction

In this article, we study the existence of normalized solutions to Kirchhoff-Boussinesq equation

∆2u−∆qu+ λu = |u|p−2u in RN ,∫
RN

|u|2dx = c2,

u ∈ X := H2(RN ) ∩D1,q(RN ),

(1.1)

where N ≥ 5, c > 0, 1 < q < N , and 2 < p < min{4∗, q∗}, with 4∗ = 2N
N−4 and q∗ = qN

N−q as the

critical Sobolev exponents. Here ∆2u is the biharmonic operator, ∆qu := div(|∇u|q−2∇u) is the
q-Laplace operator, and λ is a Lagrange multiplier enforcing the mass constraint

∫
RN |u|2 dx = c.

If (u, λ) ∈ H2(RN ) ∩D1,q(RN )× R satisfies (1.1), then u is called a normalized solution of (1.1).
Problem (1.1) originates from nonlinear plate theory and provides a fundamental framework for

modeling the dynamics of plates and elastic structures. More specifically, consider the following
nonlinear plate equation referred to as Kirchhoff-Boussinesq model

wtt + kwt +∆2w = div(|∇w|p−2∇w) + σ∆(w2)− f(w) x ∈ Ω ⊂ R2, (1.2)

This equation is complemented by appropriate boundary and initial conditions (see [16, 17]).
Equation (1.2) also arises as a limiting case of the Mindlin-Timoshenko system, which accounts
for transverse shear effects in plate dynamics (see [23, 24]).

Problem (1.1) is closely related to the fourth-order nonlinear Schrödinger equation model widely
studied in nonlinear optics, Bose-Einstein condensates, and quantum mechanics. Its general form
is

i∂tψ − γ∆2ψ + β∆ψ + f(ψ) = 0 in R× RN , (1.3)

where γ > 0, β ∈ R, i is the imaginary unit, and f(ψ) is the nonlinear term. Recent studies focus
on normalized solutions of the stationary biharmonic NLS (1.3), derived from standing waves
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ψ(x, t) = eiλtu(x), specifically

γ∆2u+ β∆u+ λu = f(u) in RN ,∫
RN

|u|2 dx = c.
(1.4)

When β ̸= 0, Bonheure et al. [8] established the existence of minimizers for (1.4) and explored
their qualitative properties and orbital stability. As a natural extension, if β = −1 and 2 + 8

N ≤
p < 4∗. In [9] they investigated the existence of ground states and the multiplicity of radial
solutions. Later, for the case where γ = 1, β ∈ R and 2 < p ≤ 2 + 8

N , Luo et al. [30] applied the
profile decomposition approaches and demonstrated the existence of orbitally stable ground state
solutions. Luo and Yang [31] worked in the radial space H2

rad(RN ) and proved the existence of
two solutions to problem (1.4) for c sufficiently small, where one solution is a local minimizer and
the other is of the mountain-pass type. Additionally, Boussäıd et al. [10] revisited problem (1.4)
under the conditions γ > 0, β > 0 and 2 < p ≤ 2 + 8

N . By ruling out the vanishing property of
some minimization sequence, they confirmed that the results obtained by Luo et al. [30] hold for
all c > 0 and β > 0.

For the case β = 0, Bellazzini and Visciglia [6] investigated problem (1.4) with potentials

∆2u+ V (x)u−Q(x)|u|p−2u = λu in RN ,∫
RN

|u|2 dx = c,

where 2 < p < 2 + 8
N and V (x), Q(x) ∈ L∞(RN ). Assuming Q(x) ≥ 0 a.e. x ∈ RN and the

existence of λ0 > 0 such that 0 < meas{Q(x) > λ0} < ∞, they established the existence of
ground state normalized solutions and discussed the orbital stability of the minimizers. They
also considered the case where V (x) ≡ 0 and Q(x) ≡ 1, extending this work from |u|p−2u to
more general L2-subcritical nonlinearity f(u) in Bellazzini and Siciliano [5]. Phan [34] further
investigated the effect of an external potential V (x) on L2-critical nonlinearity

∆2u+ V (x)u− a|u|8/Nu = λu in RN ,∫
RN

u2 dx = 1.
(1.5)

Under appropriate conditions on V (x), problem (1.5) admits at least one ground state solution
when a lies within a specific interval. For problems involving Sobolev critical growth, Ma and
Chang [32] focused on the case where γ = 1, β = 0 and f(u) = µ|u|p−2u + |u|4∗−2u with 2 <
p < 2 + 8

N , they established the existence of a normalized ground state solution. Later, Liu and

Zhang [29] further extended this analysis to the supercritical regime 2+ 8
N < p < 4∗. Their results

confirmed the existence of normalized solutions when µ is sufficiently large.
Equation (1.1) is also related to the problems involving (p, q)-Laplace operator arising in

reaction-diffusion systems,

∂tu−∆pu−∆qu = f(x, u) (t, x) ∈ R× RN , (1.6)

and has been widely studied because of applications in plasma physics, fluid dynamics, and biol-
ogy [3, 18]. For the stationary case with p = 2, Baldelli and Yang [2] investigated the existence of
normalized solutions to the (2, q)-Laplacian equation

−∆u−∆qu = λu+ |u|p−2u in RN ,∫
RN

|u|2 dx = c.

They analyzed the problem in various regimes. In the L2-subcritical case, they obtained a ground
state solution by solving a global minimization problem. In the L2-critical case, they demonstrated
several nonexistence results, extending these findings to the Lq-critical case. In the L2-supercritical
case, they established the existence of a ground state and infinitely many radial solutions. Later,
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Ding et al. [19] investigated the existence of normalized solutions to the (2, q)-Laplacian equation,
particularly when the nonlinearity g(u) exhibits strongly sublinear behavior

−∆u−∆qu+ λu = g(u) in RN∫
RN

|u|2dx = c.
(1.7)

The nonlinearity g : R → R is continuous and the behaviour of g at the origin is allowed to be

strongly sublinear, i.e., lims→0
g(s)
s = −∞, which includes the logarithmic nonlinearity g(s) =

s log s2. The authors considered a family of approximating problems that can be set in H1(RN )∩
D1,q(RN ) and the corresponding least-energy solutions. Then, they proved that such a family of
solutions converges to a least-energy solution to problem (1.7).

When p ̸= 2, Zhang et al. [42] studied the p-Laplacian equation with an Lp-norm constraint

−∆pu = λ|u|p−2u+ µ|u|q−2u+ g(u) in RN ,∫
RN

|u|pdx = cp,

where N > 1, c > 0, 1 < p < q ≤ p̃, µ ∈ R and g ∈ C(R,R) is odd. In the Lp-supercritical case,
they applied the Schwarz rearrangement and Ekeland’s variational principle to prove the existence
of a positive radial ground state for suitable values of µ, and extended these results using minimax
theorems. Additionally, they demonstrated the existence of infinitely many radial and nonradial
sign-changing solutions for N = 4 or N ≥ 6. Other related results can be found in [22, 26] and so
on.

Recently, Cai and Rădulescu [12] investigated the (p, q)-Laplacian equation with an Lp-norm
constraint

−∆pu−∆qu+ λ|u|p−2u = f(u) in RN ,∫
RN

|u|pdx = cp,

u ∈W 1,p(RN ) ∩W 1,q(RN ).

They established the existence of ground states and analyzed the behavior of the ground state
energy Ec as the parameter c > 0 varied.

For the fixed frequency problem associated with (1.1), Sun et al. in [38] studied the following
biharmonic equation with p-Laplacian

∆2u− β∆pu+ λV (x)u = f(x, u) in RN , (1.8)

and they obtained multiple solutions of (1.8) where N ≥ 1, β ∈ R, the potential V (x) is a steep
potential well, and f(x, u) satisfies some subcritical conditions. Moreover, Sun and Wu [39, 40]
established the existence of nontrivial solutions to (1.8) with the singular sign-changing potential
V (x), and f(x, u) ≡ 0 and β < 0. Additionally, Figueiredo and Carlos [21] showed the existence
of solutions for the class of elliptic Kirchhoff-Boussinesq-type problems given by

∆2u−∆pu+ u = h(u) in RN , (1.9)

They proved the existence and multiplicity of nontrivial solutions. Meanwhile, Razani et al.
[36] studied the anisotropic Kirchhoff-Boussinesq equations with exponential growth, where the
existence of solutions was proved. For other related results, we refer the interesting readers to see
[13, 20, 35, 37].

To the best of our knowledge, the existence of normalized solutions for (1.1) has not been studied
before. The main purpose of this paper is to establish the existence of normalized solutions to
(1.1), which can be obtained by searching for critical points of the following functional

I(u) =
1

2
∥∆u∥22 +

1

q
∥∇u∥qq −

1

p
∥u∥pp

on the constraint

Sc :=
{
u ∈ X := H2(RN ) ∩D1,q(RN ) : ∥u∥2 = c

}
.
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Notation. Throughout the paper we use

δp =
N(p− 2)

2p
, δq =

N(q − 2)

2q
, α =

Nq(p− 2)

p [q(N + 2)− 2N ]
.

The following constants will appear in Theorems 1.1 and 1.2:

A1 =
(

pδq−4
pδp

+
pδp−q(1+δq)

pδp

)
2

pδp
4−pδp

(
Cp

N,p

p

) 4
4−pδp

,

A2 =
(

4−2δp
δp

+ q
δp

)
2

pδp
4−pδp

(
Cp

N,p

p

) 4
4−pδp

,

A3 =
(

1
2 − 2

pδp

)(
2

δp Cp
N,p

) 4
pδp−4

,

A4 = 1
q

(
1− q(1+δq)

pδp

)(
1+δq

δp Kp
N,p

) q
pα−q

,

A5 =
(

2
δp

− 1
)(

2
δp Cp

N,p

) 4
pδp−4

,

A6 =
(

1+δq
δp

− 1
)(

1+δq
δp Kp

N,p

) q
pα−q

.

Our main results are stated as follows. In the L2-subcritical case, we study a global minimization
problem.

Theorem 1.1. Let N ≥ 5, c > 0. Assume that

2 < p < p̄, (1.10)

where p̄ denotes the upper critical exponent threshold defined as p̄ := min
{
q
(
1 + 2

N

)
, 2 + 8

N

}
.

Suppose that q satisfies

either
2N

N + 2
< q ≤ 2 +

4

N + 2
, or 2 +

4

N + 2
< q < N. (1.11)

Then m(c) := infu∈Sc I(u) is attained by some u ∈ Sc, which is a ground state of (1.1). Addition-
ally, we have

(1) A1c
2p(2−δp)

4−pδp ≤ m(c) < 0, 0 < λc ≤ A2c
4(p−2)
4−pδp ;

(2) m(c) → 0− and λc → 0+ as c→ 0+.

In the L2-supercritical case, we consider a modified minimization problem σ(c) := infu∈Pc
I(u),

where
Pc :=

{
u ∈ Sc : P (u) := 2∥∆u∥22 + (1 + δq)∥∇u∥qq − δp∥u∥pp = 0

}
.

We establish the existence of a ground state.

Theorem 1.2. Let N ≥ 5, c > 0, and

max
{
2 +

8

N
, q
(
1 +

2

N

)}
< p < min{q∗, 4∗}, (1.12)

either
2N2 + 8N

N2 + 2N + 8
< q <

2N

N − 2
, or

2N

N − 2
≤ q < min

{
N,

2N2

N2 − 2N − 8

}
. (1.13)

Then σ(c) := infu∈Pc
I(u) is achieved by some u ∈ Pc, and is a ground state of (1.1). Moreover,

we have

(1) σ(c) ≥ A3c
− 2p(2−δp)

pδp−4 +A4c
− pq(1−α)

pα−q > 0, λc ≥ A5c
− 4(p−2)

pδp−4 +A6c
− pq(1−α)+2(pα−q)

pα−q ;
(2) σ(c) → +∞ and λc → +∞ as c→ 0+.

Remark 1.3. In the subcritical regime, m(c) → 0− as c → 0+ indicates stable, low-energy
bound states for small mass, consistent with minimal energy configurations in plate theory. In the
supercritical regime, σ(c) → +∞ as c→ 0+ suggests that maintaining a normalized ground state
at vanishing mass requires infinite energy, reflecting the instability often found in supercritical
nonlinearities.
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Comments on Theorems 1.1 and 1.2: To prove Theorem 1.1, we first show that the global minimum
m(c) is attained. From a minimizing sequence {vn} ⊂ Sc, we apply the Ekeland’s variational
principle to obtain {un} ⊂ Sc, a Palais-Smale sequence for I|Sc , satisfying

∥un − vn∥X → 0, (I|Sc
)′(un) → 0 (n→ ∞).

We then show that there exists uc ∈ Sc with ∇un → ∇uc a.e. in RN which is a key step for the
Brézis-Lieb splitting. After ruling out vanishing we use the strict subadditivity m(c) < m(c1) +
m(c2) (0 < c1 < c) to exclude dichotomy and recover the compactness of {un}. Meanwhile, this
yields the required bounds for m(c) and λc.

Theorem 1.2 addresses the more delicate situation in which I|Sc = −∞. We first prove that
the modified problem σ(c) admits a minimizer. The set Pc is characterized by the mass constraint
and the Pohozaev identity P (u) = 0, and we verify that I|Pc

> −∞. Next, we show that σ(c)
decreases strictly with c; the resulting monotonicity yields a minimizer.

The remainder of the paper is organized as follows: Section 2 presents preliminary results
required for Theorems 1.1 and 1.2, while Sections 3 and 4 present their proofs.

2. Preliminaries

In this section we present lemmas required for proving Theorem 1.1. First, we recall the
Gagliardo-Nirenberg inequality, which will be crucial in our analysis.

Lemma 2.1 ([33, Theorem in Lecture II]). Let N ≥ 5, 2 < p < 4∗ = 2N
N−4 , and δp = N(p−2)

2p .

There exists an optimal constant CN,p > 0, depending on N and p, such that for all u ∈ H2(RN ),

∥u∥p ≤ CN,p∥∆u∥
δp/2
2 ∥u∥1−

δp
2

2 . (2.1)

Furthermore, we frequently use the inequality∫
RN

|∇u|2 dx ≤
(∫

RN

|∆u|2 dx
)1/2(∫

RN

|u|2 dx
)1/2

∀u ∈ H2(RN ). (2.2)

Next we fix notation. For 1 ≤ p < ∞ we set ∥u∥p :=
(∫

RN |u|pdx
) 1

p , whereas for p = ∞
we define ∥u∥∞ := ess supx∈RN |u(x)|. The Hilbert space H2(RN ) consists of all u ∈ L2(RN )

with ∇u,∆u ∈ L2(RN ) and is endowed with the norm ∥u∥H2(RN ) :=
(
∥u∥22 + ∥∇u∥22 + ∥∆u∥22

)1/2
.

Inequality (2.2) implies that the seminorm

∥u∥H2 :=
(∫

RN

|∆u|2 + |u|2dx
)1/2

is equivalent to ∥u∥H2(RN ). We define D1,q(RN ) := {u ∈ Lq∗(RN ) : ∇u ∈ Lq(RN )} and equip it
with the norm ∥u∥D1,q := ∥∇u∥q.

Lemma 2.2 ([1, Theorem 2.1]). Let N ≥ 5, 2 < p < q∗, 2N
N+2 < q < N and α = Nq(p−2)

p[q(N+2)−2N ] .

Then there exists a constant KN,p > 0 such that

∥u∥p ≤ KN,p∥∇u∥αq ∥u∥1−α
2 ∀u ∈ D1,q(RN ) ∩ L2(RN ).

Now, we introduce the work space X := H2(RN ) ∩ D1,q(RN ) and endow it with the norm
∥u∥X := ∥u∥H2(RN ) + ∥u∥D1,q(RN ). It is clear that X is a reflexive Banach space. Throughout the
paper X ′ denotes the dual of X, and ⟨·, ·⟩ stands for the corresponding duality pairing.

Lemma 2.3. Let N ≥ 5, 1 < q < N and 2 < p < 4∗. If u ∈ X is a weak solution of (1.1), then
it satisfies the following Pohožaev identity

2∥∆u∥22 + (1 + δq)∥∇u∥qq − δp∥u∥pp = 0.

Proof. Since u is a weak solution, for any φ ∈ X, we have∫
RN

∆u∆φdx+

∫
RN

|∇u|q−2∇u · ∇φdx+ λ

∫
RN

uφdx =

∫
RN

|u|p−2uφdx.
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We begin by assuming that u ∈ C2
0 (RN ). First, choose the test function x · ∇u and integrate over

the ball BR = {x ∈ RN : |x| < R},∫
BR

∆2u(x · ∇u) dx−
∫
BR

∆qu(x · ∇u) dx+ λ

∫
BR

u(x · ∇u) dx =

∫
BR

|u|p−2u(x · ∇u) dx.

Direct calculations yield∫
BR

∆2u (x · ∇u) dx

=

∫
BR

∆u ·∆(x · ∇u) dx−
∫
∂BR

∆u · ∂ν(x · ∇u) dS +

∫
∂BR

(x · ∇u) · ∂ν(∆u) dS

=
4−N

2

∫
BR

|∆u|2 dx+
R

2

∫
∂BR

|∆u|2 dS −
∫
∂BR

∆u · ∂ν(x · ∇u) dS +

∫
∂BR

(x · ∇u) · ∂ν(∆u) dS,∫
BR

−∆qu(x · ∇u) dx =

∫
BR

|∇u|q−2∇u · ∇(x · ∇u) dx−
∫
∂BR

|∇u|q−2(x · ∇u)(∇u · ν) dS

=
q −N

q

∫
BR

|∇u|q dx+
R

q

∫
∂BR

|∇u|q dS −
∫
∂BR

|∇u|q−2(x · ∇u)(∇u · ν) dS,∫
BR

u(x · ∇u) dx =

∫
BR

x · ∇(
u2

2
) dx = −N

2

∫
BR

u2 dx+
R

2

∫
∂BR

u2 dS,∫
BR

|u|p−2u(x · ∇u) dx =

∫
BR

x · ∇(
|u|p

p
) dx = −N

p

∫
BR

|u|p dx+
R

p

∫
∂BR

|u|p dS,

where ν is the unit outward normal on ∂BR and dS represents the surface area element on ∂BR.
Therefore,

N − 4

2
∥∆u∥2L2(BR) +

N − q

q
∥∇u∥qLq(BR) +

λN

2
∥u∥2L2(BR) −

N

p
∥u∥pLp(BR)

=
R

2

∫
∂BR

|∆u|2 dS −
∫
∂BR

∆u · ∂ν(x · ∇u) dS +

∫
∂BR

(x · ∇u) · ∂ν(∆u) dS

+
R

q

∫
∂BR

|∇u|q dS −
∫
∂BR

|∇u|q−2(x · ∇u)(∇u · ν) dS

+
R

2

∫
∂BR

u2 dS − R

p

∫
∂BR

|u|p dS.

Let R = Rn with Rn → ∞ as n → ∞, and the right-hand side of the above equation tends to
zero. Thus, we obtain

N − 4

2
∥∆u∥22 +

N − q

q
∥∇u∥qq +

λN

2
∥u∥22 =

N

p
∥u∥pp. (2.3)

Next, by choosing φ = u in (1.1), it follows that

∥∆u∥22 + ∥∇u∥qq + λ∥u∥22 − ∥u∥pp = 0. (2.4)

By combining equations (2.3) and (2.4), we derive the Pohožaev identity

2∥∆u∥22 + (1 + δq)∥∇u∥qq − δp∥u∥pp = 0.

The proof is complete. □

At the end of this section, we recall some preliminary lemmas and inequalities that will be used
later.

Lemma 2.4 ([15, Lemma 5], [25, Lemma 2.7]). Assume s > 1. Let Ω be an open set in RN , α, β
positive numbers, and a(x, ξ) ∈ C(Ω× RN ,RN ) such that

(1) α|ξ|s ≤ a(x, ξ)ξ for all (x, ξ) ∈ Ω× RN ,
(2) |a(x, ξ)| ≤ β|ξ|s−1 for all (x, ξ) ∈ Ω× RN ,
(3) (a(x, ξ)− a(x, η))(ξ, η) > 0 for all (x, ξ) ∈ Ω× RN with ξ ̸= η,
(4) a(x, γξ) = γ|γ|p−2a(x, ξ) for all (x, ξ) ∈ Ω× RN and γ ∈ R \ {0}.
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Consider {un}, u ∈W 1,s(Ω), then ∇un → ∇u in Ls(Ω) if and only if

lim
n→∞

∫
Ω

(a(x,∇un(x))− a(x,∇u(x))) (∇un(x)−∇u(x)) dx = 0.

Lemma 2.5 ([7, Lemma 3]). Let {un} be a sequence in Sc which is bounded in X. Then the
following statements are equivalent

(1) ∥(I|Sc)
′(un)∥ → 0 as n→ +∞;

(2) I ′(un)− ⟨I ′(un), un⟩un → 0 in X ′ as n→ +∞.

Lemma 2.6 ([41, Theorem 8.5]). Let X be a Banach space and for every v ∈ Sc, G
′(v) ̸= 0,

where G(v) = ∥v∥22 − c2. If I ∈ C1(X,R) is bounded below on Sc, v ∈ Sc and ε, δ > 0 satisfying
I(v) ≤ infSc I + ε, there exists u ∈ Sc such that

I(u) ≤ inf
Sc

I + 2ε, ∥I ′|Sc
(u)∥X′ = sup

⟨u,h⟩=0
∥h∥X=1

|⟨I ′(u), h⟩| = min
λ∈R

∥I ′(u)− λG′(u)∥ ≤ 8ε

δ
, ∥u− v∥X ≤ 2δ.

Lemma 2.7 ([11, Theorem 1]). Let 1 < p < ∞ and let {un} ⊂ Lp(RN ) be a bounded sequence
converging to u almost everywhere. Then un ⇀ u (weakly) in Lp(RN ).

Remark 2.8. For any r > 1, there exists a constant C(r) > 0 such that for all x, y ∈ RN with
|x|+ |y| ≠ 0, it holds

⟨|x|r−2x− |y|r−2y, x− y⟩ ≥ C(r)×

{
|x−y|2

(|x|+|y|)2−r if 1 ≤ r < 2,

|x− y|r if r ≥ 2.

3. Proof of Theorem 1.1

In this section, we study the existence of a global minimizer in the mass subcritical case and
consider the following constrained minimization problem

m(c) := inf
u∈Sc

I(u),

where Sc := {u ∈ X, ∥u∥2 = c}.

Lemma 3.1. Let c > 0, and assume conditions (1.10) and (1.11) hold. Then −∞ < m(c) < 0.

Proof. If 2 < p < q(1 + 2
N ) and 2N

N+2 < q ≤ 2 + 4
N+2 , then pδp < q(1 + δq) ≤ 4. If 2 < p < 2 + 8

N

and 2 + 4
N+2 < q < N , then pδp < 4 < q(1 + δq). Therefore,

pδp < min{4, q(1 + δq)}.

For any fixed u ∈ Sc, by applying Lemma 2.1, we obtain

I(u) =
1

2
∥∆u∥22 +

1

q
∥∇u∥qq −

1

p
∥u∥pp

≥ 1

2
∥∆u∥22 −

1

p
∥u∥pp

≥ 1

2
∥∆u∥22 −

Cp
N,p

p
cp(1−

δp
2 )∥∆u∥

pδp
2

2 ,

(3.1)

which implies that m(c) > −∞.
Next, we show that m(c) < 0. Consider the rescaled function ut(x) = tN/2u(tx) ∈ Sc, we

deduce that

I(ut) =
t4

2
∥∆u∥22 +

tq(1+δq)

q
∥∇u∥qq −

tpδp

p
∥u∥pp.

Since pδp < min{4, q(1 + δq)}, for sufficiently small t > 0, we conclude that m(c) ≤ I(ut) < 0.
This completes the proof. □

Lemma 3.2. Suppose that (1.10) and (1.11) hold, then the map c 7→ m(c) is continuous for c > 0.
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Proof. Let c > 0 and {cn} ⊂ (0,+∞) such that cn → c. We aim to show that m(cn) → m(c). For
each n ∈ N+, there exists un ∈ Scn such that m(cn) ≤ I(un) < m(cn) +

1
n . Hence, by Lemma 3.1,

for n sufficiently large, we have I(un) ≤ 0. Then, we deduce from (3.1) that

∥∆un∥2 ≤
(2Cp

N,p

p

) 2
4−pδp

c
p(2−δp)

4−pδp
n ≤

(2Cp
N,p

p

) 2
4−pδp

c
p(2−δp)

4−pδp + on(1). (3.2)

On the other hand, it follows that

0 ≥ I(un) =
1

2
∥∆un∥22 +

1

q
∥∇un∥qq −

1

p
∥un∥pp ≥ 1

q
∥∇un∥qq −

1

p
∥un∥pp,

which implies that

1

q
∥∇un∥qq ≤ 1

p
∥un∥pp ≤

Cp
N,p

p
cp(1−

δp
2 )∥∆u∥

pδp
2

2 ≤ 2
pδp

4−pδp
[Cp

N,p

p

] 4
4−pδp c

2p(2−δp)

4−pδp + on(1). (3.3)

Therefore, the sequence {un} is bounded in X. Next, considering vn := c
cn
un ∈ Sc, we have

I(vn) =
1

2
∥∆vn∥22 +

1

q
∥∇vn∥qq −

1

p
∥vn∥pp

=
1

2

( c

cn

)
∥∆un∥22 +

1

q

( c

cn

)q/2

∥∇un∥qq −
1

p

( c

cn

)p/2

∥un∥pp.

The boundness of {un} in X and the convergence cn → c as n→ +∞ imply that

m(c) ≤ I(vn)

= I(un) +
1

2

( c

cn
− 1

)
∥∆un∥22 +

1

q

(( c

cn

) q
2 − 1

)
∥∇un∥qq −

1

p

(( c

cn

) p
2 − 1

)
∥un∥pp

= I(un) + on(1).

Taking the limit as n→ +∞, we obtain

m(c) ≤ I(vn) = I(un) + on(1) ≤ m(cn) +
1

n
+ on(1),

which yields that m(c) ≤ limn→+∞ infm(cn). In a similar way, let {wn} be a minimizing sequence
for m(c), which can be proved that it is also bounded in X. Define zn := cn

c wn ∈ Scn , then

m(cn) ≤ I(zn) = I(wn) + on(1),

which leads to limn→+∞ supm(cn) ≤ m(c), thus completing the proof. □

Lemma 3.3. Suppose that (1.10) and (1.11) hold. For any c1 ∈ (0, c) and c2 =
√
c2 − c21, then

m(c) < m(c1) +m(c2).

Proof. For each c1 ∈ (0, c), let {un} ⊂ Sc1 be a minimizing sequence for m(c1), that is, I(un) →
m(c1) as n → ∞. Clearly, un(θ

− 2
N x) ∈ Sθc1 , by using 2 − 8

N < 2 and 2 − 2q
N < 2, for any θ > 1,

we have that

m(θc1)− θ2m(c1) + on(1) = m(θc1)− θ2I(un) ≤ I(un(θ
− 2

N x))− θ2I(un)

=
θ2−

8
N

2
∥∆un∥22 +

θ2−
2q
N

q
∥∇un∥qq − θ2∥un∥pp − θ2I(un)

=
1

2

(
θ2−

8
N − θ2

)
∥∆un∥22 +

1

q

(
θ2−

2q
N − θ2

)
∥∇un∥qq ≤ 0,

which yields that m(θc1) ≤ θ2m(c1) for all θ > 1, and m(θc1) = θ2m(c1) holds if and only if
∥∆un∥2 → 0 and ∥∇un∥q → 0, by (2.1), we have that ∥un∥p → 0 and

0 > m(c1) = lim
n→+∞

I(un) =
1

2
lim

n→+∞
∥∆un∥22 +

1

q
lim

n→+∞
∥∇un∥qq −

1

p
lim

n→+∞
∥un∥pp = 0,

which achieves a contradiction. Thus, there must hold true that

m(θc1) < θ2m(c1) ∀θ > 1. (3.4)
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By a similar argument, we derive that

m(θc2) < θ2m(c2) ∀θ > 1. (3.5)

Finally, apply (3.4) with θ = c
c1
> 1 and (3.5) with θ = c

c2
> 1, we get

c21
c2
m
( c

c1
c1

)
+
c22
c2
m
( c

c2
c2

)
< m(c1) +m(c2),

Because c2 =
√
c2 − c21, we conclude that m(c) < m(c1) +m(c2). □

Lemma 3.4. Suppose that (1.10) and (1.11) hold. Let {vn} ⊂ Sc be a minimizing sequence for
m(c), there exists a sequence {un} ⊂ Sc such that

∥un − vn∥X → 0 and (I|Sc)
′
(un) → 0 as n→ +∞.

As a result, the sequence {un} is relatively compact in X up to translations, implying that m(c) is
attained.

Proof. Since {vn} ⊂ Sc is a minimizing sequence for m(c), by Lemma 2.6, there exists a new
sequence {un} ⊂ Sc such that ∥un − vn∥X → 0, which is also a Palais-Smale sequence for I|Sc

,
that is, I(un) → m(c) and (I|Sc

)
′
(un) → 0. Thus, Lemma 2.5 shows that

I ′(un)− ⟨I ′(un), un⟩un → 0 in X ′. (3.6)

If limn→∞ supy∈RN

∫
BR(y)

|un(x)|2 dx = 0, for any R > 0, then it follows from [28, Lemma I.1]

that

lim
n→∞

∥un∥r = 0 for 2 < r < 4∗.

This leads to ∥un∥p → 0 and

0 > m(c) = lim
n→∞

I(un) =
1

2
lim

n→∞
∥∆un∥22 +

1

q
lim
n→∞

∥∇un∥qq −
1

p
lim
n→∞

∥un∥pp ≥ 0,

which achieves a contradiction. Therefore, there exist δ > 0 and a subsequence {yn} ⊂ RN such
that ∫

BR(yn)

|un(x)|2 dx ≥ δ

2
> 0,

for some R > 0. By Lemma 3.2, we obtain that {un} is bounded in X and thus, up to a
subsequence, still denoted by {un}, we may assume that there exists uc ∈ X such that

un(·+ yn)⇀ uc in X,

un(·+ yn) → uc in Lr
loc(RN ) for all 2 ≤ r < 4∗,

un(·+ yn) → uc a.e. in RN .

(3.7)

Define wn(x) := un(·+ yn)− uc, (3.7) implies that wn ⇀ 0 in X. Moreover, from the Brézis-Lieb
Lemma [11], we obtain as n→ +∞

∥un∥22 = ∥un(·+ yn)∥22 = ∥wn + uc∥22 = ∥wn∥22 + ∥uc∥22 + on(1),

∥∆un∥22 = ∥∆un(·+ yn)∥22 = ∥∆wn +∆uc∥22 = ∥∆wn∥22 + ∥∆uc∥22 + on(1),

∥un∥pp = ∥un(·+ yn)∥pp = ∥wn∥pp + ∥uc∥pp + on(1).

(3.8)

Next, we let Φ ∈ C∞
0 (RN ) satisfy 0 ≤ Φ ≤ 1 and

Φ(x) =

{
1 if x ∈ B1(0),

0 if x ∈ RN \B2(0).

For any R > 0, define ΨR(x) := Φ
(
x
R

)
for x ∈ RN . It is easy to verify that ΨR(x) ∈ X. Now, let

Pn(x) := (∆un −∆uc)(∆un −∆uc) + (|∇un|q−2 ∇un − |∇uc|q−2 ∇uc) (∇un −∇uc) .
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From Remark 2.8, it follows that Pn(x) ≥ 0. Then, we get ΨR = 1 in BR by the definition of
ΨR(x), so that ∫

BR

Pndx =

∫
BR

PnΨRdx ≤
∫
RN

PnΨRdx.

Since

⟨I ′(un), (un − uc)ΨR(x− yn)⟩ = ⟨I ′(ũn), (ũn − uc)ΨR⟩

=

∫
RN

∆ũn∆ [(ũn − uc)ΨR] dx+

∫
RN

|∇ũn|q−2∇ũn∇ [(ũn − uc)ΨR] dx

−
∫
RN

|ũn|p−2ũn(ũn − uc)ΨR dx

=

∫
RN

∆ũn[∆ (ũn − uc)]ΨR dx+ 2

∫
RN

∆ũn∇ (ũn − uc)∇ΨR dx

+

∫
RN

∆ũn∆ΨR (ũn − uc) dx+

∫
RN

|∇ũn|q−2∇ũn∇ (ũn − uc)ΨR dx

+

∫
RN

|∇ũn|q−2∇ũn (ũn − uc)∇ΨR dx−
∫
RN

|ũn|p−2ũn(ũn − uc)ΨR dx,

it follows that∫
BR

Pn dx

≤
∫
RN

[
(∆un −∆uc)(∆un −∆uc) + (|∇ũn|q−2 ∇ũn − |∇uc|q−2 ∇uc) (∇ũn −∇uc)

]
ΨRdx

= ⟨I ′(ũn), [(ũn − uc)ΨR]⟩ −
∫
RN

∆uc∆(ũn − uc)ΨRdx

− 2

∫
RN

∆ũn∇(ũn − uc)∇ΨRdx−
∫
RN

∆ũn(ũn − uc)∆ΨRdx

+

∫
RN

|ũn|p−2ũn(ũn − uc)ΨRdx−
∫
RN

|∇uc|q−2 ∇uc(∇ũn −∇uc)ΨRdx

−
∫
RN

|∇ũn|q−2∇ũn (ũn − uc)∇ΨRdx.

We deduce from (3.7) and Hölder’s inequality that∣∣∣ ∫
RN

ũn(ũn − uc)ΨRdx
∣∣∣ ≤ (∫

RN

ũ2ndx
)1/2(∫

RN

(ũn − uc)
2Ψ2

Rdx
)1/2

→ 0.

Thus, (3.6) implies that ⟨I ′(ũn), [(ũn − uc)ΨR]⟩ → 0 as n → +∞. By the definition of ΨR, there
exists a constant C such that |∇ΨR(x)| ≤ C

R , |∆ΨR(x)| ≤ C
R2 , ∀x ∈ RN . Applying Hölder’s

inequality again, we obtain∣∣∣ ∫
RN

∆ũn∇(ũn − uc)∇ΨR dx
∣∣∣ ≤ C

R
∥∆ũn∥2∥∇(ũn − uc)∥2,∣∣∣ ∫

RN

∆ũn(ũn − uc)∆ΨR dx
∣∣∣ ≤ C

R2
∥∆ũn∥2∥ũn − uc∥2,∣∣∣ ∫

RN

|∇ũn|q−2∇ũn(ũn − uc)∇ΨR dx
∣∣∣ ≤ (∫

RN

|∇ũn|(q−1)q′ dx
)1/q′(∫

RN

|ũn − uc|q|∇ΨR|q dx
)1/q

≤ C

R
∥∇ũn∥q−1

Lq ∥ũn − uc∥Lq .

We define the functional

f(ν) :=

∫
RN

|∇uc|q−2∇uc∇νΨRdx,
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for every ν ∈ X. From [4], we see that f is a linear functional in X ′, implying that as n→ +∞,∫
RN

|∇uc|q−2∇uc∇ũnΨRdx→
∫
RN

|∇uc|qΨRdx.

By the fact that ∆ũn ⇀ ∆uc in H2 and ∆ucΨR ∈ L2, we conclude that n→ +∞∫
RN

∆uc∆ũnΨRdx→
∫
RN

|∆uc|2 ΨRdx.

Since H2(RN ) ↪→ Lp(RN ) for 2 < p < 4∗ and {ũn} is bounded in X, it follows that there exists
M > 0 such that ∥ũn∥p∗ ≤M , so

∥ũpn∥
L

p∗
p

=
[ ∫

RN

(ũpn)
p∗
p dx

]p/p∗

= ∥ũn∥pp∗ ≤Mp,

which means {|ũn|p} is bounded in L
p∗
p (RN ). It follows from (3.7) and Lemma 2.7 that |ũn|p ⇀

|uc|p in L
p∗
p (RN ). Therefore, as n→ +∞∫

RN

|ũn|pΨR →
∫
RN

|uc|pΨR.

Similarly, we can prove {|ũn|p−1} is bounded in L
p∗
p−1 (RN ). Thus, we are able to show that as

n→ +∞ ∫
RN

|ũn|p−2ũnucΨR →
∫
RN

|uc|pΨR.

Thus, we arrive to limn→∞
∫
BR

Pndx ≤ 0. Since Pn ≥ 0, we conclude that limn→∞
∫
BR

Pndx = 0.

By Lemma 2.4, up to subsequences, it holds ∇un → ∇uc a.e. in RN . Thus, from the Brézis-Lieb
Lemma, it follows that

∥∇un∥qq = ∥∇un(·+ yn)∥qq = ∥∇wn∥qq + ∥∇uc∥qq + on(1). (3.9)

Finally, we claim that un(· + yn) → uc ̸≡ 0 in L2(RN ), which implies that ∥wn∥2 → 0 in
L2(RN ). Denote c = ∥uc∥2 > 0. If c = c, the proof is completed by (3.8). If c < c. Using (3.8)
and (3.9), we obtain

m(c) = I(un) + on(1) = I (un(·+ yn)) + on(1) = I(wn) + I(uc) + on(1) ≥ m(∥wn∥2) +m(c).
(3.10)

By Lemma 3.2, it follows that

m(c) ≥ m(c2) +m(c),

where c2 = ∥wn∥2 =
√
c2 − c2 > 0, this contradicts with Lemma 3.3. Thus, we conclude that

∥uc∥2 = c and hence wn → 0 in L2(RN ). By Lemma 2.1, it immediately follows that

∥wn∥p ≤ CN,p∥∆wn∥
δp/2
2 ∥wn∥

1− δp
2

2 → 0.

Thus, one deduce that

lim
n→∞

inf I(wn) = lim inf
n→∞

1

2
∥∆wn∥22 +

1

q
∥∇wn∥qq ≥ 0. (3.11)

On the other hand, using ∥uc∥2 = c, we obtain

m(c) = I(wn) + I(uc) + on(1) ≥ I(wn) +m(c) + on(1),

which yields

lim
n→∞

sup I(wn) ≤ 0. (3.12)

Therefore, we conclude that ∥∆wn∥2 → 0 and ∥∇wn∥q → 0 from (3.11) and (3.12). Combined
with ∥wn∥2 → 0, this shows that wn → 0 in X. □
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Proof of Theorem 1.1. From Lemma 3.4, it follows that m(c) is attained by some uc ∈ Sc. By the
Lagrange multiplier rule, there exists a pair (λc, uc) that satisfies (1.1)

∥∆uc∥22 + ∥∇uc∥qq + λc∥uc∥22 − ∥uc∥pp = 0.

Using the fact that 2
δp

− 1 > 0 and
1+δp
δp

− 1 > 0, it follows from Lemma 2.3 that

λcc
2 = ∥uc∥pp − ∥∆uc∥22 − ∥∇uc∥qq =

( 2

δp
− 1

)
∥∆uc∥22 +

(1 + δp
δp

− 1
)
∥∇uc∥qq > 0, (3.13)

which shows that λc > 0, indicating the existence of a nontrivial solution to (1.1). Similarly to
get (3.2) and (3.3), we obtain

∥∆uc∥2 ≤
(2Cp

N,p

p

) 2
4−pδp

c
p(2−δp)

4−pδp ,

1

q
∥∇uc∥qq ≤ 1

p
∥uc∥pp ≤

Cp
N,p

p
cp(1−δp)∥∇uc∥

pδp
2 ≤ 2

pδp
4−pδp [

Cp
N,p

p
]

4
4−pδp c

2p(2−δp)

4−pδp .

From (1.10) and (1.11), we have 1
2 − 2

pδp
< 0, 1

q − 1+δq
pδp

< 0 and 2 − δp > 0. By Lemma 2.3, we

deduce that

0 > m(c) = I(uc) =
1

2
∥∆uc∥22 +

1

q
∥∇uc∥qq −

1

p
∥uc∥pp

=
(1
2
− 2

pδp

)
∥∆uc∥22 +

(1
q
− 1 + δq

pδp

)
∥∇uc∥qq

≥ pδq − 4

pδp
2

pδp
4−pδp [

Cp
N,p

p
]

4
4−pδp c

2p(2−δp)

4−pδp +
pδp − q(1 + δq)

pδp
2

pδp
4−pδp [

Cp
N,p

p
]

4
4−pδp c

2p(2−δp)

4−pδp .

Therefore,

m(c) ≥ A1c
2p(2−δp)

4−pδp ,

where

A1 =
(pδq − 4

pδp
+
pδp − q(1 + δq)

pδp

)
2

pδp
4−pδp [

Cp
N,p

p
]

4
4−pδp < 0.

This fact also indicates that m(c) → 0− as c→ 0+.

Similarly, from (3.13), we have λc ≤ A2c
4(p−2)
4−pδp , where

A2 =
(4− 2δp

δp
+

q

δp

)
2

pδp
4−pδp [

Cp
N,p

p
]

4
4−pδp > 0.

This fact leads to λc → 0+ as c→ 0+. □

4. Proof of Theorem 1.2

This section is devoted to proving the existence of a normalized ground state solution in the
L2-supercritical case. We first observe that the following conditions hold

2 +
8

N
< p < min{q∗, 4∗}, 1 < q ≤ 2N + 8

N + 2
=⇒ q(1 + δq) ≤ 4 < pδp,

q(1 +
2

N
) < p < min{q∗, 4∗}, 2N + 8

N + 2
< q < N =⇒ 4 < q(1 + δq) < pδp,

which yields

max{4, q(1 + δq)} < pδp.

Let u ∈ Sc be fixed. We then define ut(x) = tN/2u(tx) ∈ Sc, and it follows that

m(c) = inf
u∈Sc

I(u) ≤ I(ut) =
t4

2
∥∆u∥22 +

tq(1+δq)

q
∥∇u∥qq −

tpδp

p
∥u∥pp → −∞ as t→ +∞.



EJDE-2025/121 NORMALIZED SOLUTIONS TO KIRCHHOFF-BOUSSINESQ EQUATIONS 13

In this case, I(u) is unbounded from below on Sc, so the global minimization method cannot be
used to find critical points of I|Sc . Thus, we consider a modified minimization problem

σ(c) := inf
u∈Pc

I(u),

where
Pc =

{
u ∈ Sc : P (u) := 2∥∆u∥22 + (1 + δq)∥∇u∥qq − δp∥u∥pp = 0

}
.

By the following lemma, we see that I(u) is bounded from below on Pc.

Lemma 4.1. Let c > 0, and assume that conditions (1.12) and (1.13) hold. Then, I is coercive
on Pc, and

σ(c) := inf
u∈Pc

I(u) > 0.

Proof. For any u ∈ Pc, by Lemma 2.1 and 2.2, we obtain

2∥∆u∥22 ≤ 2∥∆u∥22 + (1 + δq)∥∇u∥qq = δp∥u∥pp ≤ δpCp
N,p∥∆u∥

pδp
2

2 cp(1−
δp
2 ),

(1 + δq)∥∇u∥qq ≤ 2∥∆u∥22 + (1 + δq)∥∇u∥qq = δp∥u∥pp ≤ δpK
p
N,p∥∇u∥

pα
q cp(1−α).

Consequently, we can deduce the lower-bounds for ∥∆u∥2, ∥∇u∥q and ∥u∥pp as follows

∥∆u∥2 ≥
[ 2

δpCp
N,p

] 2
pδp−4 c

− p(2−δp)

pδp−4 , ∥∇u∥q ≥
[ 1 + δq
δpK

p
N,p

] 1
pα−q

c−
p(1−α)
pα−q ,

∥u∥pp ≥
2
[

2
δpCp

N,p

] 4
pδp−4 c

− 2p(2−δp)

pδp−4 + (1 + δq)
[ 1+δq
δpK

p
N,p

] q
pα−q c−

pq(1−α)
pα−q

δp
.

(4.1)

For any fixed u ∈ Pc, we can rewrite I(u) as follows

I(u) =
1

2
∥∆u∥22 +

1

q
∥∇u∥qq −

1

p
∥u∥pp

=
(1
2
− 2

pδp

)
∥∆u∥22 +

(1
q
− 1 + δq

pδp

)
∥∇u∥qq.

(4.2)

For every sequence {uk} ⊂ Pc such that ∥uk∥X → +∞, we deduce from max{4, q(1 + δq)} < pδp
that I(uk) → +∞. Hence, I is coercive on Pc. By (4.1) and (4.2), we also conclude that σ(c) > 0.
Thus the proof is complete. □

Lemma 4.2. Assume that (1.12) and (1.13) are satisfied. Then, for any u ∈ Sc and ut(x) =
tN/2u(tx), there exists a unique t0 > 0 such that I(ut0) = maxt>0 I(ut) and ut0 ∈ Pc. In particular,
the following results hold

(1) t0 < 1 ⇐⇒ P (u) < 0;
(2) t0 = 1 ⇐⇒ P (u) = 0.

Proof. For any u ∈ Sc, since ut(x) = tN/2u(tx) ∈ Sc, we define the function

h(t) = I(ut) =
t4

2
∥∆u∥22 +

tq(1+δq)

q
∥∇u∥qq −

tpδp

p
∥u∥pp ∀t > 0.

Differentiating h(t) with respect to t, we have

h′(t) =
2t4∥∆u∥22 + (1 + δq)t

q(1+δq)∥∇u∥qq − δpt
pδp∥u∥pp

t
=
P (ut)

t
.

By max{4, q(1 + δq)} < pδp, it follows that h
′(t) > 0 for t > 0 small enough, and limt→+∞ h′(t) =

−∞. Therefore, h(t) has a unique maximum at some point t0 > 0, see [27]. Moreover, since

h′(t0) =
P (ut0

)

t0
= 0, we can infer that ut0 ∈ Pc. Thus, we conclude that I(ut0) = maxt>0 I(ut)

and P (ut0) = 0. Next, we show that P (u) < 0 ⇒ t0 < 1. Assume that t0 ≥ 1, since h′(t0) = 0
and P (u) < 0, we obtain

0 = 2t
4−pδp
0 ∥∆u∥22 + (1 + δq)t

q(1+δq)−pδp
0 ∥∇u∥qq − δp∥u∥pp

≤ 2∥∆u∥22 + (1 + δq)∥∇u∥qq − δp∥u∥pp
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= P (u) < 0,

which is a contradiction. Thus, P (u) < 0 ⇒ t0 < 1 is proved. If P (u) = 0, it is easy to verify that
neither t0 > 1 nor t0 < 1 can not occur. Hence, P (u) = 0 ⇒ t0 = 1.

Finally, we prove that t0 < 1 ⇒ P (u) < 0 and t0 = 1 ⇒ P (u) = 0. If t0 < 1, we have

0 = 2t
4−pδp
0 ∥∆u∥22 + (1 + δq)t

q(1+δq)−pδp
0 ∥∇u∥qq − δp∥u∥pp

> 2∥∆u∥22 + (1 + δq)∥∇u∥qq − δp∥u∥pp
= P (u).

This implies t0 < 1 ⇒ P (u) < 0. When t0 = 1, it can be easily shown that t0 = 1 ⇒ P (u) = 0. □

Lemma 4.3. Suppose that (1.12) and (1.13) hold. Then, every minimizer of I|Pc
is a critical

point of I|Sc
.

Proof. Let u be a minimizer of I|Pc . Then, we have P (u) = 2∥∆u∥22+(1+δq)∥∇u∥qq−δp∥u∥pp = 0.
According to [14, Corollary 4.1.2], there exist two Lagrange multipliers λ and µ such that

I ′(u)− λu− µP ′(u) = 0 in X ′.

That is,

(1− 4µ)∆2u− [1− µq(1 + δq)]∆qu+ (µpδp − 1)|u|p−2u− λu = 0.

Similarly to the proof of Lemma 2.3, we can derive that

2(1− 4µ)∥∆u∥22 + [1− q(1 + δq)µ](1 + δq)∥∇u∥qq + (µpδp − 1)δp∥u∥pp = 0. (4.3)

Recalling that P (u) = 0, thus (4.3) can be reduced to

µ
{
8∥∆u∥22 + q(1 + δq)

2∥∇u∥qq − pδ2p∥u∥pp
}
= 0.

Using P (u) = 0 once more, we obtain

µ
{
2(4− pδp)∥∆u∥22 + (1 + δq)[q(1 + δq)− pδp]∥∇u∥qq

}
= 0. (4.4)

Owing to pδp > 4 and pδp > q(1 + δq), we can conclude that µ = 0 from (4.4). Consequently,
I ′(u)− λu = 0 in X ′. This indicates that P (u) = 0 in Pc is a natural constraint. □

Lemma 4.4. Suppose that (1.12) and (1.13) hold. If c2 > c1 > 0, then σ(c2) < σ(c1).

Proof. From Lemma 4.1, we deduce that σ(c) > 0 for any c > 0. By using Lemma 4.2, there exists
a sequence {un} ⊂ Pc1 such that

σ(c1) ≤ I(un) = max
t>0

I(tN/2un(tx)) < σ(c1) +
1

n
. (4.5)

For each un ∈ Pc1 , we have(1
2
− 2

pδp

)
∥∆un∥22 +

(1
q
− 1 + δq

pδp

)
∥∇un∥qq = I(un) ≤ σ(c1) + 1. (4.6)

By pδp > 4 and pδp > q(1+δq), we infer that {un} is bounded in X. From max{2+ 8
N , q(1+

2
N )} <

p < min{q∗, 4∗}, we can deduce the following facts.
(1) When 2 + 8

N ≥ q
(
1 + 2

N

)
and q∗ < 4∗, thus 2 + 8

N < p < q∗, and we deduce that 2 + 8
N < q∗,

2 + 8
N ≥ q(1 + 2

N ),
q∗ < 4∗

=⇒ 2N2 + 8N

N2 + 2N + 8
< q ≤ 2N + 8

N + 2
.

(2) When 2 + 8
N < q(1 + 2

N ) and q∗ < 4∗, we have that q(1 + 2
N ) < p < q∗ and q(1 + 2

N ) < q∗,
2 + 8

N < q(1 + 2
N ),

q∗ < 4∗,
=⇒ 2N + 8

N + 2
< q <

2N

N − 2
.
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(3) When 2 + 8
N ≥ q(1 + 2

N ) and q∗ ≥ 4∗, then 2 + 8
N < p < 4∗ and

2 +
8

N
< 4∗,

2 +
8

N
≥ q(1 +

2

N
),

q∗ ≥ 4∗,

cannot occur.
(4) When 2 + 8

N < q(1 + 2
N ) and q∗ ≥ 4∗, we have that q(1 + 2

N ) < p < 4∗ and q(1 + 2
N ) < 4∗,

2 + 8
N < q(1 + 2

N ),
q∗ ≥ 4∗,

=⇒ 2N

N − 2
≤ q < min

{
N,

2N2

N2 − 2N − 8

}
.

Now, for c2 > c1 > 0, we prove σ(c2) < σ(c1) in two cases.

Case (i): 2N2+8N
N2+2N+8 < q < 2N

N−2 and max
{
2 + 8

N , q
(
1 + 2

N

)}
< p < q∗, this implies that

2δq − 2 < 0 and N + p− Np

q
> 0. (4.7)

We denote

θ :=
(c2
c1

) 1
1+δq

> 1 and vn(x) := θ
q−N

q un(θ
−1x).

Direct computations yield

∥vn∥22 = θN+2− 2N
q ∥un∥22 = θ2(1+δq)c21 = c22, ∥∇vn∥qq = ∥∇un∥qq,

∥∆vn∥22 = θN−2− 2N
q ∥∆un∥22 = θ2δq−2∥∆un∥22, ∥vn∥pp = θN+p−Np

q ∥un∥pp.
(4.8)

By Lemma 4.2, there exists tn > 0 such that t
N/2
n vn(tnx) ∈ Pc2 and

σ(c2) ≤ I(tN/2
n vn(tnx)) = max

t>0
I(tN/2vn(tx)).

From (4.7) and θ > 1, we have

θ2δq−2 − 1 < 0 and 1− θN+p−Np
q < 0.

Notice that {un} is bounded in X and

P (tN/2
n vn(tnx)) = 2t4nθ

2δq−2∥∆un∥22 + (1 + δq)t
q(1+δq)
n ∥∇un∥qq − δpt

pδp
n θN+p−Np

q ∥un∥pp = 0,

thus there exists a positive constant M such that tn ≥ M . Hence, by (4.1) and (4.8), we deduce
that there exists a constant C > 0 such that

σ(c2) ≤ I(tN/2
n vn(tnx)) =

t4n
2
∥∆vn∥22 +

t
q(1+δq)
n

q
∥∇vn∥qq −

t
pδp
n

p
∥vn∥pp

=
t4n
2
θ2δq−2∥∆un∥22 +

t
q(1+δq)
n

q
∥∇un∥qq −

t
pδp
n

p
θN+p−Np

q ∥un∥pp

= I(tN/2
n un(tnx)) +

t4n
2

(
θ2δq−2 − 1

)
∥∆un∥22 +

t
pδp
n

p

(
1− θN+p−Np

q

)
∥un∥pp

≤ I(un) +
t4n
2

(
θ2δq−2 − 1

)
∥∆un∥22 +

t
pδp
n

p

(
1− θN+p−Np

q

)
∥un∥pp

≤ σ(c1) +
1

n
− C,

which leads to σ(c2) < σ(c1) for n sufficiently large.

Case (ii): 2N
N−2 ≤ q < min

{
N, 2N2

N2−2N−8

}
and q(1 + 2

N ) < p < 4∗, this yields that

q(1− δq)

2
≤ 0 and

p(2− δp)

2
> 0. (4.9)
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We denote

γ :=
c2
c1
> 1 and wn(x) := γ

4−N
4 un

(
γ−1/2x

)
.

Directly computations give

∥wn∥22 = γ2∥un∥22 = c22, ∥∇wn∥qq = γ
N
2 +

q(2−N)
4 ∥∇un∥qq = γ

q(1−δq)

2 ∥∇un∥qq,

∥∆wn∥22 = ∥∆un∥22, ∥wn∥pp = γ
N
2 +

p(4−N)
4 ∥un∥pp = γ

p(2−δp)

2 ∥un∥pp.
(4.10)

By Lemma 4.2, we obtain that there exists tn > 0 such that t
N
2
n wn(tnx) ∈ Pc2 and

σ(c2) ≤ I(tN/2
n wn(tnx)) = max

t>0
I(tN/2wn(tx)).

By (4.9) and γ > 1, we have

γ
q(1−δq)

2 − 1 ≤ 0and1− γ
p(2−δp)

2 < 0.

Similarly, we infer that {un} is bounded in X and P (t
N/2
n wn(tnx)) = 0, by (4.1) and (4.10), there

exists a constant C ′ > 0 such that

σ(c2) ≤ I(tN/2
n wn(tnx))

=
t4n
2
∥∆wn∥22 +

t
q(1+δq)
n

q
∥∇wn∥qq −

t
pδp
n

p
∥wn∥pp

=
t4n
2
∥∆un∥22 +

t
q(1+δq)
n

q
γ

q(1−δq)

2 ∥∇un∥qq −
t
pδp
n

p
γ

p(2−δp)

2 ∥un∥pp

= I(tN/2
n un(tnx)) +

t
q(1+δq)
n

q

(
γ

q(1−δq)

2 − 1
)
∥∇un∥qq +

t
pδp
n

p

(
1− γ

p(2−δp)

2

)
∥un∥pp

≤ I(un) +
t
q(1+δq)
n

q

(
γ

q(1−δq)

2 − 1
)
∥∇un∥qq +

t
pδp
n

p

(
1− γ

p(2−δp)

2

)
∥un∥pp

≤ σ(c1) +
1

n
− C ′.

This means that σ(c2) < σ(c1) for n sufficiently large. □

Lemma 4.5. Suppose that (1.12) and (1.13) hold. Then, the σ(c) = infu∈Pc I(u) is attained.

Proof. Let {un} be a minimizing sequence for σ(c). From (4.6), we have that {un} is bounded in
X. Therefore, up to a subsequence, there exists ũ ∈ X such that un ⇀ ũ as n → ∞. If for any
R > 0, the vanishing occurs

δ := lim
n→∞

sup
y∈RN

∫
BR(y)

|un(x)|2 dx = 0,

from [28, Lemma I.1], we obtain that ∥un∥r → 0 for 2 < r < 4∗. Since P (un) = 2∥∆un∥22 + (1 +
δq)∥∇un∥qq − δp∥un∥pp = 0, it follows that ∥∆un∥2 → 0 and ∥∇un∥q → 0. Consequently, we have
σ(c) = 0, which contradicts with Lemma 4.1. Hence, vanishing of {un} can not occur, there exist
δ > 0 and a subsequence {yn} ⊂ RN such that∫

BR(yn)

|un(x)|2 dx ≥ δ

2
> 0,

for some R > 0. Let ũn := un(· + yn), and then {ũn} is also a bounded minimizing sequence for
σ(c) in X and ∫

BR(0)

|ũn|2dx ⩾
δ

2
> 0 for n ∈ N+ large enough.

It follows that

ũn ⇀ ũ ̸≡ 0 in X, ũn → ũ in Lr
loc(RN ) for 2 ≤ r < 4∗, ũn → ũ a.e. in RN . (4.11)
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Similarly to the proof of Lemma 3.4, we may assume that there exist sequences λn, µn ∈ R such
that

I ′(ũn)− λnũn − µnP
′(ũn) → 0.

By a similar argument as Lemma 4.3, owing to P (ũn) = 0 and pδp > max{4, q(1 + δq)}, we can
get that µn → 0. Thus, we conclude that

I ′(ũn)− λnũn → 0 in X ′.

Since ũn ∈ Sc, and by Lemma 2.6, we have

(I|Sc
)
′
(ũn) = I ′(ũn)− λnũn → 0 in X ′,

which means that {ũn} is a Palais-Smale sequence for I|Sc
, since {ũn} is bounded in X, I(ũn) →

σ(c), and (I|Sc
)
′
(ũn) → 0. Similar to the proof of (3.9) in Lemma 3.4, we can prove that

∇ũn(x) → ∇ũ(x) a.e. in RN .
We now claim that ∥ũ∥2 = c. Otherwise, if ∥ũ∥2 = c1 < c, then Lemma 4.4 shows that

σ(c) < σ(c1). By using (4.11), we know that ∥∆ũ∥22 ≤ lim infn→∞ ∥∆ũn∥22 ≤ limn→∞ ∥∆ũn∥22 and
∥∇ũ∥qq ≤ lim infn→∞ ∥∇ũn∥qq ≤ limn→∞ ∥∇ũn∥qq. From Lemma 4.2, there exists τ0 ∈ (0, 1] such
that

τ
N/2
0 ũ(τ0x) ∈ Pc1 , P (τ

N/2
0 ũ(τ0x)) = 0.

We can infer that

σ(c) < σ(c1)

≤ I(τ
N/2
0 ũ(τ0x)) =

(1
2
− 2

pδp

)
τ40 ∥∆ũ∥22 +

(1
q
− 1 + δq

pδp

)
τ
q(1+δq)
0 ∥∇ũ∥qq

≤
(1
2
− 2

pδp

)
∥∆ũ∥22 +

(1
q
− 1 + δq

pδp

)
∥∇ũ∥qq

≤
(1
2
− 2

pδp

)
lim

n→∞
∥∆ũn∥22 +

(1
q
− 1 + δq

pδp

)
lim
n→∞

∥∇ũn∥qq

= lim
n→∞

I(ũn) = σ(c),

which leads to a contradiction. So, it must have c1 = c and τ0 = 1. That is, ∥ũ∥2 = c. Moreover,
denote wn = ũn − ũ, by Lemma 2.1, it follows that

∥wn∥p ≤ CN,p∥∆wn∥
δp/2
2 ∥wn∥

1− δp
2

2 → 0,

which yields that

lim
n→∞

inf I(wn) = lim inf
n→∞

1

2
∥∆wn∥22 +

1

q
∥∇wn∥qq ≥ 0. (4.12)

By (3.8) and (3.9), we obtain

σ(c) = I(ũn) + on(1) = I(wn) + I(ũ) + on(1) ≥ I(wn) + σ(c) + on(1),

which leads to

lim
n→∞

sup I(wn) ≤ 0. (4.13)

Then we conclude that ∥∆wn∥2 → 0 and ∥∇wn∥q → 0 from (4.12) and (4.13). This shows that
wn → 0 in X and thus ũ is a minimizer for σ(c). □

Proof of Theorem 1.2. From Lemma 4.5, we know that σ(c) is attained by some uc ∈ Sc. Suppose
v ∈ Sc is a critical point of I|Sc , Lemma 2.3 implies that v ∈ Pc. Thus, we have I(v) ≥ σ(c) =
I(uc). This indicates that uc is a ground state solution of (1.1). Next, by the Lagrange multiplier
rule, there exists a pair (λc, uc) that satisfies (1.1)∫

Rd

(
∆uc∆φ+ |∇uc|q−2∇uc∇φ− |uc|p−2ucφ+ λcucφ

)
dx = 0 ∀φ ∈ X.
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From 2
δp

− 1 > 0 and
1+δq
δp

− 1 > 0, we have

λcc
2 = ∥uc∥pp − ∥∆uc∥22 − ∥∇uc∥qq =

( 2

δp
− 1

)
∥∆uc∥22 +

(1 + δq
δp

− 1
)
∥∇uc∥qq > 0, (4.14)

which implies that λc > 0. In the same way as in (4.1), we can obtain

∥∆uc∥2 ≥
[ 2

δpCp
N,p

] 2
pδp−4

c
− p(2−δp)

pδp−4 and ∥∇uc∥q ≥
[ 1 + δq
δpK

p
N,p

] 1
pα−q

c−
p(1−α)
pα−q .

The conditions (1.12) and (1.13) ensure that

p(2− δp)

pδp − 4
> 0,

pq(1− α)

pα− q
> 0,

1

2
− 2

pδp
> 0, 1− q(1 + δq)

pδp
> 0.

Since uc ∈ Pc, we have

σ(c) = I(uc) =
1

2
∥∆uc∥22 +

1

q
∥∇uc∥qq −

1

p
∥uc∥pp

=
(1
2
− 2

pδp

)
∥∆uc∥22 +

(1
q
− 1 + δq

pδp

)
∥∇uc∥qq

≥
(1
2
− 2

pδp

)[ 2

δpCp
N,p

] 4
pδp−4 c

− 2p(2−δp)

pδp−4 +
1

q

(
1− q(1 + δq)

pδp

)[ 1 + δq
δpK

p
N,p

] q
pα−q c−

pq(1−α)
pα−q .

Therefore, we have

σ(c) ≥ A3c
− 2p(2−δp)

pδp−4 +A4c
− pq(1−α)

pα−q ,

where

A3 =
(1
2
− 2

pδp

)[ 2

δpCp
N,p

] 4
pδp−4 > 0 A4 =

1

q

(
1− q(1 + δq)

pδp

)[ 1 + δq
δpK

p
N,p

] q
pα−q > 0,

which implies that σ(c) → +∞ as c→ 0+. Similarly, from (4.14), we can derive that

λc ≥ A5c
− 4(p−2)

pδp−4 +A6c
− pq(1−α)+2(pα−q)

pα−q ,

where

A5 =
( 2

δp
− 1

)[ 2

δpCp
N,p

] 4
pδp−4 > 0, A6 =

(1 + δq
δp

− 1
)[ 1 + δq
δpK

p
N,p

] q
pα−q > 0.

Thus, we also conclude that λc → +∞ as c→ 0+. This completes the proof. □
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