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INEQUALITIES FOR FRACTIONAL DERIVATIVES VIA THE

MARCHAUD DERIVATIVE

JEFFREY R. L. WEBB

Abstract. We study the Marchaud fractional derivative. We pay special

attention to when the Marchaud fractional derivative is equal to the well-
known Caputo or Riemann-Liouville fractional derivative. Conditions when

this equality held were given in the interesting paper of Vainikko (2016). Sev-

eral recent papers have used results from that paper in discussing inequalities
that are useful in the study of stability. We have found some gaps in the

proofs in the Vainikko paper but we give a proof of the most useful parts; in

fact we also prove that equality holds under a more general condition. We use
this equality to prove various inequalities for fractional derivatives, including

a maximum principle, often under weaker conditions than previously given.

In particular we prove strong versions of inequalities for differentiable convex
functions that are useful in studying stability by Lyapunov’s method.

1. Introduction

The study of fractional integrals and derivatives is an active research area. For
fractional differential equations (FDEs) the two most commonly used and most
applicable derivatives are the closely related Riemann-Liouville and Caputo ones.
The Marchaud derivative is defined quite differently. It has the advantage that
its definition does not involve any differentiation, but has the disadvantage that it
requires a Hölder continuity condition in order to be well defined.

An important case arises when studying Caputo FDEs of the form Dα
∗ u(t) =

f(t, u(t)) for 0 < α < 1 in the space C[0, T ] when f is continuous. (Precise
definitions are given later.) Then u and Dα

∗ u are continuous which implies that
u has the form u(t) = ctα + v(t) where v belongs to a Hölder space of order α.
This case was treated in the interesting paper of Vainikko [34] and he claimed some
equivalences including the assertion that the Caputo and Marchaud derivatives are
equal for t > 0. Unfortunately there are some gaps in the proofs, discussed fully
later in our paper, see Remark 4.4 (b). One of our main results, Theorem 4.2, proves
that the Caputo and Marchaud derivatives are equal for t > 0, under conditions
more general than mentioned above, which validates the part of the claims of [34]
that we consider to be the most important, see Theorem 4.3. Since a good number
of papers have used the result [34, Theorem 5.2] in their studies, for example Tuan
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and Trinh [33], Wu [41] and Wu, Fan, Tang, Shen [42], it is important to have a
fully proved version of the results used.

We prove various inequalities for the Marchaud derivative whose special cases
for the Caputo derivative prove such inequalities under weaker conditions than in
the previous literature. In Section 5 we prove some inequalities similar to ones
that were claimed in papers [12, 14, 28] but without proper proofs. We prove
under weaker conditions a maximum principle as studied in Al-Refai [3] and Al-
Refai and Luchko [5]. We then prove an inequality for a convex function that is
useful in discussing Lyapunov stability of equations, as for example Tuan-Trinh [33].
Motivated by a paper of Fewster-Young [18] we prove a stronger version than is
usually given, which proves the result of [18, Lemma 6] with a weaker condition.
Special cases prove results that were previously given with stronger hypotheses.

2. Preliminaries

2.1. Some function spaces. In this paper all functions are assumed to be measur-
able, and all integrals are Lebesgue integrals, but possibly improper. We consider
functions u that are defined at least almost everywhere (a.e.) on a given finite
interval. For simplicity of expressions we consider an interval [0, T ], which, by a
simple change of variable, is equivalent to any finite interval.
Lp = Lp[0, T ] (1 ≤ p < ∞) denotes the usual space of functions whose p-th

power is Lebesgue integrable; endowed with the norm ∥u∥p =
(∫ T

0
|u(s)|p ds

)1/p

it is a Banach space. L∞ denotes the essentially bounded functions with norm
∥u∥∞ = esssupt∈[0,T ] |u(t)|.

The space of functions that are continuous on [0, T ] is denoted by C[0, T ] or
often simply C and is a Banach space when endowed with the supremum norm
∥u∥∞ := maxt∈[0,T ] |u(t)|. C1 = C1[0, T ] denotes the continuously differentiable
functions u, the derivative u′ ∈ C[0, T ].

We will also use the space of absolutely continuous functions which is denoted
AC = AC[0, T ].

If u is a continuous function and u′ exists a.e. it does not follow that u(t)−u(0) =∫ t

0
u′(s) ds, as shown, for example, by the well-known Lebesgue’s singular function

φ (also known as the Cantor-Vitali function, or Devil’s staircase) where φ(0) = 0,
φ(1) = 1 and φ′ = 0 a.e.. In fact, we have the following equivalence.

u ∈ AC[0, T ] if and only if

u′(t) exists a.e., u′ ∈ L1[0, T ] and

u(t)− u(0) =

∫ t

0

u′(s) ds for all t ∈ [0, T ].

(2.1)

For η ≥ −1, we define a space of functions that are continuous except at 0, and
which allows a pointwise integrable singularity at 0, For η > −1, the space Cη is
defined by

Cη[0, T ] := {u : [0, T ] → R : u ∈ L1[0, T ] ∩ C(0, T ] and lim
t→0+

t−ηu(t) exists}. (2.2)

When endowed with the norm ∥u∥η = supt∈(0,T ] |t−ηu(t)|, Cη is a Banach space.
The spaces with a singularity at zero are C−η with η > 0. Functions u in C−η with
0 < η < 1 are continuous on (0, T ] and u(t) = tηw(t), t > 0, for some w ∈ C[0, T ].
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C−η is an appropriate class for the study of Riemann-Liouville fractional integrals
and derivatives, see for example [7].

A note of caution: the space we denote C−η is often denoted by others as Cη. We
use C−η since then we have the natural mapping property for fractional integrals,
Iα : C−η → Cα−η.

In this paper Hölder spaces play a prominent role. Fractional integral have good
properties in these spaces. The monograph by Samko, Kilbas and Marichev [32,
§3.1,3.2,13.4] contains important facts and proofs, many of which were first proved
by Hardy and Littlewood [21].

Definition 2.1. For an interval [0, T ], the Hölder space denoted Hλ = Hλ[0, T ],
0 < λ ≤ 1, (also the notation C0,λ is often used) consists of all functions u defined
on [0, T ] for which there is a positive real constant Cu, such that

|u(t)− u(s)| ≤ Cu|t− s|λ, for all t, s ∈ [0, T ]. (2.3)

The subspace Hλ
⋆ [0, T ] (there are other notations in the literature) is defined by

Hλ
⋆ :=

{
u ∈ Hλ : sup

0≤s<t≤T,t−s<h

|u(t)− u(s)|
|t− s|λ

→ 0 as h→ 0
}
. (2.4)

That is, u ∈ Hλ
⋆ [0, T ] if for 0 ≤ t − h < t ≤ T , |u(t)−u(t−h)|

hλ → 0 when h → 0,

uniformly in t. It is known, for example [32, Remark 1.1], that Hλ
⋆ is a closed

subspace of Hλ and the closure of C1 in Hλ is the space Hλ
⋆ . Proofs can be found

in [35, Lemma 2.1] and [35, Lemma 2.2]. It is clear that u ∈ Hλ implies that
u ∈ Hµ

⋆ for every 0 < µ < λ.
H1 is the space of Lipschitz continuous functions, H0 is the class of bounded

functions and H0
⋆ is the space C[0, T ]. Hλ

0 denotes the space {u ∈ Hλ : u(0) = 0}.

Example 2.2. For c > 0 and t ∈ [0, T ] let u(t) = (t + c)λ for 0 < λ < 1. Then
u ∈ Hλ

⋆ [0, T ]. For c = 0, u ∈ Hλ
0 [0, T ] but u /∈ Hλ

⋆ [0, T ].

Proof. From the inequality xλ − yλ ≤ (x − y)λ for 0 ≤ y ≤ x, we have u(t) ∈
Hλ[0, T ]. Moreover, when c > 0, by L’Hôpital’s rule

lim
h→0

(t+ c)λ − (t+ c− h)λ

hλ
= lim

h→0

h1−λ

(t+ c− h)1−λ
= 0.

For the case c = 0 let s = 0 and t = h. Then we have |u(t)−u(s)|/(t−s)λ = u(h)
hλ = 1

so the limit as h→ 0+ is not 0. □

A much deeper result is the following.

Example 2.3. If 0 < a < 1, b > 1 then the function

C(x) =

∞∑
k=1

ak cos(bkπx),

does not have a finite derivative at any point when ab ≥ 1. Further if ab > 1, and

so λ = log(1/a)
log(b) < 1, then the above function belongs to Hλ but not to Hλ

⋆ .

The above examples was shown by Hardy [20, Theorems 1.31 and 1.33]. Note
that in this paper log is the natural logarithm (base e) often denoted ln.
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Remark 2.4. For b > 1 and λ ≤ 1 let Wλ(x) =
∑∞

n=0 b
−nλ cos(bnπx). Then W1 is

Hölder continuous of all orders α < 1 but is not Lipschitz continuous. In the paper
Ross, Samko and Love [31], the Weierstrass functionW (x) =W1(x)−W1(0), x > 0,
is shown to have continuous Riemann-Liouville fractional derivatives of every order
α < 1, but nowhere has the first order derivative.

Remark 2.5. There is no inclusion relationship between Hölder spaces and AC.
For example the Weierstrass function W is Hölder continuous but is not AC. Also
there are AC functions that are not Hölder continuous, for example,

f(x) =

{
1/ log x, if x ∈ (0, 1/2],

0 if x = 0,

is AC but is not Hölder continuous for any λ ∈ (0, 1).

We will use extensively the following weighted Hölder space; see [32, Definition
1.4] and [32, §3.2,13.4] for many properties of fractional integrals in such spaces.
For a weight ρ(t) = tβ we write

Hλ,β [0, T ] := {u ∈ C(0, T ] : u(t)tβ ∈ Hλ[0, T ]}. (2.5)

We will usually consider the case 0 ≤ β < 1 when Hλ,β [0, T ] ⊂ L1, then functions
have an integrable singularity at t = 0.

2.2. Riemann-Liouville fractional integral. In the study of fractional integrals
and fractional derivatives the Gamma and Beta functions occur naturally and fre-
quently. The Gamma function is, for p > 0, given by

Γ(p) :=

∫ ∞

0

sp−1 exp(−s) ds (2.6)

which is an improper Riemann integral but is well defined as a Lebesgue integral,
and is an extension of the factorial function: Γ(n + 1) = n! for n ∈ N. The Beta
function is defined by

B(p, q) :=

∫ 1

0

(1− s)p−1sq−1 ds (2.7)

which is a well defined Lebesgue integral for p > 0, q > 0. It is well known, and

proved in calculus texts, that B(p, q) = Γ(p)Γ(q)
Γ(p+q) .

The following simple lemma is classical, the proof follows simply by changing the
variable of integration from s to σ where s = σt. The result will be used several
times.

Lemma 2.6. Let p > 0, q > 0. Then we have∫ t

0

(t− s)p−1sq−1 ds = tp+q−1B(p, q). (2.8)

We always consider α ∈ (0, 1) in this paper.

Definition 2.7. The Riemann-Liouville (R-L) fractional integral of order α ∈ (0, 1)
of a function u ∈ L1[0, T ] is defined as an L1 function by

Iαu(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1u(s) ds.
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The integral Iαu is the convolution of the L1 functions h, u where h(t) =
tα−1/Γ(α), so, by the well known results on convolutions, Iαu is defined as an
L1 function, in particular Iαu(t) is defined and finite for a.e. t. Iαu(0) is defined to
be limt→0+ I

αu(t) if this limit exists. Iαu(0) is not necessarily defined for u ∈ L1,

for example if 0 < α < α+ ε < 1 and u(t) = t−α−ε then Iαu(t) = Γ(1−α−ε)
Γ(1−ε) t−ε for

t > 0 but the limit as t→ 0+ does not exist.
Interchanging the order of integration, using Fubini’s theorem, shows that these

fractional integral operators satisfy a semigroup property as follows:

Lemma 2.8 (Semigroup property). Let α, β > 0 and u ∈ L1[0, T ]. Then IαIβ(u) =
Iα+β(u) as L1 functions, in fact IαIβ(u)(t) = Iα+β(u)(t) for each t for which
Iα+β |u|(t) exists (finite), that is for a.e. t ∈ [0, T ]. If u is continuous, or if u ∈ L1

and α+ β ≥ 1, equality holds for all t ∈ [0, T ].

The result is given in [32, (2.21)] and in [16, Theorem 2.2]. A detailed proof is
given in [38, Lemma 3.4] where it is also shown that if u ∈ C−γ and α+β ≥ γ, this
again holds for all t ∈ [0, T ].

We recall the following properties of fractional integral that we shall need. The
mapping properties of fractional integro-differentiation within the framework of
Hölder spaces are mainly due to Hardy and Littlewood [21].

Proposition 2.9. Let 0 < α < 1.

(1) For 1 ≤ p ≤ ∞, Iα is a bounded operator from Lp into Lp.
(2) For 1/p < α < 1, the fractional integral operator Iα is bounded from Lp

into the Hölder space H
α−1/p
⋆ . Moreover, Iαu(t) → 0 as t → 0+, that is

Iαu(0) = 0.
(3) Iα : L∞ → Hα. If u ∈ C[0, T ] and u(0) = 0 then Iαu ∈ Hα

⋆ . Hence, for
u ∈ C[0, T ], Iαu(t) = u(0)tα/Γ(1 + α) + v(t) where v ∈ Hα

⋆ .
(4) Iα maps AC[0, T ] into AC[0, T ].
(5) For u ∈ C1[0, T ], Iαu ∈ C1[0, T ] if and only if u(0) = 0.
(6) Iα does not map C[0, T ] into AC[0, T ].

Proof. (1) The proof follows from Young’s convolution theorem. A more precise
result is given in [21, Theorem 4].

(2) This was proved by Hardy and Littlewood [21, Theorem 12]. The result is
also proved in [32, Theorem 3.6 and Corollary].

(3) The first part is straightforward, for example this is proved in [39, Theorem
4.5] and was previously given in [32, Corollary 2, page 56] in less detail and with
some misprints.

For the second part, it is necessary that u(0) = 0 since for a constant c, we have
Iαc = ctα/Γ(1 + α), Example 2.2 then shows that the result fails when u(0) ̸= 0.
The result was proved by Hardy-Littlewood [21, Theorem 15]. A nice proof is
given in the first part of Vainikko [34, Proposition 6.4] which uses the known fact
that Hα

⋆ is a closed subset of Hα. For the last assertion, given u ∈ C, write
u(t) = u(0) + (u(t)− u(0)) and use the fact that Iα is a linear operator.

(4) This is known, we give the easy proof. Since u ∈ AC, we have u(t) =
u(0) + Iu′, where u′ ∈ L1. Therefore Iαu(t) = u(0)tα/Γ(1 + α) + I(Iαu′)(t) for all
t by the semigroup property Lemma 2.8, and both terms on the right side are in
AC.

(5) As above u(t) = u(0)+Iu′ gives Iαu(t) = u(0)tα/Γ(1+α)+I(Iαu′)(t) where
now Iαu′ is continuous. Thus Iαu ∈ C1 if and only if u(0) = 0.
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(6) This important fact has often been overlooked in the literature and has led
to many mistaken claims. This was shown by Cichon-Salem [10, Counter-Example
1], and independently in [38, Addendum]. It follows simply from Remark 2.4. In
fact, let fW (x) = DαW (x), then fW is continuous and IαfW (x) = W (x) thus
IαfW /∈ AC since W is not differentiable at any point. □

Remark 2.10. The last result of part (3) is crucial in this paper.

2.3. Riemann-Liouville and Caputo fractional derivatives. Fractional deriva-
tives are defined as ‘inverses’ of the fractional integral. We write D for the usual
derivative operator, that is, Du = u′, with the usual one sided derivative at end-
points of an interval.

The Riemann-Liouville (R-L) fractional derivative of order α ∈ (0, 1) is defined
for functions that are more than integrable as follows.

Definition 2.11. For α ∈ (0, 1) the R-L fractional derivative Dαu of an integrable
function u is defined at a point t ∈ [0, T ] when I1−αu is differentiable at t (one
sided derivatives at 0 and T ) by

Dαu(t) := D I1−αu(t).

Note that I1−αu(t) must be defined on an interval (t−δ, t+δ) (when 0 < t < T ),
this requires u(s) to be defined for a.e. s ∈ [0, t+ δ) and we require u ∈ L1[0, t+ δ).

The condition I1−αu ∈ AC[0, T ] must be imposed if we want to relate solutions
of R-L fractional differential equations defined for a.e. t ∈ [0, T ] with solutions of a
Volterra integral equation. It is not enough to assume that I1−αu is differentiable
for a.e. t. This has been noted long ago in the monograph [32], see [32, Definition
2.4] and the related comments in [32, Notes to §2.6].

As in the books Diethelm [16, Definition 3.2] and Kilbas, Srivastava and Trujillo
[23, (2.4.1)], the Caputo fractional differential operator (or Caputo derivative) is
defined via the R-L derivative as follows.

Definition 2.12. The Caputo fractional derivative Dα
∗ u of order α ∈ (0, 1) is

defined when u(0) exists and Dα(u−u(0)) exists at a point t ∈ [0, T ] by Dα
∗ u(t) :=

Dα(u− u(0))(t).

The Caputo derivative is usually considered for continuous functions, then u(0)
does exist. If we want to relate Caputo fractional differential equations and integral
equations then it is necessary to suppose that I1−α(u−u(0)) ∈ AC[0, T ] then Dα

∗ (t)
is defined for a.e. t. If this AC condition is imposed, then for f ∈ Lp with p > 1/α
(for example f continuous) there is an equivalence between the fractional differential
equation and an integral equation.

u ∈ C[0, T ], I1−αu ∈ AC[0, T ], Dα
∗ u(t) = f(t), a.e. t ∈ [0, T ], u(0) = u0,

is equivalent to u ∈ C[0, T ] and u(t) = u0 + Iαf(t).
(2.9)

This general case is proved in [25, Lemma 4], the case when f is continuous is
well-known and can be found in Diethelm’s book [16, Lemma 6.2]. We will make
any necessary AC conditions explicit in this paper.

It is useful to note the following properties.

Lemma 2.13. (1) If u and Dαu are continuous on [0, T ] then I1−αu ∈ C1,
(I1−αu)(0) = 0, and moreover u(0) = 0.

(2) If Dα
∗ u is continuous on [0, T ] then u is continuous on [0, T ].



EJDE-2025/20 MARCHAUD FRACTIONAL DERIVATIVE 7

(3) If u ∈ C1[0, T ] then Dα
∗ u is continuous. The converse is false.

Proof. (1) By definition, Dαu(t) = D(I1−αu)(t) so Dαu is continuous requires
I1−αu ∈ C1. Let f(t) := Dαu(t) with f continuous. Then integrating gives
(I1−αu)(t)− (I1−αu)(0) = If(t), that is (I1−αu)(t) = If(t), using Proposition 2.9
(2). Applying the operator Iα and using the semigroup property gives Iu(t) =
I(Iαu)(t) for all t. Since u and Iαu are continuous this gives u(t) = Iαf(t) which
implies u(0) = 0.
(2) Dα

∗ u = f with f continuous gives I1−α(u− u(0) ∈ C1 and u(t) = u(0)+ Iαf(t)
where Iαf is continuous by Proposition 2.9 (3), so u is continuous.
(3) Let u ∈ C1. We haveDα

∗ u(t) = DI1−α(u(t)−u(0)) where I1−α(u(t)−u(0)) ∈ C1

by Proposition 2.9 (5). A simple counter-example for the converse is u(t) = tα, for
which we have I1−αu(t) = tΓ(1 + α) ∈ C1 but u /∈ C1. □

Remark 2.14. Part (1) means that studying the R-L fractional equation Dαu(t) =
f(t, u(t)) in the space C[0, T ] when f is continuous is equivalent to studying the
Caputo fractional equation Dα

∗ u(t) = f(t, u(t)) with u(0) = 0, so the Caputo case
is more general in this case. R-L fractional equations should be studied in a larger
space which allows singularities, such as C−η or L1.

There is another frequently used definition of Caputo derivative, which uses the
ordering I1−α(Du). To distinguish between the definitions we will refer to this as
the Caputo-C derivative.

Definition 2.15. For α ∈ (0, 1), if u is differentiable a.e. on [0, T ] and Du = u′ ∈
L1[0, T ] the Caputo-C fractional derivative, denoted Dα

Cu(t), is defined for a.e. t
by

Dα
Cu(t) := I1−αDu(t).

This defines Dα
Cu = I1−α(Du) as an L1 function.

Remark 2.16. This definition is not adequate. In order to prove any result about
a Caputo fractional equation with the definition Dα

C , it is not sufficient to suppose
that u′ ∈ L1 but it is necessary to have u ∈ AC. In fact there exist functions such
as, for example, Lebesgue’s singular function φ which is (Hölder) continuous but not
AC, φ(0) = 0, φ(1) = 1, and φ′(t) = 0 for a.e. t. Thus we would have Dα

Cφ(t) = 0,
which shows that nothing useful about u can be deduced from Dα

Cu(t) = f(t)
without the AC condition, since also Dα

C(u+ kφ) = f for all constants k.
When u ∈ AC, if u satisfies the equation Dα

Cu(t) = f(t) a.e., then u(t) =
u(0) + Iαf(t) for all t. However, the reverse is often claimed, namely that for
0 < α < 1 and f continuous

Dα
Cu(t) = f(t), for a.e. t, u(0) = u0, is equivalent to u(t) = u0 + Iαf(t), for all t.

However, ‘solution’ means different things on each side of the equation. Usually
solution of the integral equation is a function in C[0, T ], and it has never been shown
that u continuous and u(t) = u0 + Iαf(t) for f continuous gives u ∈ AC[0, T ] for
the very good reason that it is false in general, as shown above in Proposition 2.9
(6). A comprehensive discussion is given in [25]. A correct equivalence is given in
(2.9) above.

As shown in Diethelm [16, Theorem 3.1], also in [38, Proposition 4.4], for 0 <
α < 1 the two definitions Dα

∗ u and Dα
Cu coincide when u ∈ AC, so there is usually

no reason to consider Dα
Cu.
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To avoid errors, the definition Dα
Cu should not be used, except as an alternative

for AC functions.

2.4. The Marchaud fractional derivative. We recall here some definitions from
the monograph by Samko, Kilbas and Marichev [32, Section 13.1].

For 0 < α < 1, the Marchaud fractional derivative (MFD) is defined for a
‘sufficiently good’ function f defined on a finite interval [0, T ] by the formula

Dα
Mf(t) :=

f(t)

Γ(1− α)tα
+

α

Γ(1− α)

∫ t

0

f(t)− f(s)

(t− s)1+α
ds. (2.10)

The MFD is well defined for every t ∈ (0, T ] for functions f that are continuously
differentiable or more generally that satisfy a Hölder condition of order λ > α.

For more general functions, the definition is extended as follows in [32, page 226].
For ε > 0, the truncated fractional derivative is defined for t ∈ (0, T ] by

Dα
M,εf(t) =

f(t)

Γ(1− α)tα
+

α

Γ(1− α)
ψε(t), (2.11)

where

ψε(t) :=

{∫ t−ε

0
f(t)−f(s)
(t−s)1+α ds, t ≥ ε,

f(t)
∫ t−ε

0
1

(t−s)1+α ds, 0 ≤ t < ε.
(2.12)

The last integral can be evaluated but it is not important to us. The fractional
Marchaud derivative is then understood as

Dα
Mf(t) = lim

ε→0,Lp
Dα

M,εf(t) =
f(t)

Γ(1− α)tα
+

α

Γ(1− α)
lim

ε→0,Lp
ψε(t), (2.13)

defined when this limit exists, where the limit is with respect to the norm of the
space Lp when considering fractional integrals of functions in Lp. Many results
using this definition can be found in [32, Section 13.1].

We will consider another method of taking the limit, namely a pointwise limit
as an improper integral.

Definition 2.17. For f defined on [0, T ] we define Dα
Mf(t) and D

α
∗,Mf(t) by

Dα
Mf(t) :=

f(t)

Γ(1− α)tα
+

α

Γ(1− α)
lim

ε→0+

∫ t−ε

0

f(t)− f(s)

(t− s)1+α
ds,

Dα
∗,Mf(t) = Dα

M (f(t)− f(0)) =
f(t)− f(0)

Γ(1− α)tα
+

α

Γ(1− α)
lim

ε→0+

∫ t−ε

0

f(t)− f(s)

(t− s)1+α
ds,

(2.14)

for those t > 0 for which these limits exist. It is to be understood that one
only considers ε < t. For a function g we will use the notation

∫ t−
0

g(s) ds =

limε→0+

∫ t−ε

0
g(s) ds.

The definition 2.17 is motivated by the paper of Vainniko [34]. He claimed
[34, Theorem 2.1] several deep equivalences when both u and Dα

∗ u are continuous,
which corresponds to considering u ∈ Iα(C[0, T ]). In particular he claimed [34,
Theorem 5.2] that Dα

∗ u(t) = Dα
∗,Mu(t) for 0 < t ≤ T in that case. Unfortunately

there are some gaps in the proofs, we give details in Remark 4.4. We will prove
that the important assertion, given above, of [34, Theorem 2.1] is correct in our
Theorem 4.3.
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We give a result that can be used to motivate the definition of Marchaud deriv-
ative. It’s disadvantage is that u ∈ AC is required which usually does not occur
for solutions of Caputo fractional differential equations.

Lemma 2.18. Let 0 < α < 1, t > 0, and suppose that f ∈ AC[0, t] ∩ Hα
⋆ [0, t].

Then Dα
Cf exists at the point t if and only if Dα

∗,Mf exists at t and

Dα
∗,Mf(t) = Dα

Cf(t) = Dα
∗ f(t).

Proof. For t > 0, since f ∈ AC[0, t], we can integrate by parts to get the improper
integral in the definition of Dα

∗,Mf(t) is given by∫ t−

0

f(t)− f(s)

(t− s)1+α
ds = lim

s→t−

1

α(t− s)α
(f(t)− f(s))− 1

αtα
(f(t)− f(0))

+

∫ t−

0

1

α
(t− s)−αf ′(s)ds.

The first term on the right side is zero since f ∈ Hα
⋆ , the second terms exists

for t > 0 and the third term is Γ(1−α)
α Dα

Cf(t) when it exists. Moving the term
1

αtα (f(t) − f(0)) to the left side and multiplying by α
Γ(1−α) , we see that if one of

Dα
∗,Mf(t) and D

α
Cf(t) exists then so does the other and they are equal. □

3. Existence of Marchaud derivative in weighted Hölder space

We will prove a result on existence of the Marchaud derivative. We will motivate
the result by a new example that will prove to be very useful.

Lemma 3.1. For 0 < α < 1 and 0 < β < 1, let u(t) = t−β for 0 < t ≤ T . Then
Dα

Mu(t) exists for t > 0 and is given by

Dα
Mu(t) = t−β−α(1− α− β)

Γ(1− β)

Γ(2− α− β)
, when α+ β ≥ 1,

Dα
Mu(t) = t−β−α Γ(1− β)

Γ(1− α− β)
, when α+ β < 1.

(3.1)

Proof. We first show that for t > 0 each term exists in the expression for the MFD,
which is

Dα
Mu(t) =

t−β

Γ(1− α)tα
+

α

Γ(1− α)

∫ t−

0

t−β − s−β

(t− s)1+α
ds. (3.2)

The first term on the right side obviously exists for t > 0. For the improper integral
it is important not to split the integrand. We let s = tσ and write the integral as

t−β−α

∫ 1−

0

1− σ−β

(1− σ)1+α
dσ.

The integrand is negative so we consider its negative. Temporarily ignoring the
fixed term t−β−α we therefore consider the integral∫ 1−

0

σ−β 1− σβ

(1− σ)1+α
dσ.

Let γ ∈ (0, 1) be such that γ ≥ β and γ > α, then σβ ≥ σγ for σ ∈ (0, 1). Then,
using the well known inequality 1 − σγ ≤ (1 − σ)γ for 0 ≤ σ ≤ 1, 0 ≤ γ ≤ 1, we
have

σ−β 1− σβ

(1− σ)1+α
≤ σ−β 1− σγ

(1− σ)1+α
≤ σ−β(1− σ)γ−1−α.
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The integral
∫ 1

0
σ−β(1−σ)γ−1−α dσ = B(1−β, γ−α) exists as a Lebesgue integral,

therefore
∫ 1

0
σ−β 1−σβ

(1−σ)1+α dσ exists. This shows that the MFD exists for t > 0.

The mathematical software Maple gives the integral to be given by∫ t

0

t−β − s−β

(t− s)1+α
ds = − t

−β−α

α
+ (1− α− β)

t−β−α

α

Γ(1− β)Γ(1− α)

Γ(2− α− β)
. (3.3)

The second term in (3.2) is then

α

Γ(1− α)

∫ t

0

t−β − s−β

(t− s)1+α
ds = − t−β−α

Γ(1− α)
+ (1− α− β)

Γ(1− β)

Γ(2− α− β)
t−β−α. (3.4)

A term in (3.2) cancels and this gives (3.1). The last term is equal to t−β−α Γ(1−β)
Γ(1−α−β)

when α+ β < 1 by the property Γ(a+ 1) = aΓ(a) for a > 0. □

Remark 3.2. For u(t) = t−β (0 < β < 1), the formula in (3.1) agrees with the
calculation of the R-L fractional derivative Dα(u)(t) for t > 0. In fact we have,
using Lemma 2.6,

I1−αu(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αs−β ds

= t1−α−β 1

Γ(1− α)
B(1− α, 1− β)

= t1−α−β Γ(1− β)

Γ(2− α− β)
.

Therefore

Dαu(t) = D
(
I1−αu(t)

)
= (1− α− β)t−α−β Γ(1− β)

Γ(2− α− β)
.

Note that u /∈ AC[0, T ]. I1−αu(t) = t1−α−β Γ(1−β)
Γ(2−α−β) is AC[0, T ] when α + β ≤ 1,

u is not in C1[0, T ], but is in C1(0, T ].

Example 3.3. For the special case when α = 1/2 and β = 1/2 the integral in (3.2)
can be calculated by standard methods. It can be readily checked that∫

1− x−1/2

(1− x)3/2
dx = 2

1− x1/2

(1− x)1/2
.

Hence, using L’Hôpital’s rule to calculate limx→1−
1−x1/2

(1−x)1/2
= 0, we obtain∫ 1−

0
1−x−1/2

(1−x)3/2
dx = −2 which gives, for u(t) = t−1/2,

D
1/2
M u(t) =

1

Γ(1/2)
− 2

1/2

Γ(1/2)
= 0.

This agrees with (3.1).

Example 3.4. For u(t) = tβ where β ≥ 0 we see that Dα
Mu(t) exists for t > 0,

since similarly to the above, we have∫ t

0

tβ − sβ

(t− s)1+α
ds = tβ−α

∫ 1

0

1− xβ

(1− x)1+α
dx.
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As before, take γ ∈ (0, 1) with γ > α and γ ≥ β to get∫ 1

0

1− σβ

(1− σ)1+α
dσ ≤

∫ 1

0

1− σγ

(1− σ)1+α
dσ ≤ 1

γ − α
,

so the integral exists for t > 0. Maple gives the formula∫ t−

0

tβ − sβ

(t− s)1+α
ds = − t

β−α

α
+ tβ−αΓ(1− α)Γ(1 + β)

αΓ(1− α+ β)
.

This then gives

Dα
Mu(t) =

tβ

Γ(1− α)tα
− tβ−α

Γ(1− α)
+ tβ−α Γ(1 + β)

Γ(1− α+ β)
= tβ−α Γ(1 + β)

Γ(1− α+ β)

which agrees with the calculation of Dαu(t). The special case β = α gives Dα
M t

α =
Γ(1 + α), which gives another proof of the existence result in §3.2 of Vainikko’s
paper [34].

Example 3.5. The special case α = β = 1/2 can be found by standard methods.

The indefinite integral is

∫
1− t1/2

(1− t)3/2
dt = 2 sin−1(t1/2) + 2

1− t1/2

(1− t)1/2
,

hence

∫ 1

0

1− t1/2

(1− t)3/2
dt = π − 2.

We can now prove the following result.

Theorem 3.6. Let 0 < α < 1, let 0 ≤ β < 1, and suppose that u ∈ Hλ,β for some
λ ∈ (α, 1]. Then Dα

Mu(t) exists for t ∈ (0, T ].

Proof. Let v(t) = u(t)tβ so that v ∈ Hλ and u(t) = v(t)t−β for t > 0. We will show
that all terms exist for t > 0 in the expression for Dα

Mu(t), namely

Dα
Mu(t) =

t−βv(t)

Γ(1− α)tα
+

α

Γ(1− α)

∫ t−

0

t−βv(t)− s−βv(s)

(t− s)1+α
ds.

Clearly the first term exists for t > 0. We write the integral as follows.∫ t−

0

t−βv(t)− s−βv(s)

(t− s)1+α
ds = v(t)

∫ t−

0

t−β − s−β

(t− s)1+α
ds+

∫ t−

0

s−β(v(t)− v(s))

(t− s)1+α
ds

The first term on the right exists for t > 0 by Lemma 3.1 above. For the second
term we have∫ t

0

s−β |v(t)− v(s)|
(t− s)1+α

ds ≤
∫ t

0

s−βCv|t− s|λ

(t− s)1+α
ds

= Cv

∫ t

0

s−β(t− s)λ−α−1 ds = Cvt
λ−α−βB(1− β, λ− α).

Thus, for t > 0, the integrand is dominated by an integrable function and is there-
fore integrable so the second integral exists. □

Remark 3.7. There are continuous functions that are not Hölder continuous for
any λ ∈ (0, 1) so the set of functions Hλ,β does not include all functions in the space
C−β . Of course the set includes functions that are not continuous at 0. The result
just proved complements the paper of Vainikko [34] which requires u and Dαu to
be continuous. For functions that are simple powers of t, u(t) = tγ , in order that
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u and Dαu are continuous, it is necessary that γ ≥ α. Our result allows a greater
range of power functions as we now show.

Lemma 3.8. For 0 < α < 1 and α− 1 < γ ≤ 1, let u(t) = tγ ; note that γ may be
negative. Then u ∈ Hλ,β for some α < λ ≤ 1 and some β ∈ [0, 1).

Proof. We can write u(t) = t−βtγ+β and this is in Hλ,β for λ = γ + β, where we
want to have α < γ + β ≤ 1. If γ ≥ 0 we may choose β ∈ (α − γ, 1− γ]. If γ < 0,
then we must choose β > 0 such that α − γ < β < 1, this choice is possible if and
only if α− γ < 1, that is γ > α− 1. □

Corollary 3.9. If f(t) = tρ for −1 < ρ < 1 − α then Iαf ∈ Hλ,β for some
λ ∈ (α, 1] and some β ∈ [0, 1). If ρ ≥ 1− α and f(t) = tρ then Iαf ∈ C1 ⊂ H1

Proof. For the first part, we have Iαf(t) = Γ(1+ρ)
Γ(1+α+ρ) t

α+ρ where α− 1 < α+ ρ < 1.

Lemma 3.8 now applies. The second part is immediate since tα+ρ ∈ C1 when
α+ ρ ≥ 1. □

4. Equality of fractional derivatives in weighted Hölder space

We will deal with a function v ∈ Hα
⋆ . Such a function has the property that, for

arbitrary ε > 0 there exists δ > 0 such that |v(t)− v(s)| < ε|t− s|α for |t− s| < δ.
We will be considering a fixed t > 0. Without loss of generality we can suppose
that δ < t/2. The following estimate is very useful.

Lemma 4.1. Let 0 < α < 1. For t > 0 and 0 < h < η ≤ t, we have

0 ≤
∫ t−h

t−η

(
(t− s)−1−α − (t+ h− s)−1−α

)
(t− s)α ds

≤ 1

α

( η

h+ η

)α

− 1

α2α
+ log

( 2η

h+ η

)
≤ 1

α
(1− 1

2α
) + log(2) := cα.

(4.1)

In particular for 0 ≤ β < 1, v ∈ Hα
⋆ and 0 < h < η < δ < t/2,

0 ≤
∫ t−h

t−η

(
(t− s)−1−α − (t+ h− s)−1−α

)
s−β |v(t)− v(s)| ds < εcα(2/t)

β .

Proof. The first part of the proof is the same as the proof of [34, Lemma 6.1] with
a change of the lower limit of integration. Integrating by parts and estimating from
below we get∫ t−h

t−η

(t+ h− s)−1−α(t− s)α ds =
1

α

(
2−α − (

η

h+ η
)α
)

+

∫ t−h

t−η

(t+ h− s)−α(t− s)α−1 ds

≥ 1

α

(
2−α − (

η

h+ η
)α
)
+

∫ t−h

t−η

(t+ h− s)−1 ds.
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Then we have

0 ≤
∫ t−h

t−η

(
(t− s)−1−α − (t+ h− s)−1−α

)
(t− s)α ds

≤ 1

α

( η

h+ η

)α

− 1

α2α
+

∫ t−h

t−η

(t− s)−1 − (t+ h− s)−1 ds

=
1

α

( η

h+ η

)α

− 1

α2α
+ log

(η
h

)
− log(

h+ η

2h
) ≤ cα.

For the second part, when 0 < h < η < δ < t/2, we have h < t − s < η < δ,
therefore for v ∈ Hα

⋆ we have |v(t)−v(s)| ≤ ε(t−s)α and s−β < (t−δ)−β < (2/t)β ,
and the result follows directly from the first part. □

We now have the important result which proves an equality of the Marchaud
and R-L/Caputo fractional derivatives, which will be used to justify the most useful
claim of [34].

Theorem 4.2. Assume that 0 < α < 1, 0 ≤ β < 1, and u(t) = t−βv(t) for
v ∈ Hα

⋆ [0, T ]. Then the R-L derivative Dαu(t) = (I1−αu)′(t) exists for some
t ∈ (0, T ) if and only if the Marchaud derivative exists and we then have

Dαu(t) = Dα
Mu(t) =

1

Γ(1− α)

(
u(t)t−α+α

∫ t−

0

(t−s)−α−1(u(t)−u(s)) ds
)
. (4.2)

Proof. The case β = 0 is somewhat simpler but with the exact same method so
we do not give the simpler version separately. The case β > 0 also has extra
complications but they come only at the end of the proof. Let t ∈ (0, T ) be fixed
throughout the proof. Let h > 0 be such that t+h < T . We consider the expression

Γ(1−α)I
1−αu(t+ h)− I1−αu(t)

h
=

1

h

(∫ t+h

0

(t+h−s)−αu(s) ds−
∫ t

0

(t−s)−αu(s) ds
)
.

We have u(s) = s−βv(s) where v ∈ Hα
⋆ . We write∫ t+h

0

(t+ h− s)−αu(s) ds−
∫ t

0

(t− s)−αu(s) ds

=

∫ t+h

0

(t+ h− s)−αs−β(v(s)− v(t)) ds−
∫ t

0

(t− s)−αs−β(v(s)− v(t) ds

+ v(t)
(∫ t+h

0

(t+ h− s)−αs−β ds−
∫ t

0

(t− s)−αs−β ds
)
.

(4.3)

By Lemma 2.6, the last term is

v(t)
(
(t+ h)1−α−β − t1−α−β

)
B(1− α, 1− β).

Then, since t > 0, by the definition of derivative we obtain

v(t) lim
h→0

( (t+ h)1−α−β − t1−α−β

h

)
B(1−α, 1−β) = v(t)t−α−β(1−α−β)B(1−α, 1−β).
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We now study the other terms in (4.3). We write∫ t+h

0

(t+ h− s)−αs−β(v(s)− v(t)) ds−
∫ t

0

(t− s)−αs−β(v(s)− v(t) ds

=

∫ t

0

(
(t− s)−α − (t+ h− s)−α

)
s−β(v(t)− v(s)) ds

+

∫ t+h

t

(t+ h− s)−αs−β(v(s)− v(t)) ds.

(4.4)

For the second integral, since v ∈ Hα
⋆ , for h < δ we have∣∣∫ t+h

t

(t+ h− s)−αs−β(v(s)− v(t)) ds
∣∣ ≤ ε

∫ t+h

t

(t+ h− s)−αs−β(t− s)α ds

≤ ε

∫ t+h

t

( t− s

t+ h− s

)α

t−β ds ≤ εt−βh.

Therefore, for t > 0,

1

h

∣∣∫ t+h

t

(t+ h− s)−αs−β(v(s)− v(t)) ds
∣∣ ≤ εt−β . (4.5)

The final term to deal with is 1
h

∫ t

0

(
(t − s)−α − (t + h − s)−α

)
s−β(v(t) − v(s)) ds.

For t > 0, we split the integral into the sum
∫ t−h

0
+
∫ t

t−h
. For the second term, as

above, we use |v(t)− v(s)| ≤ ε(t− s)α, and for h < δ < t/2 we get∣∣∣ 1
h

∫ t

t−h

(
(t− s)−α − (t+ h− s)−α

)
s−β(v(s)− v(t)) ds

∣∣∣
≤ ε

1

h

∫ t

t−h

(
1−

( (t− s)

(t+ h− s)

)α)
(t− h)−β ds ≤ ε(2/t)β .

For the first term, we claim that∫ t−h

0

(
α(t− s)−1−α−

(
(t− s)−α − (t+ h− s)−α

)
h

)
s−β(v(t)− v(s)) ds→ 0, (4.6)

as h→ 0. Since t− s > 0 for 0 ≤ s ≤ t− h, by the mean value theorem we have

(t− s)−α − (t+ h− s)−α

h
= α(t+ ĥ− s)−1−α, where 0 < ĥ = ĥ(s, h) < h.

Therefore we consider∫ t−h

0

(
(t− s)−1−α − (t+ ĥ− s)−1−α

)
s−β(v(t)− v(s)) ds.

Let η > 0 be such that 0 < h < η < δ < t/2 and then write the integral as∫ t−h

0
=

∫ t−η

0
+
∫ t−h

t−η
. For

∫ t−h

t−η
we have, using Lemma 4.1,∣∣∣∫ t−h

t−η

(
(t− s)−1−α − (t+ ĥ− s)−1−α

)
s−β(v(t)− v(s)) ds

∣∣∣
≤

∫ t−h

t−η

(
(t− s)−1−α − (t+ h− s)−1−α

)
s−β |v(t)− v(s)| ds < εcα(2/t)

β .
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In the integral
∫ t−η

0
we have t− s ≥ η, and |v(t)− v(s)| ≤ Cv(t− s)α since v ∈ Hα.

Therefore we have for s ∈ [0, t− η],

|(t+ ĥ− s)−1−αs−β ||v(t)− v(s)| ≤ η−1−αCvt
αs−β ∈ L1[0, t− η].

By the dominated convergence theorem, we get

lim
h→0

∫ t−η

0

(t+ ĥ− s)−1−αs−β(v(t)− v(s)) ds =

∫ t−η

0

(t− s)−1−αs−β(v(t)− v(s)) ds,

which, by the result for
∫ t−h

t−η
proved above, shows that (4.6) holds. The part above

applies when β = 0 and for this case u = v. We have then proved that, for a
fixed t ∈ (0, T ), the right hand derivative Dαu(t) exists if and only if the improper

integral
∫ t−
0

α(t− s)−1−α(u(t)− u(s)) ds exists. In that case we have

Dαu(t) =
1

Γ(1− α)
u(t)t−α

+ lim
h→0

α

Γ(1− α)

∫ t−h

0

(t− s)−1−α(u(t)− u(s)) ds,

(4.7)

that is Dαu(t) = Dα
Mu(t).

For the case β > 0 we need an extra step. We write∫ t−

0

(t− s)−1−α(u(t)− u(s)) ds =

∫ t−

0

(t− s)−1−α(t−βv(t)− s−βv(s)) ds

=

∫ t−

0

(t− s)−1−αs−β(v(t)− v(s) ds+ v(t)

∫ t−

0

(t− s)−1−α(t−β − s−β) ds

=

∫ t−

0

(t− s)−1−αs−β(v(t)− v(s) ds

+ v(t)
(
− t

−β−α

α
+ (1− α− β)

t−β−α

α
B(1− β, 1− α)

)
.

(4.8)

where we have used Lemma 3.1.
Collecting all the information together, two terms cancel and we get

Dαu(t) = lim
h→0

I1−αu(t+ h)− I1−αu(t)

h

=
α

Γ(1− α)

(∫ t−

0

(t− s)−1−αs−β(v(t)− v(s)) ds

+ v(t)t−α−β(1− α− β)
B(1− α, 1− β)

Γ(1− α)

)
=

α

Γ(1− α)

∫ t−

0

(t− s)−1−α(u(t)− u(s)) ds+
1

Γ(1− α)
v(t)t−α−β

=
u(t)t−α

Γ(1− α)
+

α

Γ(1− α)

∫ t−

0

(t− s)−1−α(u(t)− u(s)) ds = Dα
Mu(t).

Thus we have Dαu(t) = Dα
Mu(t) for 0 < t < T whenever one of these exists. The

left hand derivative for 0 < t ≤ T can be treated similarly, by studying

1

Γ(1− α)
lim
h→0

∫ t−h

0

(
(t− h− s)−α − (t− s)−α

)
h

s−β(v(t)− v(s)) ds.

with the same methods, as indicated in Vainikko [34]. □
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There are some important special cases.

Theorem 4.3. (1) Suppose that the Caputo derivative Dα
∗ u is continuous on

[0, T ]. Then the Marchaud derivative also exists for all t ∈ (0, T ] and
Dα

∗ u(t) = Dα
∗,Mu(t). If u and the R-L derivative Dαu(t) are continuous

then Dαu(t) = Dα
Mu(t) for all t ∈ (0, T ].

(2) Assume that 0 < α < 1, 0 < β < 1, and u ∈ Hλ,β for some λ > α. Then
Dαu(t) exists for all t ∈ (0, T ] and Dαu(t) = Dα

Mu(t).
(3) Let 0 < α < 1, and suppose that, for some λ > α, either u − u(0) ∈ Hλ,β

for some 0 < β < 1 or that u ∈ Hλ,β and some β ≥ λ. Then Dα
∗ u(t) exists

for all t ∈ (0, T ] and Dα
∗ u(t) = Dα

∗,Mu(t).

Proof. (1) When Dα
∗ u(t) = f(t) with f continuous on [0,T], we have

u(t)− u(0) = Iαf(t) = (Iαf(0))(t) + Iα(f − f(0))(t) = f(0)
tα

Γ(1 + α)
+ v(t),

where v ∈ Hα
⋆ , by Proposition 2.9 (3) (which again shows that u is continuous).

Since we have Dα(f(0) tα

Γ(1+α) ) = f(0) = Dα
M (f(0) tα

Γ(1+α) ), by Example 3.4, the

result follows from the case β = 0 of Theorem 4.2. For the R-L case we note that,
by Lemma 2.13, u(0) = 0 and the R-L derivative equals the Caputo derivative.
(2) Since Dα

Mu(t) exists for t > 0 when u ∈ Hλ,β by Theorem 3.6 and since
Hλ ⊂ Hα

⋆ , the result follows from Theorem 4.2.
(3) Dα

∗ u(t) = Dα(u(t) − u(0)) and the first assertion follows from part (2). For
the second assertion, u(0) ∈ Hλ,β if u(0)tβ ∈ Hλ, that is for β ≥ λ and then
u(t)− u(0) ∈ Hλ,β ; part (2) again applies. □

Remark 4.4. (a) Case (1) is probably the most useful since it corresponds to
studying the fractional differential equation Dα

∗ u(t) = f(t, u(t)) in the space of
continuous functions. For continuous functions this Caputo case is more general
than the R-L case where u(0) = 0 is implied; see Lemma 2.13. For case (2) it is

known [32, Lemma 13.2] that Iα : Hγ,β
0 → Hα+γ,β

0 if α + γ < 1. The proof uses
connections with Lp spaces, and leaves many items to be proved by the reader.
This result would require equations to be studied in a weighted Hölder space.
(b) The case β = 0 is the case studied by Vainikko [34, Theorem 5.2]. There is a
gap in the proof of Lemma 6.2 of Vainikko [34], the last part (end of page 477) uses
|v(t)− v(s)| < ε|t− s|α which is only valid for |t− s| < δ not for all s ∈ [0, t− h].
This gap is filled by our argument. Some extra properties are asserted in the
main theorem of Vainikko [34, Theorem 2.1]. These properties should be treated
with caution since their proofs use a wrong assertion. We do not need these extra
properties and we do not have a correction. In the proof of of [34, Proposition
6.4, page 482], the Banach-Steinhaus theorem is cited as saying that, because C1

is dense in C, convergence as θ → 1 of operators Aθu→ Au in C for each function
u ∈ C1 implies the convergence for each continuous function u. This is not correct,
the Banach-Steinhaus theorem applies for convergence on a non-meagre subset, but
C1 is a meagre (first Baire category) subset of C, so this argument fails. In fact the
set of functions which are differentiable at even a single point is meagre in C[0, 1]
so also AC functions form a meagre subset of C. This is proved using the Baire
Category Theorem, see for example [22, Theorem 17.8] or [8, Page 184]
(c) Our part (2) of Corollary 4.3 and Remark 3.2 shows that Dαu(t) = Dα

Mu(t),
for all t > 0, is possible for functions that are not continuous at 0.
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5. A fractional differential inequality and a maximum principle

In proving a comparison theorem for fractional differential equations, the follow-
ing result was given by Lakshmikantham and Vatsala [24, Lemma 2.1].

Lemma 5.1 ([24, Lemma 2.1]). Let m : R+ → R be continuous. If for some t1 > 0,
we have

m(t) ≤ 0 for 0 < t ≤ t1, and m(t1) = 0,

and m is locally λ-Hölder continuous (that is, near t1) for some λ > α, then it
follows that Dαm(t1) ≥ 0.

The proof assumes that Dαm(t1) exists which was not stated and does not seem
to follow from the local Hölder continuity, it does follow from λ-Hölder continuity
on all of [0, t1]. There are some typos in the given proof.

It was claimed in Denton-Vatsala [12, Lemma 2.7] and by Devi-McRae-Drici [14,
Lemma 2.3], and also by Ma and Yan [28, Corollary 2.1], that an improved version
held.

Lemma 5.2. [12, 14, 28]. Let m ∈ Cα−1 be such that for some t1 ∈ (0, T ], we have

m(t) ≤ 0 for 0 < t ≤ t1, and m(t1) = 0,

then Dαm(t1) ≥ 0.

The proofs are not correct. It is assumed that Dαm(t1) exists, which is not valid
under these assumptions since, even for a function g ∈ C, the fractional integral
I1−αg need not be differentiable at t1. For example let g(t) = D1−αW (t), as in the
proof of Proposition 2.9 (6).

Moreover the proof in [12] uses the following inequality

|t1−α
1 m(t)− s1−αm(s)| ≤ hKh, for h small and t1 − h ≤ s ≤ t1,

where Kh are uniformly bounded constants, which is only valid for locally Lipschitz
functions. The proof in [14] is similar with a variant of the local Lipschitz condition.
The proof in [28] is close to the one of Denton-Vatsala. The comparison result [28,
Lemma 2.2] is therefore not correctly proved.

Under a weak Hölder condition we will give a correct versions of Lemma 5.2 in
Corollary 5.5 (3).

Remark 5.3. Cong-Tuan-Trinh [11, Lemma 25] claim the result holds for the
Caputo derivative assuming only that Dα

∗ u exists on the interval (0, T ], they write
“proof of this lemma is obtained by using arguments as in the proof of [29, Lemma
2.1]”. However that Lemma refers for the proof to Denton-Vatsala [12, Lemma 2.7]
which proof does not give this as noted above. Our result will prove the result holds
when Dα

∗ u is continuous on [0, T ].

We first give a result for the Marchaud derivative.

Theorem 5.4. Suppose that t1 ∈ (0, T ) and u(t) ≤ 0 for 0 < t < t1 and u(t1) = 0.
If Dα

Mu(t1) exists then D
α
Mu(t1) ≥ 0. Moreover, if also u is continuous and u(0) < 0

then Dα
Mu(t1) > 0.

Proof. If Dα
M (t1) exists then it is given by

Dα
Mu(t1) =

u(t1)

Γ(1− α)tα1
+

α

Γ(1− α)

∫ t1−

0

u(t1)− u(s)

(t1 − s)1+α
ds.
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Since u(t1) = 0 and the integrand is non-negative, we have Dα
Mu(t1) ≥ 0. When u

is continuous and u(0) < 0 then u(s) < 0 on an interval so the integral is strictly
positive and Dα

Mu(t1) > 0. □

Corollary 5.5. (1) Suppose that Dα
∗ u is continuous and that u(t) ≤ 0 for 0 < t < t1

and u(t1) = 0. Then Dα
∗ u(t1) ≥

−u(0)
tα1 Γ(1−α) ≥ 0 and if u(0) < 0 then Dα

∗ u(t1) > 0.

(2) Suppose that u and Dαu are continuous and that u(t) ≤ 0 for 0 < t < t1 and
u(t1) = 0. Then Dαu(t1) ≥ 0.
(3) Let u ∈ Hλ,β for some β ∈ [0, 1) and some λ > α. Suppose that t1 ∈ (0, T ) and
u(t) ≤ 0 for 0 < t < t1 and u(t1) = 0. Then Dαu(t1) ≥ 0. If u is continuous and
u(0) < 0 then Dαu(t1) > 0.

Proof. For the Caputo case (1)

Dα
∗ u(t1) = Dα

∗,Mu(t1)

=
u(t1)− u(0)

tα1Γ(1− α)
+

α

Γ(1− α)

∫ t1−

0

u(t1)− u(s)

(t1 − s)1+α
ds

≥ −u(0)
tα1Γ(1− α)

,

since u(t1) = 0 and the integrand is non-negative. Case (2) is case (1) with u(0) = 0.
For case (3), Dαu(t1) exists and equals Dα

Mu(t1) by Theorem 4.3, the result follows
by Theorem 5.4. □

Remark 5.6. The observation that we get a strict inequality in Theorem 5.4 is
new. Part (3) is an improved version of Lemma 5.1 since we have a weight. Parts
(1), (2) are more readily applicable versions of that Lemma since no explicit Hölder
continuity condition needs to be assumed. Al-Refai and Luchko [5, Theorem 2.2]
proved similar results of R-L and Caputo-C type for so called general fractional
derivatives where the general fractional integral has (t−s)α−1 replaced by a Sonine
type kernel. They use the class of functions u ∈ C[0, T ] ∩ C1(0, T ] and u′ ∈ L1

which implies u ∈ AC[0, T ] by [38, Proposition 2.2].

Example 5.7. We illustrate item (3). Take α = 1/2, 0 < γ < 1/2, let u(t) = 1−t−γ

on [0, 2] with t1 = 1. Then u(t) ∈ Hλ,β for some λ > α and β ∈ (α + γ, 1] by
Lemma 3.8. We have

I1/2u(t) =
1

Γ(1/2)

∫ t

0

(t−s)−1/2(1−s−γ) ds =
1

Γ(1/2)

(
2t1/2−t1/2−γB(1/2, 1−γ)

)
.

ThusD1/2u(t) = D(I1/2u)(t) = t−1/2/Γ(1/2)−(1/2−γ)Γ(1−γ)t−1/2−γ/Γ(3/2−γ).
At t1 = 1 we have D1/2u(t1) = 1

Γ(1/2) − Γ(1−γ)
Γ(1/2−γ) which can be checked to be

(strictly) positive for every γ ∈ (0, 1/2). In this case u(t) is continuous on (0, 2),
negative on (0, 1) and zero at t = 1.

We now use the preceding results to prove a maximum principle.

Theorem 5.8. Let Dα
∗ u be continuous on [0, T ] and suppose that u attains its

maximum at t1 ∈ (0, T ). Then Dα
∗ u(t1) ≥ u(t1)−u(0)

tα1 Γ(1−α) ≥ 0. If u and Dαu are

continuous on [0, T ] then Dαu(t1) ≥ u(t1)
tα1 Γ(1−α) .
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Proof. Let v(t) := u(t) − u(t1). Then v is continuous and Dα
∗ v(t) = Dα

∗ u(t) is
therefore also continuous. Moreover on the interval [0, t1], v(t) ≤ v(t1) = 0. By

Corollary 5.5 we have Dα
∗ v(t1) ≥ −v(0)

tα1 Γ(1−α) , which is the result. For u and Dαu

continuous, the R-L case is the special case u(0) = 0. □

Al-Refai [3, Theorems 2.1,2.4] proved the equivalent results for the case of a
minimum assuming that u ∈ C1 for Caputo-C and R-L derivatives; at least u ∈ AC
is required for those proofs because integration by parts is used. Al-Refai and
Luchko [4, Theorem 2.1] proved the result for a maximum assuming u ∈ C1 by the
same method as [3]. Our result is more general since by Lemma 2.13 (3) we use a
weaker condition. Luchko-Yamamoto [27, Theorem 3.1] has a similar result for the
general fractional derivative of R-L and Caputo-C type for u ∈ C[0, T ] ∩ C1(0, T ]
and u′ ∈ L1.

We can now prove a comparison theorem as given under Hölder continuity as-
sumptions in Lakshmikantham-Vatsala [24, Theorem 2.3]. Al-Refai and Luchko [5,
Theorems 2.5, 2.6] proved a result for the general fractional derivatives using a
Caputo-C type of definition and used the space mentioned above where functions
are AC.

Theorem 5.9. Let f ∈ C([0, T ]× R).
(1) Let Dα

∗ u and Dα
∗ v be continuous. Suppose that

(i) Dα
∗ u(t) ≤ f(t, u(t)), (ii) Dα

∗ v(t) ≥ f(t, v(t)), for all 0 ≤ t ≤ T. (5.1)

Then u(0) < v(0) implies that u(t) < v(t), for 0 ≤ t ≤ T .
(2) Let u, v ∈ Hλ,β for some β ∈ [0, 1) and some λ > α. If also u is continuous
then the same result holds.

Proof. (1) Let w(t) := u(t) − v(t), then Dα
∗w is continuous and w(0) < 0. If w

becomes zero then there exists 0 < t1 ≤ T such that w(t) < 0 for 0 < t < t1 and
w(t1) = 0. By Corollary 5.5 (1) this implies Dα

∗w(t1) > 0. Thus we have

f(t1, u(t1)) ≥ Dα
∗ u(t1) > Dα

∗ v(t1) ≥ f(t1, v(t1)) = f(t1, u(t1)).

This contradiction proves the result.
(2) Now w = u− v ∈ Hλ,β and Corollary 5.5 (3) applies. □

Remark 5.10. Part (1) is likely to be most applicable since a solution of Caputo
FDE satisfies Dα

∗ u is continuous. In Lakshmikantham-Vatsala [24, Theorem 2.3]
it was assumed that u, v ∈ Hλ for some λ > α and that one of the inequalities in
(5.1) is strict. We showed in part (2) that the strict hypothesis can be removed
and weaker hypotheses are possible. Cong-Tuan-Trinh [11, Proposition 26] claimed
a similar comparison result assuming only that Dα

∗ v(t), D
α
∗w(t) exist on (0, T ] and

applying their version of Lemma 5.2, which, as noted above, is not valid. Wu [41,
Theorem 3.2] proved a comparison result in terms of a maximal solution. Wu used
the Dα

C definition in the paper, so needs to have an extra AC hypothesis, but
his proof actually uses the Dα

∗ definition since it used Vainikko’s claimed result,
our Theorem 4.3 (1), showing that the Caputo derivative equals the Marchaud
derivative.
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6. Lyapunov inequality for a convex function

We will use the following known inequality. For completeness we include the
proof. By an interval J we mean either a finite interval, with or without endpoints,
or [0,∞) or R.

Lemma 6.1. Let J be an interval, V : J → R be convex and differentiable at a
point x (one sided derivative at an endpoint). Then for x, y ∈ J ,

V (x)− V (y) ≤ V ′(x)(x− y). (6.1)

Proof. For x, y ∈ J , if x = y the result is trivial. If x ̸= y, by convexity we get for
λ ∈ (0, 1),

V (λy + (1− λ)x) ≤ λV (y) + (1− λ)V (x), that is

V (x+ λ(y − x)) ≤ V (x) + λ(V (y)− V (x)).
(6.2)

This gives

V (y)− V (x) ≥ V (x+ λ(y − x))− V (x)

λ
=
V (x+ λ(y − x))− V (x)

λ(y − x)
(y − x). (6.3)

Letting λ → 0+, differentiability of V at x shows that the right side has a limit
and therefore

V (y)− V (x) ≥ V ′(x)(y − x), for y ̸= x,

which gives (6.1). □

Remark 6.2. For V convex and differentiable on an open interval J , the derivative
is continuous, see Rockafellar [30] page 246, Theorem 25.5 and Corollary 25.5.1,
hence V satisfies a Lipschitz condition on any closed subinterval of J .

We first give a result appropriate for the Caputo derivative case.

Theorem 6.3. Let V be convex and differentiable on an interval J . For a function
u : [0, T ] → J , define Vu(t) := V (u(t)). If Dα

∗,Mu exists at a point t > 0 then

Dα
∗,MVu(t) also exists and we have

Dα
∗,MVu(t) ≤ V ′(u(t))Dα

∗,Mu(t) +
1

Γ(1− α)tα
V (u(t))− V (u(0))

− V ′(u(t))(u(t)− u(0)).

(6.4)

In particular we have the weaker version

Dα
∗,MVu(t) ≤ V ′(u(t))Dα

∗,Mu(t). (6.5)

Proof. We have

Dα
∗,MVu(t) :=

V (u(t))− V (u(0))

Γ(1− α)tα
+

α

Γ(1− α)
lim
ε→0

∫ t−ε

0

V (u(t))− V (u(s))

(t− s)1+α
ds.

Our assumption on u means that

lim
ε→0

∫ t−ε

0

u(t)− u(s)

(t− s)1+α
ds exists.

Thus, for 0 < η < t, there exists δ > 0 such that for every 0 < ε1 < ε2 < δ,∣∣∣∫ t−ε1

t−ε2

u(t)− u(s)

(t− s)1+α
ds
∣∣∣ < η.



EJDE-2025/20 MARCHAUD FRACTIONAL DERIVATIVE 21

Then, using Lemma 6.1, we get∣∣∣∫ t−ε1

t−ε2

V u(t)− V u(s)

(t− s)1+α
ds
∣∣∣ ≤ ∣∣∣∫ t−ε1

t−ε2

V ′(u(t))
u(t)− u(s)

(t− s)1+α
ds
∣∣∣

≤ |V ′(u(t))|
∣∣∣∫ t−ε1

t−ε2

u(t)− u(s)

(t− s)1+α
ds
∣∣∣ < |V ′(u(t)| η.

This proves that Dα
∗,MVu(t) exists for this t. Moreover we have the bounds

Dα
∗,MVu(t) =

V (u(t))− V (u(0))

Γ(1− α)tα
+

α

Γ(1− α)

∫ t−

0

V (u(t))− V (u(s))

(t− s)1+α
ds

≤ V (u(t))− V (u(0))

Γ(1− α)tα
+

α

Γ(1− α)
V ′(u(t))

∫ t−

0

u(t))− u(s))

(t− s)1+α
ds

=
V (u(t))− V (u(0))

Γ(1− α)tα
+ V ′(u(t))

(
Dα

∗,Mu(t)−
u(t)− u(0)

Γ(1− α)tα

)
= V ′(u(t))Dα

∗,Mu(t)

+
1

Γ(1− α)tα
(
V (u(t))− V (u(0))− V ′(u(t))(u(t)− u(0))

)
.

Since V (u(t))− V (u(0))− V ′(u(t))(u(t)− u(0)) ≤ 0 by Lemma 6.1, this completes
the proof. □

For the R-L type case we have the following result.

Corollary 6.4. Let V be convex and differentiable on an interval J containing 0,
and V (0) = 0. For a function u : [0, T ] → J , defined at every point of [0, T ], define
Vu(t) := V (u(t)). If Dα

Mu exists at a point t > 0, then also Dα
MVu(t) exists and we

have

Dα
MVu(t) ≤ V ′(u(t))Dα

Mu(t). (6.6)

The proof of the above corolary is almost identical to that of Theorem 6.3 re-
placing u(0) by 0.

Corollary 6.5. Let V be convex and differentiable on an interval J and suppose
that u : [0, T ] → J is continuous and Dα

∗ u is continuous. Then, for every t > 0 we
have

Dα
∗ Vu(t) ≤ V ′(u(t))Dα

∗ u(t)

+
1

Γ(1− α)tα
(
V (u(t))− V (u(0))− V ′(u(t))(u(t)− u(0))

)
≤ V ′(u(t))Dα

∗ u(t).

(6.7)

Proof. Dα
∗ u = Dα

∗,Mu by Theorem 4.3 so the latter exists for all t > 0. Theorem 6.3
now applies. □

Remark 6.6. Chen-Dai-Song-Zhang [9] proved the weaker form of Corollary 6.5 for
u and V continuously differentiable using the Caputo-C definition. Gomoyunov [19,
Lemma 4.1] proved the weaker version (6.5) holds for a.e. t for the R-L fractional
derivative when u ∈ Iα(L∞[0, T ]), by first giving a proof for functions u ∈ Lip0
(functions u satisfying a Lipschitz condition and with u(0) = 0) and then using a
non-trivial approximation argument. Note that u ∈ Iα(L∞[0, T ]) implies u ∈ Hα

(but not necessarily Hα
⋆ ) and u(0) = 0. Tuan-Trinh [33, Theorem 2] also gave
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the weaker version of the result for the Caputo derivative Dα
∗ for functions in

Iα(C[0, T ]) using the characterization of continuous Caputo derivatives claimed by
Vainikko [34] which shows it is equal to the Marchaud derivative Dα

∗,M . Their

proof used some of the claimed extra properties in Vainikko [34] which are unclear.
Li and Liu [26, Proposition 3.11] proved similar weaker versions for a generalized
Caputo derivative, defined in terms of distributions, assuming that V is a convex
C1 function and u ∈ C[0, T ] ∩ C1(0, T ].

We now give two useful examples of Lyapunov functions that occur frequently
in the literature.

Proposition 6.7. Suppose that u is nonnegative on [0, T ] and Dα
∗,Mu(t) exists for

some t > 0. Then for r ≥ 1 we have (strong version)

Dα
∗,Mu

r(t)

≤ rur−1(t)Dα
∗,Mu(t)−

1

Γ(1− α)tα
(
(r − 1)ur(t) + ur(0)− rur−1(t)u(0)

)
.

(6.8)

If Dα
∗ u is continuous, then

Dα
∗ u

r(t) ≤ rur−1(t)Dα
∗ u(t)−

1

Γ(1− α)tα
(
(r−1)ur(t)+ur(0)−rur−1(t)u(0)

)
, t > 0.

(6.9)
If u and Dαu are continuous, then

Dαur(t) ≤ rur−1(t)Dαu(t)− 1

Γ(1− α)tα
(r − 1)ur(t), (6.10)

for t > 0. In particular under these conditions we have the corresponding weaker
versions

Dα
∗ u

r(t) ≤ rur−1(t)Dα
∗ u(t), t > 0. (6.11)

Dαur(t) ≤ rur−1(t)Dαu(t), t > 0. (6.12)

Proof. V (u) = ur is well defined on J = [0,∞) and is convex for r ≥ 1. Apply
Theorem 6.3 and Corollary 6.5. □

Remark 6.8. This result (6.10) is an improved version of Fewster-Young [17,
Lemma 6] who did the case r = 2 with the R-L derivative assuming that u ∈ C1,
which seems to be the first time the stronger inequality is given. The proof in [17]
actually uses a definition via Hadamard’s finite-part integral (see Diethelm’s book
[16, Lemma 2.21, p.38], but this was not stated.

Aguila-Camacho, Duarte-Mermoud and Gallegos [1, Lemma 1] proved the weaker
version (6.11) for r = 2 and the Caputo derivative Dα

C assuming that u is contin-
uously differentiable. Alikhanov [2, Lemma 1] gave the result for r = 2 for an AC
function u, but the proof requires more, it used differentiability of I1−αu′. Dı́az,
Pierantozzi and Vázquez [15, Lemma 3.1] have the weaker inequality for a.e. t when
u ∈ AC is either increasing or decreasing. Alsaedi, Ahmad and Kirane [6, Lemma
1] proved a result for a product uv of two functions whose special case u = v would
prove the result (6.12) for r = 2 when u ∈ Hλ for some λ > α. Their proof assumes
both Dαu and Dαv exist which does not follow from their hypotheses. For the
Caputo case the Dα

C definition is used in [6] which requires an AC condition and
restricts its applicability.

The second example is a type known as a Volterra Lyapunov function.
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Proposition 6.9. Let V (u) := u−w0 −w0 log(
u
w0

) for u > 0, w0 > 0. Then V is

convex and differentiable for u > 0. If u is always positive and Dα
∗,Mu(t) exists at

a point t > 0 then we have

Dα
∗,MVu(t)

≤ (1− w0

u(t)
)Dα

∗,Mu(t) +
1

Γ(1− α)tα
(
u(t)− w0 − w0 log(

u(t)

w0
)

− (1− w0

u(t)
)(u(t)− w0)

)
= (1− w0

u(t)
)Dα

∗,Mu(t) +
1

Γ(1− α)tα

((
1− w0

u(t)

)
w0 − w0 log(

u(t)

w0
)
)
,

(strong form)

≤ (1− w0

u(t)
)Dα

∗,Mu(t) (weak form).

(6.13)

The inequalities hold for all t > 0 with Dα
∗,M replaced by Dα

∗ when Dα
∗ u is contin-

uous.

Proof. This follows at once from Theorem 6.3 and Corollary 6.5. □

Remark 6.10. Vargas-De-León [36, Lemma 3.1], with a longer argument, gave
the weak form of this result for the Caputo derivative Dα

Cu assuming that u is
differentiable. Our results shows that this holds for Dα

∗ u under weaker conditions.

7. Comments on higher order cases

Vainkko’s paper also states results for higher order fractional derivatives. The
result used is that for m ∈ N, and m < β < m + 1, if the ordinary derivative

Dmu and the fractional derivative Dβ
∗u are continuous, then the equality Dβ

∗u =

Dβ−m
∗ Dmu holds. Then the result for 0 < α < 1 can be applied to Dmu. We

prove this equality for the case D1+α
∗ u with 0 < α < 1, similar arguments prove

the general case.

Lemma 7.1. Let 0 < α < 1. If u ∈ C1[0, T ] and I1−αu′ ∈ AC[0, T ] then
D1+α

∗ u(t) = Dα
∗ u

′(t) for a.e. t. Moreover, if Dα
∗ u

′ = D
(
I1−α(u′ − u′(0))

)
∈ C

then D1+α
∗ u(t) = Dα

∗ u
′(t) for all t.

Proof. Using the semigroup property we have

I1−α(u− u(0)− tu′(0)) = I1−αI(u′ − u′(0)) = I I1−α(u′ − u′(0)), for all t.

Therefore, when I1−αu′ ∈ AC[0, T ], we obtain

D1+α
∗ u(t) = D2I1−α(u−u(0)−tu′(0))(t) = D I1−α(u′−u′(0))(t) = Dα

∗ u
′(t), for a.e. t.

When I1−α(u′−u′(0)) ∈ C1 then I1−α(u−u(0)− tu′(0)) ∈ C2 and the result holds
for all t. □

Remark 7.2. Theorem 4.3 can be applied to get the result that Dα
∗ u

′ = Dα
∗,Mu

′

when u′ and D1+α
∗ u are continuous, as in the paper of Vainikko [34]. Derhab and

Imakhlav [13, Theorem 2.11] used this result to prove a maximum principle for a
function u ∈ C1 with D1+α

∗ u ∈ C. This maximum principle was proved by Al-
Refai [3, Theorem 2.11] assuming the stronger condition that u ∈ C2[0, T ] which
implies that D1+α

∗ u is continuous.
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For the Caputo derivative, D1+α
∗ u continuous implies that u′ is continuous. For

when D1+α
∗ u = f with f continuous we have u(t) = u(0) + tu′(0) + I1+αf , and

u′(t) = u′(0) + Iαf(t), thus u′ is continuous. This is not true in the R-L case. We
have the following observation.

Lemma 7.3. Let 0 < α < 1 and suppose that D1+αu = f where f is continuous.
Then u ∈ C[0, T ] only if u(0) = 0. Moreover u ∈ C1 only if u(0) = 0 and u′(0) = 0.

Proof. From D1+αu = f , we obtain

u(t) = c1t
α−1 + c2t

α + I1+αf(t),

where c1 = I1−αu(0)/Γ(α) and c2 = (Dαu)(0)/Γ(1 + α), see for example [38,
Theorem 6.8]. Thus, in general, u is not continuous. The term I1+αf ∈ C1, hence
u ∈ C requires c1 = 0 which then gives u(0) = 0. To have u ∈ C1 we must have
c1 = c2 = 0 so u(t) = I1+αf(t) and then u′(t) = Iαf(t). Proposition 2.9 (2) gives
u(0) = 0 and u′(0) = 0. □

Remark 7.4. This means that the R-L case with a continuous fractional derivative
can only use the equality with the Marchaud derivative involving u′ if u′ ∈ C1 and
both u(0) = 0 and u′(0) = 0, when it is then a special case of the Caputo derivative.

8. Conclusion

We have proved that the Marchaud derivative is equal to the much better known
R-L or Caputo derivatives under some more general conditions than previous works.
As a special case our result proves that the important assertion in the paper of
Vainikko [34], whose proof had gaps, is valid. We have shown how the Marchaud
derivative is convenient to prove inequalities that are useful in the study of prop-
erties of solutions of FDEs including their Lyapunov stability.
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