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UNIFORMLY CONTINUOUS SEMIGROUPS OF SUBLINEAR TRANSITION

OPERATORS

ALEXANDER ERREYGERS

Abstract. In this work we investigate uniformly continuous semigroups of sublinear transition

operators on the Banach space of bounded real-valued functions on some countable set. We
show how such a semigroup can be retrieved as the solution to an abstract Cauchy problem

by showing that it is equal to the family of exponentials generated by a so-called bounded

sublinear rate operator. We also show that given any bounded sublinear rate operator, the
family of corresponding exponentials forms such a semigroup.

1. Introduction and main result

It is well-known—see for example [11, Theorem VIII.1.2] or [12, Theorem 3.7]—that a semi-
group (St)t∈R≥0

of bounded linear operators on some Banach space B is uniformly continuous—
that is, continuous with respect to the operator norm—if and only if there is some bounded linear
operator A such that

St = etA = lim
n→+∞

(
I +

t

n
A
)n

=

+∞∑
n=0

tkAk

k!
for all t ∈ R≥0; (1.1)

whenever this is the case, this generator A is

A = lim
t↘0

St − I

t
,

and the semigroup (etA)t∈R≥0
is the unique solution to the abstract Cauchy problem

lim
s→t

Ss − St
s− t

= ASt for all t ∈ R≥0, S0 = I.

While we cannot imagine that this result has never been generalised to nonlinear operators, I
haven’t been able to surface a reference where this is done. Instead, most of the work on nonlinear
operators seems to be focused on strongly continuous semigroups [1, 7, 22, 23].

In contrast, this work thoroughly investigates uniformly continuous semigroups of nonlinear
operators, albeit only semigroups of so-called sublinear transition operators on Cb(X ), with X a
countable set equipped with the discrete metric. The main results in this work are the following.
First, Theorem 3.1 establishes that if a ‘sublinear rate operator’ Q: Cb(X ) → Cb(X )—a nonlinear
generalisation of the notion of a (linear) rate operator which can be thought of as the upper
envelope of a uniformly bounded set of rate operators–is bounded, then

etQ = lim
n→+∞

(
I +

t

n
Q
)n
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is well-defined for all t ∈ R≥0, and (etQ)t∈R≥0
forms a uniformly continuous semigroup of sublinear

transition operators [Proposition 3.4] that satisfies the abstract Cauchy problem [Proposition 3.6]

lim
s→t

Ss − St
s− t

= QSt for all t ∈ R≥0, S0 = I.

Conversely, Theorem 4.5 tells us that any uniformly continuous semigroup of sublinear transition
operators is generated by a bounded sublinear rate operator Q. For finite state spaces X this was
already shown by De Bock [8, Propositions 8 and 10] and myself [13, Theorem 3.75], but in this
work X is only assumed to be countable.

These results are important because semigroups of sublinear transition operators are crucial to
the construction of sublinear (or imprecise) Markov processes [21, 9, 25, 24, 14, 31], which recently
have received quite some attention in the fields of imprecise probabilities [34, 32] and robust
mathematical finance [27]. In the present context, it suffices to understand that a sublinear Markov
process is constructed from an initial sublinear expectation E0 and a semigroup of sublinear
transition operators (Tt)t∈R≥0

, much like how a Markov process is constructed from an initial
distribution ν and a Markov semigroup (Tt)t∈R≥0

[17, Chapter 4, Theorem 1.1 & Proposition 1.6].

Obviously, the sublinear rate operator Q is to the sublinear transition operators (Tt)t∈R≥0
what

the (linear) rate operator Q is to the Markov semigroup (Tt)t∈R≥0
: it simplifies the specification

considerably.

1.1. Structure. The remainder of this article is structured as follows. In Section 2 we (i) intro-
duce the Banach space of bounded (nonlinear) operators on B; (ii) introduce the semigroups we
are interested in; and (iii) establish some convenient properties of sublinear transition and rate
operators. Section 3 examines how we can go from a sublinear rate operator to a (family of)

sublinear transition operator(s), and investigates the properties of the resulting family (etQ)t∈R≥0
.

Section 4 deals with the other implication: there we start from a uniformly continuous sublinear
transition semigroup and show that it must be generated by a bounded sublinear rate operator.
Finally, Section 5 relates the present approach to similar existing ones in the setting of convex
monotone semigroups, most notably Nendel’s [25].

2. Operators and semigroups

Throughout the paper, we let X be a countable set, and we denote the linear vector space
of bounded real-valued maps on X by B := Cb(X ), which is well-known to be a Banach space
under the supremum norm ∥·∥∞. The bounded real-valued functions on X include the indicator
functions: for any subset X of X , the corresponding indicator IX ∈ B maps x ∈ X to 1 if x ∈ X
and to 0 otherwise; for any x ∈ X , we shorten I{x} to Ix.

An operator, then, is a (possibly nonlinear) map from B to B; let O denote the set of operators.
One example of an operator is the identity operator I, which maps any f ∈ B to itself. The identity
operator I is not the only special operator that we will need: another important one is the zero
operator O, which maps any f ∈ B to the zero function 0—here and in the remainder, for any
constant α ∈ R we write α for the function αIX . It will also be convenient to construct new
operators through addition and scaling of operators, which are defined in the obvious pointwise
manner. Composition of operators will also be essential: for any two operators A,B, we let

AB: B → B : f 7→ A(Bf).

2.1. Banach space of bounded operators. It is customary—see for example [22, Chapter 3]—
to call a (possibly nonlinear) operator A ∈ O Lipschitz if

∥A∥Lip := sup
{∥Af −Ag∥∞

∥f − g∥∞
: f, g ∈ B, f ̸= g

}
< +∞;

we collect all Lipschitz operators in

OL :=
{
A ∈ O : ∥A∥Lip < +∞

}
.
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It is easy to see that ∥·∥Lip is a seminorm on the real vector space OL, and that the derived
function

∥·∥L : OL → R≥0 : A 7→ ∥A∥L := ∥A0∥∞ + ∥A∥Lip
is a norm on OL such that (OL, ∥·∥L) is a Banach space [22, Lemma III.2.1 and Proposition III.2.1].

While we will deal with Lipschitz operators, the set OL of Lipschitz operators is not the most
convenient for our purposes. As will become clear, it is more convenient to consider the set of
bounded operators, where a (possibly nonlinear) operator A ∈ O is bounded if

∥A∥s := sup
{∥Af∥∞

∥f∥∞
: f ∈ B, f ̸= 0

}
< +∞. (2.1)

We collect all bounded operators in Ob. Note that the identity operator is bounded because clearly
∥I∥s = 1.

Similar to how the Lipschitz seminorm ∥·∥Lip gave rise to a norm ∥·∥L on the set of Lipschitz
operators OL, this seminorm ∥ · ∥s gives rise to a norm on the set Ob of bounded operators. The
interested reader can find the proof of the following result, as well as some additional results and
observations, in Section 6

Proposition 2.1. The space space Ob of bounded operators is a Banach space when equipped with
the norm

∥ · ∥b : Ob → R≥0 : A 7→ ∥A0∥∞ + ∥A∥s.
Furthermore, for any two bounded operators A,B ∈ Ob, their composition AB is bounded as well,
with

∥AB∥b ≤ ∥A∥b∥B∥b. (2.2)

We will be almost exclusively concerned with two types of operators: sublinear transition
operators and sublinear rate operators.

2.2. Sublinear transition operators. Sublinear transition operators, which generalise the no-
tion of transition operators [35, Chapter 9] (sometimes also called stochastic/transition matrices),
go back to De Cooman & Hermans [5, Section 8], but they also go by other names; Denk et al. [9,
Definition 5.1], for example, call them sublinear kernels.

Definition 2.2. A sublinear transition operator T is an operator such that

T1. T(λf) = λTf for all f ∈ B and λ ∈ R≥0;

T2. T(f + g) ≤ Tf +Tg for all f, g ∈ B;
T3. Tf ≤ sup f for all f ∈ B.

A transition operator is a sublinear transition operator that is linear.

The three axioms for sublinear transition operators T ensure that for all x ∈ X , the correspond-
ing component functional

[T·](x) : B → R : f 7→ [Tf ](x)

is a coherent upper prevision/expectation in Walley’s [34, Section 2.3.5] sense—see also [32]—or a
sublinear expectation in that of Peng [27, Definition 1.1.1]. Hence, it follows from the well-known
properties of coherent upper previsions—see for example [34, Section 2.6.1] or [32, Theorem 4.13]—
that for any sublinear transition operator T,

T4. Tf ≤ Tg for all f, g ∈ B such that f ≤ g;
T5. T(f + µ) = µ+Tf for all f ∈ B and µ ∈ R;
T6. Tµ = µ for all µ ∈ R≥0;

T7. −T(−f) ≤ Tf for all f ∈ B;
T8. ∥Tf∥∞ ≤ ∥f∥∞ for all f ∈ B;
T9. ∥Tf − Tg∥∞ ≤ ∥f − g∥∞ for all f, g ∈ B.

It follows immediately from (T9), (6.1), (T8) and (T6)—for µ = 1 and µ = 0—that for any
sublinear transition operator T,

T10. ∥T∥Lip = ∥T∥L = 1;

T11. ∥T∥b = ∥T∥s = 1.



4 A. ERREYGERS EJDE-2025/122

Since T is bounded and Lipschitz, we know from Lemma 6.2 that

T12. ∥TA− TB∥b ≤ ∥A− B∥b for all bounded operators A,B ∈ Ob.

Rather than in a single sublinear transition operators, we’ll be interested in a ‘ semigroup’ of
them. Semigroups of general operators have been investigated thoroughly [20, 4, 26, 23, 1, 12, 7].

Definition 2.3. A semigroup is a family (St)t∈R≥0
of operators such that

SG1. Ss+t = SsSt for all s, t ∈ R≥0;
SG2. S0 = I.

As we will be exclusively concerned with semigroups (Tt)t∈R≥0
of sublinear transition opera-

tors, we’ll briefly call these sublinear transition semigroups; in this context, the semigroup prop-
erty (SG1) is often called the ‘Chapman–Kolmogorov equation.’

It is customary to consider semigroups that are continuous in some sense. The most common
notion of continuity is that of ‘strong continuity’, which means that

lim
s→t

Ssf = Stf for all t ∈ R≥0, f ∈ B.

However, in this work we’ll work with a more restrictive notion of continuity that is known as
‘uniform continuity’—curiously enough, and as mentioned in the Introduction, I haven’t been able
to surface existing work where this notion is used in the context of nonlinear operators.

Definition 2.4. A semigroup (St)t∈R≥0
of bounded operators is said to be uniformly continuous

if
lim
s→t

Ss = St for all t ∈ R≥0.

The following result regarding uniform continuity is fairly standard.

Lemma 2.5. A semigroup (St)t∈R≥0
of bounded operators is uniformly continuous if and only if

lim∆↘0 S∆ = I.

Proof. The condition in the statement is clearly necessary for uniform continuity, so we only
need to show that it’s sufficient as well: for all t ∈ R≥0, we need to show that it implies that
lims→t Ss = St. So fix some t ∈ R≥0. For the right-sided limit, note that for all s ∈ R≥0 such that
s > t and with ∆ := s− t, it follows from (SG1) and (2.2) that

∥Ss − St∥b = ∥S∆St − St∥b = ∥(S∆ − I)St∥b ≤ ∥S∆ − I∥b∥St∥b.
For the left-sided limit, a similar argument but with s < t and ∆ := t− s shows that

∥Ss − St∥b = ∥Ss − S∆Ss∥b = ∥(I− S∆)Ss∥b ≤ ∥S∆ − I∥b∥Ss∥b.
This inequality suffices once we’ve verified that there are some M,ω ∈ R≥0 such that

∥Ss∥b ≤ Mesω for all s ∈ R≥0,

and we can do so with the following standard argument—see, for example, Proposition 5.5 in [12].
As lim∆↘0 S∆ = I, there is some δ ∈ R>0 and M ∈ [1,+∞[ such that sup{∥S∆∥b : ∆ < δ} ≤ M .
If we let ω := 1

δ lnM , then for all s ∈ R>0, and with n ∈ N such that s/n < δ,

∥Ss∥b ≤ ∥S s
n
∥nb ≤ Mn = Me(n−1) lnM = Me(n−1)δω ≤ Mesω. □

2.3. Sublinear rate operators. Sublinear rate operators go back to Škulj [33, Section 2.5]—see
also [8, Definition 5] or [24, Definition 2.1 and Theorem 2.5]. They generalize the notion of rate
(or intensity) matrices/operators by dropping the requirement of linearity in favour of that of
sublinearity.

Definition 2.6. A sublinear rate operator Q is an operator such that

Q1. Q(λf) = λQf for all f ∈ B and λ ∈ R≥0;

Q2. Q(f + g) ≤ Qf +Qg for all f, g ∈ B;
Q3. Qµ = 0 for all µ ∈ R;
Q4. [Qf ](x) ≤ 0 for all f ∈ B and x ∈ X such that sup f = f(x) ≥ 0.

A rate operator is a sublinear rate operator that is linear.
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Axiom (Q4) is known as the positive maximum principle.1 A trivial example of a sublinear rate
operator is the zero operator O.

It is not difficult to show that for any sublinear rate operator Q,

Q5. Q(f + µ) = Qf for all f ∈ B and µ ∈ R;
Q6. −Q(−f) ≤ Qf for all f ∈ B;
Q7. [QIx](x) ≤ 0 for all x ∈ X .

Proof. For (Q5), we simply repeat De Bock’s proof for [8, R6]: it follows from subadditivity (Q2)
and (Q3) that

Q(f + µ) ≤ Q(f) + Q(µ) = Q(f) = Q(f + µ− µ) ≤ Q(f + µ) + Q(−µ) = Q(f + µ).

For (Q6), observe that due to (Q3) and subadditivity (Q2),

0 = Q(f − f) ≤ Qf +Q(−f).

Property (Q7) follows immediately from the positive maximum principle (Q4) for f = Ix. □

With a bit more work, we obtain the following simple yet important expression for the operator
seminorm of a sublinear rate operator; this result generalizes Proposition 4 in [15] to the countable-
state case, but the proof here differs quite a bit from the one there.

Proposition 2.7. For any sublinear rate operator Q,

∥Q∥s = 2 sup
{
[Q(1− Ix)](x) : x ∈ X

}
= sup

{
[Q(1− 2Ix)](x) : x ∈ X

}
.

Proof. For all x ∈ X , it follows from positive homogeneity [(Q1)] and (Q5) that

2[Q(1− Ix)](x) = [Q(2− 2Ix)](x) = [Q(1− 2Ix)](x).
Since the supremum is positively homogeneous, this proves the second equality in the statement.

For the first equality in the statement, it follows from (6.1) that since Q is positively homoge-
neous,

∥Q∥s = sup
{
∥Qf∥∞ : f ∈ B, ∥f∥∞ = 1

}
= sup

{
|[Qf ](x)| : f ∈ B, ∥f∥∞ = 1, x ∈ X

}
. (2.3)

Next, observe that for all x ∈ X , it follows from (Q3), the sublinearity of Q and (Q7) that

0 = [Q1](x) ≤ [Q(1− 2Ix)](x) + 2[QIx](x) ≤ [Q(1− 2Ix)](x).
Because ∥1− 2Ix∥∞ = 1, it follows from all this that

∥Q∥s ≥ sup
{
[Q(1− 2Ix)](x) : x ∈ X

}
= 2 sup

{
[Q(1− Ix)](x) : x ∈ X

}
.

In the remainder of this proof, we set out to show that

∥Q∥s ≤ 2 sup
{
[Q(1− Ix)](x) : x ∈ X

}
, (2.4)

since the previous two inequalities imply the first equality in the statement.
Fix any g ∈ B with ∥g∥∞ = 1 and any x ∈ X , and observe that

[Qg](x) = [Q(g − inf g)](x)

due to (Q5). Let h := g− inf g ≥ 0 and α := suph, and note that h(x) ≥ 0 and 0 ≤ α ≤ 2∥g∥∞ =

2—the latter because α = sup g − inf g. Moreover, let h̃x := h − α(1 − Ix) − h(x)Ix. Since Q is
sublinear,

[Qg](x) = [Qh](x) = [Q(h̃x + α(1− Ix) + h(x)Ix)](x)

≤ [Qh̃x](x) + α[Q(1− Ix)](x) + h(x)[QIx](x).

As h̃x ≤ 0 and sup h̃x = 0 = h̃x(x) by construction, it follows from the positive maximum

principle [(Q4)] that [Qh̃x](x) ≤ 0; since furthermore [QIx](x) ≤ 0 due to (Q7) and α ≤ 2 and
h(x) ≥ 0 by construction, we conclude that

[Qg](x) ≤ α[Q(1− Ix)](x) ≤ 2[Q(1− Ix)](x). (2.5)

1After [6, Section 1.2], see also [17, Chapter 4, Section 2] or [28, Lemma III.6.8].
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For all f ∈ B with ∥f∥∞ = 1 and x ∈ X , it follow from (2.5) (once for g = −f and once for
g = f) and (Q6) that

−2[Q(1− Ix)](x) ≤ −[Q(−f)](x) ≤ [Qf ](x) ≤ 2[Q(1− Ix)](x).
Together with (2.3), this implies the inequality in (2.4). □

One way to obtain a sublinear rate operator that is particularly relevant in applications—see
for example [16, 30]—is as the upper envelope over some set of candidate rate operators. We refer
the interested reader to Section 7 for a discussion of this approach.

2.4. From sublinear transition operator to bounded sublinear rate operator and back
again. Rather than through the upper envelope of a bounded set of rate operators, one can
also obtain a sublinear rate operators from a sublinear transition operator. The following result
generalises De Bock’s [8] Proposition 5 from the setting of finite X to that of countable X .

Lemma 2.8. Let T be a sublinear transition operator, and fix some strictly positive real num-
ber λ ∈ R>0. Then the operator Q := λ(T− I) is a bounded sublinear rate operator.

Proof. Note that Q is a bounded operator because Ob is a real vector space and Q is defined as a
linear combination of bounded operators. That Q is sublinear—that is, satisfies (Q1) and (Q2)—
follows immediately from the sublinearity of T and the linearity of I. That Q maps constants to
zero—so satisfies (Q3)—follows from the fact that T and I are constant preserving [(T6)]. Finally,
it is obvious that Q satisfies the positive maximum principle (Q4) due to (T3): for all f ∈ B and
x ∈ X such that f(x) = sup f ≥ 0,

[Qf ](x) = λ([Tf ](x)− f(x)) ≤ λ(sup f − f(x)) = 0. □

We can also go the other way around as in Lemma 2.8: a suitable linear combination of the
identity operator and a bounded sublinear transition operator gives a (automatically bounded)
sublinear rate operator. The next result formalises this, and in doing so generalises De Bock’s [8]
Proposition 5—or the slightly improved version in [13, Lemma 3.72]—to the present, more general
setting.

Lemma 2.9. For any bounded sublinear rate operator Q and any ∆ ∈ R>0 such that ∆∥Q∥b ≤ 2,
T := I + ∆Q is a sublinear transition operator.

Proof. That T is a (bounded) sublinear operator—so an operator that satisfies (T1) and (T2)—
follows immediately from the fact that I and Q are sublinear bounded operators and that Ob is
a real linear space, so it remains for us to verify that T satisfies (T3). To this end, we fix some
x ∈ X and f ∈ B. Then it follows from (Q5) that

[Tf ](x) = f(x) + ∆[Qf ](x) = f(x) + ∆[Q(f − f(x))](x).

With fx := f − f(x), α := sup fx = sup f − f(x) ≥ 0 and f̃x := fx −α(1− Ix), it follows from this
and the sublinearity of Q that

[Tf ](x) = f(x) + ∆[Qfx](x) = f(x) + ∆[Q(f̃x + α(1− Ix))](x)

≤ f(x) + ∆[Qf̃x](x) + α∆[Q(1− Ix)](x).

Since f̃x ≤ 0 and sup f̃x = 0 = f̃x(x) by construction, the positive maximum principle (Q4) tells

us that [Qf̃x](x) ≤ 0, and therefore

[Tf ](x) ≤ f(x) + α∆[Q(1− Ix)](x).

From (6.2) and Proposition 2.7 we know that [Q(1− Ix)](x) ≤ ∥Q∥b/2, whence

[Tf ](x) ≤ f(x) + α
∆∥Q∥b

2
.

Since ∆∥Q∥b ≤ 2 by the assumptions in the statement and α = sup fx = sup f−f(x) by definition,
we conclude that

[Tf ](x) ≤ f(x) + sup f − f(x) ≤ sup f,
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which is what we needed to prove. □

When combined with (T10), the previous lemma can be used to show that any bounded sub-
linear rate operator is Lipschitz, which is already known to be true in case X is finite [8, (R11)
and (R12)]. This Lipschitz property will come in handy further on, which is why we establish it
formally here.

Proposition 2.10. Consider a bounded sublinear rate operator Q. Then

Q8.
∥∥Qf −Qg

∥∥
∞ ≤ ∥Q∥b∥f − g∥∞ for all f, g ∈ B; and

Q9.
∥∥∥QA−QB

∥∥∥
b
≤ ∥Q∥b∥A− B∥b for all A,B ∈ Ob.

Proof. Since the two properties in the statement are trivial if ∥Q∥b = 0 ⇔ Q = O, we assume
without loss of generality that ∥Q∥b > 0. For (Q8), we fix some f, g ∈ B. Then with ∆ := 2/∥Q∥b,

∥Qf −Qg∥∞ =
1

∆
∥∆Qf −∆Qg∥∞ ≤ 1

∆
∥(I + ∆Q)f − (I + ∆Q)g∥∞ +

1

∆
∥f − g∥∞.

Now we know from Lemma 2.9 that I + ∆Q is a sublinear transition operator, so it follows from
the previous inequality and (T11) that

∥Qf −Qg∥∞ ≤ 2

∆
∥f − g∥∞ = ∥Q∥b∥f − g∥∞,

which is the inequality we were after.
Property (Q9) follows immediately from (Q8) due to Lemma 6.2. □

3. Sublinear transition semigroup generated by a bounded sublinear rate
operator

Now that we have gone over the preliminaries, it is time to get going on our first goal: define the
operator exponential of a bounded rate operator through a Cauchy sequence of sublinear transition
operators. After doing so in Section 3.1, we show that the family of operator exponentials is the
solution to an abstract Cauchy problem in Section 3.2.

3.1. Exponential of a bounded sublinear rate operator. We will follow the path outlined
by Krak et al. [21, Section 7.3] for the case of a finite state space, who took inspiration from earlier
work by De Bock [8] and Škulj [33]. The crucial idea is to combine Lemma 2.9 with the following
observation: for any two sublinear transition operators S and T, their composition ST is again
a sublinear transition operator. Henceforth, we will use this basic observation implicitly in order
not to unnecessarily repeat ourselves. The combination of these two results leads to the following
key result; it generalizes Corollary 7.10 in [21], but goes back to well-known ideas in the theory of
(nonlinear) operator semigroups [4]—see also [1, Section III.1.2] or [29, Sections 30.18 to 30.28].

Theorem 3.1. Consider a bounded sublinear rate operator Q, and fix some t ∈ R≥0. Then the

sequence ((I + t
nQ)n)n∈N of bounded operators is Cauchy, and its limit

etQ := lim
n→+∞

(
I +

t

n
Q
)n

is a sublinear transition operator.

To prove this result, we will rely on two intermediary results which generalise Lemmas E.4 and
E.5 in [21], respectively; the proofs of these generalized results follow the proofs of the originals
closely, whence I have relegated them to Section 8.

Lemma 3.2. Consider some n ∈ N and some sublinear transition operators T1, . . . , Tn and S1,
. . . , Sn. Then ∥∥∥T1 · · ·Tn − S1 · · · Sn

∥∥∥
b
≤

n∑
k=1

∥∥∥Tk − Sk

∥∥∥
b
.
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Lemma 3.3. Consider a bounded sublinear rate operator Q. Then for all ∆ ∈ R>0 such that
∆∥Q∥b ≤ 2 and ℓ ∈ N, ∥∥∥(I + ∆

ℓ
Q
)ℓ

− (I + ∆Q)
∥∥∥
b
≤ ∆2∥Q∥2b.

Proof for Theorem 3.1. The statement holds trivially for t = 0, so without loss of generality we
may assume that t > 0. Fix some n,m ∈ N such that t∥Q∥b ≤ 2min{n,m}. Then by the triangle
inequality, ∥∥∥(I + t

n
Q
)n

−
(
I +

t

m
Q
)m∥∥∥

b

≤
∥∥∥(I + t

n
Q
)n

−
(
I +

t

nm
Q
)nm∥∥∥

b
+
∥∥∥(I + t

nm
Q
)nm

−
(
I +

t

m
Q
)m∥∥∥

b
.

Now since t∥Q∥b ≤ 2n ≤ 2nm, it follows from Lemma 2.9, Lemma 3.2 (with Tk = (I + t
nQ) and

Sk = (I + t
nmQ)m) and Lemma 3.3 (with ∆ = t

n and ℓ = m) that∥∥∥(I + t

n
Q
)n

−
(
I +

t

nm
Q
)nm∥∥∥

b
≤ n

∥∥∥(I + t

n
Q
)
−
(
I +

t

nm
Q
)m∥∥∥

b

≤ n
( t
n

)2∥Q∥2b

=
1

n
t2∥Q∥2b.

A similar argument shows that∥∥∥(I + t

m
Q
)m

−
(
I +

t

nm
Q
)nm∥∥∥

b
≤ 1

m
t2∥Q∥2b,

and therefore ∥∥∥(I + t

n
Q
)n

−
(
I +

t

m
Q
)m∥∥∥

b
≤

( 1

n
+

1

m

)
t2∥Q∥2b.

From this, we infer that ((I + t
nQ)n)n∈N is a Cauchy sequence.

Since (Ob, ∥ · ∥b) is a Banach space [Proposition 2.1], this Cauchy sequence converges to a limit

etQ = lim
n→+∞

(
I +

t

n
Q
)n

in Ob. That this limit etQ is a sublinear transition operator follows from its definition as the limit
of ((I+ t

nQ)n)n∈N because (i) we know from Lemma 2.9 that for sufficiently large n, (I+ t
nQ) and

therefore (I + t
nQ)n is a sublinear transition operator; and (ii) the axioms (T1)–(T3) of sublinear

transition operators are preserved under limits. □

With Q a bounded sublinear rate operator and t ∈ R≥0, we call etQ the operator exponential

of tQ because its defining limit expression mirrors one of the many limit expressions for the
exponential of a real number or bounded linear operator (1.1). It is quite peculiar that we obtain
Euler’s limit expression, though, as it is not commonly used in the theory of (nonlinear) semigroups.
In contrast, the limit expression that is usually encountered for the exponential of an operator A
is—see, for example, [20, Theorem 11.3.2], [23, Chapter 4], [36, Chapter IX] or [29, Section 30.28]—
of the form

eA = lim
n→+∞

(
I− 1

n
A
)−n

,

which of course requires that the inverse of the operator on the right hand side is well defined for
sufficiently large n. Note, also, that usually this definition is done pointwise, so through a limit
in the ‘ original’ Banach space (here B) instead of through a limit in a suitable Banach space
of operators (here Ob). One notable exception is the setting of semigroups of convex monotone
operators [10, 19, 2], where the Euler expression—or, more generally, a Chernoff-like expression—
is also used, but in the functional space (here B) rather than the operator space; see also Section 5
further on.
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3.2. The exponential family. Theorem 3.1 gives us a family (etQ)t∈R≥0
of sublinear transition

operators starting from a bounded sublinear rate operator. As the motivation for this work is
to use this family to construct a sublinear Markov process—see [14] for more details—we are
particularly interested in whether this family forms a semigroup. The following result establishes
that, quite nicely, this is always the case; the proof uses fairly standard arguments—see for example
Theorem 2.5.3 in [4].

Proposition 3.4. Consider a bounded sublinear rate operator Q. Then (etQ)t∈R≥0
is a uniformly

continuous sublinear transition semigroup.

Our proof for Proposition 3.4 makes use of the following continuity result, which will come in
handy further on as well.

Lemma 3.5. Consider a bounded sublinear rate operator Q. Then for all s, t ∈ R≥0,∥∥∥esQ − etQ
∥∥∥
b
≤ |s− t|∥Q∥b.

Consequently, the function e·Q : R≥0 → Ob : t 7→ etQ is Lipschitz continuous.

Proof. Fix some s, t ∈ R≥0 and observe that for all n ∈ N,∥∥∥esQ − etQ
∥∥∥
b
≤

∥∥∥esQ −
(
I +

s

n
Q
)n∥∥∥

b
+
∥∥∥etQ −

(
I +

t

n
Q
)n∥∥∥

b

+
∥∥∥(I + s

n
Q
)n

−
(
I +

t

n
Q
)n∥∥∥

b
.

For the last term, it follows from Lemmas 2.9 and 3.2 that for all n ∈ N such that t∥Q∥b/2 ≤ n
and s∥Q∥b/2 ≤ n,∥∥∥(I + s

n
Q
)n

−
(
I +

t

n
Q
)n∥∥∥

b
≤ n

∥∥∥(I + s

n
Q
)
−

(
I +

t

n
Q
)∥∥∥

b
= |s− t|∥Q∥b.

By Theorem 3.1, the inequality in the statement now follows from all this by taking the limit for
n → +∞ in the first inequality of this proof. □

Proof of Proposition 3.4. As the argument is a standard one, we only provide a sketch. First, it
follows from Theorem 3.1 and some simple manipulations that

entQ =
(
etQ

)n
for all t ∈ R≥0, n ∈ N, (3.1)

from which it follows that for all p, q ∈ Q≥0, and with np, nq ∈ Z≥0 and d ∈ N such that p = np/d
and q = nq/d,

epQeqQ =
(
e

1
dQ

)np
(
e

1
dQ

)nq
=

(
e

1
dQ

)np+nq
= e(p+q)Q. (3.2)

Because the function e·Q : R≥0 → Ob : t 7→ etQ is Lipschitz continuous [Lemma 3.5] and Q≥0 is
dense in R≥0, this equation extends to R≥0. □

Let us investigate the function

e·Q : R≥0 → Ob : t 7→ etQ,

with Q a bounded sublinear rate operator, a bit more. We already know from Lemma 3.5 that
this function is (Lipschitz) continuous. The natural follow up question, then—at least to me—is

whether this function etQ is differentiable. The following result answers this question positively;
in doing so, it generalizes Proposition 7.15 in [21] and Proposition 9 in [8] from the setting of finite
state spaces to countable ones.

Proposition 3.6. Consider a bounded sublinear rate operator Q. Then

lim
s→t

esQ − etQ

s− t
= QetQ for all t ∈ R≥0,

where for t = 0 we only take the right-sided limit.
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Proof. Let us prove an intermediary result first. Fix some ∆ ∈ R>0 such that ∆∥Q∥b ≤ 2. Then
for all n ∈ N,

∥e
∆Q − I

∆
−Q∥b =

1

∆

∥∥∥e∆Q − (I + ∆Q)
∥∥∥
b

≤ 1

∆
∥e∆Q − (I +

∆

n
Q)

n∥b +
1

∆
∥(I + ∆

n
Q)

n − (I + ∆Q)∥b.

From Theorem 3.1 and Lemma 3.3, taking the limit superior for n → +∞ gives us that∥∥e∆Q − I

∆
−Q

∥∥
b
≤ ∆∥Q∥2b. (3.3)

For the right-sided limit, we fix some s ∈ R≥0 with s > t. Using the semigroup property (SG1)

of e·Q [Proposition 3.4], we find with ∆ := s− t that∥∥esQ − etQ

s− t
−QetQ

∥∥
b
=

∥∥(e∆Q − I

∆
−Q

)
etQ

∥∥
b
≤

∥∥e∆Q − I

∆
−Q

∥∥
b
,

where for the inequality we used (2.2) and (T11). Since (3.3) holds for sufficiently small ∆, we
conclude from this that

lim
s↘t

esQ − etQ

s− t
= QetQ.

The proof for the left-sided limit is similar—we need one extra step in the argument—and
therefore omitted. □

From Lemma 3.5 and Propositions 3.6 and 2.10, we know that e·Q belongs to C1(R≥0,Ob), and
that it is a solution of the abstract Cauchy problem

lim
s→t

Ss − St
s− t

= QSt for all t ∈ R≥0, S0 = I.

Even more, because the bounded rate operator Q is Lipschitz [Proposition 2.10], it follows from the

Cauchy–Lipschitz Theorem—see for example Theorem 7.3 in [3]—that e·Q is the unique solution
(in C1(R≥0,Ob)) to this abstract Cauchy problem. Our construction of the solution to this abstract
Cauchy problem through an Euler-style limit expression differs from the construction by means of
Picard iterates typically used in the proof of the Cauchy–Lipschitz Theorem; the benefit of using
the Euler approximations (I+ t

nQ)n is that they are guaranteed to be sublinear transition operators
for sufficiently large n [by Lemma 2.9], while it’s not easy to see—at least not to me—that the
Picard iterates converge to a sublinear transition operator.

4. Uniformly continuous sublinear transition semigroups

The question now arises whether the converse of the main results in the previous section also
hold: is every uniformly continuous sublinear transition semigroup (Tt)t∈R≥0

generated by a

bounded sublinear rate operator Q, in the sense that

Tt = etQ for all t ∈ R≥0?

In this section we set out to show that the answer to this question is positive.
Before we get into our investigation, let us take a closer look at the requirement of uniform

continuity for sublinear transition semigroups.

Proposition 4.1. A sublinear transition semigroup T· is uniformly continuous if and only if

lim sup
t↘0

∥∥∥Tt − I

t

∥∥∥
b
= 2 lim sup

t↘0
sup

{1

t
[T(1− Ix)](x) : x ∈ X

}
< +∞.

The proof of this result is a bit long and not necessarily informative, but the interested reader
can find it in Section 9. This result is relevant because it establishes that a sublinear transition
semigroup (Tt)t∈R≥0

is uniformly continuous if and only if it has ‘uniformly bounded rate’ in
the sense of [14, Definition 4], which is one of the two conditions on the sublinear transition
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semigroup—see Theorem 4 there—that ensures that it induces a sublinear Markov process with
desirable properties.

We’ll progress through a sequence of (intermediate) results in order to establish the main result,
Theorem 4.5 further on. As a first step, we set out to establish the ‘inverse’ to Theorem 3.1: instead
of defining the exponential of a bounded sublinear rate operator through a Cauchy sequence, we
seek to define the natural logarithm of a sublinear transition semigroup through a Cauchy sequence.
The way we will go about this is to generalise the following well-known limit expression for the
natural logarithm: for any strictly positive real number α ∈ R>0,

lnα = lim
n→+∞

n(α
1
n − 1).

To translate this limit expression to the setting of bounded operators, we (i) replace α by Tt and

1 by I, and (ii) observe that since Tt =
(
Tt/n

)n
, we can think of Tt/n as the—or an—n-th root

of Tt. It still surprises me that this approach works, since never before have I seen this limit
expression in the setting of operators.

Proposition 4.2. For a sublinear transition semigroup (Tt)t∈R≥0
that is uniformly continuous

and t ∈ R≥0, the sequence
(
n(Tt/n − I)

)
n∈N is Cauchy in Ob, and its limit

lnTt := lim
n→+∞

n(Tt/n − I)

is a bounded sublinear rate operator.

Our proof for Proposition 4.2 relies on Proposition 4.1 as well as on the following intermediary
result, which establishes a convenient bound on ∥T− I− n(Tt/n − I)∥b.

Lemma 4.3. Consider a sublinear transition operator T. Then for all n ∈ N,∥∥∥(Tn − I)− n(T− I)
∥∥∥
b
≤ n(n− 1)

2
∥T− I∥2b.

Proof. Our proof will be one by induction. The statement is clearly satisfied for n = 1, so it
remains for us to check the inductive step. So we suppose that the inquality in the statement
holds for some n ∈ N, and set out to show that∥∥∥(Tn+1 − I)− (n+ 1)(T− I)

∥∥∥
b
≤ (n+ 1)n

2
∥T− I∥2b. (4.1)

First, we rewrite the operator on the left-hand side of this inequality:

(T
n+1 − I)− (n+ 1)(T− I) = (T

n+1 − I)− n(T− I)− (T− I)

= (T
n − I)T− n(T− I).

Adding and subtracting n(T− I)T on the right-hand side then gives

(T
n+1 − I)− (n+ 1)(T− I) =

(
(T

n − I)− n(T− I)
)
T+ n(T− I)T− n(T− I),

so we see that∥∥∥(Tn+1 − I)− (n+ 1)(T− I)
∥∥∥
b
≤

∥∥∥((Tn − I)− n(T− I)
)
T
∥∥∥
b
+

∥∥∥n(T− I)T− n(T− I)I
∥∥∥
b
.

For the first term on the right-hand side of this inequality, it follows from (2.2), (T11) and the
induction hypothesis that∥∥∥((Tn − I)− n(T− I)

)
T
∥∥∥
b
≤

∥∥∥(Tn − I)− n(T− I)
∥∥∥
b

∥∥∥T∥∥∥
b

=
∥∥∥(Tn − I)− n(T− I)

∥∥∥
b

≤ n(n− 1)

2
∥T− I∥2b.
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For the second term, we recall from Lemma 2.8 that n(T− I) is a bounded sublinear rate operator;
as T and I are both bounded operators, it therefore follows from (Q9) that∥∥∥n(T− I)T− n(T− I)I

∥∥∥
b
≤

∥∥∥n(T− I)
∥∥∥
b

∥∥∥T− I
∥∥∥
b
= n∥T− I∥2b.

Thus, we see that∥∥∥(Tn+1 − I)− (n+ 1)(T− I)
∥∥∥
b
≤ n(n− 1)

2
∥T− I∥2b + n∥T− I∥2b =

(n+ 1)n

2
∥T− I∥2b,

which verifies (4.1) and concludes our proof. □

Proof of Proposition 4.2. The statement holds trivially in case t = 0, so we assume without loss
of generality that t > 0. On the one hand, it follows from the properties of ∥ · ∥b and (T11)—once
for T and once for I—that∥∥∥Ts − I

s

∥∥∥
b
=

∥∥∥Ts − I
∥∥∥
b

s
≤

∥∥∥Ts

∥∥∥
b
+ ∥I∥b
s

=
2

s
for all s ∈ R>0.

On the other hand, since (Ts)s∈R≥0
is uniformly continuous by assumption, it follows from Propo-

sition 4.1 that there are some δ, β′ ∈ R>0 such that∥∥∥Ts − I

s

∥∥∥
b
≤ β′ for all s ∈ [0, δ[.

From these two inequalities, we infer that

β := sup
{∥∥∥Ts − I

s

∥∥∥
b
: s ∈ R>0

}
≤ max

{2

δ
, β′

}
< +∞.

Consequently, for all k ∈ N, ∥∥∥T t
k
− I

∥∥∥
b
≤ tβ

k
. (4.2)

Fix some n,m ∈ N. Then∥∥∥n(T t
n
− I)−m

(
T t

m
− I

)∥∥∥
b

=
∥∥∥n(T t

n
− I

)
− nm

(
T t

nm
− I

)
+ nm

(
T t

nm
− I

)
−m

(
T t

m
− I

)∥∥∥
b

≤ n
∥∥∥(T t

n
− I

)
−m

(
T t

nm
− I

)∥∥∥
b
+m

∥∥∥(T t
m

− I
)
− n

(
T t

nm
− I

)∥∥∥
b
.

From the semigroup property (SG1) of (Ts)s∈R≥0
, we infer that

T t
n
=

(
T t

nm

)m
and T t

m
=

(
T t

nm

)n
.

From these two inequalities, it follows from the preceding inequality, Lemma 4.3 and (4.2) that∥∥∥n(T t
n
− I)−m(T t

m
− I)

∥∥∥
b
≤ n

m(m− 1)

2

( tβ

nm

)2

+m
n(n− 1)

2

( tβ

nm

)2

=
1

2n

m(m− 1)

m2
t2β2 +

1

2m

n(n− 1)

n2
t2β2

<
1

2

( 1

n
+

1

m

)
t2β2.

Since this inequality holds for arbitrary n,m ∈ N, we can conclude that the sequence (n(Tt/n)−
I)n∈N in Ob is Cauchy. As (Ob, ∥·∥b) is complete, this sequence converges to the bounded operator

lnTt = lim
n→+∞

n
(
T t

n
− I

)
.

To verify that the bounded operator lnTt is a sublinear rate operator, it suffices to realise that (i)
for all n ∈ N, n(Tt/n− I) is a bounded rate operator due to Lemma 2.8; and (ii) the axioms (Q1)–
(Q4) of a rate operator are preserved when taking limits. □
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Its limit expression already warrants calling lnTt the ‘ (natural) operator logarithm of Tt,’ but
the following result provides full justification: the operator logarithm is indeed the inverse of the
operator exponential.

Proposition 4.4. For any bounded sublinear rate operator Q,

ln etQ = tQ for all t ∈ R≥0.

Conversely, for any uniformly continuous semigroup (Tt)t∈R≥0
of sublinear transition operators,

Tt = eln Tt for all t ∈ R≥0.

Proof. For the first part of the proof, recall from Proposition 3.4 and Lemma 3.5 that (esQ)s∈R≥0

is a uniformly continuous sublinear transition semigroup, so the operator logarithm is well defined.

The equality for t = 0 holds trivially because e0Q = I, so we assume without loss of generality
that t > 0. Fix some ϵ ∈ R>0. Then it follows from Propositions 3.6 and 4.2—and the fact that

e0Q = I—that there is some n ∈ N such that∥∥∥e t
nQ − I

t
n

−Q
∥∥∥
b
<

ϵ

2t
and

∥∥∥n(e t
nQ − I)− ln etQ

∥∥∥
b
<

ϵ

2
.

From this, it follows that

∥ln etQ − tQ∥b ≤
∥∥∥ln etQ − n(e

t
nQ − I)

∥∥∥
b
+

∥∥∥n(e t
nQ − I)− tQ

∥∥∥
b

=
∥∥∥ln etQ − n(e

t
nQ − I)

∥∥∥
b
+ t

∥∥∥e t
nQ − I

t
n

−Q
∥∥∥
b

< ϵ.

Since this holds for arbitrary ϵ ∈ R>0, we have proven the first part of the statement.
For the second part of the statement, we again fix some ϵ ∈ R>0 and t ∈ R≥0. Then by

Theorem 3.1 and Proposition 4.2 there is some n ∈ N such that

∥lnTt∥b ≤ 2n,
∥∥∥eln Tt −

(
I +

1

n
lnTt

)n∥∥∥
b
<

ϵ

2
and

∥∥∥ lnTt − n
(
T t

n
− I

)∥∥∥
b
<

ϵ

2
.

Note furthermore that

I +
1

n

(
n
(
T t

n
− I

))
= T t

n
;

we use that (T t
n
)n = Tt because (Ts)s∈R≥0

is a semigroup, to yield(
I +

1

n

(
n
(
T t

n
− I

)))n

=
(
T t

n

)n
= Tt.

Since ∥lnTt∥b ≤ 2n by our choice of n, Lemma 2.9 ensures that I+ 1
n lnTt is a sublinear transition

operator; this means that we may invoke Lemma 3.2, to yield∥∥∥(I + 1

n
lnTt

)n

−
(
I +

1

n

(
n
(
T t

n
− I

)))n∥∥∥
b

≤ n
∥∥∥(I + 1

n
lnTt

)
−

(
I +

1

n

(
n
(
T t

n
− I

)))∥∥∥
=

∥∥∥lnTt − n
(
T t

n
− I

)∥∥∥
b

<
ϵ

2
.

From all this, it follows that∥∥∥Tt − eln Tt

∥∥∥
b
=

∥∥∥(I + 1

n

(
n
(
T t

n
− I

)))n

− eln Tt

∥∥∥
b

≤
∥∥∥(I + 1

n

(
n
(
T t

n
− I

)))n

−
(
I +

1

n
lnTt

)n∥∥∥
b

∥∥∥(I + 1

n
lnTt

)n

− eln Tt

∥∥∥
b

< ϵ.

Since ϵ ∈ R>0 was arbitrary, this shows that Tt = eln Tt , as required. □
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At long last, we are ready to provide a positive answer to the question posited at the beginning of
this section: is every uniformly continuous sublinear transition semigroup generated by a bounded
sublinear rate operator?

Theorem 4.5. Let (Tt)t∈R≥0
be a sublinear transition semigroup. If this semigroup is uniformly

continuous, then lnT1 is a bounded sublinear rate operator, and

Tt = et ln T1 for all t ∈ R≥0.

Proof. Since (Tt)t∈R≥0
is a uniformly continuous sublinear transition semigroup, Proposition 4.2

guarantees that for all t ∈ R≥0, lnTt is a bounded sublinear rate operator, while Proposition 4.4
ensures that

Tt = eln Tt for all t ∈ R≥0.

As (et ln T1)t∈R≥0
is uniformly continuous as well [Lemma 3.5], it suffices to show that Tt =

eln Tt = et ln T1 for all t in some dense subset T of R≥0, and we will do so for T = Q≥0. That is,
it suffices to show that

lnTq = q lnT1 for all q ∈ Q≥0. (4.3)

To this end, note that for all t ∈ R≥0 and n ∈ N, it follows from Proposition 4.2 that

lnTnt = lim
k→+∞

nk
(
T nt

nk
− I

)
= n lim

k→+∞
k
(
T t

k
− I

)
= n lnTt. (4.4)

Now fix some q ∈ Q≥0. Then there are some n ∈ Z≥0 and d ∈ N such that q = n/d, and (4.4)
tells us that

lnTn
d
= n lnT 1

d
and lnT1 = lnT d

d
= d lnT 1

d
.

Because d > 0, these equalities clearly imply the one in (4.3) for q = n/d, and this concludes our
proof. □

5. Comparison to related work

Semigroups of nonlinear operators have received quite some attention in the setting of imprecise
probabilities and nonlinear expectations. In the setting of imprecise probabilities, the setting has
typically been that of finite state spaces X [33, 21, 8, 13, 31]. This work extends the approach of
De Bock, Krak and Siebes [8, 21] to construct a sublinear transition semigroup from a bounded
sublinear rate operator to countable state spaces.

In contrast, much more work has been done in the setting of nonlinear expectations; I’ll briefly
mention that which is most closely related to the results presented here. Nendel [24] studies
semigroups of convex transition operators on B with X finite, but they only require strong con-
tinuity. In [25, Section 5], the same author considers semigroups of sublinear transition operators
for countable state spaces, but their construction differs from the approach taken in this work; I’ll
discuss this in more detail in Section 5.1 further on. More generally, there’s been quite some work
on ‘semigroups of convex (and monotone) operators’ on a variety of functions spaces.

Denk, Kupper & Nendel [10] study strongly continuous semigroups of convex monotone opera-
tors on ‘Lp-like spaces’. In the present setting, the relevant space is C0(X ), the space of functions
‘vanishing at infinity’, equipped with the supremum norm ∥·∥∞; note that C0(X ) = B if X is
finite but C0(X ) ⊊ B if X is countably infinite. They show that a uniformly continuous semi-
group (St)t∈R≥0

of convex monotone operators from C0(X ) to C0(X ) is completely defined by the
generator A whose domain consists of those f ∈ C0(X ) for which

R≥0 → C0(X ) : t 7→ Stf − S0f

t
converges in C0(X ) for t ↘ 0.

In contrast, in the present setting we investigated sublinear operators—which are convex and
monotone—in the Banach space (Ob, ∥ · ∥b) of bounded operators rather than in the functional
space (B, ∥·∥∞), and we did not require that these operators map the space C0(X ) of function
vanishing at infinity to itself.

Much of the other work on strongly continuous semigroups of convex monotone operators equips
the function space with the so-called ‘mixed topology’, see for example [19, 2]. In the present
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setting this amounts to (i) choosing some κ ∈ B with κ(x) > 0 for all x ∈ X ; (ii) letting ∥f∥κ :=
supx∈X |f(x)|κ(x) for all f ∈ RX ; and (iii) considering the space Cκ(X ) := {f ∈ RX : ∥f∥κ < +∞}.
A sequence (fn)n∈N in Cκ(X ) then converges to f ∈ Cκ(X ) in the mixed topology if and only if
supn∈N∥fn∥κ < +∞ and (fn)n∈N converges to f pointwise. For κ = 1, this reduces to pointwise
convergence on the set of bounded functions B. However, the intended use of the mixed topology
is to allow for functions that are unbounded, but grow at most as fast as 1/κ. In this mixed
topology, Blessing, Denk, Kupper & Nendel [2, Section 5] come up with a Chernoff-type method
to generate a strongly continuous semigroup of convex monotone operators on Cκ(X ), which is

quite similar in spirit to the construction of the semigroup (etQ)t∈R≥0
from a bounded sublinear

rate operator Q in Theorem 3.1.

5.1. Nendel’s [25] Nisio semigroups. As mentioned before, Nendel [25, Section 5] also considers
semigroups of sublinear transition operators for countable state spaces, but the way they construct
them differs a bit from the approach I’ve taken in this work. Their starting point is a family
{(Tλ

t )t∈R≥0
: λ ∈ Λ} of Markov semigroups—that is, a set of semigroups (Tλ

t )t∈R≥0
of linear

transition operators that are furthermore upward continuous in the following sense.

Definition 5.1. An operator A ∈ O is called (pointwise) upward continuous—sometimes also
continuous from below—if for all x ∈ X , the corresponding component functional [A·](x) : B → R
is upward continuous, meaning that for any monotone sequence (fn)n∈N ∈ BN that increases
pointwise to some f ∈ B,

lim
n→+∞

[Afn](x) = [Af ](x).

Nendel constructs the so-called Nisio semigroup (St)t∈R≥0
as follows. First, for all s ∈ R≥0, the

sublinear transition operator T̃s is defined as the point-wise upper envelope of the family (Tλ
s )λ∈Λ

of upward continuous transition operators:

T̃sf(x) := sup{Tλ
s f(x) : λ ∈ Λ}.

In the proof for their Proposition 5.2, Nendel [25] uses that T̃s is upward continuous, which follows
from the definition above and the upward continuity of the transition operators (Tλ

s )λ∈Λ. Second,
for all t ∈ R≥0, f ∈ B and x ∈ X , they let

Stf(x) := sup{T̃t1−t0 · · · T̃tn−tn−1f(x) : n ∈ Z≥0, 0 = t0 < t1 < · · · tn = t}.

They then go on to show that this Nisio semigroup (St)t∈R≥0
is the point-wise smallest semigroup

that dominates (Tλ
· )λ∈Λ: for any semigroup (St)t∈R≥0

such that

Tλ
t f ≤ Stf for all λ ∈ Λ, t ∈ R≥0, f ∈ B,

they show that

Tλ
t f ≤ Stf ≤ Stf for all λ ∈ Λ, t ∈ R≥0, f ∈ B.

In light of this paper, an obvious question is whether there are necessary and sufficient con-
ditions on the family {(Tλ

t )t∈R≥0
: λ ∈ Λ} of semigroups such that the corresponding Nisio semi-

group (St)t∈R≥0
is uniformly continuous. The following result establishes exactly such conditions.

Proposition 5.2. Let (St)t∈R≥0
be the Nisio semigroup corresponding to a family {(Tλ

t )t∈R≥0
: λ ∈

Λ} of semigroups of linear transition operators that are upward continuous. Then the Nisio semi-
group (St)t∈R≥0

is uniformly continuous if and only if (Tλ
t )t∈R≥0

is uniformly continuous for all

λ ∈ Λ and the set {∥Qλ∥b : λ ∈ Λ} of the norms of the corresponding rate operators is bounded.
Whenever this is the case, the generator R of the Nisio semigroup is the point-wise upper envelope
of the rate operators:

Rf(x) = sup
{
Qλf(x) : λ ∈ Λ

}
for all f ∈ B, x ∈ X .

Proof. Let us establish necessity first, so assume that the Nisio semigroup (St)t∈R≥0
is uniformly

continuous. To this end, fix some λ ∈ Λ. For all ∆ ∈ R>0, T
λ
∆ − I and S∆ − I are sublinear
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transition operators by Lemma 2.8, so it follows from Proposition 2.7 and the definition of the
Nisio semigroup that

∥Tλ
∆ − I∥b = 2 sup

{
[(Tλ

∆ − I)(1− Ix)](x) : x ∈ X
}

≤ 2 sup
{
[(S∆ − I)(1− Ix)](x) : x ∈ X

}
= ∥S∆ − I∥b.

Since the Nisio semigroup (St)t∈R≥0
is uniformly continuous, it follows from this inequality and

Lemma 2.5 that the semigroup (Tλ
t )t∈R≥0

is uniformly continuous. We still need to establish a

universal bound on ∥Qλ∥b. To this end, observe that for all f ∈ B,

Qλf = lim
∆↘0

Tλ
∆f − Tλ

0f

∆
≤ lim

∆↘0

S∆f − S0f

∆
= Rf,

where R is the bounded sublinear rate operator that generates the uniformly continuous semi-
group (St)t∈R≥0

[Theorem 4.5], the equalities follow from Theorems 3.6, and the inequality follows

from the definition of the Nisio semigroup. Since Qλ is linear, it also follows from this inequality
that Qλf ≥ −R(−f). From these two inequalities, it follows immediately that ∥Qλ∥b ≤ ∥R∥b.

For the sufficiency, suppose that every upward continuous transition semigroup is uniformly

continuous, meaning that Tλ = etQ
λ

for all t ∈ R≥0 and λ ∈ Λ, and that Q := {Qλ : λ ∈ Λ} is
uniformly bounded. Nendel [25, Remark 5.6] shows that for all f ∈ B,

R≥0 → B : t 7→ Stf (5.1)

is the unique solution to the Cauchy problem

lim
s→t

v(s)− v(t)

s− t
= QQv(t) for all t ∈ R≥0, v(0) = f, (5.2)

where QQ is the (point-wise) lower envelope of Q = {Qλ : λ ∈ Λ}, defined in Section 7 by

QQf(x) = sup
{
Qf(x) : Q ∈ Q

}
= sup

{
Qλf(x) : λ ∈ Λ

}
for all f ∈ B, x ∈ X .

Proposition 7.2 in Section 7 establishes that QQ is a bounded sublinear rate operator, so it follows
from Proposition 3.6 that

R≥0 → B : t 7→ etQQf

solves the Cauchy problem in (5.2). Consequently, we conclude that the Nisio semigroup (St)t∈R≥0

is uniformly continuous and generated by R = QQ. □

6. Appendix: Proofs and additional results regarding the Banach space of
bounded operators

Our proof for Proposition 2.1 relies on the following intermediary result.

Lemma 6.1. The function ∥ · ∥s : O → R≥0 ∪{+∞} as defined by (2.1) is an extended seminorm
on O. Furthermore, for all A,B ∈ O,

∥AB∥s ≤ ∥A∥s∥B∥s.

Proof. The function ∥ · ∥s is positive by definition, and it is clear that ∥O∥s = 0. That ∥ · ∥s is
subadditive follows from the subadditivity of the supremum norm ∥·∥∞ and the subadditivity of
the supremum, and ∥ · ∥b inherits the absolute homogeneity of the supremum norm ∥ · ∥∞.

For the second part of the statement, note that

∥AB∥s = sup
{∥ABf∥∞

∥f∥∞
: f ∈ B, f ̸= 0

}
≤ sup

{∥A∥s∥Bf∥∞
∥f∥∞

: f ∈ B, f ̸= 0
}

= ∥A∥s∥B∥s. □
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Proving Proposition 2.1 is now a matter of adapting Martin’s [22, Section III.2] proof for the
Lipschitz norm.

Proof of Proposition 2.1. First, it is clear that Ob is a real vector space since addition and scaling
clearly preserve finiteness of the operator seminorm ∥ · ∥s. Second, it follows from Lemma 6.1 that
∥ · ∥s is a seminorm on Ob. Furthermore, it is easy to see that ∥A∥s = 0 if and only if Af = 0 for
all f ∈ B such that f ̸= 0; whenever this is the case, ∥A∥b = 0 if and only if furthermore A0 = 0,
which can only be if A = O. This proves that ∥ · ∥b is a norm.

A standard argument now shows that (Ob, ∥·∥b) is complete. Fix any Cauchy sequence (An)n∈N ∈
(Ob)

N. Then for all f ∈ B, (Anf)n∈N is a Cauchy sequence in the complete space (B, ∥·∥∞), so
limn→+∞ Anf exists. The operator

Alim : B → B : f 7→ lim
n→+∞

Anf

is bounded because the Cauchy sequence (An)n∈N is bounded [18, Lemma 1.17]:

∥Alim∥s = sup
{∥limn→+∞ Anf∥∞

∥f∥∞
: f ∈ B, f ̸= 0

}
≤ sup

{ sup
{
∥An∥b : n ∈ N

}
∥f∥∞

∥f∥∞
: f ∈ B, f ̸= 0

}
= sup

{
∥An∥b : n ∈ N

}
< +∞.

To see that (An)n∈N converges to Alim, we fix any ϵ ∈ R>0. Because (An)n∈N is Cauchy, there
is some N ∈ N such that for all n,m ≥ N ,

∥An −Am∥b = ∥An0−Am0∥∞ + ∥An −Am∥s <
1

2
ϵ.

On the one hand, we infer from this that for all n ≥ N

∥Alim0−An0∥∞ ≤ lim sup
m→+∞

∥Alim0−Am0∥∞ + ∥Am0−An0∥∞

= lim sup
m→+∞

∥Am0−An0∥∞

<
1

2
ϵ.

On the other hand, we infer from this that for all n ≥ N and f ∈ B,

∥Alimf −Anf∥∞ ≤ lim sup
m→+∞

∥Alimf −Amf∥∞ + ∥Amf −Anf∥∞

= lim sup
m→+∞

∥Amf −Anf∥∞

<
1

2
ϵ∥f∥∞.

From these two observations, it follows that for all n ≥ N ,

∥Alim −An∥b = ∥Alim0−An0∥∞ + ∥Alim −An∥s < ϵ.

Since this holds for all ϵ ∈ R>0, we conclude that the Cauchy sequence (An)n∈N converges to a
limit Alim in Ob, as required.

Finally, for the second part of the statement, it follows immediately from the definitions of ∥ ·∥s
and ∥ · ∥b and Lemma 6.1 that

∥AB∥b = ∥AB0∥∞ + ∥AB∥s
≤ ∥A∥s∥B0∥∞ + ∥A∥s∥B∥s
= ∥A∥s∥B∥b
≤ ∥A∥b∥B∥b. □
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6.1. Additional results. While we’ll predominantly deal with ∥ · ∥b, the Lipschitz norm ∥·∥Lip
will also be of use at some point further on due to the following result.

Lemma 6.2. Consider bounded operators A,B,C ∈ Ob. If A is Lipschitz, then

∥AB−AC∥b ≤ ∥A∥Lip∥B− C∥b.

Proof. It suffices to observe that for all f ∈ B,

∥ABf −ACf∥∞ ≤ ∥A∥Lip∥Bf − Cf∥∞. □

Another link between the set of bounded operators and that of Lipschitz operators is the
following: any Lipschitz operator A ∈ OL with A0 = 0 is automatically bounded, as clearly

∥A∥s = sup
{∥Af∥∞

∥f∥∞
: f ∈ B, f ̸= 0

}
= sup

{∥Af −A0 + A0∥∞
∥f − 0∥∞

: f ∈ B, f ̸= 0
}

≤ sup
{∥Af −A0∥∞

∥f − 0∥∞
: f ∈ B, f ̸= 0

}
≤ ∥A∥Lip.

One particular class of operators that map 0 to 0 are the positively homogeneous ones: an
operator A ∈ O is positively homogeneous if A(λf) = λAf for all λ ∈ R≥0 and f ∈ B. For any
positively homogeneous operator A ∈ O and any f ∈ B \ {0},

1

∥f∥∞
Af = A

( 1

∥f∥∞
f
)

with
∥∥∥ 1

∥f∥∞
f
∥∥∥
∞

= 1;

consequently,

∥A∥s = sup
{
∥Af∥∞ : f ∈ B, ∥f∥∞ = 1

}
; (6.1)

since A0 = 0 due to positive homogeneity, it follows from this equality that if A is bounded,

∥A∥b = ∥A∥s = sup
{
∥Af∥∞ : f ∈ B, ∥f∥∞ = 1

}
. (6.2)

This is in accordance with the operator norm for positively homogeneous operators used in
[21, Eqn. (1)] and [8, Eqn. (4)], as well as with the standard norm for linear—additive and
homogeneous—operators [29, Section 23.1].

6.2. Convergence of sequences of sublinear transition operators. Thanks to Lemma 2.9,
the crucial notion of convergence is actually that of convergence for sequences of sublinear transi-
tion operators. So consider some sequence (Tn)n∈N of upper transition operators and some upper
transition operator T. If the state space X is finite, uniform convergence (that is, according
to ∥ · ∥b) is equal to strong or pointwise convergence (that is, according to ∥ · ∥∞): this sequence
converges to T if and only if for all f ∈ B, (Tnf)n∈N converges to Tf [8, Proposition 3]. When X
is countably infinite, this equivalence between uniform and strong convergence does not necessarily
hold; the following is a counterexample.

Example 6.3. Let X := N, and for all n ∈ N, let

Tn : B → B : f 7→ max{f(k) : k ≤ n}.

Then for all f ∈ B, (Tnf)n∈N converges to sup f . However, (Tn)n∈N does not converge to

T: B → B : f 7→ sup f.

Indeed, for all n ∈ N, let An := {m ∈ N : m > n}, then ∥IAn∥∞ = 1, TnIAn = 0 and TIAn = 1,
whence

∥Tn − T∥b ≥ ∥TnIAn
− TIAn

∥∞ = 1.
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Because Tn − T is Lipschitz [(T10)] and maps 0 to 0 [(T6)], it follows from the discussion in
Section 6.1 that if (Tn)n∈N converges to T in (OL, ∥·∥L), then it also converges to T in (Ob, ∥ · ∥b).
The following example, for which I’m indebted to Arne Decadt, shows that—quite peculiarly—the
converse does not hold.

Example 6.4. Let X := {1, 2, 3}. For all ϵ ∈ [0, 1], let Tϵ be the upper transition operator that
maps f ∈ B to

Tϵf : X → R : x 7→

{
max{ϵf(1) + (1− ϵ)f(2), f(3)} if x = 1,

f(x) otherwise.

We set out to show that for all ϵ ∈]0, 1],

∥Tϵ − T0∥L = 2 and ∥Tϵ − T0∥b = 2ϵ.

To obtain the desired counterexample, it then suffices to take (T1/n)n∈N and T0. So fix any
ϵ ∈]0, 1].

Let us look at the Lipschitz norm first. On the one hand, it follows from (T10) that

∥Tϵ − T0∥L ≤ ∥Tϵ∥L + ∥T0∥L = 2.

On the other hand, consider the functions fϵ, gϵ ∈ B given by(
fϵ(1), fϵ(2), fϵ(3)

)
:=

(
1 +

2

ϵ
,−1, 1

)
and

(
gϵ(1), gϵ(2), gϵ(3)

)
:=

(
2 +

2

ϵ
, 0, 0

)
.

Then ∥fϵ − gϵ∥∞ = 1 and

[Tϵfϵ](1) = max{ϵ+ 2− (1− ϵ), 1} = 1 + 2ϵ

[Tϵgϵ](1) = max{2ϵ+ 2, 0} = 2ϵ+ 2,

[T0fϵ](1) = max{−1, 1} = 1

[T0gϵ](1) = max{0, 0} = 0,

and therefore

2 ≥ ∥Tϵ − T0∥L ≥ ∥(Tϵ − T0)fϵ − (Tϵ − T0)gϵ∥∞
∥fϵ − gϵ∥∞

= |1 + 2ϵ− 2ϵ− 2− 1 + 0| = 2,

as required.
For ∥ · ∥b, observe that as Tϵ − T0 is positively homogeneous [(T1)], it follows from (6.2) that

∥Tϵ − T0∥b = sup
{∣∣[Tϵf ](1)− [T0f ](1)

∣∣ : f ∈ B, ∥f∥∞ = 1
}
,

So fix any f ∈ B with ∥f∥∞ = 1. We distinguish four cases.

(1) If ϵf(1) + (1− ϵ)f(2) ≥ f(3) and f(2) ≥ f(3), then∣∣[Tϵf ](1)− [T0f ](1)
∣∣ = |ϵf(1) + (1− ϵ)f(2)− f(2)| = ϵ|f(1)− f(2)| ≤ 2ϵ.

(2) If ϵf(1) + (1− ϵ)f(2) ≥ f(3) and f(2) < f(3), then∣∣[Tϵf ](1)− [T0f ](1)
∣∣ = |ϵf(1) + (1− ϵ)f(2)− f(3)|
= ϵf(1) + (1− ϵ)f(2)− f(3)

= ϵ(f(1)− f(2)) + f(2)− f(3)

< ϵ|f(1)− f(2)|
≤ 2ϵ.

(3) If ϵf(1) + (1− ϵ)f(2) < f(3) and f(2) < f(3), then∣∣[Tϵf ](1)− [T0f ](1)
∣∣ = |f(3)− f(3)| = 0.
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(4) If ϵf(1) + (1− ϵ)f(2) < f(3) and f(2) ≥ f(3), then∣∣[Tϵf ](1)− [T0f ](1)
∣∣ = |f(3)− f(2)| = f(2)− f(3)

< f(2)− ϵf(1)− (1− ϵ)f(2) = ϵ
(
f(2)− f(1)

)
≤ 2ϵ.

From this, and with g ∈ B such that (g(1), g(2), g(3)) := (1,−1,−1), it follows that

2ϵ ≥ ∥Tϵ − T0∥b ≥ ∥Tϵg − T0g∥∞ = |ϵ− (1− ϵ) + 1| = 2ϵ,

as required.

7. Appendix: Sublinear rate operators as upper envelopes

For any set Q of rate operators, its corresponding pointwise upper envelope

QQ : B → RX

maps any f ∈ B to

QQf : X → R ∪ {+∞} : x 7→ [QQf ](x) := sup
{
[Qf ](x) : Q ∈ Q

}
.

From this definition, it is easy to see that QQ is an operator—that is, that it has B as codomain—if
and only if

sup
{∣∣sup{[Qf ](x) : Q ∈ Q

}∣∣ : x ∈ X
}
< +∞ for all f ∈ B. (7.1)

Whenever this is the case, QQ turns out to be a sublinear rate operator.

Lemma 7.1. Consider a set Q of rate operators. Then the corresponding pointwise upper enve-
lope QQ is an operator if and only if (7.1) holds; whenever this is the case, QQ is a sublinear rate
operator.

Proof. The necessity and sufficiency of (7.1) follows immediately from the definition of QQ. That

QQ is a sublinear rate operator follows immediately from its definition as a pointwise supremum:

QQ is sublinear and satisfies (Q3) and (Q4) because every rate operator Q ∈ Q is linear and
satisfies (Q3) and (Q4). □

It suffices for (7.1) that Q is uniformly bounded with respect to the operator seminorm ∥ · ∥s,
in the sense that sup{∥Q∥s : Q ∈ Q} < +∞. In fact, this sufficient condition also ensures that QQ
is a bounded operator.

Proposition 7.2. Consider a set Q of rate operators. Then the corresponding upper envelope QQ
is a bounded operator if and only if Q is uniformly bounded with respect to ∥ · ∥s, in which case
QQ is a sublinear rate operator and

∥QQ∥b = sup
{
∥Q∥b : Q ∈ Q

}
.

Proof. For the sufficiency, assume that β := sup{∥Q∥s : Q ∈ Q} < +∞. To use this to our
advantage, we observe that for all f ∈ B and Q ∈ Q,

−β∥f∥∞ ≤ ∥Q∥s∥f∥∞ ≤ −Q(−f) = Qf ≤ ∥Q∥s∥f∥∞ ≤ β∥f∥∞.

These inequalities imply that (7.1) is satisfied, so we know from Lemma 7.1 that QQ is a sublinear

rate operator. It now follows from Proposition 2.7, the definition of QQ, (6.2) and Proposition 2.7
that

∥QQ∥s = sup
{
[QQ(1− 2Ix)](x) : x ∈ X

}
= sup

{
sup

{
[Q(1− 2Ix)](x) : Q ∈ Q

}
: x ∈ X

}
= sup

{
sup

{
[Q(1− 2Ix)](x) : x ∈ X

}
: Q ∈ Q

}
= sup

{
∥Q∥s : Q ∈ Q

}
.
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Since by assumption Q is uniformly bounded with respect to ∥ · ∥s, we infer from these equalities
that QQ is a bounded operator, as required. As QQ is bounded and positively homogeneous, it
also follows immediately from this equality and (6.2) (twice) that

∥QQ∥b = ∥QQ∥s = sup
{
∥Q∥s : Q ∈ Q

}
= sup

{
∥Q∥b : Q ∈ Q

}
.

For the necessity, suppose that QQ is a bounded operator. Then we know from Lemma 7.1

that QQ is a sublinear rate operator. Hence, in a reversal of the argument in the first part of this

proof, it follows from (6.2), Proposition 2.7, the definition of QQ and again Proposition 2.7 that

sup
{
∥Q∥s : Q ∈ Q

}
= ∥QQ∥s.

Since QQ is a bounded operator by assumption, we may conclude from this equality that Q is
uniformly bounded for ∥ · ∥s. □

We can also go the other way around, so from a sublinear rate operator Q to the corresponding
set of dominated rate operators

QQ :=
{
Q ∈ Q : (∀f ∈ B) Qf ≤ Qf

}
,

where Q denotes the set of all rate operators. The next results establish some properties of this
set QQ.

Definition 7.3. A set Q of rate operators is separately specified if for any selection (Qx)x∈X
in Q, there is a rate operator Q ∈ Q such that [Qf ](x) = [Qxf ](x) for all f ∈ B and x ∈ X .

Proposition 7.4. Consider an upper rate operator Q. Then the set QQ of dominated rate oper-
ators is non-empty, convex and separately specified.

Proof. That QQ is non-empty follows almost immediately from the Hahn–Banach Theorem—

see for example [3, Theorem 1.1] or [29, Theorem 12.31.(HB3)]. To see why, recall that B is
a real vector space, and observe that the set C ⊆ B of constant functions is a linear subspace
of B and that q : C → R : µ 7→ 0 is a linear functional on C. For all x ∈ X , the component
functional px : B → R : f 7→ [Qf ](x) is sublinear and dominates q, so by the Hahn–Banach
Theorem there is a linear functional qx on B that extends q and is dominated by px, whence

−[Q(−f)](x) ≤ −qx(−f) = qx(f) ≤ [Qf ](x). (7.2)

Consider now the operator Q: B → B defined by

[Qf ](x) := qx(f) for all f ∈ B, x ∈ X ;

since Qf,−Q(−f) ∈ B, (7.2) ensures that Qf ∈ B. It is now clear that by construction, Q is
a linear operator that maps constant functions µ ∈ C to 0 and satisfies the positive maximum
principle [as it is dominated by Q]. In other words, Q ∈ QQ, so QQ is indeed non-empty.

To see that QQ is convex, it suffices to realise that (i) the convex combination of two rate

operators is again a rate operator, and (ii) if two rate operators are dominated by Q, then so
is their convex combination. To see that QQ is separately specified, it suffices to realise that all
requirements on rate operators and the requirement of domination are pointwise for x ∈ X . □

Lemma 7.5. Consider a sublinear rate operator Q. Then

sup
{
∥Q∥s : Q ∈ QQ

}
= ∥Q∥s,

so Q is a bounded operator if and only if QQ is uniformly bounded. Whenever this is the case, QQ

is closed with respect to ∥ · ∥b.

Proof. The first part of the statement follows almost immediately Proposition 2.7 (twice):

sup
{
∥Q∥s : Q ∈ QQ

}
= sup

{
[Q(1− 2Ix)](x) : Q ∈ QQ, x ∈ X

}
= sup

{
[Q(1− 2Ix)](x) : x ∈ X

}
= ∥Q∥s.
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In the remainder of this proof, we show that QQ is closed in (Ob, ∥ · ∥b). So we fix any

sequence (Qn)n∈N that converges to some A ∈ Ob, in the sense that limn→+∞∥A − Qn∥b = 0,
and set out to show that A ∈ QQ. Fix any f ∈ B and x ∈ X , and observe that because QQ is

uniformly bounded, so is ([Qnf ](x))n∈N because for all n ∈ N,∣∣[Qnf ](x)
∣∣ ≤ ∥Qnf∥∞ ≤ ∥Qn∥s∥f∥∞ ≤ sup{∥Qm∥s : m ∈ N}∥f∥∞.

Furthermore, the assumption that limn→+∞∥A−Qn∥b = 0 implies that

0 ≤ lim
n→+∞

∣∣[Af ](x)− [Qnf ](x)
∣∣ ≤ lim

n→+∞
∥Af −Qnf∥∞ ≤ lim

n→∞
∥A−Qn∥b∥f∥∞ = 0.

From this, we conclude that

[Af ](x) = lim
n→+∞

[Qnf ](x) for all f ∈ B, x ∈ X .

Because every Qn is a rate operator, we infer from this realisation that (i) A is linear, (ii) A
maps constant functions to 0 [(Q3)], and (iii) A satisfies the positive maximum principle [(Q4)];
consequently, A is a rate operator. Since every Qn iominated by Q, it also follows from the equality
above that the rate operator A is dominated by Q, or equivalently, belongs to QQ. □

8. Appendix: Proofs for results in Section 3.1

This appendix contains the proofs for the two intermediary lemmas which we rely on in our
proof for Theorem 3.1.

Proof of Lemma 3.2. Our proof will be one by induction, and basically repeats the one given by
Krak et al. [21, Proof for Lemma E.4]. For the induction base n = 1, the inequality in the
statement is trivial. For the inductive step, we assume that the inequality in the statement holds
for n = ℓ, and set out to verify that it then also holds for n = ℓ+ 1. To this end, observe that∥∥∥T1 · · ·Tℓ+1 − S1 · · · Sℓ+1

∥∥∥
b

≤
∥∥∥T1 · · ·TℓTℓ+1 − T1 · · ·TℓSℓ+1

∥∥∥
b
+

∥∥∥T1 · · ·TℓSℓ+1 − S1 · · · SℓSℓ+1

∥∥∥
b
.

For the first term, T1 · · ·Tℓ is a sublinear transition operator and Tℓ+1 and Sℓ+1 are bounded
operators, so it follows from (T12) that∥∥∥T1 · · ·TℓTℓ+1 − T1 · · ·TℓSℓ+1

∥∥∥
b
≤

∥∥∥Tℓ+1 − Sℓ+1

∥∥∥
b
.

To bound the second term, we use (2.2) (with A = T1 · · ·Tℓ − S1 · · · Sℓ and B = Sℓ+1) and (T11)
and invoke the induction hypothesis:∥∥∥T1 · · ·TℓSℓ+1 − S1 · · · SℓSℓ+1

∥∥∥
b
≤

∥∥∥T1 · · ·Tℓ − S1 · · · Sℓ
∥∥∥
b

∥∥∥Sℓ+1

∥∥∥
b

≤
∥∥∥T1 · · ·Tℓ − S1 · · · Sℓ

∥∥∥
b

≤
ℓ∑

k=1

∥∥∥Tk − Sk

∥∥∥
b
.

From all this we infer that∥∥∥T1 · · ·Tℓ+1 − S1 · · · Sℓ+1

∥∥∥
b
≤

ℓ+1∑
k=1

∥∥∥Tk − Sk

∥∥∥
b
,

which is precisely the inequality in the statement for n = ℓ+ 1. □

Proof of Lemma 3.3. Our proof follows that of Krak et al. [21, Proof for Lemma E.5] closely, so
it will be one by induction over ℓ. The statement holds trivially for the induction base ℓ = 1.
For the inductive step, we assume that the inequality in the statement holds for some ℓ = k and
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all ∆ ∈ R>0 such that ∆∥Q∥b ≤ 2, and set out to verify this inequality for ℓ = k + 1 and some
∆ ∈ R>0 such that ∆∥Q∥b ≤ 2. Then with δ := ∆/(k + 1),(

I + δQ
)k+1

− (I + (k + 1)δQ) =
(
I + δQ

)k

+ δQ
(
I + δQ

)k

−
(
I + kδQ

)
− δQ.

It follows from this and the induction hypothesis that∥∥∥(I + δQ)k+1 − (I + (k + 1)δQ)
∥∥∥
b
≤

∥∥∥(I + δQ)k − (I + kδQ)
∥∥∥
b
+ δ

∥∥∥Q(I + δQ)k −Q
∥∥∥
b

≤ k2δ2∥Q∥2b + δ
∥∥∥Q(I + δQ)k −Q

∥∥∥
b
.

Next, we note that Q = QIk, invoke Proposition 2.10 (with A = (I + δQ)k and B = Ik) and then
Lemma 3.2 (with Tk = (I + δQ) and Sk = I), to yield∥∥∥(I + δQ

)k+1

− (I + (k + 1)δQ)
∥∥∥
b
≤ k2δ2∥Q∥2b + δ

∥∥∥Q∥∥∥
b

∥∥∥(I + δQ)k − Ik
∥∥∥
b

≤ k2δ2∥Q∥2b + kδ
∥∥∥Q∥∥∥

b

∥∥∥I + δQ− I
∥∥∥
b

= k2δ2∥Q∥2b + kδ2∥Q∥2b.

Since k2 + k ≤ (k + 1)2, it follows from this that indeed∥∥∥(I + δQ
)k+1

− (I + (k + 1)δQ)
∥∥∥
b
≤ (k + 1)2δ2∥Q∥b = ∆2

∥∥∥Q∥∥∥
b
. □

9. Appendix: Proof of Proposition 4.1

Proposition 4.1 generalises Lemma 3.100 in my doctoral dissertation [13] from the setting of
finite X to that of countable X . The proof that we are about to go through is a rather straight-
forward generalisation of the proof of the aforementioned result, with some minor modifications.

Proof of Proposition 4.1. The equality in the statement follows immediately from Lemma 2.8,
(6.1) and Proposition 2.7.

Because of Lemma 2.5, the inequality in the statement clearly implies that (Tt)t∈R≥0
is uni-

formly continuous. The proof of the converse implication—so starting from uniform continuity—is
more involved; in fact, our proof will be one by contrapositive: we assume that

lim sup
t↘0

∥∥∥Tt − I

t

∥∥∥
b
= +∞, (9.1)

and set out to prove that then (Tt)t∈R≥0
is not uniformly continuous, which due to (T11) and

Lemma 2.5 means that
lim sup

t↘0
∥Tt − I∥b > 0,

or more formally, that

(∃ϵ ∈ R>0)(∀δ ∈ R>0)(∃t ∈]0, δ[)
∥∥∥Tt − I

∥∥∥
b
≥ ϵ. (9.2)

We fix some ϵ ∈]0, 1[, some ϵ1 ∈]0, 1− ϵ[ and some arbitrary δ ∈ R>0. Since limα→+∞ e−α = 0
and 0 < 1−ϵ−ϵ1 by construction, we can moreover pick some λ ∈ R>0 such that e−λδ < 1−ϵ−ϵ1.
There is some Nϵ1 ∈ N such that∣∣∣e−λδ −

(
1− λδ

n+ 1

)n∣∣∣ < ϵ1 for all n ≥ Nϵ1 . (9.3)

Let us use our contrapositive assumption: it follows from (9.1) that there is some ∆ ∈]0,min{1/λ, δ/Nϵ1}[
such that λ∆ ≤ ∥T∆ − I∥b. With n the unique natural number such that n∆ < δ ≤ (n+1)∆, our
restrictions on ∆ guarantee that n ≥ Nϵ1 and λ∆ < 1.

Let β := ∥T∆ − I∥b/2. If β ≥ ϵ/2, then we have clearly verified (9.2) because δ was arbitrary,
∆ ∈]0, δ[ by construction and ∥T∆ − I∥b = 2β ≥ ϵ.

The case β < ϵ/2 < 1/2 is quite more involved. Since λ∆ ≤ 2β < 1 by construction,

1− λ∆ ≥ 1− 2β ⇒ (1− λ∆)n ≥ (1− 2β)n ⇒ 1− (1− λ∆)n ≤ 1− (1− 2β)n; (9.4)



24 A. ERREYGERS EJDE-2025/122

similarly, because 0 ≤ λδ
n+1 ≤ λ∆ < 1,

1−
(
1− λδ

n+ 1

)n

≤ 1−
(
1− λ∆

)n

. (9.5)

To continue, we fix an arbitrary ϵ2 ∈ R>0 such that β − ϵ2 > 0; then since T∆ − I is a bounded
sublinear rate operator [Lemma 2.8], it follows from (6.2) and Proposition 2.7 that there is some
x ∈ X such that

β − ϵ2 <
[
T∆(1− Ix)

]
(x) ≤ β (9.6)

and for all other y ∈ X \ {x}, [
T∆(1− Iy)

]
(y) ≤ β. (9.7)

It follows from (T7), (T4), (T5) and (9.7) that for all other y ∈ X \ {x},[
T∆(1− Ix)

]
(y) ≥ −

[
T∆(−1 + Ix)

]
(y) ≥ −

[
T∆(−Iy)

]
(y) = 1−

[
T∆(1− Iy)

]
(y) ≥ 1− β.

Thus, we have shown that

T∆(1− Ix) ≥ β − ϵ2 + (1− 2β)(1− Ix).

It follows from the semigroup property (SG1) of (Ts)s∈R≥0
, the previous inequality, some properties

of T∆—in particular (T4), (T5) and (T1) (which we may invoke because β < 1/2 whence 1−2β ≥
0)—and again the previous inequality that

T2∆(1− Ix) = T∆T∆(1− Ix)

≥ T∆

(
β − ϵ2 + (1− 2β)(1− Ix)

)
= β − ϵ2 + (1− 2β)T∆(1− Ix)

≥ β − ϵ2 + (1− 2β)
(
β − ϵ2 + (1− 2β)(1− Ix)

)
=

(
β − ϵ2

)(
1 + (1− 2β)

)
+ (1− 2β)2(1− Ix).

We apply this same trick n− 2 times more, to yield

Tn∆(1− Ix) ≥
(
β − ϵ2

)( n−1∑
k=0

(1− 2β)k
)
+ (1− 2β)n(1− Ix).

Evaluating the functions on both sides of the equality in x and using the well-known expression
for the partial sum of a geometric series, we find that[

Tn∆(1− Ix)
]
(x) ≥

(
β − ϵ2

)1− (1− 2β)n

1− (1− 2β)
=

β − ϵ2
2β

(1− (1− 2β)n).

Since β − ϵ2 > 0, it follows from this, (9.4) and (9.5) that[
Tn∆(1− Ix)

]
(x) ≥ β − ϵ2

2β

(
1−

(
1− λδ

n+ 1

)n)
;

since n ≥ Nϵ1 by construction, we can also invoke (9.3), to yield[
Tn∆(1− Ix)

]
(x) ≥ β − ϵ2

2β

(
1− e−λδ − ϵ1

)
>

β − ϵ2
2β

ϵ,

where for the second inequality we used that e−λδ < 1 − ϵ − ϵ1. Since this inequality holds for
arbitrarily small ϵ2, we may infer from it that[

Tn∆(1− Ix)
]
(x) ≥ 1

2
ϵ.

Because Tn∆ − I is a bounded sublinear rate operator, we conclude from this, Lemma 2.8 and
Proposition 2.7 that ∥∥∥Tn∆ − I

∥∥∥
b
≥ ϵ.

Since δ ∈ R>0 was arbitrary and we’ve ensured that n∆ ∈]0, δ[, we’ve verified (9.2). □
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