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ABSTRACT. This article concerns the study of Green’s functions for one di-
mensional diffusions with constant diffusion coefficient and linear time inho-
mogeneous drift. It is well know that the whole line Green’s function is given
by a Gaussian. Formulas for the Dirichlet Green’s function on the half line
are only known in special cases. The main object of study in the paper is
the ratio of the Dirichlet to whole line Green’s functions. Bounds, asymptotic
behavior in the limit as the diffusion coefficient vanishes, and a log concavity
result are obtained for this ratio. These results have been used in the proof of
asymptotic behavior for a simple model of Ostwald ripening.
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In this article we prove some results for diffusions on the line with affine time
dependent drift, which are used in [5] to study the large time behavior of solutions to
a nonlinear nonlocal diffusion problem occurring in the theory of Ostwald ripening
[T4]. This theory describes the time evolution of crystals in a solute, whereby smaller
crystals dissolve and then depos it onto larger crystals. An important quantity is
the coarsening rate, which is the rate of increase of the average crystal volume with
Mean field models of Ostwald ripening were developed by Becker-Déring

time.

[3], Lifshitz-Slyozov [I3] and Wagner [19]. The LSW model introduced in [I3],
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and independently in [I9], consists of a first order linear transport PDE on the
half line with a linear constraint corresponding to conservation of volume, making
the model nonlinear and nonlocal. The Becker-Déring (BD) model is a linear
transport equation on the positive integers with a linear conservation of volume
constraint. The transport equation on the positive integers can be interpreted as
the discretization of a linear diffusion equation [I8]. Furthermore, solutions of the
BD model at large time are expected to be approximate solutions to the LSW model
[15].

The LSW model has a family of self-similar solutions, which may be parametrized
by a real number 8 with 0 < 8 < 1. Already in [13| [19] it was conjectured that the
only physically relevant self-similar solution is the = 1 solution. Therefore the
large time asymptotic coarsening rate in Ostwald ripening may be obtained from
the 8 = 1 solution. The Carr-Penrose (CP) model introduced in [4] is a simplified
version of the LSW model in which the transportation vector field is affine. It also
has a family of self-similar solutions parametrized by 8 with 0 < 8 < 1. It is
shown in [4] that for each 8 with 0 < 8 <1 there exists a large class of initial data
with compact support for the CP model which asymptotically converges to the self-
similar solution with parameter 8. The main result of [5] is that all solutions to a
diffusive CP model with initial data of compact support asymptotically converge to
the 8 = 1 self-similar solution of the CP model. Thus diffusion acts as a selection
principle on the one parameter family of self-similar solutions of the CP model.
The selection principle was initially established for a semi-classical approximation
to the diffusive CP model [6].

The key difficulty in going from proving the selection principle for the semi-
classical diffusive CP model to proving it for the diffusive model is controlling the
ratio of the Dirichlet Green’s function for the CP diffusion equation on the half line
to the Green’s function on the whole line, which is Gaussian. This is the subject of
the present paper. The results most relevant for the diffusive CP problem are the
log concavity property of the ratio of Green’s functions and the convergence
(1.19) of the logarithmic derivative of the ratio as the diffusion constant goes to
Zero.

To specify the diffusion equation we are interested in, let b : R x R — R be a
continuous function (y,t) — b(y,t), which is linear in the space variable y. For
€ > 0, the terminal value problem

Oue(y,t)

Quely.t) € 0%uc(y,t)
ot

Oy 2 Oy?
UE(:%T) = uT(y)7 NS Ra (12)

has a unique solution u. which has the representation

+ b(y,t) =0, yeR, t<T, (1.1)

wlt)= [ Gulopt Durla)ds, yeR t<T, (13)
— 00

where G, is the Green’s function for the problem. The adjoint problem to (1.1),
(1.2) is the initial value problem

2
G g ) = STEE0, wemso (1

ot Ox
”UE(CU,O) = UO(I')v yeR. (15)
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The solution to (1.4), (1.5)) is given by the formula

v@T) = [ Gulen.0. Ty dy, 2R T >0 (1.6)

Since the drift b(-,-) is linear and G, is Gaussian, (x,y) — log Ge(x,y,t,T) is a
quadratic function in (z,y). Here we shall obtain properties of the corresponding
Dirichlet Green’s function (x,y) — G. p(x,y,t,T) on the half line z,y > 0. Thus

U'E,D(y7t) = / GE,D(x7y7taT)uT(x) dl‘, Yy > 07 t < T7 (17)
0

is the solution to (L.1)), (1.2) in the domain {(y,t) : y > 0, ¢ < T} with Dirichlet
boundary condition u. p(0,t) =0, t <T.
The drifts b(-, ) we consider are of the form
b(y,t) = A(t)y — 1, where A: R — R is a continuous function, (1.8)

but the methods of the paper may be extended to more general linear drifts. In the
case A(-) = 0 there are simple explicit formulas for G, and G, p. These are given
by

1 (x+T —t—vy)?
G2,y t,T) = ————exp | — 2= 7Y | 1.9
@yt 1) = x| 2 (T —1) ] (1.9)
_ 2zy
Gep(z,y,t,T) = {1 — exp [— m] }Ge(xayvth) : (1.10)
For non-trivial A(-), we write
€ l‘? ’t7T
Gep(z,y,t,T) = {1 — exp [— %} }Ge(x,y,t,T), (1.11)

and study the properties of the function ¢.. When A(-) = 0 we have from
that the function (z,y) — ¢-(z,y,t,T) is independent of ¢ and bilinear. One can
also obtain explicit formulas for ¢. in some other cases of linear drift, in particular
for the Ornstein-Uhlenbeck process where b(y,t) = —vyy with constant v (see [17]
Prop. 20] and Remark of the present paper). However there appears not to be
an explicit formula for ¢. in the case of the general function A(-).

We are able to obtain linear bounds on the function z — ¢.(z,y,t,T), x > 0,
and its first two x derivatives, which are uniform in ¢ > 0, when the function A(-)
is assumed to be non-negative:

Theorem 1.1. Assume the function A(-) of is continuous and non-negative,
and q. is defined by . Then there exists a continuous positive function (")
and continuous non-negative functions B1(-), B2(+), with domain {(¢,T) : t,T €
R, t < T}, which bound q. as follows:

Oél(taT)xy S qs(x,y,t,T) S [al(tv T):L’ + ﬂl(t’T)}ya T,y > 07 t< T, (112)
ll}m {[al(taT)x+Bl(th)]y_qg(‘rvyvtaT)}:07 y>07 t<T» (113)
g (z,y,t,T) < [oa(t, T)y + o (t, T)]x, x,y>0,t<T, (1.14)
0 t, T
ar(t, Ty < %(1’57?’) <art,T)y+B(t,T), z,y>0,t<T, (1.15)
. 0q(2,y,t,T) _
mlggo {T —aq(t, T)y} =0, y>0,t<T, (1.16)

The functionz — q.(x,y,t,T), z,y >0t < T, is concave. (1.17)
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Since ¢.(0,y,t,T) = 0 the lower bound in is implied by the lower bound
in . Similarly the upper bound in (1.15) implies the upper bound in (1.14]).
However our proof of in Propositi uses the inequalities (1.12), (1.14]),
which have previously been established in Proposition The proof of (1.13)) is

given in Proposition the proof of (1.16) in Proposition and the proof of
(1.17) in Theorem

Theorem tells us that the graph of the function  — g.(z,y,t,T), z > 0, lies
between two parallel lines and is asymptotic to the upper line at large . The graph
also lies in a wedge formed by two lines through the origin and is concave. This
geometric picture gives us a rather precise understanding of the global behavior
of the function z — ¢-(z,9,0,T), > 0. The significance of the upper bounds
, can be understood by considering the situation when ¢ — 0. The
function [z,T] — ¢e(x,y,0,T), =, T > 0, is a solution to the Hamilton-Jacobi-
Bellman equation (2.22)). One expects then that lim. 0 ¢(z,y,t,T) = qo(z, y,t,T)
exists, and in the case ¢ = 0 is a solution to the Hamilton-Jacobi equation .
In §2 we show that the limit does exist and go(x,y,0,T) is given by the variational
formula corresponding to the Hamilton-Jacobi equation. In §4 we study
this variational problem in great detail, establishing in particular that if A(:) is
continuous and non-negative then the function x — qo(z,y,t,T) is differentiable
in a neighborhood of x = 0 and 9qy(0,y,t,T)/0x = a1(t,T)y + B2(t,T). More
precisely we have the following theorem.

Theorem 1.2. Assume the function A(-) of is continuous and and g is
defined by (1.11). Then there is a continuous function [z,y,t,T] = qo(x,y,t,T)
with domain {[z,y,¢,T) : x,y >0, t,T € R, t < T} such thatlim. o g-(z,y,t,T) =
qo(z,y,t,T) for all x,y > 0, t < T. If A(:) is non-negative then the function
x = qo(z,y,t,T) is differentiable at x =0 and

8(]0 (.’IJ, Y, tv T)

0r luzo — 1Ty + Bo(tT). (1.18)

Furthermore, for any t € R, Ty > 0, there are constants Cy,Cs > 0, depending only
on Ty and sup,<,<; 1, A(s), such that
802 (T — t)2

‘ 0q:(0,y,t,T)
y2

ox
fory > Ci1(T — )%, T —t < Ty, provided e < (T —t)3.

- [al(t,T)erﬁz(t,T)]’ < (1.19)

In Theorem we prove that lim._,0q¢c(z,y,t,T) = qo(z,y,t,T) exists and is
the solution to the variational problem . In Proposition we show if A(-)
is non-negative that go(z,y,0,T) may be obtained by the method of characteristics
in a subdomain of {[z,T] : « > 0,7 > 0}, which includes a neighborhood of the
boundary {[0,7] : T > 0}. The function [z,T] — go(x,y,0,T) is then a classical
solution of the Hamilton-Jacobi equation (2.29) in this region, and the derivative
0qo(z,y,0,T)/0x is given by the formula .

We use the methods of stochastic control theory to prove that lim. _,gq. = qo
and . The Bellman equation corresponds to the stochastic variational
problem . The proofs of lim._,oq. = qo and are then obtained by
comparing the solution of this stochastic variational problem to the solution of the
classical variational problem . The proof of is given in Proposition
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and uses in a crucial way the regularity of the function z — ¢o(x,y,0,7T) in a
neighborhood of = = 0.

The ratio of Green’s functions G. p(x,y,t,T)/Ge(x,y,t,T) given in is the
probability that a generalized Brownian bridge, beginning at y at time ¢ and ending
at x at time T, lies entirely in the positive half line. We may therefore try to estimate
ge(x,y,t,T) by comparing this generalized bridge to the standard Brownian bridge.
This method of bridge comparison is used in the proof of Proposition 3.2 However
for the most part we use the fact that the bridge process is a Gaussian Markov
process with the linear drift in order to estimate g.(x,y,¢,T). There is a
considerable literature on the study of bridges. In [8, @] Conforti et al study bridges
associated to diffusions with a gradient drift, using the fact that it is the reciprocal
characteristics which determine the bridge uniquely. In particular, diffusions with
differing drifts may have the same bridge processes. A simple example of this is the
case of the drift with A(-) = 0. The bridge process associated with the constant
drift is the same as the Brownian bridge. In Proposition [I2, Prop. 3] formulas for
first passage time for diffusions with time-inhomogeneous drift are given. However
in these cases there needs to be a relation between the graph of the boundary
and the drift and diffusion coefficients of the process. The first passage time for
the half line is given in terms of the Dirichlet Green’s function by the function
t— fooo Ge.p(z,y,t,T)dzx, t <T. An alternative approach to understanding the
limit lim._,o g- may be taken using the techniques of large deviation theory [IT].
This is the approach in Baldi et al [T}, 2], which considers the asymptotic behavior
of the ratio of Green’s functions in the limit T"— ¢ — 0 for time homogeneous
diffusions.

2. REPRESENTATION AND CONVERGENCE OF THE FUNCTION ¢,

For any t € R let Y.(s), s > t, be the solution to the initial value problem for
the stochastic differential equation (SDE)

4Y.(5) = b(Y.(s), s)ds + VEAB(s), Yo(t) =1, (2.1)

where B(-) is Brownian motion. Then the Green’s function G¢(-,y,t,T) defined by
is the probability density for the random variable Yz (7). In the case when the
function (y,t) — b(y,t) is linear in y it is easy to see that (2.1) can be explicitly
solved. The solution to with b(y,t) = A(t)y — 1 as in (1.8]) is given by

Ya(s) = exp | /t sA(s’)ds’}y— /t Cexp [ / /SA(s”)ds”} ds'

+E /t Cexp [ / ISA(s”)ds”} dB(s') . .

Hence the random variable Y. (T") conditioned on Y;(0) = y is Gaussian with mean
m1,a(T)y — ma a(T) and variance ec?(T), where

my a(T) = exp [/OT A(s’)ds'}, mo a(T) = /OT exp {/ST A(s’)ds'} ds, (2.3)
o%(T) = /OT exp [2 /ST A(s’)ds’} ds. (2.4)
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The Green’s function G¢(x,y,0,T) is therefore explicitly given by the formula
o _ {2 +m2.a(T) — m1a(T)y}?
2mea? (T) 2e0%(T)

It is useful to recall that the ratio G. p/Ge is a probability for a generalized
Brownian bridge process. Thus

GE»D(I'vyaOaT) o . B 7
Goay 0y = DMt Ye(s) > 0| Ye(0) =y, Ye(T) =), (26)

where Y () is the solution to the SDE (2.1)). The process Yz (-) of (2-1]), conditioned
on Y. (0) =y, Y-(T) = x is Gaussian and has variance independent of z,y. We may
obtain a formula by extending the functions mj_a,ma a,0% of 7 , defined
with respect to the interval [0, 7], to any interval [¢, 7] with ¢ < T. Thus we define
ma,4(t,T),me 4(t,T) by

my, a(t,T) = exp [/tT A(s’)ds'}, mo a(t,T) = /tT exp [/ST A(s')ds’} ds, (2.7)

and o (¢,T) by

G.(2,y,0,T) = (2.5)

T T
o4 (t,T) :/ exp {2/ A(s’)ds'} ds. (2.8)
t s
The variance of Y.(s) is then given by the formula
Var[Ye(s) | Y(0) = y, Yo(T) = ] = 0’y (s)0'a (s, T) /o4 (T). (2.9)

More generally, the covariance of Y.() is also independent of z,y and is given by
the formula

Covar[Y.(s1), Ye(s2) | Ye(0) =y, Ye(T') = 2] = ela(s1,82), 0<s1,52<T,
(2.10)
where the symmetric function I": [0,7] x [0,7] — R is defined by

ml,A(Sla32)0124(81)0124(82’T)

a4(T) ’
Let Yelass($), 0 < s < T, be the path going from y at s = 0 to  at s = T defined
by

FA(Sl,SQ) = 0 < S1 < So < T. (2.11)

TA(T)Yetass(s) = wma,a(s, )04 (s) +yma a(s)oi (s, T)
+my a(s, T)ma a(s, T)o%(s) —ma,a(s)oi(s,T).
Then the mean of Y, (+) conditioned on Y (0) = y, Y(T') = z is given by the formula
E[Y.(s) | Yz(0) =y, Yo(T) = 2] = Yelass(s), 0<s<T. (2.13)
In the case A(-) = 0 the process Y.(-), conditioned on Y.(0) =y, Yo(T) = z is the
standard Brownian Bridge (BB) from y at time 0 to z at time 7.

It is well known that the conditioned process Y;(-) is also Markovian. In [0] we
showed that it is the solution to an SDE with a linear drift depending on = and
with initial condition Y.(0) = y (see [6l (4.43), (4.46)]). The SDE in this case is run
forwards in time. Here we observe that the conditioned process is also the solution
of an SDE with a linear drift depending on y, which is run backwards in time.
Denoting by X.(s), 0 < s < T, the solution to this SDE with terminal condition
X:(T) = x, we have that

dX.(s) = M(X:(8),y,8)ds +edB(s), 0< s <T, X.(T)=uz. (2.14)

(2.12)
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The function A(z,y, s) is given by the formula

1 ma2.a(s)  mya(s)y
Mz,y,s) = |A(S)+ ——— |z — 1+ — - — . 2.15)
(:9) = [46) + 2 A o) (
Integrating ([2.14)), (2.15)), we have that
2 T ! /
B
Xe(5) = oase(5) — vVE-ZAEL7(6) with 2(s) = [ A IBE) Ty 4

my a(s) s oa(s) 7
where Yelass(+) is given in (2.12). Note that the drift A(:) is independent of € and
A(z,y, s) becomes singular as s — 0. The singularity is necessary in order to ensure
that X.(0) = y with probability 1,

We define now

ve(z,y,T) :P<0<1181£TX5(3) <0 X(T) :x). (2.17)
Comparing ([2.6]), (2.17) we see that
Ge D(xayaovT)
e\ aT =1- ’ 2.18
veleoy 1) Ge(2,9,0,T) (215)

The function v, is a solution to the PDE

e (z,y,T) Ove(z,y,T) | €0%ve(2,y,T)
— L =) T - T 2.1
5T (x,y,T) o +3 92 , >0,z >0, (2.19)
with initial and boundary conditions
ili)%vg(m,y,T) =1, T>0, ZPglovs(ac,y,T) =0,z>0. (2.20)
Next we set ¢. to be
¢e(z,y,T) = —elogve(z,y,T). (2.21)
Then ¢, is a solution to the PDE
9g:(2,y,T) 9¢:(,y,T) 170ge(2,y,T)1? € 0%q:(2,y,T)
D) o Ny, T —7[ } - . (2.22
T @y D= 3" e |2 o o 2%
for T > 0 and = > 0, with initial and boundary conditions

2:(0,y,7)=0,T >0, ge(z,y,0)=+00, z>0. (2.23)
In the case A(-) = 0 it is easy to see that the drift A and solution ¢. to (2.22)), (2.23)

are given by the formulae

Mz, y,s) = (z ; v) v qe(z,y,T) =

Evidently (2.24]) is consistent with (1.10]).

The PDE (2.22)) is the Hamilton-Jacobi -Bellman (HJB) equation for a stochastic
control problem. Thus consider solutions X.(-) to the SDE

dXc(s) = pe(Xe(s),y, s) ds + VedB(s) , (2.25)

run backwards in time with controller p.(-) and given terminal data. For x,y,T > 0
define ge(z,y,T) by

2zy

(2.24)

He

. 17 2 5.
qe(z,y,T) = mlnE[i/T (e (X(8),y,8) — AM(Xc(8),y,8)]“ ds : (2.26)

XE(T) =z, 0<7< T7 XE() >0, XE(T) :O:| ’
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where the function A() is given by (2.15). The class of controllers p.(-) in
are those which have the property that paths X.(s), s < T, with X.(T) =z > 0,
exit the half line (0, co) before time 0 with probability 1. The HJB equation for g.
is then given by (2.22)), with initial and boundary conditions . The optimal

controller p*(-) in (2.25)), (2.26) is given by the formula

. 9¢e(z,y, T
The zero noise limit e — 0 of (2.25)), (2.26) yields the classical variational formula
. 1 (T dx(s 2
qo(z,y,T) = min {5/ [ d( ) — )x(x(s),y,s)] ds :
T § (2.28)

0<7<T, z(T) =z, 2(-) >0, x(T):O}.

At least formally, the function g is the solution to the Hamilton-Jacobi (HJ) equa-
tion

aQO(xava) aQO(xuva) 1 aQO(xvva) 2
— = T - = T 2.2
with initial and boundary conditions
QO(O7y7T) = 07 T > Oa QO(%% O) = +o0, T > 0. (230)

When A(-) = 0 the function go(x,y,T) = 2zy/T is a classical C* solution to (2.29),
(2.30). However in general we can only expect gg to be a viscosity solution of the
HJ equation (see [10, Chapter 10]).

To obtain an upper bound on g. by go plus a constant which vanishes as ¢ — 0,
we observe that the variational problem for fixred T with 0 < 7 < T, without
the positivity constraint z(-) > 0, is quadratic with a linear constraint, which may
be easily solved. The Euler-Lagrange equation for the minimization problem with

fixed 7 is
{% N 8)\(:10(82,2/78) } [dﬂzlf) - )\(x(s),y,S)} —0. (2.31)

The minimizing trajectory is then the solution to (2.31]) with initial and terminal
conditions z(7) = 0, z(T) = z. To obtain a formula for this trajectory we observe
that the solution to the equation

do(s) | OA(z(s),y,s)
ds + or

o(s) = 0, (2.32)

is given by the formula

o(s) = C&#’A(s) where C is a constant. (2.33)
o4(s)
We then need to obtain the solution to
dx(s
") Aa(s).9.5) = 0(s). (2.34)

with initial and terminal conditions z(7) = 0, x(T) = x, and this determines the
constant C; in (2.33). Observe that the function z(s) = yYelass($), 0 < s < T,
where yelass(+) is defined by (2.12)), is the solution to (2.34) with terminal condition
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z(T) = = in the case ¢(-) = 0. Let y,(-) be the solution to the terminal value
problem

d%@ - [46)+ 01241(8)](%(8) + n:ﬁs) =0, y(T)=0. (2.35)

The solution to (2.34]) with initial and terminal conditions z(7) = 0, z(T) = z, is
then z(s) = Yelass(s) — C1yp(s), where C; is chosen so that z(7) = 0. The solution

to (2.35]) is given by
o%(T)yp(s) = 7711,,4(5)0124(57 T). (2.36)

We have then from , that
o4 (T)x(s) = wmaa(s, T)oh(s) + [y — (7)]m1,a(s)0 (s, T)
+my (s, T)ma a(s, T)o%(s) —ma,a(s)oi(s,T).
where 7(7) is chosen so that z(7) = 0. The optimal controller 4 . for the variational
problem with fixed 7 is obtained by evaluating dx(s)/ds at s = T. Thus

* \m T
IU’O,T(xvva) = /\(l',y’T) —+ M

(2.37)

T
0‘(‘;)) (2.38)
m
= Ny, T) + —57L [y + 91.4(r, T)x + 2,4 (. T)]
o3 (T)
where the functions g1, 4, g2, 4 are given by the formulae
T 2
gl,A(s,T):w7 s<T, (2.39)

m1,(s)of (s, T)
mi (s, T)ma a(s,T)o%(s) —ma a(s)o%(s,T)
mq,a(s)o?(s,T)

Lemma 2.1. Let 7 > 0 and X(s), s > 7, be the solution to the SDE (|2.25)) with
pe given by pe(x,y,s) = ug - (2,y,8), s > 7. Forx >0, T > 7 let 7c » 1 be the
first exit time from the interval (0,00) of Xc(+) with terminal condition X (T) = x.

Then T, o7 > T with probability 1 and

92,4(s,T) = , s<T. (240)

T
wlen D) SB[ [ (X)) MK (o)) ds

Te,x, T

X.(T) = a:] . (2.41)

Proof. Since the function A(-) is continuous, we have from (2.38)-(2.40)) that

pe(z,y, 5) = [ + AT(S)}w +(s—7)Br(s), s>, (2.42)

s—T

where A;, B; are continuous functions on the closed interval [r,00). Let mj 4,

be defined as in (2.7). The solution to (2.25) with p. as in (2.42) and terminal

condition X.(T') = z is given by
s—T

T~ Tymna(5.T)

where Xjass(+), Z(+) are given by the formulae

X(s) =

[Xclass(s) - \/EZ(S)] , T<s<T, (243)

T
Xclass(s) =T — (T - T) / mi.A, (S/, T)B-,—(S/) dS/ s (244)

T /
Z) = (T—7) [ TS T)

S

dB(s'). (2.45)

s —T
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Since Z(+) is by a change of variable equivalent to Brownian motion, the reflection
principle applies to it. Hence for any a >0, 7 < s < T,

P( sup Z(s') > a) —2P(Z(s) > a). (2.46)
s<s'<T
From ([2.45) we see that Z(s) is Gaussian with mean zero. The variance Var[Z(s)]
satisfies the inequality

Ci(T—1)(T—5s)

cl(T—sz)(TT—s) < Var[Z(s)] < P , T<s<T, (2.47)

for some positive constants ¢;, Cy. From (2.46)), (2.47) we conclude that

P( sup Z(s')>a)>1—Cha .
s<s'<T (T - T)(T - 8)
where Cy > 0 is a constant. We also have from there is a constant C3 such
that sup, _, 7 Xclass(s) < C3. Choosing a = e~1205 in , we conclude from
(2.43), [2-48) that lims—,, P(7- . > s) = 1. Hence 7., 7 > 7 with probability 1.
To prove (2.41) we first observe from Ito’s lemma that the mapping s — M (s)
on the interval 7 < s < T, where

, T<s<T, (2.48)

T , .
M(s) = q-(2,y,T) — q-(X(5),y,8) — / 0q-(Xc(s),y,5")

R s’
9¢:(X(5'),y,5") £ Pg(X(5),,5)
ox

He(Xe(s), ) = 5 IS

is a (backwards in time) stochastic integral. From ([2.22)) we see that M (s) can be
written as

M(s) = q-(2,y,T) — qe(Xc(5), 9, 5)

(2.49)
ds'

+

T s/ s/
,/ W[Ms(){s(sl),y, s') 7/\(X5(8/),y,8/)] (2.50)
170g-(Xc(8"), 9,812,
- 5[ ox ] ds’.

For K > 0 and 0 < z < K let 7. ;1 x be the first exit time of X.(s), s < T, with
X.(T) = z from the interval (0, K). By the optional sampling theorem we have
that E[M(sV Tc 1.k )] = 0 for all s in the interval 7 < s < T. Hence on using the
Schwarz inequality in we have that

ge(2,y,T)
< E[(Is (XE (3 \ TE,x,T,K)v Y, sV TE,:E,T,K)]

+ E[l /ST [1e(Xc(5),y, 8) — M Xe(s), v, S)]2 ds | X(T) = :L‘] )

2 VTe,z,T,K

(2.51)

forr<s<T.

Observe that for 7 < s < T we have sV Tz 7.k 2> Tex, T,k = Ten, 7 > T With
probability 1. Hence the second expectation on the RHS of is bounded above
by the expectation on the RHS of . Thus it is sufficient to show that the first
term on the RHS of converges to 0 as s — 7 and K — oo. We first consider
the limit s — 7. Since 7. ;7 x > 7 with probability 1, we have by path continuity
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of X.(-) that limg_,; X (s V Te o7, k) = Xe (T2 2,1, i) With probability 1. Using the
continuity of the function ¢, it follows by dominated convergence that

lim Elg(Xe(SV Te o, k), Y, SV Te a1, ))
S—T

= Elg-(Xe(Te,0,1,K), Y5 Te 0.1, )] (2.52)
< sup_ qe(I,y, 8) P(Xe(Te o1 i) = K) .
T<s<

From ([2.46) and (2.47)) we have for some constants Cy, co > 0 that

P(S<1r}f Z(s') < —a) < a\/SQiTexp [—cod®(s —7)],

We have from ) there is a constant c3 > 0 such that for all large K,

a>0. (2.53)

P(XE(TE7x7T7K) =K)< P( mf (s —71)Z(s) < —c3K//e). (2.54)
From we see that
P(T<ir31£T(s —71)Z(s) < —c;;K/ﬁ)

ey K
<> p( inf 20s) < — =)
- Z 27L<(T—T)I/I%s—f)gzn+1 (s) < Ve(T — 1)

c C2K22n 1
<Gy Z exp { 27—7)} )
if K is large. From our bound on ¢. we conclude from ([2.54)), (2.55) that

lim sup qE(K,y, S)P(Xe(Tewr k) = K) =0,
K—00 1<

whence (2.41) follows from (2.51). O

Lemma 2.2. For x,y,T positive one has limsup,_,[¢:(x,y,T) — qo(x,y,T)] = 0.

(2.55)

Proof. We first observe that a minimizing 7 = 79, 7 (which may not be unique)
in satisfies 0 < 79 5 7 < T. To see this we use that fact that the minimizing
trajectory for fixed 7 is given by , with e = 0. From we have
that A\(x,y,s) ~ (z —y)/s as s — 0, whence the minimum action integral diverges
as T — 0. When 7 is close to T we have from (2.42)), that g, (Xo(s),y,s) =~
x/(T — 7), whence the minimum action integral again diverges as 7 — T.

From (2.43)-(2.45]) we have that

S—T

X.(s5) — Xo(s) = — T A 1) VeZ(s), T7<s<T. (2.56)
From (2.15)), (2.41)), (2.42) we have that
¢=(v,y,T)
T T
< veE| / J+(5)2(s) ds] +0(T)5E[% / 2(s)” ds] -
1 E;,T e,x, T
B[y [ i (X0(s),0:5) = M(Xa(o). o) ds | Xo(T) =]

where the function f; : [7,7] — R is a continuous function depending on 7, and
C(7) is a constant also depending on 7. We choose now 7 to be a minimizer of
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the action (2.28). Since 7., > 7 with probability 1, it follows that the last
expectation on the RHS of is bounded above by qo(z,y,T).

To bound the first term on the RHS of we note from the optional sampling
theorem that E[Z(sV7. 41)] = 0. Hence E[Z(8); Tewr < 8| = —E[Z(Teu.1); Teww >
s]. Letting M = sup, _ <7 Xelass(s), we see from ([2.43) that 0 < Z(7eer) <
M/+/e. Hence we have that

Vaﬂ/T ﬁ@ﬂ@ﬂ%gOﬁij—ﬂ, (2.58)

Te,x, T
for some constant Cj independent of e. For 0 < A < T — 7 we let y(\) =
inf;{acs<r Xclass($), whence v : (0,7 — 7] — R is a positive decreasing function.
We have from and reflection symmetry that
P(repr—7>X) < P( sup  Z(s) > 'y(/\)/ﬁ)
THALs<T
02\/5 02)\,}/()\)2 (259)
< ex [ — 7] .

VAN
We see from that lim. o P(7epr — 7 > A) = 0 for all A > 0, whence
lim._o E[7e »,v — 7] = 0 by dominated convergence.

We see from that the second term on the RHS of diverges if we

replace 7., 7 by 7. Therefore it is again necessary to estimate the distribution of
the variable 7. , 7 — 7 > 0 as ¢ — 0. With M as in the previous paragraph, and

using (2.46)), (2.47) we have from (2.43) that

P(rewr—7<A) < P( swZ(s) < M/VE)
T <s<

= P (|Z(1 + )| < M/ /) (2.60)
<Cy(Me)? 0<A<T -7,

where ¢y, Cy > 0 are constants. We write now
T

T [e%s)
E[/T TZ(s) ds} < E[/T+€Z(s) ds} +nz:%an, (2.61)

3

e,x,

where

T+27"e
= E[/ Z()2ds; Tepy — 7 < 2*%}, n=01,.... (2.62)
42— (nt+l)g

It follows from (2.47) that the first term on the RHS of (2.61) is bounded by
C3lloge| for some constant C3. From the Schwarz inequality we have that

1/2 7+27 e 1/2
an <272 EP (1 p — 7 < 27) E[/ Z(s)* ds} . (2.63)
T2 (ntlg
It follows from (2.47), ([2.60), [-63) that a, < C4P (repq — 7 < 27"e)"/? < C5277/2

for some constants Cy,C5. We have shown that the second term on the RHS of
(2.57)) converges to 0 as ¢ — 0. O

Remark 2.3. One can obtain a rate of convergence ¢ loge in Lemma [2.2las e — 0
by making a further assumption that the classical trajectory Xo(-) has the property
X{(7) > 0. In that case limy_,o¥(\) > ¢; for some constant ¢; > 0, whence
implies that E[r. ;7 — 7] < Cse for some constant Cs.
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To obtain a lower bound for ¢. by qg plus a constant which vanishes as € — 0 we
need to show that the variational formula (2.26)) yields a lower bound when p. is
chosen to be the optimal controller p} given by - We have from propositions
and-that the function (z,T) — p*(x,y,T) is C! on the domain z, T > 0 and
/J,E(x y, T) > Mxz,y,T) for z,y,T > 0. Hence the SDE with g = pk may
be solved backwards in time. Letting X*(s), s < T, be the solution with terminal
condition X*(T) = x, then X?(s) < X.(s), 0 < s < T, where X.(-) is given by
(2.16]).

Lemma 2.4. For x,T > 0 and paths X>(s), s < T, with X2(T) = x we define
. =inf{s >0: X:(s') >0, s <8 <T}. Then 77, 0 > 0 with probability 1
and

1 1/2—v
E[( - ) } < oo forallv with0<v<1/2, (2.64)
Te,ac,T
1 (T
e ) 2 B3 [ 2K 009) = MXE (), ) ds | X2(T) =]
T o
(2.65)

Proof. We consider the stochastic integral s — M(s), 0 < s < T, defined by ,
with pe = pf. For K > 0and 0 <z < K let 77, 1 ;¢ be the first exit time of
XZ2(s), s < T, with X?(T) = = from the interval (0, K). Since ¢. is non-negative,
we have from and the optional sampling theorem that

¢e(z,y,T)

> s | )09~ X)) s | X2(T) =]

N
VTl o1 K

(2.66)

for 0 < s <T. Since X}(-) < X.(-), it follows that sV 7} K—)s\/ o7 With
probablhty 1 as K — oo, whence the inequality - holds with T Te T in place of

5 z, T, K"
Lettlng X ( be the solution to with terminal condition X (T) = > 0,

we have from ([2.15| , - ) that

A | (X(),008) — A(Xe(5), 9, 9] d

UA(S)

_ [ma,a(s)Xe(s))  ~maa(s) mlA(s)Qai(s,T)

= | 7% (5) ] Ve g sy Bl - d| = 2 (5) Ju (2.67)

{ml,A(T)mZA(SaT) my,a(s )mZA Ui

)
o2(T) - 0% (T)o%(s) }



14 J. G. CONLON, M. DABKOWSKI EJDE-2025/14

Let § satisfy 0 < § < T and 75 be the stopping time 75 = 6 V7, 7. On integrating
(2.67) with pe = pf over the interval 75 < s < T', we obtain the identity

TmlyA(s)[ *(X*( ) X d
- 0'124(8) N’E & S ’y75) ( s(S),y,S)] S
_mia(T)z maa(rs)XZ(7s)
B I R (2.68)

. mLA(T(s)QO'i(Tg,T)y ma,a(T)mao a(7s,T)

o5(T)o%(7s) o4(T)
B mi a(1s)ma, a(15)0% (15, T)
o4 (T)o% (7s) ’

where the martingale Z(-) is defined in (2.16)). From the Schwarz inequality we see
that the LHS of (2.68) is bounded above by
T 2 T
ay miyaAlS 1 * * *
5 17()d8+ gy/ [/’[’E(XE (S)7y73) - /\(Xe (S)7yas)}2d87 (269)
Ts

2 Ts O—i (S)

for any a > 0. Choosing « sufficiently small, we conclude from (2.68) that
<O 1+ Ve |Z(15)]]

TE7Z,T
o, [T o ) ) (2.70)
+ m . [/’LE(XE (5),y, S) 7)‘(Xe (5)7y35)] ds
TE,m,T
if § < Tar < T/2, for some constants Ci,a depending only on 7. Multiplying

@.70) by (7, 1)/t and taking the expected value, we conclude from the limit
f (2.66) as K — oo that

1 1/2—v
yEKT* ) ;5<T€*,17T<T/2}
sot (2.71)

v TV g (x,y, T
< O[TV 4 VBB [\ 2(ms) || + 1 @)
ay
Let 7 be a stopping time for the martingale s — Z(s), 0 < s < T, of (2.16).
Then for v > 0 there is a constant C,,, depending on v, such that

o

E[T1/2+u; |Z(7)| > a] < fora > 0. (2.72)

a1+2u
To show (2.72)), let 7, = sup{s: 0 < s < T,|Z(s)| > a}. Then any stopping time 7
for Z(-) has the property

{r > s,|Z(7)| > a} C{1a > s}, (2.73)

since {7, > s} is the largest Borel set in Fs 1, the o-field generated by B(s'), s <
s’ < T, on which sup, . |Z(s")] > a. Hence

1 T
B/ AIZO > d) = (5+0) [ PG > 120> ) s
0

1 r 2.74
< (5 —|—l/)/0 " 712P(1, > s)ds (2.74)

= E[T;/Q""”] )
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The reflection principle applies to Z(-) and also Var[Z(s)] satisfies an inequality

(2.47) with 7 = 0. We have therefore from (2.53]) that

2C
P(1, > n/a®) = P( sup |Z(s)| > a) <Z2emen . p=12,... (2.75)
n/a?<s<T \/77'

The inequality (2.72) follows now from and (2.75)).
We easily see from ) that E[r 1/2+V|Z(7'(;)|] is bounded by a constant, uni-
formly in 6 as § — 0. Thus for any a > 0,

E[ry*™|2(rs)] < aB[r;/ "]+ 27 aBlry 7|2 (x5)| > 27] (2.76)
n=0 2.76
Cl,u

a2v ’

S aT1/2+V +

where C',, depends on v > 0, but not on 6. Choosing a to minimize the RHS of
we conclude that E { 1/2+V|Z(7'5)|} < 0y, T" for some constant depending
only on v. Hence the RHS of (| is bounded by a constant independent of 4.
Letting § — 0 we conclude that T > O with probability 1 and (| - ) holds.

The inequality (2.65) - ) follows from and the monotone convergence theorem
by letting K — oo first and then s — 0 [

Lemma 2.5. For x,y,T positive one has liminf._,o[¢-(z,y,T) — qo(x,y,T)] = 0.

Proof. Let XZ(s), s < T, be a solution to (2.25) with py. = p¥ and terminal
condition X?(T) = z. We associate with X?(-) the differentiable path X7 .(-)
defined by

T:S = A(Xe,c(8)7y75) + [IJ’E(XE (5)73},3) - /\(Xa (S)7ya8)} ;  8< T’ (277)
with terminal condition X7 .(7) = x. From (2.15), (2.25)), and (2.77) we see that
1
A{XE(9) = X2u(6)) = [A6) + 2 5] {X206) = X2u0)} + VEAB(), 5 <7,
A

(2.78)
with zero terminal condition at s = T. Comparing (2.78]) to (2.14]), we conclude

from that
X2, (s) = X2(s) + VE 1{5(’) (s), s<T, (2.79)

with Z(-) as given in (2.16). We define a classical action which generalizes (2.28]).
Thus for z,y,T > 0 and z € R we deﬁne qo(x,y, 2z, T) just as in (2.28]) but with ter-
minal condition z(7) = 2 1nstead of z(7) = 0 and without the p081t1v1ty constraint

x(+) > 0. Tt follows from ([2.77] and (2.65) of Lemma [2.4] that

A(Tiar)
4e (2,9, T) > E [q0(z,y, Va2, T)] ZE—MZ(TM,T), (2.80)

mi A( 5 T T)
where Z(-) is as in (2.16]).
We have already observed that a minimizing 7 in ([2.28) satisfies 0 < 7 < T'. It
follows from this there exist constants C,d > 0, depending on z,y, T, such that if
|z| < & then |qo(x,y,2,T) — qo(x,y,T)| < C|z|. Hence from (2.80) we have that



16 J. G. CONLON, M. DABKOWSKI EJDE-2025/14

From (2.3)), we see that |Z.| < C177, p|Z(7, )| for some constant Cy. Hence
from the proof of Lemma we have that E[|Z.]] < Cy for some constant Cs
independent of € as ¢ — 0. We conclude from and the Chebyshev inequality
that q.(z,y,T) > qo(z,y,T) — C3+/c for some constant Cj. O

‘We summarize the main result of this section.

Theorem 2.6. Assume A(-) is continuous and the function q. is defined by (2.18)),
(2.21). Then For z,y,T positive one has lim._,0 q:(x,y,T) = qo(x,y,T), where the

function qq is defined by (2.28)).

3. REGULARITY AND BOUNDS ON THE FUNCTION ¢,

We first prove a regularity result for the function (z,y,t,T) — G. p(x,y,t,T),
which will imply the regularity results for the function (x,y,T) — q.(z,y,T) we
shall need.

Proposition 3.1. Let A : [0,00) — R be a continuous function and G p(z,y,t,T),
x,y,>0,0<t<T < oo, be the Dirichlet Green’s function for the PDE (L.1)) with
drift (1.8). Then the derivatives
o o™
ox" oy™
ok ot o o™
otk Tt dxn Oy™
exist and are continuous in the region D = {(z,y,t,T) : 2,y >0, 0 <t < T < o0}.
Let G(z,t) be the Gaussian distribution with mean 0 and variance t,
2
T

Gep(z,y,t,T) with0<n,m<2 n+m<3, (3.1)

Gep(z,y,t,T) with0<k+1, k+m,l+n<1, (3.2)

G(z,t) =

1
ex ,
V2t P Qt]
For any Lo, Ty > 0 define Dy, 1, to be the region Dr, 1, = {(z,y,¢,T): 0 <z,y,<
Lo, 0<t<T <Ty, T—t<L3}. Then there is a constant C(Lg, Ty, ) such that
if m,n satisfy the conditions of (3.1)), then
’ or o™ C(Lo,To,€)

for (z,y,t,T) € Dry1,- Similarly if k,l,m,n satisfies the conditions of (3.2), then

oF o9t o o™ C (Lo, To,€)

Z - 7 27 <

8tk 8Tl orxn 8ym Ge,D(xa Y, t7 T)| — (T _ t)k+l+(n+m)/2
for (z,y,t,T) € Dr,.1,-

For each y > 0 the function (z,T) — 0*Ge.p(z,y,0,T)/0x?, with domain
{(z,T) : ,T > 0} is continuous up to the boundary © = 0, and is also contin-
wously differentiable in T, twice continuously differentiable in x.

zreR t>0. (3.3)

G..p(z,y,t, T)‘ < Gz —y,2e(T — 1)), (3.4)

G(z—y,2¢(T 1)), (3.5)

Proof. Since the drift b(-,-) is continuous and satisfies for each Ty > 0 the bound
sup{|9b(y,t)/0y| : y > 0,0 < t < Tp} < oo we may apply the perturbation
argument of [7, Lemma3.4]. From this we see that the derivatives with
n < 1,m < 2 are continuous and satisfy the inequality . In making this
conclusion we are using the backwards in time PDE . Since the adjoint PDE

(1.4) is similar to (1.1 except run forwards in time, we conclude that (3.4]) also
holds with n < 2,m < 1. The continuity of the derivatives (3.2) and bounds (3.5)
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follow from the fact that G. p is a solution to the PDEs (L.I), (1.4). Hence the
derivatives in can be expressed as a sum of the derivatives i.

Letting v. (2, T) = exp[2 fOT A(s)ds|9*Ge p(x,y,0,T) /0%, we see by differenti-
ating twice the PDE that v, is also a solution to . It is also continuous up
to the boundary x = 0. For any Ly > 0 we consider v, to be a solution to in
the region {(x,T):0 <z < Lo, T > 0}. Let G- p 1,(x,y,t,T) be the correspond-
ing Dirichlet Green’s function. The function G¢ p 1, has the same differentiability
properties as G¢ p given in —. We also have the integral representation

ve(x, T)
Lo T oG 0,5, T
[ G @yt Ty ) dy + € / 20.L0(2,0,5, T)

0 t dy
_ E/T aGE,D,L(} ($7 LO7 S, T)
t dy
The differentiability properties of the function v, follow from (3.6)) and the differ-
entiability properties of G, p 1, by differentiating under the integral and using the
estimates (3.4), (3.5). Note that while the function (x,T) — v.(x,T) itself is con-
tinuous up to the boundary = = 0, our proof does not establish that the derivatives
are continuous up to the boundary. (Il

v:(0,5) ds (3.6)

UE(L(],S)dS, 0<1’<L(],0§1§<T.

In the case A(-) = 0 the process X.(-) of (2.16) is the standard Brownian Bridge
(BB) process from z at time T to y at time 0. In that case

T - T dB(s’
Xe(s):w—ﬁs/ ds(,s), 0<s<T, (3.7)
and from (1.10)) we have that
. N 2zy
P(oglgliTXE(s)<0 ’ XE(T)—x) —exp[—s—T]. (3.8)

We can obtain a linear upper bound on the function  — g.(z,y,T) in the case of
non-trivial A(-) by comparing X.(-) to the BB process.

Proposition 3.2. Let A : [0,00) — R be continuous and q. be defined by ,
(2.21). Then for any y,T > 0 the function v — q.(z,y,T), * > 0, is continuous
increasing with q-(0,y,T) = 0. For any Ty > 0 there exists a constant Cx(Tp),
depending only on Ty and supy<,<, |A(t)], such that qc satisfies the inequality

2mq,a(T)zy
ai(T)

Proof. The monotonicity of the function @ — ¢.(x,y, T) follows from , .
Since X.(s), s < T, is the solution to (2.14), it follows from the non-intersection
of paths property that the function x — v.(x,y,T) is decreasing.

To prove we make the change of variable s <+ ¢ in defined by

’q€($7y?T)_ ’ SCA(TO)T:lj, 337y>07 0<T§TO (39)

tz@ _ 2 _ 0,%1(3) _
pri g(s)*, g(s)= ma(s) 0<s<T, s(T)=T. (3.10)

Since 0 4(+) is strictly positive and lim,_,0 g(s)/s = 1, the function s(-) is continuous,
strictly monotonic and lim;_,o s(t)/t = 1. We see that the stochastic integral in
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(2.16) becomes

Ty a(s")dB(s") /T dB(t) (3.11)

s U%(S/) B t 4 ’ .
where B(-) is a Brownian motion. We define the stochastic process X.(t), 0 < t < T,
by

_ mya(s(t)) T dB(t)
X.(t) = “E o tyclass(s(t))_ﬁt/t . 0<t<T, (3.12)

so that the events {infocs<7 X (s) < 0} and {infoct<r )~(€(t) < 0} are the same.
Observe that
/ my,a(s’)
s o)

_mal)’ ml’A(TF (3.13)
o4 (s) o4 (T)
mi a(s)?0%(s,T)
o4 (T)o%(s)
From (3.10) we see that g3 4(s(¢),T) = (T —t)/tT, 0 < t < T. We conclude then
from ([2.12)), (3.10), (3.13) that
my,a(T) (o422 A(s(t

), m
oA (st Vs (0] =T <t>

for 0 <t < T, where g1 4, g2, are defined by (2.39), (2.40)).
The expression (2.40) for g2 4 can be simplified by observing that

gB,A(sa T)

}+ t)%, (3.14)

Gon(s.T) = mo,a(s,T) [Ui(T) — 0'124(3,T)] - Mo, a(s)

my a(T) o4 (s,T) mi, a(s) (3.15)
~ 0%(T) maa(s,T) ~ mo,a(T)
mya(T) o%(s,T) my a(T) "
We have then from (2.39)) and - ) that
92,4(5,T) o4 (T)ma,a(s)
= =m T) — 42—, 3.16
g1,4(s,T) 2,4(T) mi,a(s, T)o?(s) ( )
We have from ([3.16]) that
92461 _ o g2l D)y oA(0) 749 —meaG)] g
s—=T g1,4(s,T) T odstgra(s,T) ma,a(s,T) o4 (s) ' '
It is easy to see from (3.17)) that for any Ty > 0,
T)
|w|<C’A1(TO)T(Tfs), 0<s<T<Tp, (3.18)
g1,4(5,T)

where the constant Ca,1(Tp) depends only on Ty and supg<;<r, |A(t)]-
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It follows from ([3.12)), (3.14), and (3.18) that
p( inf X.(t) <0 | X.(T) = x)

0<t<
. tey + (T —t)y T dB(t)
= P(ogl?éT - ﬁf/t ] <0), (3.19)
Ty a(T
& = Zg("‘T()) [+ Cu 1 (To)T?] .

We conclude from (3.7)), (3.8, and (3.19) that
221y < 2my A(T)x

Yy
Cao(To)T 0<T<Ty, 3.20
T = 0124(T) + Ca2(To)Ty, < 1o ( )

ge(z,y,T) <

for some constant C'a 2(Tp) depending only on Ty and supg<;<r, |A(t)]. A similar
argument yields a lower bound corresponding to (3.20)), whence (3.9)) follows. [

For general A(-) one can construct a linear solution to the HJ equation (2.29),
which is therefore also a solution to the HJB equation (2.22)). To find it we set

qo(z,y,T) = a(y,T) + by, T)x. (3:21)
Equating the coefficients of z in (2.29]), we obtain the ODE
db(y, T) 1
— - = —|A(T b(y,T). 3.22
) =AM + 5 . T) (322)
Integrating (3.22)), we conclude that
m1 A(T)
b(y,T)=Cly)—=% (3:23)
o4 (T)

for a constant C(y) depending on y. We choose the constant C(y) in (3.23) so that
our linear solution gives the function x — 2zy/T, corresponding to (1.10)), when

A(-) = 0. Thus we choose C(y) = 2y. Equating the terms independent of z in
(2.29)), we obtain the ODE

da(y,T) _ {1 - moa(T) | maya(T)y
dT o2 (T) oA (T)

With the choice of C(y) = 2y in (3.23)), this reduces (3.24) to the equation

oty 7) - %b(y,T)Q. (3.24)

da(y,T) mao A (T)
—— = |1- ——=1|b(y,T). 2
dT [ o2 (T) Joto1) (3.25)
Integrating (3.25)) with initial condition a(y, 0) = 0 yields the solution
2
(Y, T) = = [, 4 (T)mz, a(T) — 034(T)] (3.26)
o4(T)
We conclude from ([3.23))-(3.26) that
2
Qincar (7, Y, T') = Té) [m1,a(T)ma A(T) — 05(T) + my a(T)x] (3.27)
A

is a linear solution to (2.29)). We shall show that the linear solution (3.27)) tightly
bounds the function ¢. defined by (2.18]), (2.21)) when A(:) is non-negative.
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Proposition 3.3. Assume the function A(-) is continuous non-negative, and let

q=(x,y,T) be defined by (2.18)), (2.21). Then

0 inear /7 7T
{ 0 8(1., Y ) }JI S q€($7y7T) S qlinear(x7y7T) fOT’ 9ny7T > 07 (328)
X

z'=0
and
¢e(z,y,T) < =2X0,y,T)x forz,y,T >0. (3.29)

Proof. We see using the formula for G.(z,y,0,T) and the fact that the func-
tion (z,t) — Gep(z,y,0,t) is a solution to the PDE (L.4) with drift b(z,t) =
A(t)x — 1, that the function (z,T) — vc(z,y,T) defined by is a solu-
tion to the PDE (2.19). Furthermore, v. satisfies the initial and boundary con-
ditions ([2.20). Since the function @pear iS a solution of @ it follows that
Ve,1(2,y, T) = exp[—Qiinear(x,y,T) /€] is a solution to the PDE ED From the
non-negativity of A(-) we also have that ginear(0,y,7) > 0 for T > 0. In addition,
one has for T small that qunear(z,y,T) =~ 22y/T. We conclude that v, ; satisfies
the initial and boundary conditions

0:100,y,T) <1, T>0, ve1(z,4,00=0, z>0. (3.30)

Comparing and , we expect that an application of the maximum prin-
ciple for linear parabolic PDE [16] implies that vei(x,y,T) < ve(z,y,T) for all
xz,T > 0, whence the upper bound in .

In the application of the maximum principle we need to take account of the
fact that the domain {z € R : z > 0} is unbounded, and that the drift A(z,y,T)
of becomes unbounded as 7" — 0. To deal with this we apply for any
M,Ty > 0, 0 < § < Tp, the maximum principle to a bounded domain Dy 1,5 =
{(z,T): 0 <z < M,0 <T < Ty} on which the drift is continuous and bounded.
Then we let M — oo, § — 0.

We first consider the case M — oo. It is evident from that

lim sup wv.1(M,y,T)=0.
M—=o00<T<T,
It follows from of Propositionthat also lim a7 o0 SUPg <7, Ve (M, y, T') =
0. Next we consider the case § — 0. We see from (3.27) that for any m > 0 then
lims_,0 SUPy >, Ve,1(2,y,8) = 0. Observe from (2.3), (2.4) that since the function
s — A(s) is continuous at s = 0 then

2
oa(s) ma,A(s)
= s/l +so(s)], —————= = s|l+s0(s)]. 3.31
A = sl so(e)), A = o1+ sole) (331)
It follows from (3.27)) and (3.31]) that
2
Qiinear (2, y, T) = % +o(T) asT —0. (3.32)
We conclude from ([3.32)) that
. 2z
oS {veatev0) e [- TF} = 0. (3.33)

From Proposition [3.2| we see that lims_,o sup,>,, ve(z,y,d) = 0 and a similar result
to (3.33]) holds for v.. We conclude that

lim sup {va,l(x,y,é) - va(m,y,é)} =0. (3.34)

=0 0<z<oo
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From Proposition[3.1it follows that the function (z, T) = u(x,T) = ve 1 (2, y, T)—
ve(z,y,T) is continuously differentiable in T and twice continuously differentiable
in x on the domain Dy 7, 5. It is also continuous up to the boundaries z = 0,
x =M, T = 46. It follows then from the maximum principle [16, Theorem 2,
Chapter 3] applied to the solution w(z,T) of that the maximum of u(:,-)
on Dy 1,5 occurs on one of those boundaries. The upper bound in fol-
lows by letting 6 — 0, M — oo and using (2.20]), (3.30)), (3.34) and the fact that
limps s 00 SUPg gy, u(M,T) = 0..

The lower bound in can be established similarly. Thus we define the
function v, 2 by

vatean ) = [~ 20

3.35
€04 ( )

Let £ be the linear differential operator £ = —9/90T +- - - such that the PDE (2.19)
is Lv. = 0. Then we have from (3.35)) that

_2mya(T)y [1 ~ ma (T
eoi(T) oi(T)

Since A(-) is non-negative the RHS of (3.36) is less than or equal to 0. Arguing as
in the previous paragraphs we also see that

lim sup [v.(M,y,T)—ve2(M,y,T)] =0,
M—00 0<T<T,

lim sup {v.(z,y,0) —vea(z,y,0)} =0.
d—=00<z<co
Setting u(z,T) = ve(M,y,T) — ve2(M,y,T), we see from (2.19) and (3.36]) that
Lu(xz,T) >0 for (x,T) € Dyry.6- Applying [16] Theorem 2, Chapter 3] again, we
conclude that u(-,-) takes its maximum on the boundaries z =0, x = M, T' = § of
D 1y,6- The lower bound in (3.28)) then follows from (3.37) upon letting 6 — 0,
M — 0.
The upper bound (3.29)) also follows in a similar way. We define the function

Lo a(z,y,T) = :|U512($, y, T). (3.36)

(3.37)

ve3(x,y,T) = exp {M} 59
- 2],‘ m27A(T) mLA(T)y ’
=exp [~ {1 2(T) T oA(T) ik

Taking derivatives in (3.38)) we see that
[.:’U573(I, Y, T) = 21‘671A(T)UE,3(33’ Y, T) . (339)

Setting u(z,T) = ve3(x,y,T) — ve(z,y,T), we have from (2.19) and (3.39)) that
Lu(xz,T) > 0 for (z,T) € D1y, As with (3.37), we have that

lim  sup w(M,T)=0, lim sup wu(z,d)=0. (3.40)
M—00 0<T<Ty -0 0<z<oc0

Applying [16], Theorem 2 Chapter 3] once more, and taking the limits § — 0,
M — oo using (3.40)), then yields the upper bound (3.29). O

Remark 3.4. In the case A(-) = 0 the upper and lower bounds in (3.28) are
identical, yielding the function ¢.(z,y,T) of (2.24]). A similar situation also occurs
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when the drift in (2.1) has the form b(y,s) = —vy, where « is constant. In that
case the solution to (2.1)) is

Yo(s) = e 760y 4 2 / e 1= 4dB(s'). (3.41)
t

Hence the random variable Y, (T) conditioned on Y. (t) = y is Gaussian with mean
m(T — t)y and variance eo?(T — t), where

m(T)=e T, o*(T) = ow [1—e "], (3.42)
The whole line Green’s function Ge(z,y,t,T) is explicitly given by the formula
1 {x —m(T — t)y}?
Ge(z,y,t,T) = ———=¢ex [— } 3.43
(.9 ) 2rec?(T —t) P 2e02(T — t) (3.43)

We again define ¢.(z,y,T) in terms of the Dirichlet Green’s function by (2.18]),
2.21). Then the function [z,T] — ¢.(x,y,T), ,T > 0, is a solution to (2.22) and

2.23) with

0 x—m(T)y
T) = vz — e log Ge(z,y,0,T) = —yx + - )Y
M,y T) = —y2 —e5-log Ge(2,9,0,T) = —yz + 2(T)

We may solve (2.22]) and (2.23)) in the case of (3.42)), (3.44)) by looking for a solution
of the form ¢.(x,y,T) = a(T)xy. Then a(-) is given by the formula

_ 2m(T) 2y

(3.44)

T) = = . A4
o(T) o?(T)  sinhAT (3.45)
The relation with the function p of [I7, Proposition 20] is
2
. x
p(T7 x, y) = exp I:L:| GE,D('ra Y, 07 T)
c, (3.46)

= exp [%} G(2,y,0,T)[1 —ve(z,y,T)] withe=1,

where G¢ is given by (3.43)), and v, g. are related by (2.21).

Remark 3.5. The upper bound suggests that the function  — qo(x,y,T)
is concave. To see this consider solutions to the HJ equation with the initial
and boundary conditions given by . In view of the boundary condition at
x = 0 we have that 9qo(0,y,T)/0T = 0 for T > 0. It follows then from the PDE

(2.29) that
aQO (.’IJ, Y, T)
_ = =2X(0,y,T). 3.47
ox @=0 (0.3,7) (347)
Letting ¢ — 0 in the inequality (3.29) we see that the graph of the function z —
qo(z,y,T) lies below the line through the origin with slope (3.47).

Corollary 3.6. Assume A(:) is conlinuous non-negative, and let q.(x,y,T) be

defined by (2.18), (2.21). Then the function x — q-(z,y,T) is twice continuously
differentiable in x for x > 0 and 0?q.(z,y,T)/0x?> <0 at x =0 and y,T > 0.

Proof. The regularity of ¢. follows from Proposition Since ¢ (0,y,T) = 0 and
the function * — ¢.(x,y,T) is non-negative, we have using the inequality (3.29)
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that 0 < ¢ (z,y,T)/0x < —2X(0,y,T) at = 0. Observing that ¢. satisfies the
PDE (2.22) and J¢.(x,y,T)/0T = 0 at x = 0, we also have that

0%q-(x,y,T) ~ 0qe(x,y,T) 0q=(x,y,T)
¢ Ox? =0 Ox =0 [QA(O"U’T) + Oz w:O] - (348)

We conclude from ([3.48)) and our bounds on 9¢.(z,y,T)/0x at v = 0 that
0%qe(z,y,T)/02* <0
at x = 0. d

4. ESTIMATING SOLUTIONS OF THE HAMILTON-JACOBI PDE

In §2 we already observed that the infinite dimensional variational problem (2.28))
may be reduced to a single variable variational problem in the first hitting time
parameter 7, 0 < 7 < T. From ([2.33), (2.34) we have that

’Y(T)Q T mia(s)ds

qO(Iv Y, T) = OEEET 0_?4( ) ) (41)
where the function 7(-) is defined by (2.37). The RHS of (4.1]) can be expressed in
terms of the functions ¢1,4, 92,4, 93,4 of 2 39 2.40), (3. 13 Thus we have that

_ . QS,A (T7 T) 2
qo(z,y,T) = min ==——[y+g1a(r,T)z+g2a(r,T)]" . (4.2)

One sees from that lim, .0 g1,4(7,T) =0 and lim, 7 g1,4(7,T) = co. From
, the function 7 — g2, 4(7,T), 0 < 7 < T, satisfies lim,_,0 g2, 4(7,T) = 0
and lim; 7 go, A(7,T) = [0%(T) — ma2,a(T)]/m1,a(T). From we see that the
function 7 — g3 4(7,T), 0 < 7 < T, has the properties lim,_,¢ g3 4(7,T) = oo and
lim, 7 g3 .4(7,T) = 0. It follows then from that go(z,0,T) = qo(0,y,T) = 0.
In the case of + — 0 with fixed y > 0, the minimizer 7(z,y,T) in satisfies
7(z,y,T) — T, with the minimum in converging to 0. In the case of y — 0
with fixed z > 0, the minimizer 7(x, y, T') satisfies 7(z, y, T) — 0, with the minimum
in also converging to 0. For general x,y > 0, there may not be a unique
minimizer 7(x,y,T), so one does not expect the function go(x y, ) of - to be
a O solution to the HJ equation ([2.29) . Note however from (4.2| that the function
x = +/qo(z,y,T), z > 0, is concave for all y, T'> 0. This is a Simple consequence
of the fact that the function is the minimum of a set of linear functions. Concavity
of the function  — go(z,y,T) implies concavity of the function x — \/qo(z,y,T).
We shall prove concavity of  — go(z,y,T) in the case when A(-) is non-negative.
When A(-) = 0 the formula becomes

T-—71 TT 42
T) = i
@y, T) = min, [y + (T*T)] 43)
1 2 '
=57 [2zy + mln{ax +y?/a}] = ;y
with 7(z,y,T) = wy—fy In this case the minimization problem (4.3) is convex in

«, but one does not expect for general A(-) that is a convex minimization
problem.

The solution of the variational problem with fized 7 and without the
positivity constraint on z(-) is given by the expression on the RHS of (£.2). In the
case when the function A(-) is non-negative this is also the solution to the fixed 7
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variational problem with the positivity constraint on z(-). We see this by observing
that the optimizing trajectory for the unconstrained problem is positive.
This follows from the fact that the functions s — g1 4(s,T) and s — g2,4(s,T),
0 < s < T, are increasing if A(-) is non-negative. The monotonicity of g1 4 follows
by noting that it may be written as

L oA
1) = {A —@- 4.4
g1,4(s,T) miA(T) Lo? (s, T) (4.4)
To show monotonicity of g2 4 we differentiate (3.15)) to obtain the formula
992.4(s,T) o3 (T) 2
| B T T) - 7)) . 45
Js mlyA(S)Ui<S, T) [ml,A(Sa )mQ,A(Sa ) JA(S7 )] ( )

It is easy to see that my a(s,T)mao a(s,T) — 0%(s,T) > 0 for 0 < s < T if the
function A(-) is non-negative.

For fixed y > 0 and x large, minimizers 7(x,y, T) for are close to 0. We can
use this observation to show that when «x is large, go(x,y, T') is well approximated by

Qlinear (2, y, T') of (3.27). To see this first observe from (3.13)) that lim, o 7g3(7,T) =
1. We also have on differentiating (4.4]) that

0g1,4(s,T) U%(T)WLLA(S,T)2

- : 4.
Os mi a(T)o% (s, T) (4.6)
Upon setting s = 0 in ([&5), (&6) we see that
0 O,T m T
91,4(0,T) =0, 91,,219( ) _ 127A; ) 7

§ o4 (T) (47)

(0.7) =0 0g2,4(0,T) _ my a(T)mz a(T) .

AT T 7 (T) '

Hence if the minimizer 7(x,y,T) of (4.2)) is close to 0, the minimization problem is
given to leading order by

e D= Yoy [ V{2400, 20T

= QIinear(gja Yy, T) .

(4.8)

The minimizer in (4.8]) gives the leading order term in an expansion of 7(x,y,T),
whence )
2y Ty
T(x,y,T)~ ———— ~ —= for large . 4.9
( Y ) Qlinear (ZIZ, Y, T) X & ( )
Note from (4.9) that 7(z,y,T) = O(1/z) as * — oco. We make this argument

precise in the following.

Proposition 4.1. Assume the function A : [0,00) — R is continuous and non-
negative. Then for any Ty > 0 there exists a constant Ca(Ty), depending only
on Ty and supg<,<7, A(t), such that the function (x,T) — qo(z,y,T) satisfies the
inequalities

Ca(Ty)Ty?
_w S qO(xvy7T) - qlinear(x7y7T) S 0 (410)
for x > max{2y,T?} and 0 < T < Ty, and
2my a(T)x

0 < qolw,y, T) — LA < 0 (Ty)Ta fora,y>0,0<T <Ty. (411)

o4 (T)
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Proof. All the constants C1,Cy, ..., in the following can be chosen to depend only
on Ty and supg<, <7, A(t). We ﬁrst observe from and (3.13) that

mq A(T)
93,4(8,T)g1,4(s,T) = —5 7=,
oA(T)
Next we note from (2.39) and (4.5) that for any 7; > 0, there are constants
C4,Cs,C3 > 0 such that

0<s<T. (4.12)

Cys Css 092.4(s,T)
< T < —/—/— < == -
T—s_gl’A(s’ )_T—s’ 0= Os

0<g2.a(s,T)<C3sT, for0<s<T,0<T<Ty.

< CsT
= (4.13)

Evaluating the functional on the RHS of (4.2) at 7 = T'y/x we conclude from (4.12]),

(L13) that

T
qo(z,y, T) < %(0)[1_‘_202_'_03]2%, 0<T <Ty, v>max{2y,T?}. (4.14)
1
We also have from and - that
7, T my a(T
BMEL) 1y g1 7. Tyt goar TP 2 A g7
2 205(T)
9 (4.15)
Citx
- 2m17A(T0)T2 '
It follows from and 4.15) that there is a constant Cy such that any mini-
mizing 7 = 7(x y, satlsﬁes the inequality
c,T
0<7(x,y,T) < 4Ty 0<T <Tp, x> max{2y, T2} . (4.16)
We have from ([3.16) that
T 2(T
g2,A(Ta ) — m27A(T) _ OA( ) ) (417)

=0 g1,4(7,T) ma,a(T)

We also see from (3.17)) that if A(-) is non-negative, the derivative of the function
s = g2,4(8,T)/g91,4(s,T), 0 < s <T, is less than or equal to zero and bounded by
a constant times 7. We conclude therefore from (4.17)) there is a constant Cy such
that

92714(7'7 T)
gl,A (Tv T)

The inequality (4.10]) follows from (4.12)), (4.16)), and (4.18). Thus from the

upper bound in (4.18) we have that

2 T
[A( )
< _ — L 7 1 T < . .
CstT {mg,A(T) - (T)} 0, 0<7<T<Ty (4.18)

. g3 A(
T) < f J
qo(z,y,T) < oJnf ==

T, T) |: 1 Qlinear (1'7 Y, T)

2
Yy + 7 A(T T) 2y ] - qlinear(xa Y, T) .

(4.19)
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Similarly from the lower bound in (4.18]) we have upon using (4.16) that
T
inf 95.4(1.T) [y

T) >
QO(x7y7 ) = 0<r<T 9

+

{qnnear(x,y,T) ~ mya(T) C5C4T2yH2
g3.4(1,T) 2y a4 (T) x
m1.a(T) 2C5C,T%y?

= QIinear(x’ Y, T) - 0_112:2;)) > ; Y >
provided the term inside the curly braces is positive. Observe that the lower bound
in is trivial if @inear(7,y,T) — CTy?/z < 0, whence we need only consider
situations where inear(2,y, T) — CTy?/z is positive. Upon choosing C' sufficiently
large, we see that the term of (4.20)) inside the curly braces is then positive. Hence
we obtain the lower bound (#.10)) for all z > max{2y, T?}.

We can argue similarly to obtain the bound . Thus since g2 (-, -) is non-
negative, we have that

. 93,4(7,T) [ 1 mLA(T)xr ~ 2my A(T)xy
inf =
0<r<T 2 g3.A(T,T) o4(T) a4 (T)

From (4.13)) we have that g2 4(s,7) < C5T?, 0 < s < T < Ty, for some constant
C3. Hence from (4.2)) and (4.12]) we have that

(4.20)

qo(z,y, T) > . (4.21)

2
w7 < i, B e oort s m e
~ 2mya(T)x(y + C5T?) (4.22)
o4 (T)
O

We wish also to understand the behavior of dqo(z,y, T)/0x and 82qg(x, y, T')/Oz>
as ¢ — oo and as T — 0. To do this we will show that the function [z,T] —

qo(z,y,T), defined by ([2.28]) or equivalently (4.2)), can be obtained for [z,T] in a
certain domain by the method of characteristics applied to solving the HJ equation

(2.29) with boundary condition (2.30)). To implement the method of characteristics,
we first observe from (2.30) that dqo(z,y,T)/0T = 0 at x = 0, whence (2.29) yields
the formula

0qo(xz,y, T 2mq 4 (T
uo(0,9,7) = 2LV ox0.y.7) = U%’(A}) !
= A

where from ([3.15) we define
92, A(L.T) = 1 g5, 4(s.T) = [05(T) — ma A(D)} 1 (7).

Next we differentiate the PDE (2.29) with respect to = to obtain the Burgers’
equation

[y + gQ,A(Ta T)] s (423>

Q0B 8L) | I\ w9, ) + o,y 7)) 2D .
1 :
A ———|up(x =
+[ (T)+O'124(T>} 0( ay7T) Oa

for the function ug(z,y,T) = 9qo(x,y,T)/0x. We seek to solve (4.24), with the
boundary condition wuo(0,y,T) = 9q0(0,y,T)/0x given by (4.23)), by using the
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method of characteristics. If s — [z(s),s], s > T, is a characteristic with initial
condition z(7) = 0, then (4.23) and m 4.24)) yield the ODE initial value problem

Z5u0la(s).3.5)+ [AG) + —=Tua(o(5).909) = 0. 5> 7
om 74 ) (4.25)
wo(@(r),y,7) = Za 2y 4 g a (7, 7).
o4 (7)
The solution to is
uo(z(s),y,8) = 2ma,a()lY + 92,4(7,7)] s>T (4.26)
’ o%(s) ’ ' '

It follows from (4.24) and (4.26) that the characteristics are solutions to the ODE
initial value problem

da(s) 2ma,A(8)[y + g2.4(7, 7)]
ds o2 (s) ’
From ([2.15) we see that (4.27) is the same as

dfzis) =[A(s)+gzl(s>]m(s)+ J(l%)[ymgmh T) = g2.a(s,8)  (4.28)

= Az(s),y,s) + s>, z(r)=0. (4.27)

for s > 7, (1) = 0. The general solution to the ODE (4.28) is

2
z(s)=C oa(s) _ [y + 2g2,.4(T,7)Jm1,4(s) —m2 a(s), (4.29)
mi,a(s)
where C' is an arbitrary constant. The constant C' is determined for the character-
istic by the initial condition x(7) = 0. In the case A(-) = 0 this yields the formula
x(s) = [s/7 — 1]y, s > 7, for the characteristic.
We have that ,

d A(s)os (s

£g2714(s7s) = 77(71),14?5()). (4.30)
If we assume A(-) non-negative, it follows from that the function s —
g2,4(8, s) is increasing. This implies the characteristics that are solutions to
may meet, whence one cannot expect the HJ equation to have a classical
(continuously differentiable) solution. We can make this more precise by consider-
ing characteristics s — (7, s), s > 7 > 0, which are solutions to with initial
condition z(7,7) = 0. The first variation D,x(7,s) = 0x(r,s)/01, s > 7 > 0, is
from , the solution to the initial value problem

d 2. 6 — . 1 olr s 2ma a(s) A(T)o% () g
35 Deelr9) = [AG) + s Dralrs) + Z50E SIS s o
my a(T) .
Dra(r,s)| = e [y + ga(7,7)] .
s=T o4 (7)
We note that is equivalent to
d rm1,a(s) 2ma,a(s)? A(T)o% ()
[ D,x(r,s)| = 1 ; 8> T,
ds ' 0% (s) UAES)) ma,(7) (4.32)
D, x(7,s) = —% ly+g2(7,7)]

s=T 0A
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Since D,xz(1,s) < 0 at s = 7 and the derivative on the LHS of is non-
negative, we can have D, z(7,s) = 0 for some s > 7, from which point the solution
to cannot be continued by using the method of characteristics.

When the method of characteristics does apply to obtain the solution of
with boundary data (4.23), we may obtain a formula for dug(z,y,T)/0z along
characteristics similarly to how we obtained for ug(z,y,T). To see this first

note from (4.23)) and (4.30) that

auo(;c,Ty,T) = %uo(o,y,T) )
. [A(T) + %]uo(o,y,T) +2A(T). '
o (T)
Setting x = 0 in and using we conclude that
dug(z,y, T) _ 2A(T)U,24 (T) ) (434)
ox z=0 mLA(T)[y —|—g2714(T’7 T)]

Differentiating (4.24]) with respect to x, we obtain a partial differential equation for
’Uo(l} Y, T) = auO(xv Y, T)/axa

duo(z,y,T) Mz y, T) + uole,y, T)] dvo(x,y,T)
oT 2 . or (4.35)
+ vo(z,y,T) +2[A(T)+m}vo(x,y,T):0.

From the method of characteristics applied to (4.35)), we obtain using (4.34) the
ODE initial value problem

ivo(m(s),y, s) +v(x(s),y,s)* + Q[A(s) + %]vo(x(s),y, s)=0, s>,
ds 04(s)
2A(1)o(7)

“mya(m)ly + g7, )]

’Uo(I(T), Y, T) =

(4.36)
where s — z(s), s > 7, is the characteristic defined by (4.28)). It follows from (4.36))
that the function s — 1/vo(x(s),y, s) is a solution to a linear differential equation,
whence we conclude that 1/vg(x(s),vy,s), s > 7, is of the form

1 B i (s) 2 oo
vo(z(s),y,s) CmLA(s)? a(s), s>, (4.37)

for some constant C. Choosing C in (4.37)) to satisfy the initial condition (4.36]),
we have then that

uo(z(s),y,8) _ . mia(s)? . mia(s)®  maa(r)?
o RO S+ Ko o2(s)  oi(n) ]
2A(1)o% (1)

m1,a(7)%y + g2,a(7, 7))

Since the function s — my_4(s)/0%(s) is decreasing, we see that the formula
for Oug(z,y,T)/Ox can blow up to —oo. This is again a consequence of the fact
that we cannot in general expect a classical solution to (4.23)), when A() is
non-negative.

(4.38)

for s > 7, where K(7) =
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We assume that A(-) is non-negative. Observe that the condition z(7) = 0 in
(4.28]) implies that the constant C' in (4.29) is given by the formula

o= W20 r)mia(m)? | mia(m)ms,a(r)

AD T A o)
e mat?
o? (1) ’
Substituting (4.39) into (4.29) gives the formula for the characteristic,
_ m,a(7)? o%(s)
o) =l +aalr W F - G~ )
2 2
oa(s) o4 (7)
+m s)m T — 4.40
alsyma(n {5 - S (4.40)

_ ml’A(s){mz,A(S) _ ma,a(7) } '
mya(s)  ma(7)
The first term on the RHS of (4.40) is bounded below by ¢ [s/7 — 1] [y + g2,4(7, T)]
for 0 < 7 < s < Tp, where constant ¢; > 0 depends only on Ty and supg<; <7, A(t).
The remaining terms can be expressed as an integral over the interval [r, s],

mia(s) / ) [mLA(T) —1] ds' = m1a(s)f(s). (4.41)

m1,a(s’) m1,a(s’)

The function s — f(s), s > 7, is decreasing and f(7) = f/(7) = 0. We conclude
that the characteristic s — x(7,s), s > 7, is an increasing function of s for s > 7
such that s — 7 is sufficiently small. However it could decrease for s large, even to

0. We see from (4.40)), (4.41) that
A TSR

T

[+ 92,407, )] (4.42)

< a(rys) < Co(s — ) [ L2

—02(5—7’)}, 0<1<s<Ty,

where c1, ¢z, C1,C2 > 0 depend only on Ty and supg<;<7, A(t). It follows from
that z(7,s) > 0 for 0 < 7 < s < min{7 + [y + g2,4(7,7)]/C17, To }.

Next we obtain from the variation equation conditions that imply charac-
teristics do not intersect. Thus setting y(7, s) = my_a(s)D,z(7,s)/0%(s), we have

from (I31),

0 Cst Y+ 9g2.4(7,7)
%y(ﬂ s) < = 7 <s<Ty, y(r,7)< —C4T7 (4.43)

for some positive constants C3 and Cy depending only on Ty and supg<;<7, A(t).
Integrating (4.43|) we conclude that

yrs) < Gt - 1] - gt ealnT)
It follows from that D,z(r,s) < 0 for 0 < 7 < s < min{r + Cyly +
gQ’A(T, ’T)]/Cg’]’, To}

Let Ap > 0 be a constant such that Ay < 1/C7, Ag < C4/C5 and consider the
function T,(7) = 7 + Aoy + g2.a(7,7)]/7, 0 < 7 < Ty. Evidently T,(-) > T,(-),
where T, is the convex function T},(7) = 7 4+ Agy/7. The infimum of T}, is attained

at T = /Aoy and info<, <00 Ty (7) = 2y/Agy. Since ([@30) implies that go a(7,7) <

for T <s<Tp. (4.44)
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C7?, we see that if 2y/Agy < Tp then infoeroq, Ty(7) < 2[1 + C']\/Aoy, where
C' > 0 depends only on T and supg<,<7, A(t).

We wish to identify the largest domain D, 7, contained in {[z,T]: 2 >0, 0 <
T < Ty} such that characteristics do not intersect within the domain. We have
already seen that if 2¢/Agy > T then we may take Dy, = {[z, 7] : @ > 0, 0 <
T < Ty}, so let us assume that 2¢/Agy < Tp. Then D, 1, contains {[z,T] : z >
0, 0 < T < 2y/Agy}, so we just need to consider the situation 2/Agy < T < Tp.
Then the equation

T+

Aly + ng,A (.7 _ (4.45)

has two solutions provided that 21/Aly + g2,4(T,T)] < T. Since 2/Agy < T < Ty
we may choose A; < Ao, depending only on Ty and supg<,<7, A(t), such that

4\/M[y + g2,4(T,T)] < T. The larger solution to (4.45) is

T T ANy + g2,4(T, T)]\1/2
T1,A,y(T):§+§{1— [ ;QA( )]} : (4.46)

If A < Ay then 7 4, (T) satisfy the inequality
A[y + gQ,A(Ta T)]

QA[y + gZ,A(T’ T)] .

ST —7iay(T) < (4.47)

T V3T
It follows from (4.30]), (4.47) that
0<92,4(T5T) = g2,4(71,0,4(T), 71,0,4(T)) < CAly + g2,4(T, T)], (4.48)

for some constant C' depending only on Ty and supg<,<7, A(t). We conclude from

(4.42), (4.48)) there is a constant Ao, depending only on Ty and supy<,<7, A(t), such
that if o

Aoly + go.a(T, 7))
T2
We can make a similar argument to show that if 2¢/Agy < T < Ty, then [z,T] €

Dy 1, for z sufficiently large. In that case we define 75 5 4 as the smaller solution
to the equation 7+ Ay/7 =T. If A < Ag, then

2/ Aoy < T <Thand 0 < z <

then [z,T] € Dy g, . (4.49)

T T 4Ay y1/2
To.ay(T) = 5 5{1 -7z P (4.50)
If Ay satisfies 4y/A1y < T, then for A < A; we have that
Yy 2Ay
< T) < —=. 4.51
7 <mall) < (4.51)

From (4.42) there is a constant A3, depending only on Ty and supg<;<7, A(t), such
that

if 2¢/Aoy < T < Ty and & > A3T?, then [z,T] € Dy, - (4.52)
We define the domain
Uy, ={[1,s] 0 <7 <Tp, 7 <s <min[Ty(7), To]}. (4.53)

The mapping [1,s] — [z(7,s),s] is a diffeomorphism from U, 1, onto a domain
Dy 1,, which has the properties , . The fact that the mapping is
onto follows from the intermediate value theorem since we see from that
lim, ,ox(7,8) = oo for all 0 < s < Tp. It is one-one since D,xz(7,s) < 0 for
[7‘, S} € Z/{nyO.
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Proposition 4.2. Assume the function A : [0,00) — R is continuous and non-
negative. For [x,T] € Dy 1, let [1,T] € Uy, 1, be such that x(1,T) = z, and define
qo(z,y,T) by

_g3,a(1,T)
- 2
Then the function [z, T) — qo(z,y,T) is a C' solution of the HJ equation
on Dy m, and satisfies the boundary condition lim, .o qo(z,y,T) =0, 0 < T <
Ty. Furthermore, the function x — qo(x,y,T) is C* on Dy 1, and the derivatives
qo(z,y,T)/0x, O*qo(x,y,T)/0x* are given respectively by the formulas and
(%.35).

Also 7 =1(x,y,T) in is the unique minimizer in the variational problems
, for [z, T] with x >0 and 0 < T < Ty, in the following regions: (a) all
x>0 if 2¢/Aoy > T, otherwise (b) 0 < x < Ay[y + g2 a(T,T)]/T?, (c) x > T?/A,
where A > 0 is chosen sufficiently small depending only on Ty and supg<,<7, A(t).
Therefore if [x,T)] is in one of the regions (a), (b), (c) the functions (4.2) and
are identical.

Proof. All constants in the following can be chosen to depend only on T and
supg<;<T, A(t). To show regularity of the function [z,T] — qo(z,y,T) we first
differentiate with respect to x. The resulting formula for dqo(x,y,T)/0x
involves g; A(7,T), j = 1,2,3, and their first derivatives with respect to 7. It
also involves 97(z,y,T)/0x = [D,z(r,T)]~!, which we see from (4.31)), is
a continuous function of [r, 7] and hence of [z, T]. We conclude that the function
x — qo(z,y,T) is differentiable and the function [z,T] — dqo(z,y,T)/0x continu-
ous. We can make a similar argument to see that the function T — go(x,y,T) is
differentiable and the function [z,T] — 9qo(x,y,T)/OT continuous. In that case
we need to show the continuity of the function [z,T] — 97(x,y,T)/0T, which is
given by the formula

qo(z,y,T) [y + g1,4(7, Tz + g2,a(7, T)]” . (4.54)

or(x,y,T)  Dra(r,T)
or  Dyx(r,T)’
Evidently Dya(r,T) is given by the RHS of with s = T, z(s) =  and hence
is a continuous function of [z, T]. We conclude that the function [z, T] — qo(z,y,T)
is C' on Dy 13,
To show that the function is a solution to the HJ equation , we
proceed by the standard method [10], writing as

(4.55)

Oq0(z,y,T) dqo
a7 H( ER ) 7aT) =Y, 4.
a7 + T,y o 0 (4.56)
where the Hamiltonian is
1
H(z,y,p,T) = Xz, y,T)p+ 5192 . (4.57)

The corresponding Hamiltonian equations of motion are

dv _ OH(z,y.p,s) dp _ _OH(z.y,ps)

ds op T ods ox
We solve (4.58)) with initial conditions
(1) =0, H(0,y,p(1),7) =0. (4.59)

(4.58)
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Note that the initial condition (4.59) for p(-) is the same as in (4.25)). If we solve
the second equation in (4.58) with initial condition (4.59) we obtain

m a(s)

p(T,8) = 227[34 + g, T)], s>T, (4.60)
o (s)

corresponding to (4.26). Taking p(r,s) to be given by (4.60), the first equation
in (4.58]) becomes identical to the characteristic equation (4.27). We define the
function w : Uy 1, — R by

OH (z(7,s),p(7,5),s)

0 o(r.8) = ~H(a(r,5).p(r.5).5) + p(r. ) X

0s

(4.61)

for s > 7 and initial condition w(7,7) = 0. Then by standard theory the function
qo(-, Yy, ) defined on Dy 1, by qo(z(7,s),y,s) = w(r,s) is a solution to (4.56|) and
p(T7 S) = aq()(aj(Ta S)a Y, S)/aaj

We see that

7,8
w(r,s) = % v+ g1,4(7,8)x(T,8) + g2,4(T, )7, (4.62)

by verifying that the RHS of (4.62)) is a solution to the differential equation (4.61]),
where x(7, s) and p(r, s) are given by (4.29), (4.39)), (4.60) and with initial condition
w(7,7) = 0. To obtain the formula ([4.38)) for 9?qy/dx? we observe that

2 8(]0(%(7‘, 5); Y, S) _ 82(]0(1'(7'7 8)7 Y, 8) ax(Tv S) _ ap(Tv S) (4 63)

or Ox N Ox? or or '
and use the formulas (4.40)), (4.60). Note that we may choose Ag sufficiently small,
depending only on Ty, such that the denominator in the formula (4.38]) is positive
if [r,s] € Uy 1,.

Finally we consider for which [z, T] € D, 1, that 7 = 7(z,y,T) is the minimizer
for (4.2). We apply the standard verification theorem to paths [z(s),s] and 7 <
s <T, with 2(r) = 0 and «(T") = z, which lie in D, 1,. Using the fact that ¢o is a
C" solution of ([.56), ([4.57) on D, 7,and ¢(0,y,7) = 0, we have that

QO(Qf,y,T)
T a
Z/T £(I0(f(s)vy73)d‘9

/T 8%(@“((98),?/, 5) [dz(S)

—Md@wﬁﬂ_;ﬂTW%@;yw@rw (4.64)

< %/T [dflis) — )\(x(s),y7s)}2ds.

If 7 = 7(x,y,T) and z(s) = z(7,s), 7 < s < T, then from and
we obtain equality in . Let Fy(z,y,7,T) be the function on the RHS of
(4.2). We wish to find [z, T] such that gg, defined by 7 satisfies qo(z,y,T) =
infocr<r Fo(z,y,7,T). We shall identify a subset Sg 7 of (0,T) such that

Fy(z,y,7,T) > Fo(z,y,7(x,y,T),T) = qo(z,y,T) for 7 € Sy, r. Hence it is
necessary only to consider 7 € (0,T) — Sy, . We have already observed that the
variational problem with fixed 7 is quadratic and has the unique solution
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(2.37) given by I'(7,s,T,xz) = a(r,s,T)x + b(r,s,T), 7 < s < T, where
oA(T)a(r,s,T) = m1,a(s)o%(s,T) [g1,4(5, T) = gr,a(r, T)]
aA(D)b(7,5,T) = m1 ()% (5, T) [92,4(5,T) = go,a(1,T)] -

In view of the verification result , if we show that the path s — I'(7,s,T, ),
T < s <T,lies in Dy 1y when 7 € (0,T) — Sy 4,7, then it follows that 7 = 7(z,y,T)
is the unique minimizer for (£.2). If T < 2y/Agy then [z,T] € D, r, for all z > 0.
Since the functions 7 — g1,4(7,T), g2, 4(7,T), 0 < 7 < T, are increasing when A(-)
is non-negative, we see from that the path s — I'(7,s,T,2), 7 < s < T, lies
in Dy 1, when 0 < 7 < T. Hence 7 = 7(z,y,T) is the unique minimizer for
when z > 0 and 0 < T < 2v/Agy.
For z,y > 0 let

(4.65)

. g3l T) 2
Go(z,y, T) = min ==——1[y+g1,a(r,T)a]" . (4.66)
We have from (4.2)) that
(jo(.’li, Y, T) < O<i£1£T Fo(fE, Y, T, T) < Cfo(% y+ gQ,A(T7 T)? T) . (467)
Using identity (4.12]) we see that the minimizing 7 for the RHS of (4.66]) is
my a(T)x
PBATT) = —7— 4.68
ba(nT) = TS (1.68)
Substituting (4.68) into the RHS of (4.66]) yields the formula
. 2mq A(T)zy
Qo(z,y,T) = —%H—=— (4.69)
o4 (T)

It is intuitively clear from (4.67) that the function go defined by (4.54) on D, 1,
should satisfy the inequality

q0 ('T'a Y, T) S (;O(za ) + QQ,A(T, T)a T) ) [1'7 T] S Dy,To . (470)
To see this observe that the function v(-,-) defined by v(r,s) = qo(x(7,s),y +
92,4(8,8),8) —w(r,s), 0 < T < s < Tp, with w(-,-) as in (4.62) satisfies the differ-
ential equation
0 2 2
v(r,5) = 2A(s)x(r,s) — 77712,4(3)
0Os 0% (s)

In deriving we use the fact that w(r, s) = qo(z(7, s), ¥, s) and that the func-
tion [z, T] — qo(z,y,T) is a solution to the HJ equation (2.29). Integrating (4.71))
over an interval [7,T] with 0 < 7 < T < Tp, we obtain using (4.30), (4.42) the
inequality,

o(r,T) > Clw /TT(s —7)A(s) ds — 2/TT [/: A(s") ds’]st, (4.72)

T

[92,A(37 ) — 92,A(7'7 7')]2 . (4.71)

provided 0 < s — 7 < [y + g2,4(7,7)]/2C1 7. Using the inequality
S 2 S
[/ A(s')ds’] < 2{ sup A(s')} / (s —1)A(s") ds, (4.73)
T T8/ <s T

we see that the RHS of (4.72)) is non-negative for 0 < T —7 < [y + g2 a(7, 7)]/Car,
provided Cs is chosen sufficiently large.
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Consider now the function f(-) defined by

fo) = %[yl +21/M?, where x1,y; > 0. (4.74)
Evidently the minimizing A = A\;, and minimizer are
Amin = Z1/Y1,  [(Amin) = 22191 . (4.75)
We have furthermore that
FOmin/8) = f(8Amin) > 511 - (4.76)

We consider [z,T] € D, 1, which satisfies (4.49). Let us assume now that
92,4(T,T) <y. Then we have from (4.70)) that

QO(xay)T) < 2(?0(1‘,:%’11) . (477)
Suppose 7 € (0,T) lies outside the region

my,a(T)x 8ma,a(T)z
804 (T)y o4 (T)y

Then from (4.68)), ([£.75), upon setting y1 = y and x1 = my 4(T)z /0% (T) in ([{.76),

we obtain the inequality

<g3a(r,T) < (4.78)

FO(xayaTaT) > 5qo(xay)T)/2 (479)

It follows from (£.77), (4.79) that 7 € S, 7 if 7 does not satisfy (4.78). Observe
from (4.49) that < 4A2y?/T?, which implies that Tz /y < 4Asy/T < AT/Ay.
Using (4.12)), ([#13), ([&.78) it follows on choosing Ag sufficiently small, that 7 €
(0,T) — Sy,y 1 satisfies the inequalities

T T T
5 <7<T and -l <T—r<C-2, (4.80)
y y

for some constants Cq, Cy > 0. We have from (4.5]), (4.6]), (4.65) there are constants
c3,C3 > 0, depending only on Ty, such that

c3(s—T)Tf” gr(T,s,T@)gcg(s—T){TL_T+T—s}, (4.81)

for 0 < 7 < s < T. Hence we have from (4.80), (4.81)) that if 7 € (0,T) — Sy .y,
then

P(r,5,T,) < O+ (T —7)°)

C3T°x 4.82
S 0356{1 + 4y2 } ( )

S 0350{1 + CQQAQ} .
We conclude there exists A > 0, depending only on Ty, such that if 2 < Ay?/T? and
7€ (0,T) — Sz then the path s — I'(7,s,T,z), 7 < s < T, lies in Dy 7,. It fol-
lows that 7 = 7(x,y,T) is the unique minimizer for the function 7 — Fy(z,y,7,T),
0<7<T,when z < Ay?/T?
Next we consider the case g 4(T,T) > y and consider [z,T]| € D, 1, which

satisfies (4.49). We may estimate 7(x,y,T) from (4.42)). Thus we have from (4.42)),
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([2.48) that
Tz 2Tx
S T—-71 z,Y, T S
AT R TR
ifr < T2 ,

provided A < Ay is chosen sufficiently small. From (4.12)), (4.48), (4.70) we see that
(4.83) implies
(jo(ﬂl‘, {y + gQ,A(T7 T)}/?), T) < Fo(ﬂf, Y, T(Ia Y, T)7 T)
< ‘j()(xa Y+ 927A(T, T)a T) P

if A is sufficiently small. We have already observed that if gg is defined by (4.2)
then lim,_,o go(z,y,T) = 0. It follows from the lower bound (4.84) that

inf Fi T F T7),T
<1£_1<T O(x’y’T’ )# 0(%%7(%% )a )

(4.84)

0
if y is sufficiently small.
We show for sufficiently small A > 0 that
A T
Yly + 92,4(T, T))] . then

T2 (4.85)
inf Fo(e,y,nT) = Folz,y,7(z,9,T).T).

if x <

0
To see this observe from (4.5 that

T (7 o) T
G [ @A < 09240, T)
(T —s)? J, s (4.86)
< G /T(T —§")A(s") ds’
- (T - S>2 s ’
where c¢3, Cs are constants. Similarly we have from (4.30) that
T T
04/ sA(s)ds < g2 a(T,T) < 04/ sA(s)ds. (4.87)
0 0
We define §, 0 < d < 1, by
(1-8)T 1 /T
/ sA(s)ds = f/ sA(s)ds. (4.88)
0 2.Jo
It follows from (4.87)), (4.88) that & satisfies the inequality
g2 A(Ta T)
6> S~ 4.89
= 2t (459

Integrating (4.86) over the interval 0 < s < 7 we have from the lower bound the
inequality,

-7

T
/ (T — 5)A(s) ds]. (4.90)
We assume first that 6 > 1/2, whence (4.87), (4.90) imply that go a(7,T) >
c3g2.A(T,T)/2Cy if 7 > T/2. We have then from (4.12)), (4.13) that

93,41, T)go,a(m, T)y _ ¢5(T —7)g2,a(T, T)y
2 = T2

g2,A(T,T) > c3 [/ sA(s)ds + TT
0

Fo(LE,y,T, T) Z (491)
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if 7 > T/2, for some constant ¢5 > 0. If 0 < 7 < T/2 then we again see from
@37, that g2, (7, T) > ¢3792,4(T,T)/2C4(T — 7). In this case we obtain
the inequality
ceg2,4(T, 1)y
T

where cg > 0 is constant. It is easy to see from , the upper bound
and that if 0 < 7 < T/2 then Fy(z,y,7,T) > Fo(z,y,7(x,y,T),T) provided
x satisfies with A > 0 sufficiently small. Similarly from we conclude
that Fo(z,y,7,T) > Fo(z,y,7(x,y,T),T) it T — 7 > C7Tz/y, for some constant
C7. Hence if we show that the paths s — I'(7,s,T,z), 7 < s < T, lie in D, 7, if
T—71 < CyTx/y then it follows that infocr <7 Fo(z,y,7,T) = Fo(z,y, 7(z,y,T),T).
We see from (4.49)) (4.81)), (4.82)) that this is the case provided z satisfies
with A > 0 sufficiently small.

Next we assume that 6 < 1/2, whence we have from and that

) T
—_— A if T —7>6T. 4.
5T —7) /0 sA(s)ds i T>9 (4.93)

Then using (4.12)), (4.13) again together with (4.87)), (4.89) we conclude from ({4.93)

the inequality

Fo(z,y,7,T) > ifr<T/2, (4.92)

g2,.4(1,T) > ¢3

g2,A(Ta T)zy

T3
where ¢g > 0 is constant. It follows from , the upper bound and
that if T — 7 > 6T then Fy(x,y,7,T) > Fo(z,y,7(x,y,T),T) provided z
satisfies with A > 0 sufficiently small. If T'— 7 < 6T then go o(7,T) >
c3g2.4(T,T)/2Cy, whence the inequality holds provided T'—7 < 6T. We may
argue now as in the previous paragraph to conclude that info<. <7 Fo(z,y,7,T) =
Fo(z,y,7(z,y,T),T) if x satisfies with A > 0 sufficiently small.

Finally we show that for 2,/Agy < T and A > 0 sufficiently small, if x > T2%/A
then infocr<r Fo(z,y,7,T) = Fo(x,y,7(x,y,T),T). Observe that in this case z >
max{2y, T?}, whence gives a bound on any minimizing 7 for the function
T — Fo(z,y,7,T), 0 < 7 < T. Since x > T?/A, this implies 0 < 7 < CyAy/T.
Hence if we show that all paths s — I'(7,s,T,z), 7 < s < T, lie in D, g, if
0 < 7 < C4Ay/T it follows that infocr <7 Fo(z,y,7,T) = Folz,y,7(x,y,T),T).
We see from there exists Az > 0 such that that if 0 < 7 < Azy/T = 7* then
the characteristic s — x(7,s), 7 < s < T, lies in D, 1,. Furthermore z(7*,s) <
CsT(s — 7), where Cs is constant. Since x > T?/A the lower bound implies
that I'(r,s,T,x) > ¢3T(s — 7)/A, 7 < s <T. We conclude that if A < ¢3/C5 then
the path s = I'(7,5,T,2), 7 < s < T, lies in D, 7. O

Fo(z,y,7,T) > cs ifT —7> 6T, (4.94)

Remark 4.3. The interval (b) in the statement of Proposition is more or less
an optimal interval for which the method of characteristics yields the minimizer in
. One can see this by choosing A(-) to have support in a small neighborhood
of T. Thus for any J, 0 < 6 < 1/2, we set the function A(-) = As(-), where
As(s) = AT)1— (T —s)/6T) for 0 < T — s < T and As(s) =0 for T — s > 0T.
Then the ratio go, a(7,T)/g2,a(T,T) ~1/N if T — 7 ~ NoT.

Corollary 4.4. Assume the function A : [0,00) — R is continuous and non-
negative. Then for any Ty > 0, there exist constants Cq,Co > 0, depending only on
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Ty and supg<,<7, A(t), such that the function (z,T) — qo(z,y,T) defined by (4.54)
satisfies the inequalities
aQO(I7y7T) o 2Wll,A(T’)y < ClTy2 701Ty2 < 62(]0(xay7T)

Oz oi(T) — a2 7’ x 0z2
for [,T] € Dy, > Comax{2y,T?}, 0 < T < Ty. In addition for each Ty > 0
there is a constant C' > 0 such that

2

9q0(z,y,T) 2m12,A(T)y <cr. 9T q(z,y,T) _ 0.
Ox o4(T) ~ y Ox? -
for [z,T) € Dyr,, z,y >0,0<T <Tp.

Proof. Since [z,T] € D, 1, we may use the formulas (4.26)), (4.38) to show (4.95),
(4.96). For (4.95) we use the inequality (4.16) for T(x,y,T). The first inequality

follows from (4.26)) and the fact that 0 < gs (7, 7) < C72, where C is constant. To
obtain the second inequality we observe that the functlon K(7) of - ) satisfies
an inequality K(7) < C373/y, where Cs is constant. Hence for 7 =1(2,y,T) we

have using (4.16]) that
K(T)my a(7)? < Csma 4(To)*72
oi(r) y
C3m1 A(To)204T2
)
< CgmLA(To) 042
- 202
for z > Coymax{2y,T?}, 0 < T < Ty. We choose Cy large enough so that the final

expression on the RHS of (4.97) is less than 1/2. We have then from (4.38) the
lower bound

0<

<0, (4.95)

0<

(4.96)

(4.97)

azq(.T’y,T) > 2CV?)"nl,A(T’O)QT3

S 2 o , (4.98)
whence the second inequality of (4.95)) follows on using the bound (4.16|) for 7 =
7(z,y,T) in . To prove (4.96) we again use the formulas (4.26)), (4.38]), ob-
serving that 7(x,y,T) < T. O

5. UNIFORM BOUNDS ON ¢. AND ITS DERIVATIVES

In this section our goal is to show that the bounds on ¢y and its first two space
derivatives obtained in Proposition and Corollary [I4] can be extended to g.
with € > 0. First we prove results for dq.(z,y,T)/0x analogous to the bounds on
ge(z,y,T) obtained in Proposition In fact the lower bound in implies the

lower bound in (3.28)), and the upper bound in (5.1]) implies (3.29).

Proposition 5.1. Assume the functzon A :[0,00) = R is continuous non-negative,

and let q-(z,y,T) be defined by [2.18) and (2.21). Then
2my,4(T)y < 9¢:(z,y,T) m2,A(T)] 2my A(T)y
ox(T) — Oz o4(T) oi(T) 7
Proof. Letting u.(z,y,T) = 0¢.(x,y,T)/Ox, we note from Proposition that the
function (x,T) — uc(x,y,T) is continuous in the domain {(x,T) : x,T > 0}, with
continuous derivatives duc(z,y,T)/0x, Ous(z,y,T)/OT, 0*u.(z,y,T)/0x?. Fur-
thermore (x,T) — us(z,y,T) is continuous up to the boundary {(z,T) : z =0,T >

<2[1- z,y,T>0. (5.1)
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0}. Differentiating (2.22)) with respect to x, we see using (2.15)) that u.(x,y,T) is
a solution to the diffusive Burger’s PDE

Oue(z,y,T) Oue(z,y,T)
—ap T M@y T) Fue(e,y, T)] —5=—
1
+ |A(T) + Uue(z,y, T 5.2
[AT) + i et ) 6:2)
€ Ouc(z,y,T)
= iT s Z, y,T > 0 .
It follows from (5.2)) that

ove (x,y, T ove(z,y, T e 0%v.(z,y, T
7(87,?/ ) + M, y, T) +u(,y, T)] (81:y ) - 3 éﬂy ) :
5.3)
2 T . T (
where ve(z,y,T) = UA(m)fA((a;’ih )

From Proposition it follows that the function (z,7) — wv.(x,y,T) is non-
negative. Since ¢.(0,y,T) = 0 we also have from the lower bound of Propo-
sition [3.3| that v-(0,y,T) > 2y, y, T > 0.

Using Ito’s lemma and the martingale optional sampling theorem, we have that

Ve (1’7 Y, T) =F [UE (X;(S v Ts*,a:,T,K)7 Y,s \ Ts*,a:,T,K) | X: (T) = ZIJ] (54)

for 0 < s < T, where the stopping time 77, 1 - is defined in the proof of Lemma
In view of the non-negativity of v. and lower bound on v.(0,y, -), we conclude

from (5.4) that
Us(xa Y, T) 2 E [UE(Oﬂ Y, T;,I,T); TE*,z,T = T;,I,T,K > S]

. . (5.5)
> 2yP (TE’I,T =T.aTK > s) , 0<s<T.

Observe that

{Ts*,x,T > s} = {Ts*,x,T = T:,x,T,K > spuU {T:,x,T,K > 8, X:(T:,x,T,K) =K}. (5.6)
As in the proof of Lemma we use the inequality X*(-) < X.(-), where X.(-)
is given by (2.16), to show that limsupy_, . P(7), 7 x > 8 X2 (72, rx) = K) <
limsupg_, o P(sup,.y o Xo(s') > K) = 0. Letting K — oo in ([5.5) we then have
from (5.6) that ve(z,y,T) > 2yP(7, 7 > s) for 0 < s < T. Since Lemma
implies that lims 0 P(77, 7 > s) = 1 we conclude that v.(z,y,T) > 2y, whence
the lower bound in (j5.1]).

To obtain the upper bound in (5.1]) we define for A > 0 a function g, j, by

(1)

ag
A
Gen(2,y, T) =gz + A (T)

The function (z,T) — ¢. n(x,y,T) is also a solution to (2.22)), whence the function
Ven (2,9, T) = [ge.n (2,9, T) — ge(z,y,T)] /h is a solution to the PDE

0ve p(z,y,T) 0ve p(z,y,T)

oT ox
1 0o n(z,y,T) n 8qs(x,y,T)} Ove p(z,y,T) (5.8)
2 ox or ox
e Puep(a,y,T)
T2 Ox? ’

h,y,T) 2. T>0. (5.7)

+ XNz, y,T)

+

z,T>0.
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Let X7, () denote solutions to the backwards in time SDE (2.25)) with p. given by

170gen(z,y,T) n 9ge (z, va)}
2 oz Ox '
Letting 77, . 1 i be the first exit time for X7, (s), s < T, with terminal condition
X2, (T) = z from the interval (0, K) we have again from Ito’s lemma and the
martingale optional sampling theorem the identity

ven(r,y,T)=FE [”s,h(X;h(S N T;,h,m,T,K)a Yy, sV Ts*,h,z,T,K) \ X.:,h(T) = x] (5.10)

for 0 < s < T. We can simplify the expression (5.10) by taking K — co. Observe
that

’E [’Ufyh(K7va;,h,w,T,K);T;,h,w,T,K > 8, X perx) = K| X2,(T) = 33”

< sup e (K,y.)P(sup X2 () > K| X2,(1) = ).
s'<

s<s'<T s<

pe(,y, T) = Mz, y, T) +

(5.9)

(5.11)
Since the drift p. of (5.9)) satisfies p.(x,y,T) > A(x,y,T), we see that the proba-
bility on the RHS of is bounded by P (sup,y .1 Xo(s") > K | X.(T) = x),
where X.(-) is given by (2.16). We may bound this latter probability by us-
ing the reflection principle (2.46]), whence the probability converges to zero as
K — oo like exp[—cK?| for some constant ¢ > 0. From Proposition we see
that sup, g <p [ven(K,y,s)| is bounded linearly in K as K — co. We conclude
that the RHS of converges to 0 as K — oo. Letting K — oo in we
have then that

Ve (2,4, T) = E [0en (0,9, 72 pyor)i oo > 8 | X24(T) = ]
+ B I:’Ue,h(X;h(S)vy7 S);T;:h,w7T <s | X:,h(T) = l‘:l )

for 0 < s < T, where 77, _ 7 is the first hitting time at 0 for the diffusion X7, (s),
s < T, with terminal condition X7, (T) = =. l

It is easy to bound from above the first expectation on the RHS of by
using Proposition Thus we have from the upper bound the inequality
Ve n(0,y,7) < 2g2 a(7,7) +2y, 7 > 0, where go a(7,7) = [04(T) —ma,a(T)]/m1,a(T)
has derivative (4.30)). Since A(-) is non-negative, whence the function 7 — go a(7,7)
is increasing, we see that the first expectation on the RHS of is bounded above
by 2g2,4(T,T) + 2y for all s satisfying 0 < s < T. We shall show that the limit of
the second expectation on the RHS of converges to 0 as s — 0. The upper
bound in follow then by first letting s — 0 in and then h — 0.

Using the bound of Proposition we see that the second expectation on
the RHS of is bounded in absolute value by

C(M)y
sh

where the constant C(7T') depends only on T'. To estimate the expression (5.13]) we
use the lower bound ({5.1) which has been already proven. Let X, jinear(-) denote
solutions to the SDE (12.25)) with . given by

(5.12)

E[XZ,(s)+sh+ 870, <s| XZ(T)=2], 0<s<T, (513)

aQIincar (1'7 Y, T)
ox

If X;h(T) = X linear(T)) = x then X:ﬁh(s) < X, linear(s) for all Ther < S <

T. Letting 7. linear,z,7 be the first hitting time at 0 for X jinear(s), s < T', with

pe(z,y, T) = Nz, y, T) + = Nz, —y,T). (5.14)
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X linear (T') = x, we see that T ha 2 Telinear,e,7- Hence we have that

E [X*,h(s);T:,h,:c,T <s|XZ,(T)= z]

€

é E [Xs,linear(s); Te linear,z,T <s | Xe,linear(T) = LC] .

Since the drift ((5.14)) is linear the SDE (2.25|) can be explicitly solved in this case
and the solution is obtained by replacing y by —y in the formula (2.16)). Thus we
have that

(5.15)

X.(8) = Tetass(5) — VE i) Z(s), s<T, (5.16)
my,a(s)

where Z(+) is defined in (2.16]), and from (2.12]) we have that
0% (T) 2 class (8) = xma, A(s, T)o%(s) — yml,A(s)ai(s, T)
+mya(s, T)ma a(s, T)ai(s) - mQ’A(S)CTi(S, T).

We see from (5.17) that limg_o Zcass(s) = —y, whence there exists so with 0 <
s0 < T such that z¢ass(s) < —y/2 for 0 < s < 5. It follows then from (5.16) that

(5.17)

P (Te tinear,z, 7 < 8) < P( inf §'Z(s") > cy/ﬁ) , 0<s<sg, (5.18)
s<s'<sgp

for some constant ¢ > 0 depending only on sg. The variables sZ(s), s < T, are
Gaussian with zero mean and variance bounded above by C(T')s for some con-
stant C(T) depending only on T. Hence the probability on the RHS of
is bounded above by exp[—c/s] for some constant ¢ > 0. Observing also that
SUpgc e & [Xeylmmr(s)2 | Xelinear(T) = | < 00, we conclude from and the
Schwarz inequality applied to the RHS of ([5.15]) that the expression (5.13)) converges
to0as s — 0. (I

Proposition 5.2. Assume the function A : [0,00) — R is continuous and non-
negative. Then for any Ty > 0, there exists a constant C' > 0, depending only
on Ty and supy<,<r, A(t), such that the function (x,T) — q-(x,y,T) satisfies the
inequality

CTy?
- xy < ¢ (Z‘, Y, T) - q1inear(xa Y, T) (519)
for xy > T, v > max{2y, T2}, 0 < T < Ty, and the inequality
2 T
qe(x,y,T)—w <CTz forxz>0,0<T <Ty. (5.20)
o4 (T)

Proof. All constants in the following can be chosen to depend only on T and
Supg<;<7, A(t). We consider the stochastic integral s — M (s) defined similarly to

([2-49) but with giinear in place of ¢. and g, in ([2.25) given by p. = ur oof (2.27)).

Then similarly to (2.51f) we obtain the inequality

Qlinear ($7 Y, T)
< E[qlinear (X:(S \ Ts*,x,T,K)a Y,s \% Ts*,x,T,K)}

+B; | )09~ M), )P s X2(T) = o]

"
VTaT K

for 0 < s < T, where X7(-) is the solution to the SDE (2.25) with p. = pf.
The stopping time 77, 7 ;r in (.21)) is the first exit time of X(s), s < T, with
XX(T) = x from the interval (0, K). As in the proof of Lemma we use the

(5.21)
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inequality X7 () < X.(-), where X.(-) is given by (2.16). Letting K — oo in ([5.21)
we have then using (2.65]) of Lemma the inequality

qlinear(xa Y, T) S E[qlinear (Xg*(s vV T;;p,T)7 Y,s \ T;z,T)] + qa(xa Y, T) (522)

for 0 < s < T, with 77 1 the stopping time defined in Lemma Using the
inequality Qiinecar(z,y,7) < Cylz/7T + 7], 0 < 7 < Tpy, where C is constant, we have

from ([5.22) the inequality

. Cy
Qlinear (:L'v Y, T) — (e ((E, Y, T) < CyE[Ts,x,T] + ?E

for 0 < s < T. Just as in the proof of Proposition use the lower bound (5.1
(523

to show that the second expectation on the RHS of ([5.23|) converges to 0 as s — 0.

To bound E[r], ] we use the identity ([2:68), observing since A(-) is non-negative
that the sum of the last two terms on the RHS are non-negative. We have then
upon applying the Schwarz inequality to the RHS of that for any T, > 0 one
has

[(XZ(s)+ 8% 72,0 <s|, (5.23)

C 1 r * * * 1/2
{5 [ B~ MK 00 s
TE,I,T Ts*,m,T (5.24)
> % —VEZ(rlyy) for0<T<Ty,
where C1, ¢; > 0 are constants. It follows from (5.24)) that if [Z(7, )| < c12/2/eT
then

ors (ZOYL[ X)) N s 629
We conclude from of Lemma and that
Bl |26 ) < in/2er] < (B2 alwnt). (620
From , we have that
B[ ril20 ) > d S Bl < 2, a>0,0<T<Th,  (.27)
where (5 is constant. It follows from that
Bt 22l > eaf2ver < 2250 g cr <. (5.28)
1

We conclude from ([5.26)), (5.28]) and Proposition that
CgTy

E[rl.7] < if o >2y, o>T?% zy>eT, 0<T < Ty, (5.29)

where Cj is constant. The lower bound (5.19)) follows from ([5.23)), (5.29) on letting
s — 0 in (5.23).
To prove ([5.20)), we first observe that if > y the inequality follows from the

inequality ¢-(z,¥,T) < Qinear(z,y,T). Hence we may assume 0 < z < y. We
consider the stochastic integral s — M(s) defined similarly to (2.49) but with
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pe in ([2.25) given by (5.14). Arguing as in the proof of Proposition [5.1] we have
analogously to (2.51)) the inequality

¢e(z,y,T)

< E[%/T (e (X (5), 9, 8) = MXe(5), 9, 8)]* ds | Xo(T) = x] :

e,linear,z,T

(5.30)

Next we consider the stochastic integral s — M(s) defined similarly to (2.49) but

with @linear in place of ¢. and p. in (2.25)) again given by (5.14). Then using Ito’s
formula and the martingale optional sampling theorem we have the identity

QIinear(mv Y, T)
=F [qlincar (Oa Y, TE,Iincar,z,T)]

e (5.31)
+ E[i / [ME(XS(S)7:U7 S) - A(XE(S),% S)]2 ds | XE(T) — l':| )
Te,linear,z,T
Observe next that

QIincar (-Ta ya T) - E [qlincar (0’ y, TE,Iincar,mﬂ")]
el 1)z 5.32
= M + C4yE [T - Ts,linear,z,T] 5 0<T < TO , ( )

o4 (T)

for some constant C4. The inequality (5.20) follows from (5.30))-(5.32) if we can
show that

CsT
BT - - tmearor] < 5y L 0<z<y 0<T<T,, (5.33)

for a constant Cs.

We show that holds if y > CsT? for some constant Cs. We choose Cg
such that the drift u. defined by satisfies the inequality p.(x,y,s) > y/Css,
0 < s < Ty for some constant Cs > 0. This follows from since 0% (s) —

ma a(s) < Crs?, 0 < s < Ty, where C7 is constant. Then the LHS of (5.33) is
bounded above by u.(z) = E [T — T:’linear)z’T}, where 77} oor o 18 the first exit

time from (0, 00) for the diffusion X.(s), s < T, which is the solution to (2.25)
with terminal condition X.(7') = x and drift p.(z,y,T) = y/CsT. Now u,(-) is the
solution to the boundary value problem,
€ d*u.(z) y duc(v)
2 dz? CsT dx 7’

The solution to (5.34) is the linear function u.(xz) = CsTx/y, whence we obtain
(5:33)

x>0, u(0)=0. (5.34)

the upper bound

To finish the proof of we need to deal with the case 0 < z < y < C¢T?. In
this case reduces to the inequality ¢.(z,y,T) < CsTz, 0 < T < Ty, where Cg
is constant. We consider again the stochastic integral s — M (s) defined similarly to
but with p. in given by p.(x,y,s) = AMz,y,s)+CoT, 0 < s <T < Ty,
where the constant Cy > 0 is chosen sufficiently large. Let 7., 1 be the first exit
time for the diffusion X.(s), s < T, of with X.(T) = z. Then a similar
inequality to holds, whence we have

C31?
2

ET —7or], 0<2<y<CqT*>, 0<T<T,. (535)

¢e(z,y,T) <
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We also see as before that E[T — 7., 7] < Cioz/T, 0 < T < Ty,, where Cyg is
constant. The result follows. O

Remark 5.3. The inequality (5.20]) also follows from the upper bound in (5.1) by
integration over the interval [0, z]. In our proof in Proposition we use the fact
that the optimizing 7 in (4.2) is close to T' as x — 0.

We have already shown in Proposition[5.1]that all of the bounds on the derivative
0q:(z,y,T)/0x with e = 0 in Corollary with the exception of the upper bound
(4.95), extend to € > 0. Next we extend the upper bound (4.95)) to £ > 0.

Proposition 5.4. Assume the function A : [0,00) — R is continuous and non-
negative. Then for any Ty > 0 there exists a constant C > 0, depending only
on Ty and supg<,<7, A(t), such that the function (x,T) — q.(z,y,T) satisfies the
inequality
0g:(z,y, T) _ 2m1a(T)y _ CTy”
Oz oi(T) — a2’
for xzy > €T, x > max{2y, CT?}, and 0 < T < Ty.

(5.36)

Proof. We use the identity (5.4]). The upper bound (5.1) implies that for any Ty > 0
there is a constant C; such that v.(x,y,7) < 2y + C172, 0 < 7 < Tp. Hence we
may let K — oo and s — 0 in (5.4)) to obtain the identity

ve(z,y,T)=F [UE(O,y,Tg‘,LT) | XX(T) = .13] , 0<s<T. (5.37)
Inequality ([5.36)) follows then from (5.37)) if we can show that

. C T2 2
E [(Ta,z,T)2] S zxgy

for a constant Cy. To prove ([5.38) we use the upper bound (5.1). Analogously to
(5.14]) we consider solutions X* () to the SDE (2.25)) with p. given by

. x>max{2y,CoT?}, 0 < T < Ty, (5.38)

e,linear
ma. A T
pelar.y.T) = Az, —9.T) + 21 - "240)). (539
o4(T)
Letting 77y,ear, D€ the first hitting time at 0 for X7 ...(s), s < T, with
X Jinear(T) = @, we see that 7, » < 72y 00r - To prove (5.38)) it will be sufficient
therefore to estimate E[(T;Hnear’w,T)ﬂ.

Since the drift (5.39) is linear the SDE (2.25) can be again explicitly solved, and
the solution is

Xc(8) = 2h(8) — ﬁmZ(s), s< T, (5.40)
mLA(S)

where Z(-) is defined in (2.16)), and x?,  (-) is obtained from (5.17) by switching

class
the signs of the terms which do not involved x or y. Thus we have that

TA(T)T505(8) = wmn a(s, T)o (s) — yma,a(s)o (s, T)
— my (s, T)ma (s, T)o?(s) +ma.a(s)od(s,T).
We have from (2.40)), (4.5) and (5.41)) that

() > 03% - %] (Coy +CusTY, 0<s<T,0<T<Ty (542)

(5.41)
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for some constants Cs, c3,Cy > 0. We conclude from (5.42)) that

_ 2y, 26T (5.43)
csx + 2C5y c3

We may extend the inequality to € > 0 by considering for n = 1,2,...,
events A, where A, = {77} o o > nTy/x}. Assuming z > max{2y, 20,77 /c3},
we have from the inequality =7, (7 inear.e.7) = €37 linear.o,7(/4T) on the
event A, provided n > 4C3/c3. Hence from we have on A,, with n > 4C5/c3
the inequality Z(Ts*,linear,z,T) < —c5x/+/eT, where c5 > 0 depends only on Tp.

From ([2.75)) we have that
Cs
P( sup |Z(s")] >a) < ,
(s<s/<T| Sl ) (a?s)*
where Cg > 0 depends only on Ty. Choosing integers ng,n; such that ng > 4C3/c3
and n; > x/y, we have from ([5.44) that

*
7—O,linear,z,T =

a>0,0<s<T<Ty, (5.44)

* 2 T?y? 1 5 2
E[ (Ts,linear,:c,T) ] S .’II2 |:77,0 + Z (Tl + 1) P(An):|
no<n<ni (5 45)
T29%1 , O €T \4 (n+1)2 '
<) X )
5 no<n<ny
The inequality (5.38)) follows from (5.45)) provided xy > T O

Finally we show that the function x — ¢.(z,y,T) is concave, thereby extending
the upper bound on 9%q. (z,y,T)/d2? with e = 0 in Corollary [4.4]to & > 0. Because
of the singularity in the drift [z,T] — A(z,y,T), z,y,T > 0, of as T — 0,
we use an approximation method.

Lemma 5.5. Assume the function A : [0,00) — R is continuous and non-negative.
Then for any 6 > 0 there is a unique classical solution [z, T) — ¢. s(x,y,T), > 0,
T > 0, to the PDE (2.22)) with boundary and initial conditions

_ 2my a(d)zy

4e,6 07y7T :07 T> 67 Ge,s 37,?475 — )
0.5.7) (o) = 2220

Furthermore, the function [z, T| — q.s(x,y,T) satisfies the inequalities

x>0. (5.46)

2 T
Ay ey T) < —aM0.y, The, 250, T >3, (5.47)
a5 (T) '
2Tnl A(T)y aqs 5(.%, Y, T) ma A(T) le A(T)y
) < = <2[1-—= ’ 4
AT < o T EAm T Am (5.48)

forx>0and T > 6. Let q-(z,y,T) be defined by (2.18) and (2.21)). Then
lim(geo(2, 9, T) = ¢=(2,9, T)] = 0,

and the limit is uniform in all sets {[z,T] :x >0, Ty < T <11} with 0 < T <
T < o0.

Proof. We proceed as in the proof of Proposition by setting ve 5(z,y,T) =

exp [—qe5(z,y, T)/e]. If [2,T) = ve5(z,y,T) is a solution to the PDE (2.19)) in the

region x > 0,7 > ¢ with boundary and initial conditions
2my A (0)xy

vs,5(07va) =1,T> 57 v8,5(x7y75) = exp [_ D)

e } >0, (5.49)
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then ¢. 5(z,y,T) = —elogv. s(z,y,T) is a solution to with boundary and
initial conditions (5.46)). Since the drift [, T] — A(z,y, T) is linear in 2 and contin-
uous in T for T' > ¢, standard regularity theory implies that [z,T] — v s(z,y,T)
is a classical solution to (2.19), (5.49), from whence we conclude that [z,T] —
¢e,5(x,y,T) is a classical solution to (2.22)), (5.46). The proof of proceeds
as in the proof of Proposition by using the maximum principle. With
established, the proof of then follows along the same lines as the proof of
Proposition [5.1]

To prove the convergence of ¢. 5 as 6 — 0 we define the function u. s(z,y,T) =
qe(z,y,T) — ge,5(x,y,T) . Since both functions [z,T] — ¢.(z,y,T) and [z,T] —
ge,5(z,y,T) are solutions to it follows that the function [z, T] — u. s(x,y,T) =
qe(z,y,T) — qe 5(z,y,T) is a solution to the PDE

3Ue,5($» Y, T) o £ 82u6,5 (l’, Y, T)
e T L CYE (5.50)
N 1[5‘qs(x,y,T) . aqs,a(w,y,T)} }8us,s(:v,y,T)
2 Ox Ox Ox ’

in the region{[z,T] : x > 0, T > ¢}. It follows from (5.46) and the upper bound
(3.28]) of Proposition that the boundary and initial conditions satisfy

Ue5(0,y,T) =0, T >6, 0<ux,y,d) <Cdy, x>0, (5.51)

where the constant C' may be chosen uniformly in any interval 0 < § < §p < oo.
From (5.51)) and the maximum principle applied to (5.50) we conclude that 0 <
Ues(z,y,T) < Coy for x > 0,T > 6. ]

Lemma 5.6. Assume the function A : [0,00) — R is continuous non-negative, and
Ges(z,y,T), x,y > 0, T > 0, the function defined in Lemma . Then for any
Ty > § there exist constants C, M > 0, depending on ¢,6,y,To and supg<,;<7, A(t),
such that

2
T
|%|gc forz>M, 6 <T<T,. (5.52)
x
Proof. Similarly to the derivation of (5.3) we see that the function

X (T) 9ges(x,y,T)
ves(2,y,T) = AT 5 (5.53)

is a solution to the PDE

avs 5(1:7 Y, T) mi A(T) 8UE 5(1‘7 Y, T)
Qs @V 2) 4 [Ny, 7) + 58D, s(a,y, 1) et D)

oT @y 1)+ =5 = 550
. 562’05,5(%73/’1—’)
2 ox?

in the region {[z,T]:z > 0, T > ¢} with constant initial condition 2y on the half
line {[z,d] : + > 0}. We make a change of variable to eliminate the linear drift
A+, ) from (5.54). To see this consider the PDE

ow(x,T)
or

2
+ [o(T)z + 5(T)]8wf,;’ T _ %a “é(; D) seR T>6. (555
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If we make the transformation w(x,T) = u(z,t) where

z:exp[—/:a<s>ds]x—/:/3<s>exp[—/:a<s’>ds’} s

T ) (5.56)
t:/ exp{f2/ a(s/)ds'} ds.
5 5
then u is a solution to the heat equation
t Zu(z, t
Quzt) _e0ulzt) — poysy. (5.57)

o 2 92z
Now writing Mz, y,T) = o(T)x + B(T) and setting ve 5(z,y,T) = u(z, t) according
to the change of variables (5.56|), we see from (5.54]) that w is a solution to the
Burgers’ equation

ou(z,t) Ou(z,1) _ gagu(z,t)

&0 (e 22t - £TUED, (5:59)
where
o T ml,A(T)
~(t) = exp {/6 a(s) ds} FAGR T>6. (5.59)

For each zp € R, ty > 0 we define the domain D(2¢,¢) = {[z,t] : |2 — 20| < V/eto,
0 < t < to}. The Dirichlet Green’s function for the heat equation on the
domain D(z,¢€) is simply a space translation and dilation of the Green’s function
on the domain D(0,1). This latter Green’s function can be obtained by the method
of images. Thus for ¢ > 0 let z — G(z,t) be the pdf of the Gaussian variable with
mean 0 and variance t, so
52

1
= expl—2-
V2t pl 2t

Then the Dirichlet Green’s function Gp(z,2’,t) for D(0, 1) is given by the series

G(z,t) = ], zeR. (5.60)

oo

Gp(z,7,t) = Z p(m)G(z — zm, t), (5.61)
m=0
where 29 = 2’ and z,,,, m = 1,2, ..., are reflections of 2’ in the boundaries 2’ = 4++/tg
with parities p(m) = £1. The function
Vo
w(z,t) = / Gplz ' ue(2) d2' . [2,4] € D(0,1) (5.62)
—Vto

is then a solution to (5.57) with ¢ = 1. It satisfies the initial condition u(z,0) =
uo(2), |2] < V/to, and boundary condition u(z,t) =0, z = £1/tg, 0 < t < to.
Letting ¢t = to correspond to T' = Tj in (5.56)), we see from (5.48]) of Lemma

there exist a constant Cy > 0, depending only on T}, and a constant My, depending
only on §, Ty, such that the solution u to the Burgers’ equation (5.58|) satisfies

[u(z,t)| < Co+2y for 2> My, 0<t<tg. (5.63)

We can integrate ((5.58) on the domain D(zp, ) with zo > My + /ety by using the
Green’s function (5.61]). We obtain the integral equation

u(z,t)

Vi
:/ Gp((z — 20)/VE, 2, u(vez + 20,0) d2’
-Vt
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Lo Z / 0Gp((z — Zo)a/z\//g, 2 (t— S))u(\@«z/ +20,8)ds  (5.64)

vio Z — 2 Z S
/ / 6GD O)a/z\/g ( ))’Y(S)u(\ﬁz/ +Zo,S)2d2’/ ds

for [z,t] € D(z0,¢), where p(z') = —1if 2/ = /&y and p(z’) = 1 if 2/ = —/to.
‘We can use the representation and the bound to obtain a bound on
Ou(z,t)/0z at z = 29, 0 < t < to, which is independent of zg as zg — co. Observe
from that u(-,0) = 2y is constant. Hence if u1(z,t) denotes the first term on

the RHS of (5.64]) we have from (5.60)), (5.61) the inequality

|8u1 z,t) ‘ C’ly Vet
2

< ‘ Z()| < — 0<t<ty, (565)

where C; depends only on ty. Letting us(z,t) be the second (boundary) term on
the RHS of (5.64), we may use (5.63)) to bound dus(z,t)/0z at z = zy. Thus we
have that
dua(z,t) | _ C2(Co +2y)
| = :
0z Ve
where Cs depends only on .

To bound the derivative of the third term on the RHS of (5.64) we define an
operator £ on functions w : D(0,1) — R by

Vio (2,2
(.8 / / IGp( ,t— )’y(s)w(zl,S) d2' ds, [2,t] € D(0,1) (5.67)

VEL
;0,0<t§t0, (5.66)

We see from ([5.60) - ) there is a constant C3, depending only on tg such that

aQGD(ZaZ 7t) 03 ’

It follows from ([5.68) that

|8GD(z1,z',t) B (9GD(2’2,Z/at)‘
0z’ 0z

_ 1
< %/ G\(z1 =) + (1= N)(22 = #), 2t) dX.
0

(5.69)

Let U, ., = {2’ € R: |2/| < Vo, |21 — 2| > 2|z1 — 22]}. It is evident that
|21 — 22| <A (z21 —2")+ (1= N) (22— 2)] forO<A<1, 2 €U, .,. (5.70)
Next we write
Lw(z1,t) — Lw(zg,t) = Fi(21, 22,t) + Fa(z1, 20, 1) , (5.71)
where
Fi(z1, 22,1

// BGD (21,2t —s) 8GD(2'2,Z’,t—3)

0z’ 0z’

(5.72)

}W(S)w(z’, s)dz' ds.
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It follows from (5.69)), (5.70) that for all « satisfying 0 < a < 1 there is a constant
C4 such that

t
o dS - 2C4 |21 — 2:2‘
[Fi(21, 22,8)| < Cal1 — 22" ] / s = 1o gl V()
(5.73)
To bound Fy(z1, 22,t) we use the inequalities
0Gp(z,7,t)
| —==—= 5 ] < —2'2t), [21],[¢,t] € D(0,1), (5.74)
a
G(z’,?t) dz' < Cg min{,l} , (5.75)
~/|z’|<a \/i

where C5, Cg are constants depending only on tg. We have from (5.74 - 5.75)) that

/ / |6GD(Z1,Z/,t—s) 3 8GD(22,zl,t— ’dz’ds
0 SV, VBl -, o, 9z 0z

3|Zl 1}d

t
! min {
0 VE=s) & (5.76)
t/9|21—22| 1
:GC5C6i21_22|-/ mln{ﬁ,l}ﬁ

Cy |21 2’2| . |2’1—2’2i
f— <1.
<712 \f( NG ) it = <

We conclude from (5.71)), (5.73)), (5.76|) that

Lz, 1) — Loz )] < oa||wooﬁ(|21\/;2|) i 'Zlﬁ@'
where the constant C, depends only on a,tq. It follows from , ) that
|Lw]eo < CVE|w||oo for some universal constant C. Hence holds for all
[21,1], [22,t] € D(0,1).

Next for a continuous function f : [—/%g, v/To] — R and « satisfying 0 < o < 1
define the o Holder norm of f by

< 2C05C6

<1, (5.77)

”f”O,a =sup{|f(2)|: [_\/t>07 \/%]}
+sup{|f(21)_zz|(52)|zze[_\/t>o’\/%]}. (5.78)

We may bound the derivative of (0/0z)Lw(z,t) in terms of the norms (5.78) for
w(-,s), 0 <s < t. To see this observe from (5.67)) that

Lw(z+h t) — Lw(z,1)

O?Gp(z+ Mh, 2/t — s) , )
/ / to/ 020z' dA\y(s)w(z', s) dz'"ds (5.79)
O?Gp(z+ Ah, 2/ t —s) , /
B / / / 9207 Y(s)[w(',8) = w(z + Ah, s)] dAdz’ ds.
We have from - that

ﬁw(z—i—h t) Lw(z,t) s
| A |<C/71a/2

llw(-, sllo,a ds, (5.80)
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for 0 < a<10<t<ty, where Cy is a constatn depending on tg.

Let u3(z,t) with [2,t] € D(z0,¢) be the third term on the RHS of (5.64). Then
us(z,t) = Lwi((z — 20)/+/E,t) with [z,t] € D(zo,¢), where w; is given by the
formula

wi(z,t) = 2\[ u?(Vez + z0,t),  [2,t] € D(0,1). (5.81)
We have then from (5.63] - that
[Lwi (-, 8)]lo.a < 2\[[0 0+ 202 N2 0 0<t<ty, 0<a<1. (5.82)

Now defining w2; D(0,1) — R by wa((z —20)/v/€,t) = u(z0+ (2 — 20) /2, t), we have
from (5.65)), (5.66), (5.82)) the bound

202[00 + 2yt —)/2 (5.83)
for 0 <t <tp, 0 < a<1,and a constant Cy depending only on to

The inequality (5.83) shows that the solution u(-,-) of is Holder contin-
uous in the domain D(zp,e/4). We represent u(z, t) agaln as in ) but with
to replaced by tg/4, whence implies that u(-,-) is Holder continuous in the
domain D(zg,¢). Letting w3z(z,t) = wa(z,t)?/2,/2, then we see that

||w2(',t)||0,a < CQ[CO + Qy] +

uz(2,t) = Lws((z — 20)/Vet),  [ws(., )||0a7\/IIW2( ).a - (5.84)

It follows from (5.80)), (5.83)), (5.84) that

|81L3 z,t)
0z

for some constant depending on ¢, y, to, but not on zy. The inequality (5.52)) follows

from ([5.65|), ((5.66[), and ([5.85)). ([

Theorem 5.7. Assume the function A : [0,00) — R is continuous non-negative,

and let q-(x,y,T) be defined by (2.18), . Then for all y,T > 0 the function

x = qe(z,y,T) is concave.

|<C’ for |z — zo| < Veto/2, 0 <t < to/2, (5.85)

Proof. We show that the function = — ¢. s(x,y,T’) is concave, and then the result
follows from Lemma by letting 6 — 0. We define the function w, s by

Jj(T) 82Qe,6($»y7T)
ma 4(T)? ox? '

wes(x,y,T) = (5.86)

By differentiating the PDE (5.3) we see from Proposition that the function
[z, T] = we s(x,y,T) is a classical solution of the PDE

3ws,6($,y,T) aqs,é(x7va) aws,é(xay,T)
or T M@u )+ e
my,a(T)? 2
y 13 b 7T .
(T we s(x,y,T) (5.87)

. §a2w5,5($,y,T)
2 Ox? '
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We proceed as in the proof of Proposition [5.1] using Ito’s lemma and the martingale
optional sampling theorem. Thus similarly to ((5.4) we have the representation

We s (1'7 Y, T) =F [w€,5 (X;:k,&((s \ Te*,ti,z,T,K)v Y, oV T;,&,QJ,T,K) | Xe*,é (T) = I]

-5 /: MLAGP (X2 5(9), 0 ds| (5.88)

VT 50T K UA(S)

where X 5(-) is the solution to the SDE with drift p.(x,y,T) given by the
coefficient of dwe s(z,y,T)/0x in . The stopping time 775 . 7 - is the first
exit time of X;(;(s), s < T, with X;‘yé(T) = ¢ from the interval (0, K). From
we have that w. 5(-,y,8) = 0, whence the first term on the RHS of can be

written as

E [w575(0, Y, T;,é,x,T,K); T;,é,x,T,K > 6’ XE,lS(T:,zS,;C,T,K) = O]

(5.89)

+ E[ws,é(Ka yaT:,(S,m,T,K);T;,(S,m,T,K > 9, Xs,é(T;,s,x,T,K) = K] .
Using Lemma and arguing as in Corollary we see that w. 5(0,y,5) < 0
for s > 4,y > 0. Hence the first term in is non-positive. The second term
converges to 0 as K — oo. To prove this we use Lemmal[5.6] which yields a uniform
upper bound on |w.s(K,y,s)|, 6 < s < T, as K — oco. Then we follow the
corresponding argument around in the proof of Proposition By letting
K — oo in we conclude that w, s5(z,y,T) <0 for x > 0,y > 0,7 > 6. |

6. CONVERGENCE OF THE FUNCTION Oq¢.(z,y,T)/0x AS € = 0

In this section we assume the function A(+) is non-negative, whence the results of
Proposition and Corollary imply that the function x — qo(z,y,T) of ,
is O for certain ranges of [z, T]. We will show that lim._,o dq.(0,y,T)/0x =
0q0(0,y,T)/0x. In view of the upper bound , we only need to prove for
small z a lower bound for g.(z,y,T) in terms of go(z,y,T) and a correction term
which goes to 0 as € — 0. We already obtained such a lower bound in Lemma
Our starting point was the inequality (2.80f), which leads to the inequality .
However the second term on the RHS of (2.81) is not sufficient for our purposes
since we need the correction to be bounded by a constant times x as z — 0. Instead

of (2.80) we observe from ([2.77)-(2.80) that

T
%/ ) 12 (X2 (5),5,5) = MXZ(s),y,9)] ds o

> QO(-T7 Y, T) - QO(\@Zm Y, Ta*,a;,T) .

The function [x,T] — qo(x,y,T) is defined by (2.28) for x,7 > 0, and for x <
0,7 > 0 by

qo(z,y,T) = —min{% /TT [da;is) - )\(a:(s),y,s)]2 ds:7>T, 62

z(T)==z, z(-) <0, z(r) = O} .
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Assuming the function [z,T] — qo(x,y,T) defined by (2.28), (6.2) is sufficiently
differentiable at [0, T], we can do a Taylor expansion,

qO(\/EZE, Y, Te*,;c,T)

940(0,y,T) 5 /1 /1 Pao(Auv/EeZe,y,T)
= D el +eZ Nd\d
6{13 \/g +€ I3 0 0 N 8332 (63)
19 2,y N5 o+ (1= NT
—[T—T;‘,I,T}/ an V2l et d=NT)

Then we can estimate the expectation of the correction term in by estimating
the expectation of each term on the RHS of .

We may obtain a formula similar to for go(z,y,T), x < 0, defined by .
If the minimization in is for fired 7 > T then there is a unique minimizing
trajectory z(s), T < s < 7, given by (2.37), where y(7) is chosen so that z(r) = 0.
The functions s — g1,4(s,T), g2,4(s,T), which were defined in (2.39), for
0 < s < T may be extended by the same formulas to s > 7. Similarly we may
extend the function s — g3 4(s,T) by using . Note that the functions s —
91,4(8,T), g3.4(s,T), s > T, are negative. We have then from that

g3.a(r, T)|

qo(z,y,T) = —min ===y + g1 a(7, )z + g2, 4 (7, T)] . (6.4)

When A(-) = 0 the formula (6.4) becomes

B . 7=T T 2 1 . 2. 2
qo(z,y,T) = —min —— [y+ = 7)] =37 [—Zmy—l—glirll{ax +y?/a}]. (6.5)
Hence we have that
2
qo(x,y,T):% if —y<z<0, (6.6)
I G

QO(x7yaT) - 2T if v < Y. (67)

For —y < x < 0 the minimizing 7 > T in (6.4)) is given by 7(z,y,T) = yT/(x + y).
Otherwise the minimum is obtained by letting 7 — oco. The function [z,T] —

qo(z,y,T) defined by , (6.7) is a C! solution to the HJ equation ([2.29) in the
region {[z,T] : < 0,7 > 0}. However the second derivative 8?qo(z,y, T)/0x? is

discontinuous across the boundary {[z,T] : x = —y,T > 0}. The characteristics
which yield the function are the same as in the situation x > 0 studied in §4,
and are given by z(7,s) = (s — 7)y/7, s > 0. Then we have

1" )
wie.n.T) =5 [ prsfas=2 [

T

T, 2
2

%ds:%, z=z(r,T).  (6.8)
This set of characteristics covers the region {[x,T] : © > —y, T > 0} without
intersecting, but all characteristics converge to the point [—y, 0]. The characteristics
which yield the function (6.7 are given by z(\,s) = A, A < —y, s > 0. In that case
1 T 1 T A — 2 _\2

/ p()\,s)zds:f/ (G4l ) P /) o (6.9)

T) ==
QO(waya ) 9 2 52 oT

where © = x(\,T). This set of characteristics covers the region {[z,T] : z <
—y, T > 0}, also without intersecting.

We shall show that the function [x,T] — qo(x,y,T) defined by ,
is differentiable for [z,T] in a neighborhood of the initial line {[0,T] : T > 0},

oo o0
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by proving it may be obtained via the method of characteristics. To do this we
extend the domain Dy 7, defined just prior to ([£.45). It follows from that the
characteristics s — x(7,s) do not meet if 0 < s < 7 < Ty. Hence we may extend
the domain D, 7, of §4 to include the set {[z,T]:0 < T < Ty, z(Tp,T) < = < 0},
and similarly extend the region U, 7;,. The inequality for the characteristic
s = x(1,8), T < s < Ty, continues to hold for 0 < s < 7. More precisely, we have

from (£40), (E4T) that

01(8 _ T)[[y + 92,7-A(T’ T)] + (7_ _ S)}
< x(r,s) (6.10)
[y + go2,4(7,7)]

<ci(s—71)] +eo(r—3s)], 0<s<7<Tp,

o
where C, c1,c2 depend only on Ty and supg<,<7, A(t). Hence there is a constant
A3 > 0, depending only on T and supg<;<7, A(t), such that
if0<T <3Tp/4 and — As[y + g2,4(Tp,To)] < z <0,
then [z,T] € Dy 1, -

We extend the results of Proposition to include [z, T] in the region (6.11)).

Lemma 6.1. The results of Proposition with qo(x,y,T) defined by (4.54)),
continue to hold in the extended region Dy r1,. Also 7 = 7(x,y,T) in (4.54) is the

unique minimizer in the variational problems (6.2)), (6.4) for [x,T] with © < 0,
0< T <Ty/2, in the following regions:
(a) —Aly+g2.4(T, 7)) <z <0 if 4/Aoy/3 > T, otherwise
(b) —Aly + g2.4(T, T))?/T? < & < 0, where A > 0 is chosen sufficiently small
depending only on Ty and supg<,<r, A(t)-

Therefore if [x,T)] is in one of the regions (a), (b), the functions (6.4) and (4.54))

are identical.

(6.11)

Proof. All constants in the following can be chosen to depend only on T, and
supg<;<7, A(t). It is clear from (6.10) that the characteristics s — z(7,s), 0 < s <
7, satisfy x(7,s) < 0, and from @ that D,x(7,s) < 0. The differentiability
properties of the function [x,T] — qo(x,y,T) and the fact that it is a solution to
the HJ equation follow as in the proof of Proposition We also have from

(59 that

o T) < 5 [ < (o)) ds, (6.12)

for any path s — z(s), T < s < 7 < Ty, in Dy 1, with z(T) =z < 0, z(r) = 0.
Equality holds in if () is the characteristic.

Let Fo(z,y,7,T) be the function on the RHS of (6.4). We wish to find [z,T] €
Dy, 1, with z < 0 such that go, defined by , satisfying

— T) = inf F T).
(Jo(%ya ) ;ET O(xvy’T’ )

To do this we first observe from (4.5) that since A(-) is non-negative, the func-
tion s — g2.4(s,T), s > 0, is increasing and hence non-negative. We also have
from (2.8) that the function s — o%(s,T), s > T, is negative and decreasing

with lims,70%(s,T) = 0. Letting lims_,o 04(s,7) = 0%(c0,T), one sees in
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the case A(-) = 0 that 0%(c0,T) = —oo. It is however possible for some non-
negative A(-) that 0%(co,7) > —oo. We have then from (4.4) that the func-
tion s — g1.4(s,T), s > T, is increasing with lims ,7 g1 4(s,T) = —oo, and

91,4(8,T) < =1/mq a(T), s > T. It follows that lims_, o0 g1,4(s,T) = g1,4(00,T) <
—1/mq o(T).

Similarly to (4.66) we consider [z,T] € D, 1, which satisfies (6.11)), and define
qo (.’,E, Y, T) by
. g3,.a(r,T)|

A T —
Go(z,y,T) min 5

Using the identity (4.12]) we see that the minimizing 7 for the RHS of (6.13) is
given by

[y + gr,a(r. T)a]” . (6.13)

mya(T)z " Y

7,T) = , <z <0. 6.14
95,4 T) o3 (T)y g1,4(00,T) (6.14)
Substituting (6.14)) into the RHS of (6.13)) then yields the formula
. 2mq a(T)zy
Jo(z,y, T) = ————, (6.15)
oA(T)

which is the same as (4.69). We should however note that the RHS of (6.15)) is
negative in this case. Following the argument in the proof of Proposition 4.2} we
see that if 7 > T lies outside the region

8my,a(T)z <
o4 (T)y + g2,4(T, T))
Iy satisfies the inequality
Fo(ll',y,T,T) > 7560(x7y+92,A(T3T)7T)/2' (617)

In concluding we have used the fact that the function s — g2 4(s,T), s > T,
is increasing.

We require « < 0 to be sufficiently close to 0 so that if 7 > T with 0 < T < T/2
lies in the region then 7 < 3T/2 < 3T,/4. This is the case if x > —A4fy +
92,4(T,T)], where Ay > 0 is constant. Next we determine how small |z| needs
to be so that the minimizing paths s — T'(7,s,T,2) = a(r,s,T)x + b(r,s,T),
T < s <7, for fixed 7 defined by lie in Dy 1,. To see this first note that the
functions s — a(r,s,T), b(r,s,T),; T < s < T, are non-negative. Hence if z < 0
is sufficiently small one may have I'(7, s, T, x) > 0 for some s € (T, 7). We see from

(4.5), (4.6), (4.65) there are constants C1,c1,Cy > 0 such that
T 1T

Ci(r — s)T —7 <I(r,s,T,x)<(r— 8)[7 — + Co(s = T)], (6.18)

for T < s < 7 < Tp. Let Ag be the constant defined just after (4.44), whence if

T < 4y/Aoy/3 then D, 1, contains the domain {[z,s]: =z >0, 0 < s < 3T/2}. We

assume that 7 > T lies in the region (6.16) and that —A4fy + g2,4(T,T)] < z < 0,

whence 7 < 3T;/4. Choosing A4 to also satisfy the inequality C1 A4 < Aj, we see

from (6.11)), (6.18) that if T" < 44/Agy/3 then the path s — (7,5, T,2), T < s < T,
lies in Dy 7. In the case T > 44/Agy/3 we observe that if 7 > T satisfies (6.10)
and —Ayfy + g2,4(T,T)] < © < 0 then 7 — T satisfies an inequality

Ong’
roT<— 232
- [y + g?,A(T7 T)]

my,a(T)x

(6.16)

where C3 is constant. (6.19)
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Hence the RHS of (6.18]) is negative provided x < 0 satisfies the inequality

|.%" < a [y + gQ,A(T7 T)]2

- CyC3T7
We conclude in this case that the path s — I'(1,s,T,x), T < s < 7, lies in Dy 1,
provided [z, T satisfies (6.20).

Finally we need to show that if 7 = 7(x,y,T), then Fy(z,y,7,T) < —5¢o(x,y +
92,4(T,T),T)/2, which is the same as qo(x,y,T) > 5Go(x,y + g2.4(T,T),T)/2. We
first observe from and that since z(7,s) < 0, 0 < s < 7, we have
ov(r,8)/0s <0 for T < s <7 and v(r,7) = 0. We conclude that

QO(x7y7T) S Cj()(l'7y +92,A(T7 T)zT)a [J?,T] € Dy,To , T < 0. (621)

We assume now that [z, T] lies in the domain {[z,T] : 0 < T < Tp/2,—Aly +
92,4(T,T)] < x < 0}, where A satisfies 0 < A < As. It follows from (6.11) that
[,T] € Dy 1,. Letting x = x(7,T) we have from (6.10) that

T|z| AT

(6.20)

T-—T< .
T alytgealnm) T a

Choosing A < ¢1/3 we see from (6.22)) that 7 — T < AT/[c; — A] < T/2. Observe
from (4.30) that

(6.22)

| < YT g2a(T.7)

" Y+ 924(T.T)

if T < 4y/Agy/3, where Cy is constant. It follows then from (4.71), (6.10), (6.23),

upon using a lower bound for the integral of the RHS of (4.71]) on the interval
T < s < 7 similar to the one in , that

qo(z,y,T) > [14+ CsA|Go(z,y + 92,4(T,T),T), (6.24)

where C5 is constant. We assume that 7' > 44/A¢y/3 and that [z, T] satisfies the
inequality

<1+ C4A (6.23)

Aly + g2.4(T, T))?
0<T<Ty/2, — T2 <x<0. (6.25)
Then inequality (6.22)) continues to hold, whence we see from (4.30)) and (6.25]) that
(6.23]) also holds. Similarly to before we see that (6.24]) holds in this case also. Now

we choose A so that C5A < 1. O
Observe from (3.48) that we expect

aqa (07 Y, T) _ GQO (Oa Y, T) _ 632% (Oa Y, T) /3610 (07 Y, T)
ox ox B Ox? Ox
This evidently suggests that the LHS of is O(g) ase — 0. Furthermore, we see
from that dqo(0,y,T)/0x ~ y/T, and from that 0%qo(0,y,T)/0x? ~
T/y if y > T?. Hence we expect the LHS of to be bounded by a constant

times T?%/y? + o(e).

+o(e) ase—0. (6.26)

Proposition 6.2. Assume the function A : [0,00) — R is continuous non-negative,

and let qc(x,y,T) be defined by [2.18), [2.21)), and qo(z,y,T) by [2.28), (4.2).

Then for each Ty > 0 there are constants Cy,Ca, depending only on Ty and
supg<<T, A(t), such that

|8q5(07yaT) o aQO(OvyaT)} 028 T2 " i]

ox ox Ty y yg )

0<T<T,, (6.27)
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provided 0 < T < Ty, y > C1T?, T < y2.

Proof. All constants in the following can be chosen to depend only on T and
Supg<;<7, A(t). We define stopping times for the martingale s — Z(s), s < T, of
(2.16)). For 6 > 0 let 75 be given by

oAl
ma,A(T)
It is easy to see that 75 > 0 with probability 1. Since 77, r, deﬁned in the statement
of Lemma [2.4] n, is also a stopping time for the martlngale 7 it follows that

T =Tes0T = 7'5 \/TE etV (T'/2) is a stopping time. On taklng expectatlons in
we have from of Lemma - that for any § > 0,

q€<x7y7T) > [1 _P< e*wT <T/2) _P(TE*ZL’T <T5)} qO(‘T yaT)
- E [qO(\[Za?yv ewT) szT >maX{T57T/2}]

Since the function s — 0%(s)/mi, 4(s), s > 0, is increasing, we see from
that |Z.| < o3 (T)|Z(7} , 7)|/m1,.a(T). Hence if § is small enough we may use the
Taylor expansion to estimate the second expectation on the RHS of . It
follows from Proposition and Lemma [6.1] that it is sufficient for § to lie in the
interval

nginf{s:0<s<T,| Z(s')|<5fors<s’<T}. (6.28)

(6.29)

VE8 < Amin {% 1} [y + g2.4(T/2,T/2)] , (6.30)

where A depends only on Tj.
We show that

hmP(sxT<T/2)—0 hmP(ng<75):0. (6.31)

To prove the first limit in we use the inequality 0q.(z,y,T)/0x > 0, whence it
follows that X7 (s) < Xc(s), 0 < s < T, where X.(-) is defined by (2.16). This was
already observed just prior to Lemma We have from that one can choose
a constant v with 0 < v < 1/2, such that yejass(s) < 22 if0 < T—s < Tvz/(y+T?),
provided z < y + T2 0 < T < Tp. The first limit in follows if we can show
that
) ) 2my,a(T/2)x

alcl—%P(\@T—Tux/(lyrfTZ)<s<TZ(s) ~ 0% (T/2) ) =0, (6-32)
since P (7} E : T < T —Tvz/(y+T?)) is smaller than the probability in (6.32)). The
limit in follows from the reflection principle. Similarly to we have
that the probabﬂity in is bounded in terms of a probability for the standard
normal variable Y by

cvTlz
(y+1°)°
with ¢ > 0 a constant. Since the probability is bounded by a constant times
v the limit - ) follows. To prove the second limit in we argue similarly,
using the inequality P(7), r < 75) < P(77,r < T — Tyx/( + T2)) + P(15 >
T —Tvz/(y + T?)). Using the reflection principle again we see that

P (Y| < 2z/veo(z)) , where o(z)* > (6.33)

lim P (16 >T —Tvz/(y+T?)) = 0.
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We estimate the contribution of the first term in the Taylor expansion (6.3) to the
expectation in (6.29). To do this we use the inequality

o4(T) o
|Z Comy A(T)Z(TE””T)| =G [ - E,z,T] ‘Z(Ts,z,T)| ) (6.34)
where C1 is a constant. Using that
T N2
sozep - [ A gy s, (6.35)
s o (s)

is a martingale, we have from (6.35) and the optional stopping theorem that

E[Z(T:,I,T)2a 5:17T>T/2] Q{E[T_ 6$T]+TP( T<T/2)}
3C, -
< BT —7er],
where Cy is constant. To bound the RHS of (6.36) we use the lower bound (5.1))
of Proposition Recalling the definition of 7¢ jinear,z, 7 after (5.14), we have that
p.33]

E[T — T;,w’T] < E[T — T¢ linear,z, 7). We obtain then from (5.33) an upper bound

(6.36)

for £ [T — TE*VLTL provided y > C3T? where C3 is constant. We may also obtain
an inequality E [(T'— 77, 7)?] < ve(x), where v.(-) is the solution to a boundary
value problem. Thus
edv.(z) _y dv(a)
2 da? CsT dx
where u.(-) is the solution to (5.34). Evidently we have that

=2u.(z), >0, v:(0)=0, (6.37)

CsT\3 x
velw) = (7o) ’ale + g7l (6.38)
It follows from (6.34]), upon using the Schwarz inequality and (6.36))-(6.38)), that
o4 (T) T
lim su E[Z = I g it > T Q}SCs—, 6.39
\/> x~>0p | my A(T) ( e, 7T)| ez, T / 4 y2 ( )

where Cy is a constant.
Applying the optional sampling theorem to the martingale s — Z(s), 0 < s < T,
we have that

2
T
A B (2002 )7 e > max(T/2,751)
m1.4(T) (6.40)
N .
oa(T)
A B Z(T/2) ;72 < T2+ 6P (72 pq < 75) -
= ml’A(T) [| ( / )| T / ] ( T Té)
To bound the first term on the RHS of (6.40) we observe that
2
o (T)
———FI|Z(T/2 <T/2
Ve AL BT )i < T/ o)

< CsE [lXE(T/Z) - -Tclass(T/Q)'; Te linear,z, T < T/Q] ,

where X (-) is given by (5.16)) and Cj is a constant. From (5.17)) and the Chebyshev
inequality we have, using the inequality y > C3T?, that

Ceyve (QL’)

|Iclass(T/2)| |P (Ts,linear,z,T < T/2) S T2 )

(6.42)
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where Cpg is a constant. Letting X*(s), s < T, be the diffusion with drift p.(z,y,T) =
y/C5T defined just after (5.33)), we have that

E [XE(T/2)7 Te linear,z, T < T/2] S E [X: (T/2)7 T:,linear,:r,T < T/Q} . (643)
Let [z,t] = uc(z,t), x > 0, t > 0, be the solution to the PDE
Oue(x,t) Oue(x,t) € 0uc(x,t)
= — = 0,t>0 6.44
ot I +2 ox2 =010, ( )
with boundary and initial conditions
us(0,6) =0, t >0, wue(z,0)=2x, ©>0. (6.45)
Then one has
’U‘E(xv T—- t) =E [X: (t)7 7-s*,linear,:c,T < t:l ’ < T7 when Hn= % (646)
5
The solution to (6.44)), (6.45) is
ue(x,t) = / Ge p(z, 2’ t)z’ da’, (6.47)
0
where the Green’s function G p has the formula
1 (x —2a' — ut 2xa’
G. plz, ' t) = exp[— L L T 9q YN (648
,D( ) \/th p [ ] { [ ct ] } ( )
Using the inequality 1 — e™* < z, z > 0, we have from (6.47)), (6.48) that
lim sup 1u (x,t) < #exp[—ﬁ] /OO emHe' g2 dy!
w0 T T \2m(et)3/2 2e " Jo (6.49)
_ 4 (i)3/2 < [_“it] '
2T ,U,Qt 2e

We conclude from (6.38) and (6.42)-(6.49)), that the first term on the RHS of (6.40)
is bounded as

Ve lim sup 1 m
a0 xmi a(T)
where C7 is a constant.
To find a bound for the second term on the RHS of we use the inequality
P( * T<7'5) <P( T<1/T)—|—P(1/T<T* 1 < Ts), where 1/2 < v < 1and
v is a suitably chosen constant. We may then bound /6P (7 Tor < vT) from the
inequalities obtained in the previous paragraph. Assuming y > T2 it follows from
that we may take /2§ = Ay, whence limsup,_,,x~1\/e6 P (Te*,r,T <vT) <
CgeT [y? for some constant Cg. We estimate the second probability as

C7€T
2

Bl Z(T/2)); 7% 7 < T/2) < T <yt (6.50)

P (Z/T < T:,QC,T < 7'5)
§ P (T5 > VTv Te linear,z,T' < 7—5)
< P( sup | Xe(8) = Telass(s)] > 68\@5) ;

Te linear,z,7V(VT)<s<T
where X (-), Telass(-) are given in , , and cg > 0 is a constant. We
choose v so that —cgAy/2 < Teass(s) < x for vT < s < T. Hence if vT < s <
T, 0 <z < cgAy and X (8) — Zclass(8) < —cgAy then X (s) < 0. Since X.(s) > 0
for 7. tinear,s,r < 8 < T it follows that if s satisfies 7 jinear,e,r V (VT) < s < T
and | Xc(s) — Zalass(s)| > cgAy, then X (s) > cgsAy/2. We see therefore, using the

(6.51)
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inequality X7 (-) > X.(), that the probability on the RHS of (6.51)) is bounded
above by

we(x) = P( sup XZ(s) > 08Ay/2) . (6.52)

T2 linear,z,7 <8<T
The function w; : [0, csAy/2] — [0, 1] is the solution to the boundary value problem,
e dPw.(z)  y dw(x)

_c -0
2 dx? CsT  dx ’ (6.53)
0<z<cgAy/2, w:(0) =0, we(csAy/2) =1,
which has solution
Ay?
we(x) = {eX CS y —1}. (6.54)
Taking limits in (6.54) we see that
1 2Ay CQET
o ) = 20 o3 1) < 059

for some constant Cy, provided £T' < y2.
We conclude now a bound on the contribution of the first term in the Taylor

expansion (6.3)) to the RHS of (6.29). Using the formula (4.23)) and the inequality
y > C3T?, we have that

1 dqo(0 C
lim sup — MﬂE[ DV (T2) < 5, )] < 2205 (6.56)
z—0 T 7’ )
where § = Ay and Cqg is a constant. To bound the contribution of the sec-

ond term in the Taylor expansion we use to obtain the inequality
1970 ( ,y, )/0x%| < CuT/y, prov1ded lz] < Ay and y > C3T?. We have then

from - ) that

ZE’ )
lim sup ~ E‘E ZZ///\d/\d a0VEZew 1) 1 7y < |

z—0 Ox?
C 1
< 1e hrnsup —E[Z275V (T)2) <7, 7] (6.57)
z—0
< ClgETQ 7
ST

where C1s is a constant. To bound the contribution of the final term in the Taylor
expansion (6.3) we use the fact that dgo(0,y,t)/0t = 0, whence

aQO( z,Y, ) /1 62q0(pfl‘,y,t)
at ), T etar (6.58)
where we have from ([2.29) that
?qo(a’, y, t 1 0qo(z',y,t
0( : ) - _ [A(t) + . } 0( a )
otox o4 (t) Ox (6.59)
(‘3q0(l‘ yat) 82q0(l‘/,y,t) -
— (Mg + FE R | S
It follows from (4.26]) and (4.38]) there are constants C1,Ci2 such that
1 .0 , C
[[A(t) + =] ‘10 @’ y | < uy ’ (6.60)

o5 (t)
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’ 2 /
aqo(l’ 5 Y, t)] 0 QO('I Y, t)
oz’ ox'?

provided 0 < 2’ < Ay, T/2 <t < T, and y > C3T?. Hence we may estimate the
expectation of the final term in the Taylor expansion by combining our estimate on

the expectation of the RHS of (6.34)) with (6.58)-(6.61). We obtain an inequality
/ d)\aqo fZE7y7 $T+(1_)\)T)

| [)‘(xl?yvt) + ‘ < C'12 ) (661)

. 1
llmsup;)E{( T aT

z—0 8t ’
s V(T/2) < 7ur| (6.62)
< Crse for 0 = Ay, y > CsT?.

It follows then from (6.56)), (6.57), and (6.62)) that the LHS of (6.27)) is bounded by

Ch4¢/y provided y > C3T? and T < y>.
This bound on the LHS of (6.27) may be improved by noting a cancellation in
the Taylor expansion (6.3]). To see this we use the identity

oal) _ oalr) _ / BT i (G (6.63)
my A(T) mya(t)  J; o4 (t) ma,a(t)
Hence using , , and (6.63) we have that the sum of the first and third

terms in the Taylor expansion 1.} may be written as

9q90(0,y,T) 5(10(\fZavy7 t)
Gz - [ S

_ GQQ(O,y, )\/g UA( \/’/ dt

o ma,a(T)

)
()
[0 O00p.T) () /O dMW}zm (6.64)

my, (%) Ox my a(T)

T 1
+VEZ [t [ du[MuvEZep.)
T 0
9q0(1/EZz, y, t)} qo(pveZe, y,t)
or’ ox'? ’

where 7 =77 1.
To bound the expectation of the first term on the RHS of (6.64]) we observe that

+

g
tim sup Ly/z-2a0)_ SIBLZ( ) 75V (T/2) < 72l
e—m0 x mya(T) (6.65)

1
< limsup [uc (2, T/2) + Cisy {w:(x) + P (7 jinearer < ¥T)}]
z—0

where we assume y > C372,eT < y?,1/e6 = Ay. Then from and (| -
we see that limsup, o2 [uc (2, T/2) + ywe(z)] < C16(eT/y?)?. Instead of using

the bound P (T:,linear,z,T < I/T) < we(x)/(1 —v)?T? as in (6.42)), we use the iden-
tity P (Te*,linear,x,T < UT) = uc(x, (1 — v)T), where [z,t] = us(z,t), z,t > 0, is
the solution to the PDE (6.44)) with boundary and initial conditions wu.(0,t) = 0,
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ue(2.0) = 1. Similarly to (6.49)) we have now that

lim sup 1ug(ac,t) < #exp[—u—%] /OO e H' ey da!
ot - Vet =0 (6.66)
2 € \1/2 ut
- th(ﬁ) [_75]

It follows from that ylimsup, o2 " P(7} jpearwr < ¥T) < Cir(eT/y?)?.
We conclude from that the limsup as # — 0 of 27! times the expectation of
the first term on the RHS of is bounded by C1e*T /y3.

Using and arguing as in the previous paragraph, we see from ,
and the Schwarz inequality that the limsup as z — 0 of 2! times the expectation
of the third term on the RHS of ([6.64)) is bounded by C19eT?/y*. The expectation
of the second term on the RHS o is bounded by

CV2O\E 56]0 (07 Y, T)
T or

E [(T - :,z,T)Q‘Z(TE*,z,T”; 75 V (T/2) < Ts*,z,T}

0%qo(z’,y,t
 CoreT sup ca LCAVIDN (6.67)
0<z’' <\/26,T/2<t<T Ox

X E(T = 120 ) 2(12w )5 75V (T/2) < 72 1)

We bound the first expectation in (6.67)) by using the Schwarz inequality and the
inequality E [(T — 72, )] < E {(T - 7;7linear7w7T)4}. This latter expectation can

be estimated by considering the function
Uea(z) =F [exp {—a(T — Te*,linear,w,T)}] , x,a>0. (6.68)
Then u o(-) is the solution to a boundary value problem
e d®uc o () due ()
2 a2 M a
with u = y/C5T. Evidently we have that

Ue,o(T) = exp [—% {\/,u2 + 2ea — NH . (6.70)

From ([6.70) we conclude that

= o(x), >0, uco(0)=1, (6.69)

8 4
B [(T _ T;,linearﬂ;,T)ﬂ — (%) U,E,a(ﬂj) =0

_ 15e%z 15e%2? | Gea® | at
A T
It follows from (6.36)), that the limsup of 2! times the first expectation in
as  — 0 is bounded by Cape?T/y3.
We also use the Schwarz inequality to bound the second expectation in
by using the fact that for @ € R the function

(6.71)

2 T

a my a(s')?
5 — exp [aZ(s)—7 st’} , 0<s<T, (6.72)
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is also a martingale. On differentiating (6.72]) twice with respect to a and setting
a = 0 we see that (6.35) is a martingale. On differentiating four times we have that

s — Z(s)4 — 62(s)2 s m“‘(( ds’ +3 / m“‘ ds’)2, (6.73)

for 0 < s < T, is a martingale. Hence
E [Z(Te*,x,T)4 ; Te*,x T > T/2]

< Cos{ BT = 72, P+ L EIZ(T/2 720 < T/2)}

We have already seen that the first expectation on the RHS of (6.74]) is bounded
by a constant times v.(z) of (6.38]). To bound the second expectation we proceed
in a similar way to how we bounded the expectation in (6.41). We have that

o4 (T)
ml,A(T)z [ (T/Q) a x, T < T/Q] (675)

< Cuklb [[XE(T/2) - xclass(T/Q)]Z; Te linear,z,T < T/2] s

and the expectation on the RHS of can be bounded using solutions to the
PDE ([6.44). Thus we have that the lim sup of =1 times the RHS of asz — 0
is bounded by Cy4e2T?/y3, whence the limsup of 7! times the RHS of as
x — 0 is bounded by Cas¢/Ty3. We conclude that the limsup of 2~! times the
second expectation in as ¥ — 0 is bounded by Coe?T? /y* < C972T/y3. O

(6.74)
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