Electronic Journal of Differential Equations, Vol. 2025 (2025), No. 121, pp. 1-20.
ISSN: 1072-6691. URL: https://ejde.math.txstate.edu, DOI: 10.58997/ejde.2025.121

EXISTENCE OF NORMALIZED SOLUTIONS TO KIRCHHOFF-BOUSSINESQ
EQUATIONS IN THE SUBCRITICAL AND SUPERCRITICAL REGIME

CHUNLING TAO, LINTAO LIU, KAIMIN TENG

ABSTRACT. In this article we study the existence of normalized solutions to the Kirchhoff-
Boussinesq equation under the mass constraint ||u|z2 = c. In the L2-subcritical regime, we
apply Ekeland’s variational principle and concentration compactness method to minimize the
energy functional on the mass-constrained manifold. In the L2-supercritical regime, we introduce
a Pohozaev-constrained minimization approach, combined with scaling arguments to recover
compactness. To handle the additional difficulties posed by g-Laplacian, we treat distinct ranges
of ¢ separately.

1. INTRODUCTION

In this article, we study the existence of normalized solutions to Kirchhoff-Boussinesq equation

A%u—Aju+du = [uff 2y in RY,

/ lu|?dx = 2, (1.1)
RN
ue X = H*RY)n DVYRY),

where N > 5,¢> 0,1 < ¢ < N, and 2 < p < min{4*,¢*}, with 4* = % and ¢* = ]\‘;—Tq as the
critical Sobolev exponents. Here A%y is the biharmonic operator, A,u := div(|Vu|?"2Vu) is the
g-Laplace operator, and A is a Lagrange multiplier enforcing the mass constraint fRN |u|? dr = c.
If (u,\) € H*(RN) N DM4(RY) x R satisfies (L)), then u is called a normalized solution of (L.IJ).

Problem originates from nonlinear plate theory and provides a fundamental framework for
modeling the dynamics of plates and elastic structures. More specifically, consider the following

nonlinear plate equation referred to as Kirchhoff-Boussinesq model
wye + kw; + A%w = div(|Vw[P72Vw) + cA(w?) — f(w) x € QC R? (1.2)

This equation is complemented by appropriate boundary and initial conditions (see [16, [17]).
Equation also arises as a limiting case of the Mindlin-Timoshenko system, which accounts
for transverse shear effects in plate dynamics (see [23] 24]).

Problem is closely related to the fourth-order nonlinear Schrodinger equation model widely
studied in nonlinear optics, Bose-Einstein condensates, and quantum mechanics. Its general form
is

i0p) — yA*p + BAY + f() =0 in R x RY, (1.3)

where v > 0, 8 € R, i is the imaginary unit, and f(¢) is the nonlinear term. Recent studies focus
on normalized solutions of the stationary biharmonic NLS ([1.3)), derived from standing waves
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P(x,t) = eMu(x), specifically
YA%u + fAu 4 M = f(u) in RY,

1.4
/ lu|? dz = c. (14)
RN

When S # 0, Bonheure et al. [§] established the existence of minimizers for and explored
their qualitative properties and orbital stability. As a natural extension, if 5 = —1 and 2 + % <
p < 4*. In [9] they investigated the existence of ground states and the multiplicity of radial
solutions. Later, for the case where y =1, e Rand 2 <p <2+ %, Luo et al. [30] applied the
profile decomposition approaches and demonstrated the existence of orbitally stable ground state
solutions. Luo and Yang [31] worked in the radial space HZ2 ;(R") and proved the existence of
two solutions to problem for ¢ sufficiently small, where one solution is a local minimizer and
the other is of the mountain-pass type. Additionally, Boussaid et al. [10] revisited problem
under the conditions v > 0, 8 >0and 2 <p <2+ %. By ruling out the vanishing property of
some minimization sequence, they confirmed that the results obtained by Luo et al. [30] hold for
all¢>0and 8 > 0.

For the case 8 = 0, Bellazzini and Visciglia [6] investigated problem with potentials

A%+ V(z)u — Q(z)|ulP%u= I in RV,

/ lu|? dz = ¢,
RN

where 2 < p < 2+ £ and V(2),Q(z) € L*(R"Y). Assuming Q(z) > 0 a.e. z € RV and the
existence of A\g > 0 such that 0 < meas{Q(z) > Ao} < o0, they established the existence of
ground state normalized solutions and discussed the orbital stability of the minimizers. They
also considered the case where V(z) = 0 and Q(z) = 1, extending this work from |u[’~2u to
more general L2-subcritical nonlinearity f(u) in Bellazzini and Siciliano [5]. Phan [34] further
investigated the effect of an external potential V (x) on L2-critical nonlinearity

A%+ V(z)u —alu)*Nu = inRY,

1.5
/u2dx:1. (1.5)
RN

Under appropriate conditions on V(z), problem admits at least one ground state solution
when a lies within a specific interval. For problems involving Sobolev critical growth, Ma and
Chang [32] focused on the case where v = 1, 8 = 0 and f(u) = plu[P~2u + |u[* ~2u with 2 <
p <2+ %, they established the existence of a normalized ground state solution. Later, Liu and
Zhang [29] further extended this analysis to the supercritical regime 2+ % < p < 4*. Their results
confirmed the existence of normalized solutions when p is sufficiently large.

Equation is also related to the problems involving (p,q)-Laplace operator arising in
reaction-diffusion systems,

O — Apu — Agu = f(z,u) (t,r) € R xRV, (1.6)

and has been widely studied because of applications in plasma physics, fluid dynamics, and biol-
ogy [3L[I8)]. For the stationary case with p = 2, Baldelli and Yang [2] investigated the existence of
normalized solutions to the (2, ¢)-Laplacian equation

—Au—Agu = u+[uf2u  in RY,

/ lu|? dz = c.
RN

They analyzed the problem in various regimes. In the L?-subcritical case, they obtained a ground
state solution by solving a global minimization problem. In the L?-critical case, they demonstrated
several nonexistence results, extending these findings to the L9-critical case. In the L2-supercritical
case, they established the existence of a ground state and infinitely many radial solutions. Later,
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Ding et al. [19] investigated the existence of normalized solutions to the (2, ¢)-Laplacian equation,
particularly when the nonlinearity g(u) exhibits strongly sublinear behavior

—Au—Agu+u=g(u) inRY
1.7
/ |u|?dz = c. .7
RN

The nonlinearity g : R — R is continuous and the behaviour of g at the origin is allowed to be
strongly sublinear, i.e., lim,_,¢ @ = —o0, which includes the logarithmic nonlinearity g(s) =
slog s2. The authors considered a family of approximating problems that can be set in H*(R™) N
DY4(RY) and the corresponding least-energy solutions. Then, they proved that such a family of
solutions converges to a least-energy solution to problem .

When p # 2, Zhang et al. [42] studied the p-Laplacian equation with an LP-norm constraint
—Apu = MulP"2u + plu|"?u+ g(u) in RY,

/ |u|Pdx = P,
RN

where N > 1,¢>0,1<p<qg<p, p€Rand g € C(R,R) is odd. In the LP-supercritical case,
they applied the Schwarz rearrangement and Ekeland’s variational principle to prove the existence
of a positive radial ground state for suitable values of y, and extended these results using minimax
theorems. Additionally, they demonstrated the existence of infinitely many radial and nonradial
sign-changing solutions for N =4 or N > 6. Other related results can be found in [22] 26] and so
on.

Recently, Cai and Radulescu [12] investigated the (p, q)-Laplacian equation with an LP-norm
constraint

—Apu— Agu+ NuP2u = f(u) inRY,

/ |u|Pdz = P,
RN

u e WHP(RN) n wha(RN).

They established the existence of ground states and analyzed the behavior of the ground state
energy E,. as the parameter ¢ > 0 varied.

For the fixed frequency problem associated with , Sun et al. in [38] studied the following
biharmonic equation with p-Laplacian

A%y — BAu+ NV (2)u = f(x,u) in RY, (1.8)

and they obtained multiple solutions of where N > 1, 8 € R, the potential V(z) is a steep
potential well, and f(x,u) satisfies some subcritical conditions. Moreover, Sun and Wu [39] [40]
established the existence of nontrivial solutions to with the singular sign-changing potential
V(z), and f(z,u) =0 and 8 < 0. Additionally, Figueiredo and Carlos [2I] showed the existence
of solutions for the class of elliptic Kirchhoff-Boussinesq-type problems given by

A%u—Apu+u=h(u) inRY, (1.9)

They proved the existence and multiplicity of nontrivial solutions. Meanwhile, Razani et al.
[36] studied the anisotropic Kirchhoff-Boussinesq equations with exponential growth, where the
existence of solutions was proved. For other related results, we refer the interesting readers to see
[13] 201 B3] 37].

To the best of our knowledge, the existence of normalized solutions for has not been studied
before. The main purpose of this paper is to establish the existence of normalized solutions to
7 which can be obtained by searching for critical points of the following functional

1 1 1
I(u) = 5[ Aull3 + A Vela = Sl

on the constraint
Se={ue X = H*R")N D" I(R") : |julls = c}.
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Notation. Throughout the paper we use

N(p—2) N(g-2) _ Nalp-2)
2p 2 pla(N +2) - 2N]

The following constants will appear in Theorems [I.1] and [T.2}

F3 P 4
_ (pdg—4 pOp—q(1+34) 4571:5 CN,P 4=pop
Al n ( pdp + Pdp 2ewee p ’

5p: B 5(1:

4-25 0 \oge (CR N\ Ty
A2 — ( 5 P + 67)24—;75,, ( p,p) ,
P P

4
_(1_ 2 2 \Ppd
A= (3= (5é) ™

q
_1(q _ a(1+d) 1404 ) Po—a
Av= (1= 250) ()™

4
_ 2 2 pép—4
as= (1) ()™

q
144, 1+46 pa—gq
o (25 )
6 5y o KX,

Our main results are stated as follows. In the L2-subcritical case, we study a global minimization
problem.

Theorem 1.1. Let N > 5, ¢ > 0. Assume that
2<p<p, (1.10)

where p denotes the upper critical exponent threshold defined as p := min {q (1 + %) ,2+ %}
Suppose that q satisfies

either or 2+

4 4
N +2 N +2
Then m(c) == inf,eg, I(u) is attained by some u € S,, which is a ground state of (L.1)). Addition-
ally, we have

N
2<q§2+ <g<N. (1.11)

2p(2—3p) 4(p—2)

(1) Ajc ™% <mfc) <0, 0< A < Agc? 7% ;
(2) m(c) =0~ and A\c = 0" as c — 0T,

In the L?-supercritical case, we consider a modified minimization problem o(c) := inf,cp, I(u),
where

Pe = {u € S : P(u) := 2| Aull3 + (1 + 8) [ Vul|§ — 6p[[ull? =0} .
We establish the existence of a ground state.

Theorem 1.2. Let N > 5, ¢ > 0, and

2
max{2+ %,q(l + N)} < p < min{q*,4"}, (1.12)
IN2 4 8N N N 2N
ith , < ' {Ni} 1.13
eer NmoNys SIS N2 7 N2 SIsmMUN N ov —3 (1.13)

Then o(c) := inf,ep, I(u) is achieved by some u € P, and is a ground state of (L.1)). Moreover,

we have
2p(2-5p) _pa(l—a) 4(p—2) _pa(l—a)+2(pa—q)

(1) o(c) > Azc™ P»=* + Ayc™ pa—a >0, Ao > Asc Pp—* + Age pa—q
(2) o(c) = +oo and A\e — 400 as ¢ — 0.

)

Remark 1.3. In the subcritical regime, m(c) — 0~ as ¢ — 07 indicates stable, low-energy
bound states for small mass, consistent with minimal energy configurations in plate theory. In the
supercritical regime, o(c) — +00 as ¢ — 0" suggests that maintaining a normalized ground state
at vanishing mass requires infinite energy, reflecting the instability often found in supercritical
nonlinearities.
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Comments on Theorems|[I.T]and [[.2} To prove Theorem[I.1] we first show that the global minimum
m(c) is attained. From a minimizing sequence {v,} C S., we apply the Ekeland’s variational
principle to obtain {u,} C S., a Palais-Smale sequence for I|g_, satisfying

[un = vnllx =0,  (Is.) (un) =0 (0 — o0).

We then show that there exists u. € S, with Vu, — Vu. a.e. in RY which is a key step for the
Brézis-Lieb splitting. After ruling out vanishing we use the strict subadditivity m(c) < m(c1) +
m(ez) (0 < ¢1 < ¢) to exclude dichotomy and recover the compactness of {u,}. Meanwhile, this
yields the required bounds for m(c) and ..

Theorem addresses the more delicate situation in which I|g, = —oco. We first prove that
the modified problem o(c) admits a minimizer. The set P, is characterized by the mass constraint
and the Pohozaev identity P(u) = 0, and we verify that I|p, > —oo. Next, we show that o(c)
decreases strictly with c; the resulting monotonicity yields a minimizer.

The remainder of the paper is organized as follows: Section [2| presents preliminary results
required for Theorems [I.1] and [I.2] while Sections [3] and [4] present their proofs.

2. PRELIMINARIES

In this section we present lemmas required for proving Theorem First, we recall the
Gagliardo-Nirenberg inequality, which will be crucial in our analysis.

Lemma 2.1 ([33, Theorem in Lecture II]). Let N > 5, 2 < p < 4* = 2 and 6, = N(;;;z).

There exists an optimal constant Cn,, > 0, depending on N and p, such that for all u € H? (RN),

5p/2, 1-22
lully < CovpllAulls”?[fully”* . (2.1)

Furthermore, we frequently use the inequality

1/2 1/2
/ Vul? dz < (/ Auf? d) (/ uPde) " vue H2®Y). (2.2)
RN RN RN

1
Next we fix notation. For 1 < p < oo we set [|ull, := ([pn [u[Pdz)?, whereas for p = oo
we define ||ulls := esssup,cpn~ |u(x)|. The Hilbert space H?(RY) consists of all u € L*(RY)

with Vu, Au € L?(R"Y) and is endowed with the norm [|[u]| g2~y := (|[ull3 + [[Vu3 + HAuH%)l/Z.
Inequality (2.2)) implies that the seminorm

1/2
e = (/RN Auf + uf?de)

is equivalent to [lul| g2ryy. We define DM(RY) := {u € LT (RY) : Vu € LY9(RN)} and equip it
with the norm ||u||pr.a := [|Vull,.

* Ngq(p—2
Lemma 2.2 ([IL Theorem 2.1]). Let N > 5, 2 < p < ¢*, % <qg< N and a = m.

Then there exists a constant Ky, > 0 such that
lully < Ky plVulgllul,™  vu € DVRY) 0 L2 RY).
Now, we introduce the work space X := H?(RY) N DY4(RY) and endow it with the norm

lullx = l|ull g2~y + [[ull pra@ny. It is clear that X is a reflexive Banach space. Throughout the
paper X’ denotes the dual of X, and (-, -) stands for the corresponding duality pairing.

Lemma 2.3. Let N >5, 1 <qg< N and 2 < p < 4*. If u € X is a weak solution of (1.1)), then
it satisfies the following PohoZaev identity

2| Aull3 + (1 + 80)[[Vullf — opllull} = 0.

Proof. Since u is a weak solution, for any ¢ € X, we have

AulApdx +/ |Vul|1™2Vu - Vo d + )\/ wp dx :/ |ulP~2up de.
RN RN RN RN
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We begin by assuming that u € C3(R”). First, choose the test function z - Vu and integrate over
the ball Bg = {x € RV : |2| < R},

/ A?u(z - Vu)de — / Aqu(z - Vu) dr + )\/ u(z - Vu)dr = / [ulP~2u(z - Vu) da
Bgr Br Br

Br
Direct calculations yield

A%y (x - Vu) dz

Br

= Au - Az - Vu)dx — Au -9y (z - Vu) dS+/ (x - Vu) - 0,(Au)dS
Br OBRr 0BRr
4A-N , R ,
—_— |[Aul® dz + = |Aul®dS — Au -9y (z - Vu)dS + (z - Vu) - 9,(Au) dS,
2 BR 2 8BR OBR aBR

/ —Agu(x - Vu)de = / V|92V - V(z - Vu) dr — / V|92 (x - Vu)(Vu - v)dS
Br Br OBRr

- N
| \vu|qd:c+5/ |vu|qu—/ (V|7 2(z - V) (Vu - v) dS,
Br q JoBgr OBpR

q
2

N R
/ u(x-Vu)dx:/ :E-V(u—)dx:—— u?de + = u?ds,
Br Br 2 JBg 9Br

p N
ul” “u(xr - Vu)dr = z - r=—— ul” dr + — U ,
P2y (z - Vu)d v 4 Pz + B Pds
Br Br p P JBg P JoBgr

where v is the unit outward normal on 0Bg and dS represents the surface area element on 0Bg.
Therefore,

N -4 N—gq AN N
THAUHLQ(BR) + THVUHqu(BR) + 7HU||2L2(BR) - ?HUHIEP(BR)
_ B |Aul? dS — Au -9y, (x - Vu) dS—|—/ (z-Vu)-0,(Au)dS
+ B vuras - / Vul"(z - Vu)(Vu - ) dS
q JoBgr OBR

+ R u?dS — E/ |ulP dS.
2 JoBx P JoBg

Let R = R, with R, — oo as n — o0, and the right-hand side of the above equation tends to
zero. Thus, we obtain

N—4 N-—gq
7IIAMH2

AN N
IVullg + = llullz = P (2.3)

Next, by choosing ¢ = u in , it follows that
||Au||§+ IVullg + Allullz = [lull} = 0. (2.4)
By combining equations (2.3]) and (2.4]), we derive the Pohozaev identity
2 Aul3 + (1 + 09 [IVull — 6 [lully = 0.
The proof is complete. O

At the end of this section, we recall some preliminary lemmas and inequalities that will be used
later.

Lemma 2.4 ([I5, Lemma 5], 25, Lemma 2.7]). Assume s > 1. Let Q be an open set in RN, o, 3
positive numbers, and a(x,&) € C(Q x RN, RYN) such that

(1) alél® < alx,&)E for all (z,€) € Q. x RY,

(2) la(z. )| < B! for all (z,€) € 2 x BY,

(3) (ala.&) — a(e,m)(Em) > 0 for all (2,€) € @ x RY with & #1,

(4) alw,7€) = vhI"2a(e,€) for all (2,6) € @ x RY and y € R\ {0},
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Consider {u,}, u € WH3(Q), then Vu,, — Vu in L*(Q) if and only if

lim | (a(z, Vun(z)) — a(z, Vu(z))) (Vun(z) — Vu(z)) dz = 0.

n—oo Q

Lemma 2.5 ([, Lemma 3]). Let {u,} be a sequence in S. which is bounded in X. Then the
following statements are equivalent

(1) [(I]s.)" (un)ll = 0 as n — +o00;

(2) I'(up) — (I'(un), un)un, — 0 in X’ as n — +o0.

Lemma 2.6 ([41l Theorem 8.5]). Let X be a Banach space and for every v € S., G'(v) # 0,
where G(v) = ||[v||3 — 2. If I € C*(X,R) is bounded below on S., v € S, and €,5 > 0 satisfying
I(v) <infg, I +¢, there exists u € S, such that

8¢

I(w) <inf I+ 2¢, |I]s.(u)llx = sup [(I'(u),h)] = min [I'(u) = AG'(u)|| < =, [Ju—v]lx < 20.
S. (u,h)=0 AER )
IRl x=1

Lemma 2.7 ([I1, Theorem 1]). Let 1 < p < oo and let {u,} C LP(RY) be a bounded sequence
converging to u almost everywhere. Then u, — u (weakly) in LP(RYN).

Remark 2.8. For any r > 1, there exists a constant C(r) > 0 such that for all x,y € RN with
|z| + |y| # 0, it holds
loyl®  r1 < <2,

z| 2 — |y|" 2y, x —y) > C(r) x { Uel+lyhr
(] Y™y, —y) = C(r) {xyl’“ ifr>2

3. PROOF OF THEOREM [L.1]

In this section, we study the existence of a global minimizer in the mass subcritical case and
consider the following constrained minimization problem

= inf [

m(c) == Inf I(u),

where S; := {u € X, |lulj2 = ¢}.

Lemma 3.1. Let ¢ > 0, and assume conditions (1.10) and (1.11) hold. Then —oo < m(c) < 0.

Proof. 12 <p < q(1+ %) and {25 < ¢ <24 325, then pd, < q(1+6,) <4 f2<p<2+ %

and 2 + ﬁ < ¢ < N, then pé, < 4 < ¢(1+ ;). Therefore,
pdp < min{4, q(1+ d)}.
For any fixed u € S., by applying Lemma [2.1} we obtain

1 1 1
I(w) = || Aul? + = || Vul|2 — = [Jul|?
(u) = 3l U\|2+q|\VUHq pIIUIlp

1 , 1
> gllAullz = Zlully (3.1)

1 Cp B pSp
> sllaul - 2t aul, T,

which implies that m(c) > —oo.
Next, we show that m(c) < 0. Consider the rescaled function wu(z) = tV/2u(tx) € S., we

deduce that
tQ(l‘HSq)

t4 ) tpzip
(ur) = 5 [|Aullz + [Vullg — TIIUHZ-

Since pd, < min{4,¢(1+ d,)}, for sufficiently small ¢ > 0, we conclude that m(c) < I(u;) < 0.
This completes the proof. O

Lemma 3.2. Suppose that (L.10)) and (1.11)) hold, then the map ¢ — m(c) is continuous for ¢ > 0.
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Proof. Let ¢ > 0 and {c,} C (0, +00) such that ¢, — ¢. We aim to show that m(c,) — m(c). For
each n € N, there exists u, € S, such that m(c,) < I(u,) < m(c,)+ <. Hence, by Lemma
for n sufficiently large, we have I(u,) < 0. Then, we deduce from (3.1]) that

2017 2 p(2—ép) 2Cp 2 (2—6p)
|Aup |2 < (7N’p> e < (7N7p) e cp‘**PJi +0,(1). (3.2)
p p

On the other hand, it follows that
S 1 A 12 1 g 1 P> 1 g 1 »
02 I(un) = 5| Aunllz + QIIVUan - 5llunllp > QIIVUnIIq - ];Ilunllw

which implies that

4 2p(2—dp)

1 1 C® 5p pdp psp CF
[ Vunll? < = flunllp < 2B Ay, < 270 [R5 4o, (1), (3.3)
q p p P

Therefore, the sequence {u,} is bounded in X. Next, considering vy, := ~up € Sc, we have

1 1 1
I(vn) = 5| Avall3 + QHV%HZ - Ellvnllﬁ

1/¢c 1/ ¢cN\9/2 1/ ¢ \P/2
o LI T T 2 T
(8wt + 2 () 1Pl = 2 ()

The boundness of {u,} in X and the convergence ¢, — ¢ as n — +oc imply that
m(c) < I(vy,)

1/¢ o lyrend l7/7cn\%
= 1)+ 5 (= Il + ()7 = 1) 19l = ()7 = 1)l
= I(up) + on(1).
Taking the limit as n — 400, we obtain
1
m(c) < I(vy) = I(un) + 0n(1) < m(cn) + n +on(1),
which yields that m(c) < lim,— 4 inf m(c,,). In a similar way, let {w,} be a minimizing sequence
for m(c), which can be proved that it is also bounded in X. Define 2, := “*w, € S, , then
m(en) < I(zn) = [(wy,) + 0,(1),
which leads to lim,,_, 4 sup m(cn) < m(c), thus completing the proof. O
Lemma 3.3. Suppose that and (| - hold. For any c1 € (0,¢) and ca = \/c? — ¢, then
m(c) < m(cr) +m(cz).

Proof. For each ¢; € (0,c¢), let {u,} C S¢, be a minimizing sequence for m(cl) that is, I(u,) —
m(c1) as n — oo. Clearly, un(O’%x) € Spe,, by using 2 — % <2and 2— 3L <2 for any 6 > 1,
we have that

m(0c1) — 0°m(cy) + on(1) = m(0cy) — 021 (uy) < I(un (0~ % 2)) — 621 (uy,)
9277 - 2 2
| Aun]l3 + [Vunl|§ — 6% [|unllf — 671 (un)

_8 1 _2q
= (92 & 792) | A |2 + . (92 ¥ 492) [Vun|l2 <0,

which yields that m(fci) < 6?m(cp) for all § > 1, and m(fcy) = 6?m(cy) holds if and only if
[lAuy|l2 = 0 and || Vuy,|lq — 0, by (2.1), we have that ||u,|/, — 0 and

1 1 1
_ 1 _ - q_ = P _
0>m(c) = ngrfoo I(u,) = 5 nEIJrrl | Auy, ||2 + hm [V, |2 - TLEIE |unlh =0,
which achieves a contradiction. Thus, there must hold true that

m(fcr) < 02m(c;) VO > 1. (3.4)
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By a similar argument, we derive that

m(fcz) < 0*°m(cy) VO > 1. (3.5)
Finally, apply (3.4) with § = > > 1 and (3.5) with 6 = > > 1, we get
2 2

c c c
—m(acl) + c%m(;cz) < m(cr) +m(ca),
Because c3 = /c? — ¢2, we conclude that m(c) < m(c1) + m(ca). O
Lemma 3.4. Suppose that (1.10) and (1.11)) hold. Let {v,} C S. be a minimizing sequence for

m(c), there exists a sequence {un} C S, such that

ltn —vnllx =0 and (Ils,) (un) =0 asn — +oo.

As a result, the sequence {u,} is relatively compact in X up to translations, implying that m(c) is
attained.

Proof. Since {v,} C S, is a minimizing sequence for m(c), by Lemma there exists a new
sequence {u,} C S, such that ||u, — v,|x — 0, which is also a Palais-Smale sequence for I|g,,
that is, I(u,) — m(c) and (I|s,) (un) — 0. Thus, Lemmashows that

I'(up) — (I'(un), uphun, — 0in X' (3.6)

If limy, 00 SUP,epn fBR(y) |un(z)]?dz = 0, for any R > 0, then it follows from [28, Lemma 1.1]
that

lim |lug|lr =0 for 2 <r <4

n—oo

This leads to ||u,||, — 0 and

. I 9 1 ¢ 1o »
Z = \V4 S—_— >
0 > m(c) nhm I(uy,) 5 nhm |Aunl5 + . nhm V|2 ’ nhm |unlh >0,

which achieves a contradiction. Therefore, there exist > 0 and a subsequence {y,} C RY such
that

)
/ [ (x)[* dz > = >0,
Br(yn) 2
for some R > 0. By Lemma we obtain that {w,} is bounded in X and thus, up to a
subsequence, still denoted by {u,}, we may assume that there exists u. € X such that
Up (- + Yn) = u. in X,
Un (- +Yn) = ue in L (RY) for all 2 < r < 4%, (3.7)
Un (- +yn) = ue ae. in RV,

Define wy, () := tn (- + yYn) — Ue, (3.7) implies that w, — 0 in X. Moreover, from the Brézis-Lieb
Lemma [IT], we obtain as n — +oo

HunH% = |lun(- + yﬂ)”% = [lw, + ucn% = ||wn||§ + ||UCH§ +0n(1),
[Aun I3 = [[Aun (- + yn)lI3 = |Aw, + Aucllz = [[Awn|l5 + | Aucl5 + 0 (1), (3.8)
unlly = llun( +yu)llp = llwallh + [lucllh + 0n(1).

Next, we let ® € C§°(RY) satisfy 0 < ® < 1 and

. 1 ifx GBl(O),
le) = {0 it z € RV \ By(0).

For any R > 0, define Up(z) := ® (%) for z € RY. It is easy to verify that Wx(z) € X. Now, let
P () := (Auy — Aue)(Auy — Aug) + (Vg |77 Vuy, — [V Vue) (Vi — Vi) .
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From Remark it follows that P,(x) > 0. Then, we get ¥z = 1 in Bg by the definition of
Ugr(x), so that

/ P,dx = P,V gpdx < P,V rdx.
Br Br RN

Since
(I'(un), (un — ue) VR(z — yn)) = (I' (@), (U — ue) ¥ R)
= /RN Aty A [(ty, — ue) ¥R de + /RN |Vt |92V, V (i, — ue) VR do
—/ T |P™ 20, (1, — U)W R dz
R
= | At [A (T — )]V g da + 2 . A,V (T, — ue) VU g da

+ | A, AVg (G, — u.) dr +/ |Vt |92V, V (i, — ue) Vg da
RN RN

+/ |V, |92V, (i, — ue) VU da — / |, [P~ 20, (i, — 1) VR da,
RN RN

it follows that

P, dx
Br

< / [(Aun — Au)(Auy — Aug) 4 (|Viig|" ™ Vi — |Vue|?? Vue) (Vi — Vue) | Upde
RN

= (I'(Qp), [(tn, — uc)VR]) — . AuA(ty, — ue)Vpde

-2 A, V(U — ue) VU gda — Ay (g, — ue) AV pdx
RN RN

+ / |y [P~ 2y (1, — 1)V pd — / (Ve T Ve (Vi — Vo)W pda
RN RN

—/ |Vt |12 Vi, (i, — ue) VU Rda.
RN

We deduce from (3.7) and Holder’s inequality that
1/2 1/2
’/ U (T, —uc)\I/Rdx’ < (/ ﬁidm) (/ (U, —uc)2\11%d:c> — 0.
RN RN RN

Thus, (3.6) implies that (I'(@y), [(4n — ue)PR]) — 0 as n — 4o00. By the definition of ¥y, there
exists a constant C' such that |VUg(x)| < %, AT R(z)] < %, Vz € RY. Applying Hélder’s

inequality again, we obtain
C
| / BtV (i~ 10e) Ve dr| < 2| A2V (i = 1) 2
RN R

‘ A (it — 1) AW da:‘ < %||Aan||2||an ~ s,
]RN R

NV 1/
‘/ |Vﬂn|q_2Vﬂn(ﬂn—uc)V\I/Rdx’ < (/ |V, | (@ dx) ! (/ i —uc|q|V\IlR\qu> !
RN RN RN

< HVﬁnH%;l”ﬁn — UelLa-

= Q

We define the functional
flv) = / V|7 2Vu V¥ pder,
]RN
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for every v € X. From [4], we see that f is a linear functional in X', implying that as n — +o0,
/ V|7 2Vu Vi, U pdr — / |V |90 pd.

RN RN
By the fact that Ad, — Au. in H? and Au.Ug € L?, we conclude that n — 400

Au A,V gdr — \Auc|2 U rdz.
RN RN

Since H?(RY) — LP(RY) for 2 < p < 4* and {d,} is bounded in X, it follows that there exists

M > 0 such that ||@,]|,- < M, so
p* p/p*
[ [ @7 "~
RN

which means {|@,|P} is bounded in L7 (RY). It follows from (3.7) and Lemma [2.7| that |d, [P —

luP in L% (RN). Therefore, as n — 400

/ |7.~Ln‘p\I/R — / |uc|p\IlR.
RN RN

Similarly, we can prove {|@,[P~!} is bounded in Lﬁ(RN). Thus, we are able to show that as

n — +oo
/ |t |P 21 ue U R —>/ [ue|PU .
RN RN

Thus, we arrive to lim,, o fBR P,dxz < 0. Since P, > 0, we conclude that lim,, o fBR P,dxz = 0.
By Lemma up to subsequences, it holds Vu,, — Vu, a.e. in RY. Thus, from the Brézis-Lieb
Lemma, it follows that

IVunll§ = IVun(- +yn)ll§ = [Vwnll§ + IVuell§ + on(1). (3.9)

[zd|

e < MP,

P
L7r

Finally, we claim that u,(- + y,) — u. # 0 in L2(RY), which implies that |lw,|2 — 0 in
L*(RY). Denote ¢ = |luc||2 > 0. If € = ¢, the proof is completed by (3.8). If ¢ < c. Using (3.8)
and (3.9)), we obtain

m(c) = I{tn) + on(1) = I (tn(- + yn)) + 0n(1) = I(wy) + I(ue) + 0n(1) > m(||wy]2) + m(©).
(3.10)

By Lemma it follows that
m(c) = m(cz) +m(e),
where ¢y = |lwp|l2 = V¢ — € > 0, this contradicts with Lemma @ Thus, we conclude that
||luc]l2 = ¢ and hence w,, — 0 in L?2(RY). By Lemma it immediately follows that
5p/2 1-%
lwally < Cx pllAwallz”? wnlly”* — 0.

Thus, one deduce that

n— oo

o | 5 1
lim inf I(w,) = llmnlilgo §||AwnH2 + gvan”Z > 0. (3.11)
On the other hand, using |Ju||2 = ¢, we obtain

m(c) = I(wn) + 1(uc) + 0n(1) = I(wn) +m(c) + on(1),

which yields
lim sup I(w,) < 0. (3.12)

n—oo

Therefore, we conclude that ||Awy,|z — 0 and [|[Vw,]||; — 0 from (3.11)) and (3.12). Combined
with ||wy||2 — 0, this shows that w, — 0 in X. O
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Proof of Theorem[1.1 From Lemma it follows that m(c) is attained by some u. € S.. By the
Lagrange multiplier rule, there exists a pair (A, u.) that satisfies (1.1)

1Auc]3 + [ Vuell§ + Aelluc]lz = [lucll} = 0.

Using the fact that 6& —1>0and 1?& —1 >0, it follows from Lemma that

2 1+6
Nec? = Jlucllh = | Aucl3 = [Vucls = (= = 1)1 Aucf3 + (——=
D p

which shows that A, > 0, indicating the existence of a nontrivial solution to ([L.1)). Similarly to

get (3.2) and (3.3)), we obtain

- 1) Va2 >0, (3.13)

p(2—6p)

P 2
||Auc||2 S (26’;\]@) e c - rop 9

% P 4 2p(2—5p)

1 1 C pip  C
NTuely < Sluclly < =220 | V| < 2755 K2 et

From (|1.10) and (1.11)), we have % — p% < 0, % — 1;;6‘1 < 0and 2—-6, > 0. By Lemma [2.3] we
deduce that

1 1 1
0> m(e) = I(uc) = 3 [[Auell3 + IVellg = 2 luelly

= (3- =)l + (3 - L2 v

2 pé, Pop
P P

> p(sq — 4245?311 [CN,p}ﬁc%;;?) + pép - Q(]. + 5q) 245(;[,)51) [CNyp] 4_;1,5]) Czi(f;;:) )

T Py p Pop p
Therefore,

2p(2—46p)
m(c) > Ajc ¥ P% |
where
p
Ay = (péq L (G ‘5‘1))245‘3&» Syt <,
pop Pdyp

This fact also indicates that m(c) — 0~ as ¢ — 0.

4(p—2)

Similarly, from (3.13)), we have A\, < Asc*?% | where

4—-24 g\.2on COR s
Ao = P 2 )91-»5 P1i=ps, .
2= ( T -+%) ()T >0

This fact leads to A, — 01 as ¢ — 0. O

4. PROOF OF THEOREM

This section is devoted to proving the existence of a normalized ground state solution in the
L2-supercritical case. We first observe that the following conditions hold

8 2N + 8
2+ — i 4y 1 <
—&—N<p<rmn{q7 1, <q_N_~_2

2N +8
N +2

= q(1+94,) <4< péy,

2
q(14+ =) < p < min{q*, 4"}, <g< N = 4<q(1+6;) < pdp,

N
which yields
max{4, ¢(1+d4)} < pdp.
Let u € S, be fixed. We then define u, () = t™/?u(tz) € S,, and it follows that

tQ(1+5q) tp5p
IVull = = |fulls = —00 as t — +oo.
p

"
= i < = 2
m(c) uléléc I(u) < I(ug) 5 |Aul|5 +
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In this case, I(u) is unbounded from below on S, so the global minimization method cannot be
used to find critical points of I|g, . Thus, we consider a modified minimization problem

= inf [
o(c)i= inf I(w)
where
Pe = {u€ S+ P(u) == 2||Aull3 + (1 + 6) [ Vul[§ — 6,[lull} =0} .
By the following lemma, we see that I(u) is bounded from below on P..
Lemma 4.1. Let ¢ > 0, and assume that conditions (1.12)) and (1.13|) hold. Then, I is coercive

on P., and

= inf [ .
o(c) Jnf (u) >0

Proof. For any u € P,, by Lemma [2.1] and 2.2 we obtain
Pop s
2| Aull3 < 20 Aul3 + (14 60)[Vulld = 8, [lullf < 6,CR Il Aully® =2,
(L4 0)IIVull§ < 20 Aul + (1+6,)[[Vull§ = Gy[lully < 5, K5, [[Vulffe?™ =),

Consequently, we can deduce the lower-bounds for [|Aul|z, [[Vull, and |u[[} as follows

2 =2 _pe=%) 1484 15a7 _»a-a)
| Aull; > T |Vl 2 || e
[5PCJpV,p] ! 5PKIP</',;D
—4 2020 _4  _pg(l-a) (4.1)
2[6PCQPNP]‘"5”‘4C Pip +(1+6q)[5:;%p]””‘“c S
Jufy > =% : '
P
For any fixed u € P., we can rewrite I(u) as follows
1 1 1
I(u) = S Aull3 + =~ [IVullZ = = [lull}
2 q p
(4.2)

L 2V au + (2 - 200 e,
2 pép q pép

For every sequence {uy} C P. such that |Juy|x — 400, we deduce from max{4,q(1 +d,)} < pd,
that I(ug) — +oo. Hence, I is coercive on P,.. By (4.1) and (4.2), we also conclude that o(c) > 0.
Thus the proof is complete. O

Lemma 4.2. Assume that and are satisfied. Then, for any u € S, and u(z) =
tN/2u(tz), there exists a unique to > 0 such that I(uty) = maxeso I(us) and uy, € Pe. In particular,
the following results hold

(1) to<l<= P(u) <0;
Proof. For any u € S,, since u;(x) = t"/2u(tx) € S., we define the function
£a(146,)

t4 2 tpép
h(t) = I(u) = 5 | Aullz + IVul[§ - 7”“”5 vt > 0.

Differentiating h(t) with respect to ¢, we have

B(t) = 26%| A3 + (1 + 0)t 7| Vul§ — 07 [lully _ Pur)
t t
By max{4, ¢(1+d4)} < pdp, it follows that 1'(t) > 0 for ¢ > 0 small enough, and lim;_, ;o b/ (t) =
—o00. Therefore, h(t) has a unique maximum at some point ¢y > 0, see [27]. Moreover, since
W (to) = P(Z;to) = 0, we can infer that us, € P.. Thus, we conclude that I(us,) = maxso I (ut)
and P(u,) = 0. Next, we show that P(u) < 0 = ¢y < 1. Assume that t; > 1, since h'(tg) = 0
and P(u) < 0, we obtain

0 = 26y P | Au|3 + (1 + 6,8 0P [T — 6, lul?
< 2| Auld + (1 + 6| Valld — 8wl
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= P(u) <0,

which is a contradiction. Thus, P(u) < 0 = to < 1 is proved. If P(u) = 0, it is easy to verify that
neither ¢y > 1 nor ¢y < 1 can not occur. Hence, P(u) =0 =ty = 1.
Finally, we prove that tg < 1= P(u) <0 and to =1 = P(u) = 0. If t; < 1, we have

0= 26" Aull3 + (1 +8)eg "7 | Vallg — 5l
> 2| Au|3 + (1 +80) [ Vullg — 6, [lul?
= P(u).
This implies tg < 1 = P(u) < 0. When ¢y = 1, it can be easily shown that to = 1= P(u) =0. O

Lemma 4.3. Suppose that (1.12) and (1.13) hold. Then, every minimizer of I|p, is a critical
point of I|s, .

Proof. Let u be a minimizer of I|p_. Then, we have P(u) = 2[|Aul|3+ (14 8,)[|Vul[Z = bp|ul/ = 0.
According to [I4, Corollary 4.1.2], there exist two Lagrange multipliers A and p such that

I'(u) = Au—pP'(uw) =0 in X'
That is,
(1= 4p) A% — [1 = pg(1 + 8¢)] Aqu + (pdy — 1)[ulP~u — du = 0.

Similarly to the proof of Lemma we can derive that

2(1 = 4p) | Aull3 + [1 = q(1 + 8¢) ] (1 + 8g) [Vl + (pdy — 1), [[ull} = 0. (4.3)
Recalling that P(u) = 0, thus (4.3) can be reduced to

u{S18u3 + a1+ 5,2 Vullg — pi2uls} =0
Using P(u) = 0 once more, we obtain
u{204 — p3,)|Aul3 + (14 5,)la(1 +6,) — pi, ) [Vullg} = 0. (14)

Owing to pd, > 4 and pd, > ¢q(1 + ), we can conclude that ;1 = 0 from (4.4). Consequently,
I'(u) — Au =0 in X'. This indicates that P(u) = 0 in P, is a natural constraint. O

Lemma 4.4. Suppose that (1.12)) and (1.13)) hold. If ca > ¢1 > 0, then o(c2) < o(c1).

Proof. From Lemma we deduce that o(c) > 0 for any ¢ > 0. By using Lemma there exists
a sequence {u,} C P, such that

1
o(er) < I(un) = max ItV 2un(tz)) < ofcr) + . (4.5)
For each u,, € P.,, we have
1 2 1 1+
2 VAW 12 Z_ g 4—7 < 1. 4.
(3 = o IBunl+ (5 = 5 ) IVunlly = un) < ofer) + (4.6)

By pé, > 4 and pd, > q(144,), we infer that {u,} is bounded in X. From max{2+%,q(1+ %)} <
p < min{¢*,4*}, we can deduce the following facts.
(1) When 2 + % >q (1 + %) and ¢* < 4*, thus 2 + % < p < ¢*, and we deduce that

2+ 8 < ¢ 2

’ 2N? + 8N 2N +8
8 2
2+N42q(1+ﬁ)’ MiaN+s 1SNtz
q*< *

(2) When 2+ £ < ¢(1+ %) and ¢* < 4%, we have that ¢(1 4+ %) < p < ¢* and

q(ltﬁ)?q*’Q) ON +8 2N
2+N<q1+ﬁ, <q< .
¢ < 4% N+2 N -2
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(3) When2+% Zq(1+%) and ¢* > 4*, then 2+% <p<4* and
8
2+ — < 4%,
* N
8 2
24 —>q(1+ —
+ 2 e+ ),
q =4,
cannot occur.
(4) When 2 + % <q(l+ %) and ¢* > 4*, we have that ¢(1 + %) <p<4* and
Q(l—;%)<4*a2 2N2
2*—|— F*< 1+ %), = N3 <q< mln{N,iN2 72N78}'
q =4,
Now, for ¢; > ¢1 > 0, we prove o(c2) < o(c1) in two cases.
2
Case (i): % <qg< % and max{2 + %7(] (1 + %)} < p < ¢*, this implies that
N
25,-2<0 and N+p——L>0. (4.7)
q
We denote )
0 := (6—2) 51 and vp(x) = O%Un(e_lx).
C1
Direct computations yield
_2N
[vally = OV T2 lun 13 = 620+ = 5, [[Voal§ = [[Vunlld, (4.8)
_g_2N _ _Np :
[Ava 13 = 072770 | Aun |3 = 6% %[ Aunl3,  [lonllh = 0V flug .

By Lemma there exists t,, > 0 such that t,ly/Qvn(tn:z:) € P., and
o(c2) < I(tN 0, (t,x)) = max ItV 20, (tx)).
From and 6 > 1, we have
0%2_1<0 and 1-6NPF <0,
Notice that {u,} is bounded in X and
P(tN?0, (tn)) = 250%0 2 Ay |3 + (1 + 8,540 |V 4 — 8,825 0N 7= s, 12 =,

thus there exists a positive constant M such that ¢, > M. Hence, by (4.1) and (4.8, we deduce
that there exists a constant C' > 0 such that

Q(l‘qu)

N t4 A th‘SP
0(62)Sf(tn/Qvn(tnx))ZﬁllAUnH%Jr . VoI —

lvnllp
£a1+0) R0

by o5, — s 4
= DR Ay + [ Vunll — 0N

pd
tn”

A B
= I(t) un(taz)) + 2 (0572 = 1) | Aug 3 + == (1= 0™ funls

Na4p—Np
(1= 05 ) Juallt

pé.
tn "

t4
< I(un) + En (926q_2 - 1) | Aug|3 +

1
<ole)+-—C,
n

p

which leads to o(c2) < o(c1) for n sufficiently large.
Case (ii): 225 < ¢ < min {N, #;;,78} and ¢(1+ %) < p < 4%, this yields that

@ <0 and @ > 0. (4.9)
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We denote
C2 4—N

vi=—>1 and wy(z):=~7 un(’yfl/zx).

C1
Directly computations give

N a@2-N) a(1-484q)
lwalld = Vllunllz = 3, Vwalld =727 [[Vunl|i =772 [[Vualld,
2 2 p N p@-N) p PC—%p) p (4.10)
[Awnllz = [Aunllz,  Nwally =727 uallp =77 [lunll}.

N
By Lemma we obtain that there exists ¢,, > 0 such that ¢,? w, (t,z) € P., and

o(cz) < I(tYw, (tax)) = max TN 2w, (tz)).

By (4.9) and v > 1, we have

a(1-38q) p(2—6p)

v 2 —1<0andl —~
Similarly, we infer that {u,} is bounded in X and Pt} / 2wn(tpz)) = 0, by (£.1)) and (&.10), there

exists a constant C’ > 0 such that
o(cg) < I(tﬁl\'/an(tnx))

t4 q(1+44) pdp
2 n n
= 5 lAwallz + [Vwnlg — e l[wn [

< 0.

t4 q(1+34) a(1—8q)
= Bl + B T -

PO Laosy)
Sy ugllB

pop

$a0H%) sy t p(2=6p)
e [ e (e A | T

= I(tNu, (tpx)) + = p

tZ(Hé“) pép p(2—5p)

a(1—8q) q tn p
< I(uy) + (T ) IVl (1) Junll

1
< - -C.
<o) + o
This means that o(cz2) < o(c1) for n sufficiently large. O

Lemma 4.5. Suppose that (1.12)) and (1.13)) hold. Then, the o(c) = inf,ep, I(u) is attained.

Proof. Let {u,} be a minimizing sequence for o(c). From (4.6), we have that {u,} is bounded in
X. Therefore, up to a subsequence, there exists @ € X such that uw, — @ as n — oco. If for any
R > 0, the vanishing occurs

0:= lim sup / [y (2))? dz = 0,
Br(y)

n— oo yGRN

from [28, Lemma 1.1], we obtain that |Ju,|, — 0 for 2 < r < 4*. Since P(u,) = 2||Au,[|3 + (1 +
S)IVunl|d — dpllun | = 0, it follows that ||Auy, |2 — 0 and [[Vu,|, — 0. Consequently, we have
o(c) = 0, which contradicts with Lemma [4.1] Hence, vanishing of {u,} can not occur, there exist
§ > 0 and a subsequence {y,} C RY such that

5
/ lun (@) dz > 2 > 0,
Br(yn) 2

for some R > 0. Let @, := un(- + yn), and then {@,} is also a bounded minimizing sequence for

o(c)in X and
/ i 2dz >
Br(0)
It follows that

Uy = 4#Z0in X, @, —ain L] (RY) for 2<r <4* @, — @ ae. in RV, (4.11)

N

> 0 for n € N large enough.
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Similarly to the proof of Lemma [3.4] we may assume that there exist sequences A, i1, € R such
that

I' () — Aty — P () — 0.
By a similar argument as Lemma owing to P(@,) = 0 and pd, > max{4,q(1 + d,)}, we can
get that u, — 0. Thus, we conclude that

I'(iin) = Aty — 0 in X'
Since t,, € S, and by Lemma [2.6] we have
(Ils.) (iin) = I'(iin) — Ay = 0 in X',

which means that {@,} is a Palais-Smale sequence for I|g , since {@,} is bounded in X, I(i,) —

o(c), and (I|s,) (i,) — 0. Similar to the proof of in Lemma we can prove that
Vi, (z) = Vi(x) a.e. in RY.

We now claim that |4l = ¢. Otherwise, if ||dl|]2 = ¢1 < ¢, then Lemma shows that
o(c) < o(c1). By using (£.11), we know that [|AG||3 < liminf, e [|Ady[|3 < limy,— o0 [|A,||3 and
[Val[§ < liminf, oo [Van[|§ < lim,eo [V, [|¢. From Lemma [4.2} there exists 7o € (0,1] such
that

TéV/Q’EL(T()ir) € Pclv P(TéV/Qﬂ(Toér)) = 0
We can infer that

o(c) < o(cr)

N/2 -~ 1 2 _ 1 1494 144, -
< 1 Palma) = (5 = o )rlaald+ (- = )% vl

2 péy, pop
1 2 1 149
< (=-=)V)jAaa2+ (- - ——"2)|va|e
< (3= 5 12l + (5 - =5 Ival;
12 P N e A -
< (37 75;) dim NAwlf + (3 = 22 Jim [Vl

= nh_)rgo I(u,) = o(c),
which leads to a contradiction. So, it must have ¢; = ¢ and 79 = 1. That is, ||@||2 = ¢. Moreover,
denote w,, = @, — @, by Lemma [2.1] it follows that

_%p
lwnllp < CnpllAw, |37 wally "= =0,

which yields that
o | 5 1
lim inf I'(w,) = hmnglgo §||AwnH2 + aHanHZ > 0. (4.12)

n—oo

By and , we obtain
a(c) = I(an) + on(1) = I(wy) + I1(@) + 0, (1) > I(wy) + o(c) + 0, (1),
which leads to
nl;ngo sup I (wy,) <0. (4.13)

Then we conclude that ||Aw,|2 — 0 and |[Vwy|q = 0 from (4.12) and (4.13). This shows that
wy, — 0 in X and thus @ is a minimizer for o(c). O

Proof of Theorem[I.3 From Lemma we know that o(c) is attained by some u. € S.. Suppose
v € S, is a critical point of I|g,, Lemma implies that v € P.. Thus, we have I(v) > o(c) =
I(u.). This indicates that u. is a ground state solution of . Next, by the Lagrange multiplier
rule, there exists a pair (A, u.) that satisfies

/ (AuCAgo + |Vuc|q*2VuCVgo — |uc\p*2ucgo + )\Cucw) dr=0 VyeX.
Rd
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From%fl>0and1j§ﬁfl>0,wehave
p P

2 1+96
Nec? = llucllh = 1 8ucllf = [Vuelly = (= = 1) I1Aucl3 + (52 = 1) IVucllg >0, (4.14)

Op P
which implies that A. > 0. In the same way as in (4.1]), we can obtain

2 poo=1 _P(2=8p) 146, 1pa=g _pa-o
| Aull > [ ] P and |Vl > [7‘1} =
5pc§l,p ! 6PK§’,IJ
The conditions (1.12)) and (1.13]) ensure that
2—6 1-— 1 2 1+,
u>0’ M>0’ - - >0, 1_m>0.
po, — 4 pa—q 2 pdp POy
Since u. € P,., we have
(0) = I(ue) = 318wl + = [ Vel — el
g = c) — & Ue - c — —||Ue
2 T yq @ pleP
1 2 ) 1 149
=(=—-— Au62+(f— q) Vu.l|?
(5 5 Naucl+ (= =5 Il
2p(2—6p) pq(l—a
> <}_l>[ 2p ]ﬁc_ pép—4 —&—1(1— Q(1+5q))[ 1“"3(1 ]po‘q_q67 p(o}fq).
2 pdy/ 0Cxy q Pop oKy,
Therefore, we have
2p(2—5p) _pa(l-a)

o(c) > Azc P~ 4 Ayc” wema

where

_(1_2 2 1w 1 gl 43g)\ L+ 6g 5ty
A37<2 pép)[épCi,,p] =0 A4iq(1 Pop >[5pKJIif,p] -0

which implies that o(c) — +o00 as ¢ — 07. Similarly, from (4.14), we can derive that

(p—2) pg(l—a)+2(pa—gq
Ao > Asc Pt 4 Agem MRS
where 2 2 L 116 146,
4 + + q
As = (7 — 1) Pt > (), Ag = ( 4 _ 1) — 9 ]pe=a 5.
Op [6110]’;4,] Op [5pKf’v,p]
Thus, we also conclude that A\, — +oo as ¢ — 07. This completes the proof. O
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