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CRITICAL FUJITA EXPONENTS FOR A CLASS OF
QUASILINEAR COUPLED PARABOLIC EQUATIONS

YUANYUAN NIE, YAN LENG, XU ZHAO, QIAN ZHOU

ABSTRACT. This article concerns the critical Fujita exponents for a class of
quasilinear coupled parabolic equations. Using energy estimates, suitable su-
persolutions, and the comparison principle, the blow-up theorem of Fujita type
is established, and the critical Fujita exponent is obtained. Furthermore, we
show that the critical case belongs to the blow-up case.

1. INTRODUCTION

In this article, we study the critical Fujita exponent for the Cauchy problem of
quasilinear coupled parabolic equations

% = Au™ + (|lz| + )P, z €R", t>0, (1.1)
ov

5 = Do+ (la] + DM,z €R £ 0, (1.2)
u(JU,O) = Uo(l'), U($7O) = ’Uo(l'), US Rn’ (13)

where p,g >m > 1, A >0,

Mg—m)+2(g—p)

- 0 (1.4)

M =
and 0 < ug, vg € Cy(R™) are nontrivial.
The earliest research on critical exponents of parabolic equations was published
in 1966 by Fujita [5]. It was demonstrated that the Cauchy problem of the heat
equation

%:Au—l—u”, zeR™ t>0

admits no nontrivial nonnegative global solution when 1 < p < p. = 1+ 2/n,
otherwise, it admits both nontrivial global (with small initial data) and nonglobal
nonnegative (with large initial data) solutions when p > p.. Subsequently, in
[9, 3], B1], it was proved that any solution blows up in the critical case p = p..
Herein, p. is termed the critical Fujita exponent, and the corresponding results
constitute the blow-up theorem of Fujita type.

Fujita’s famous work reveals the relationship between the asymptotic behavior
of the solutions to nonlinear partial differential equations and the exponents of the
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nonlinear internal sources. Since then, many important results have been obtained,
including different types of equations and systems in various geometries with or
without degeneracies or singularities, different boundary conditions, and different
extension directions. For more detail, we refer the reader to works [Il 2, 3], [8 [
12| [15] 16l 17, (18], 0T} 25, 35, 211, 23} 24 26, 30l BT, 34, 36| 37, B8], 39, [40] and the
references therein.

For the Cauchy problem, Galaktionov et al. [0, [7] studied the single slow diffusion
equation

0
a—z:Auerup, zeR” t>0,
where p > m > 1. It was proved that the critical Fujita exponent is p. = m + 2/n.

The Cauchy problem of the equation
ou
ot
with p > m and 0 < Ay < A9 < p(A1 + 1) — 1 was formulated as p. = m + (2 +
A2)/(n+ A1) in [29]. Furthermore, the authors proved that the critical case p = p,
is also a blow-up case.

For the Cauchy problem of the following coupled semilinear parabolic system,

ou ov
ZZ A 81|zl P i
g~ But Tt
where a1, ag, f1, f2 > 0, and p,q > 1. Escobedo and Herrero in [4] considered this
Cauchy problem with oy = as = 1 = 82 = 0, and they proved that the critical

Fujita curve is

l2|M — = Au™ + |z[2uP, zeR™, t>0

Av 4 tP2|z[*2u9, 2 € R™, t >0,

2
(pg)e =1+ - max{p+1, ¢+ 1}.

More general, if 8; = 2 = 0, Mochizuki and Huang ([I9]) proved that the critical
Fujita curve is

(pa)e =1+ = max {(en +2) + (a2 + 2)p, (02 +2) + (e + 2)a}

with 0 < a3 <n(p—1) and 0 < az < n(g—1). If a1 = ay = 0, it was proved in
[27] that the critical Fujita curve is

(rg)e =1+ %maX{(Bz +p+B1+1, (B1+1)g+ B2+ 1}

with pg > 1. There are also some studies on the Cauchy problem of the coupled
porous medium systems with fast diffusion

0 0
87:: = Au"™ + 0P, 8—1; =Av"™ +u?, xeR" t>0, (1.5)
where 0 < my, ma < 1, p, ¢ > 1 and pg > 1. Qi and Levine ([22]) proved that the

critical Fujita curve of the Cauchy problem of (1.5)) is
2
(Pg)e = mumy + —max{ms +p,m1 +q},

and proved that any nontrivial solution to the Cauchy problem of must blow
up in finite time if pg < (pq)., whereas both nonnegative nontrivial global and
blowing-up solutions exist if pg > (pq). with m; = mo.

They pointed out that the method of constructing global supersolutions fails
when m; # msg because of the different propagation rates of the two types of
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diffusion. Later in [I0], it was shown that for the “very fast diffusions” case that
0 < my, my < (n — 2)4/n, the Cauchy problem of admits nontrivial global
solutions if the initial data is small enough although m is not equal to mo. Recently,
the problem f with the special case A = 0 was considered in [14], and it
was shown that the critical Fujita exponent is p. = m + 2/n. However, the result
for the critical case p = p. remains unknown.

In this paper, we prove that the critical Fujita exponent of problem f
is

Pc=m (16)

As in [20] T4, 211, 28, 29], we study the blowing-up properties of solutions by the
integral estimates, and global existence of solutions by constructing a pair of suit-
able self-similar supersolutions. Note that the choice of p is used to ensure that
self-similar supersolutions have the same support set. This is still open to the other
. Furthermore, we prove that the critical case p = p. can be classified as a blow-up
case by analyzing the asymptotic behavior of the solutions.

This article consists of three sections. In §2, we introduce several basic definitions
and theorems. Subsequently, in §3, we prove the blow-up theorems of Fujita type
for the problem 7. Subsequently, the critical case p = p. is considered in
§4.

2. PRELIMINARIES

In this section, we introduce some basic definitions and relevant lemmas.

Definition 2.1. Assume that 0 < T < 400 and u, v are two nonnegative functions.
If

u, v € O([0,7), Lig.(R")) N Lig. (0, T); L=(R™))

loc
and for any 0 < ¢, ¢ € C*1(R™ x [0,T)) vanishing when ¢ near T or |z| being
sufficiently large, the integral inequalities

/OT/n u(:v,t)%f(x,t)dwdwr /OT/W u™(x, t) Ap(z, t)dzdt
+ /OT/"(M + 1) MP (2, £)p(, t)dadt + /Rn wo(2)p(x, 0)dz < (=)0,
/OT/n, v(a:,t)%(a:,t)dxdt+ /OT /n o™ (2, t) Atp(z, t)dadt

T
—|—/0 /n(|ac| + DPud(x, t)(z, t)dedt + /Rn vo(2)(z,0)dx < (>)0

hold, then (u,v) is said to be a super (sub) solution to (1.1))—(1.3) in (0,7). Fur-
thermore, (u,v) is said to be a solution to (1.1)—(1.3) in (0,7") if it is both a
supersolution and a subsolution.

Definition 2.2. Assume that (u,v) is a nontrivial solution to (1.1)—(1.3). If for
some 0 < T' < 400,

[u(, )l Lo @y + [[0(s D)oo @n) = +o0 ast =T,

then (u,v) is said to blow up in the finite time 7. Otherwise, (u,v) is said to be a
global solution.
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Based on the classical theory of quasilinear parabolic equations (see [32},[33]), we
have the following result.

Lemma 2.3. For any 0 < ug, vo € Li (R")NL>®(R™), there is at least one solution

loc
to (L.1)—(L.3) locally in time.

Theorem 2.4. Assume that (u1,v1) and (uz,v2) are two solutions to (1.1)-(L.3)
in (0,T) with nonnegative initial data (uo,1(x), vo1(z)) and (up2(x),vo2(x)), re-
spectively. If (ug1, vo,1) < (ug2, vo2) a.e. in R™, then (u1,v1) < (ug,vs) a.e. in
R™ x (0,7).

3. BLOW-UP THEOREMS OF FUJITA TYPE

In this section, we prove blow-up theorems of Fujita type for problem (|1.1)—(L.3).

Theorem 3.1. If m < p < p., any nontrivial solution to (1.1)—(1.3) blows up in
finite time.

Proof. We denote B, as a ball in R™ with radius r centered at the origin. Assume

that (u,v) is a nontrivial solution to ((1.1)—(1.3]). Set

wy(t) = / (u(z,t) + v(2,t)) Py (z)dx, t >0, (3.1)
where 6 is a constant to be determined, [ > 1,
L, 0<|z| <,
Y (x) = %[14—005@], I <|z| <21, r € R™
0 | > 21,

Then for x € By \ B;, we have
V()| < Cu™, Ay (x)] < Cii72, Adpy(z) > —Cil2i(z).

where C is a constant that depends only on n but is independent of . By (1.1
and (1.2]), we obtain
dwl (t)
dt

:/ um(z,t)AzDz(x)der/ (1] + 1 P (2, )n(2)dz
. ) (3.2)
o /le V@ O Av(@)de + 17 / (Jz] + D) u?(z, t)hi (z)dz.

n

From the Hoélder inequality we obtain

/ um(:c,t)Awl(m)dx:/ u™ (x, ) Ay (z)dx
B2y

Boi\B;

V

4,—cu-3/ W™ (, ) (z)do
By \B;

Y

m/
—@wﬂ*”WW%/<mwwwwwmmum@ !
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/ vm(x,t)Ai/)l(a:)da::/ o™ (x, ) Aty (x)dx
B

B \B;
> —011_2/ o™ (z, ) (z)de
B\ By

m/p

< — Gyt Nmn / (el + 1 o (@, tyn(e)da)

where Cy > 0 is a constant independent of [. From these two estimates and ([3.2)),
one can obtain

dwl(t)
dt

> (/ (|2 + 1) u?(z, )y (z)d )m/q
< (( / (] + 1) u (x, )y (2)d
+ ([ (ol 4 100w o)) ™"
< (( / (lal + 1)Avp(x,t)¢l(x)dx)“’”")/ ’
It follows from the Holder inequality that
/n u(x, ) (z)dx
< (/n(lwl + 1)_“/(q_1)1/1l(x)dx)(q_l)/q(/Rn(|:r| + l)Muq(x,t)z/;l(x)dx)l/q’
/n v(x, t)(x)de
< ( / (| + 1) Dy (a)dr) “H)/p( / (=l + 1)Avp(x,t)wl(x)dx>1/ "

which indicate that
/ (|z] + DHFud(x, t) (z)dx

Cs ( Sz, t)wz(:c>dw)ql‘q”+”+“, if —qn+n+p<0,

>(q—m)/q B CQanaf(nw)m/q) (3-3)

_ Can—?—()\—&-n)m/p—i-H) )

(3.4)
=1 ( Jen ulz, t)wz(:c)dm)q(lnwl—q, if —gn+n+p=0,

Cs ( Jgn u(, t)wl(ac)da:)q, if —gn+n+p>0,
[ e+ DM e)is

Cg(fRn v(x, t)i(z)dr pl”’”*”*)‘, if —pn+n+A<0, (3.5)

d
x
p
Cg(fRn v(x, t)(z)dz

where Cj3 is a constant independent o

(x)dx)
> CS(fan(x,t)wl(:r)d )p(lnl)lfp, if —pn+n+A=0,
(z) )7 if —pn+n+X>0,
1
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First, consider the case in which —gn +n+p < 0 and —pn+n+ X < 0. It

follows from (3.3))—(3.5)) that

d’UJl(t) > C’;”/ql(*anF”JFH)m/Q(/

5 u(z, )y (w)dx)

“ {(;;—m/ql(fqmmm<q7m>/q+e( /

_ C2l"*2*("+ﬂ)m/4}
m/py(—pntntA)m/p "
+C577 (/ v(x,t)wl(z)dz>
. (3.6)

% [Oé—m/Pl(fanrnJr)\)(pfm)/p(/ U(l',t)llil(x)dx)p_m

_ 02ln727(n+)\)m/p+0:|

n
qg—m

u(zx, t)y (x)dm)

n

n

u(x, t)wl(a:)dm)q

n

> —Cyl"Dwp(t) + ng—q”+”+ﬂ+9( /

+ Gyl ( lev(a:,t)wl(x)dx)p,

Rn
where

Cy = maX{C'gC;n/q, C’gC’:T/p}, (#) = max { —mn+n—2, —mn+n—2—(m—1)0}.

‘We choose

q—p( A+2>

0= n— .

p+1 p—m

It is clear that —gn+n+pu+0 = —np+n+ X\ — pf = O with

_ —p*qn—p’n+pgmn + pmn + (A + 2)(pq — p*)
(p+1D(p—m)

© + A+ n.

Then we obtain
dwl (t)

o > —Cyl" O (1)

+ e ( / e () (

> w™(t) [—041“9) + 2O 0y - min {wl ™ (2), w?_m(t)}] .

1%v(z, t)z/)l(x)dx)p} (3.7)

R

It follows from p < p. that x(f) < ©. Because w;(0) is nondecreasing with respect
to I € (0,+00) with sup {w;(0) : I € (0,+00)} > 0, there exists {; > 1 such that

Oyl < 9= rat) 0y1® iy {w]=™(0), wi=™(0)}. (3-8)
From (3.7) and (3.8)), we obtain
d t
dwn(®) o o—(ra+1) 041 i {wf (&), wl(®)}, >0,

dt
Due to p, ¢ > m > 1, there exists a constant T} € (0, +00) such that

wy, (1) = /n (w(z,t) + v(z,t)) Py, (v)de — +oo ast — T, .
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Since supp ¢y, (z) = Bay,, we have
||U(',t>||Loo(Rn) =+ ||U(',t)HLoo(]Rn) — 400 as t— T*_

That is, (u,v) blows up in finite time.
Let us consider the case in which —gn+n+pu=0and —pn+n+ X < 0. It is
assumed that @ = 0. It follows from (3.3)—(3.5) that

dw; () m/q (1
> am/q
P C, (Inl) (/

u(z, t)wl(x)dx>m

" C;—m/q(lnl)ufq)(qu)/q(/

_ CQZH—Q—M(nﬂt)/q}

qg—m

u(zx, t)y (as)d:c)

n

+C;n/p[(—p"+"+>\)m/p(/ U(wyt)wl(x)dx)m

% (C«éP*m)/Pl(—pn+n+>\)(p—m)/p(/

_ C2ln—2—mw+/\)/p).

v(x, t)y (x)dx) o

n

Thanks to
n—2—mn+u)/g<0, and n—2—-—mn+N)/p<(—np+n+X)(p—m)/p,
there exists sufficiently large ls > 1, such that

dwl72(t) > C;”/Q(lnh)m(lfQ)/Q(/ u(x,t)ﬂih(x)dx)'h
dt n
% %Céq—m)/q(ln12)(1—q)(q—M)/q(/
+C;”/p12—m"+m<n+k)/p(/ v(x,t)dfzz(x)dx>

1 —m —np+n —-m p—m
><§C§p /oy (—np ) o >/p</ U(%t)%(x)dx)

> 05((/n u(z, )y, (x)d:v)q + (/n v(z, ), (x)dx)p)

> 9~ (o), min{w} (t), wy (t)},

q—m

u(x, t)y, (x)dx)

n

where C5 denotes a constant that depends only on l5. The same discussion as above
shows that (u,v) blows up in finite time.

For the other cases, we still assume that § = 0. Similar to the second case, we
can prove that (u,v) blows up in finite time. O

Now we construct self-similar supersolutions to (1.1)) and (1.2)). Set

U((t+1)""(z[+1)) _ V(D) + 1)
U(I’,t) - (t+ 1)04 ’ U(l’,t) - (t + 1)a )

for (x,t) € R™ x [0, +00), where U, V € C1([0, +00)) with U™, V™ € C*([0, +0))
and

(3.10)

A+2 (p—m)a

D tam=1) T Atz
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If the following inequalities

(Umyﬁ)+nr1wﬂ51@WW&)+&ﬂ%ﬂ+aU@)+MV%ﬂ§O,(&H)
(Vm)"(r) + n-l gc:;— ! (V™'(r) + BrV'(r) + oV (r) + r*U%(r) <0 (3.12)

hold for » > 0 and x € R"™, then (u,v) given in (3.10)) is a supersolution to (1.1))
and (1.2)).

Lemma 3.2. Assume that
U(r) =V(r) = (n— Ar?)

where sy = max{0, s}, n > 0 and

1/(m—1)

N , r>0, (3.13)

_ (m-1)(p—m)a
mn(p + pe — 2m)’

Then, when p > p., there exists sufficiently small n > 0, such that (u,v) defined by
(3.10) and (3.13)) is a supersolution to (L.1)) and (1.2)).

Proof. Tt is not difficult to cheek that U, V € C'([0,+00)) satisfy U™, V™ €
C'([0,+00)) and (B.11), ([3-12) hold for r > (n/A)Y/? and = € R™.

For 0 < r < (%)'/2, following from direction calculations, it yields that

n—1

™) (r) + ——U™)(r) + prU"(r) + aU(r)

(A (B o s (o )

m—1\m—1

and
n—1

(V™) (r) + == (V™) (r) + BrV'(r) + aV(r)

= ( 24 (2/17m - ﬁ)rQVkm(r) + (a - 2Amn)>V(r).

m—1\m-—1 m—1

It follows from % < [ that there exists some 7; > 0 such that for any 0 < n < 1y,

my/ n—1_ ’ (p —pe)a
U™ (r)+ " U™ (r)+ prU’'(r) + aU(r) < —mU(r)

and
(V7Y (r) 4 VY (1) 4 V) + aV(r) < -5 B2y,

Owing to (U™)'(r) = f%U(r) <0and (V™)' (r) = f%V(r) < 0, we obtain
that for any 0 < 1 < 1y, it holds

U™ (r) + = L. 'ﬂ; ! (U™ (r) + BrU'(r) + aU(r)
(p — p)a (3.14)
“3ptpe—2m) )
(Vm)"(r) 4 n ; 1 ) |£C:;|r 1 (Vm)’(r) + ﬂrvl(r) n aV(r)
(3.15)

o (p_pc)a r
p+p—zm)
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From the definition of U, V and A, u > 0, there exists s € (0,7;) such that for
any 0 < n < 1y,

r“Uq*I(r) _ 7n,\qu(r) < A*)\/Qn(pfl)/(mfl)Jr/\/Q < (p — pc)a

2(p+pe —2m)’
which together with (3.14) and (3.15)), shows that for and 0 < n < 12, (3.11) and
(B-12) hold for 0 < r < (4)"/? and x € R™. 0

Theorem 3.3. For p > p., there exist both nontrivial global and blow-up solutions
to (L) -(L3).
Proof. Tt follows from Lemma |2.4) and Lemma [3.2| that (L.1)—(L.3)) has a nontrivial

global solution with small initial data. Below, we prove the blowing-up properties
of solutions to (|1.1))—(1.3)) with large initial data. Set

w(t) = / (u(:c,t) +v(:c,t))1/1[(x)dx, t>0,
R’n
where I > 1 and (u,v) is a solution to (1.1))—(1.3). According to (3.3) and the

Holder inequality, we have

T2 ([ v on@an)"( [ Gel e 00 0nas

X [(/n u(x,t)z/;l(x)dx)q_m(/w(kzﬂ + ) =Dy (2)da
_ OQZH*Q*m(nﬂL)/q}

)m(lﬂﬁ/q

) (1-q)(g—m)/q

* (/n ”(z’t)wl(x)d“?)m(/w(lﬂ + 1)A/<1fp>¢l(x)dz>m(l—p>/p

< [( / ola, n@)dz) / (|x|+1)A/<1—p>¢l(x)dx><1—p><p—m>/p
. 5
— QI ]

> @ (1)~ CoCs + 27 PH0Crmin {af " (8), wf "(1)}), 20,
where

)

m(l1—q)/
Cs = max {l"_Q_m("'HL)/q(/ (=] + 1)H/(1_Q)¢l($)dx) o

m(1-p)/
ln727m<n+x>/p(/ (\x|+1)*/<1*”)¢l(z)dw) ’ p}a

1— 1—
Cr = min { / (el + 1"/ Dy (z)dz) / (el + )Y Py(a)dz)
are positive constants depending on A\, m, n, p, ¢ and . If (ug,vo) is so large that
CoCg < 27T Oy min (@ ~™(0), @i ™(0)},
then (3.16]) indicates that

dwy (¢

%() > 2=t Comin {wf (1), wf (1)}, ¢ > 0.

It can be proven by the same process as in Theorem that (u,v) blows up in
finite time. O
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4. CRITICAL CASE

In this section, we consider the critical case

2+ A

For this case, one obtains
—gqn+n+p=—-pn+n+AiA=-—-mn+n-—2<0, (4.2)
and and still hold. The proof is based on the following three lemmas.
Lemma 4.1. Assume that (u,v) is a nontrivial global solution to 7 with
D = pe, then there exists a constant My > 0 independent of t, such that
/ (u(z,t) +v(z,t))dz < My, t>0. (4.3)

Furthermore, it holds that

d

at Jan (u(x,t) +v(z,t))dz

1

2 [ (el )+ 170,
R’V‘L

Proof. For any sufficiently large [ > 1, (3.7) implies

dw (t

%() > wﬁ(t)rm"”*?( — Cy + 27 PF DOy min {wl* (1), wlq*m(t)}),
where w; is defined by (3.1) with 6 = 0. Similar to the end of the proof of Theorem
there exists some I3 > 1, such that for any [ > I3,

2~ Pt et Oy min {wPe " (t), wi " (t)} < Cu,
i.e.
Pet+q+1l—1 1/(pc—m) Petq+l —1 1/(g—m)
wy(t) < max{(2 C; C’4) , (2 Cs 04) } (4.5)
Let I — 400 in (4.5)); then, we can obtain (4.3)).
From the Holder inequality and (4.3)), we obtain that for any [ > 1,

/ um(amt)Awl(x)dw:/ u™ (x, ) Ay (z)dx
By

B2\ B,
C
> S [ n)ar
Ba\ By
C (m—1)/(g—-1) (g—=m)/(g—1)
>-C( [ we ) ([ aou@a)
BQL\BZ B2L\Bl

> =% ([ e+ vur(e (o)
X (/n (u(z,t) +v(z,t))dx

> =3 ([ (el + 170 tya)ae

and

/Bm o™ (@, 1) Ay () dz > —%(/Rn(m 1) P (2, ) (@) da

)(m—l)/(q—l)
) (g—m)/(q—1)

>(m*1)/(qfl)

) (m=1)/(pc—1)
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where C's > 0 is a constant independent of . Substituting the above two inequalities
into (3.2)) yields that for ¢ > 0,

dlet(t) > (/n(|x| + DPut(z, t)(x)dx
x (- % n (/n(lxl 1), ) () (q_m)/(q‘“)

+ /(|x\+1 VP (1, £)y ()

)(m—l)/(q—l)

)(mfl)/(pcfl)

(
X (_ =t (/ (Jz| + 1) vPe ($7t)1/)z(x)dx> (pufm)/(pu,l))

By letting | — +o00, (4.4) is obtained. O

Lemma 4.2. Under the assumption of Lemma[/.]], there exist three positive con-
stants My, Ms, M3 > 0 independent of | and t, such that for any sufficiently large
I>1,
dwy (t T
wl( ) > Mlm—Tlfmn+n72wzn—T(t) (7 MQ(/ (u(m,t) + ’U(l’,t))ﬁildx)
dt Ba\ By (46)

+ M7 My - min {wl* T (8), wf ’”*T(t)}),

where

O<T<min{p6_m q—m}'

pe—1" q¢—1
Proof. 1t is easy to verify that
_ o mntp) N T(w—(g—1n) (=gn+n+mp)lg—m+7)

. . ; (4.7)
n—92_ m(nJr/\) + T(/\f (pc - l)n) _ (7pcn+n+>‘)(pc 7m+7')' (4.8)
Pc Pc Pec

Using the Holder inequality, we obtain that for any sufficiently large [ > 1,

/ um(x,t)Az,ZJl(x)dx:/ u™(x, t) A (x)da
By

Ba\B;

> —Cll_Q/ u (z, ) (x)dx
B2\B;

(q—m—(q—1)7)/
> _Clrz( (J] + 1),(m,f)#/(q,m,(q,l),)dx) e !
B \B,

x ( /B CE: (e (aar) " /B . (e, in(a)de)]

(m—7)/
> _Cgln*%(n+u)m/q+7(u*(q*1)n)/q(/ (|| 4+ 1) u?(x, t)lbl(ili)dl?) !

X (/B - u(x,t)z/)l(x)dx)T,

/ o™ (2, 1) Ay ()|
Boy
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> — Gy 2t m/neA O e e ( / (Jz| + 1) P (2, ) (z)dz
]Rn

X (/B \B v(x,t)wl(x)dm)T,

where C9 > 0 is a constant independent of [. Substituting the above two inequalities

into (3.2) with # = 0, then using (3.4), (3.5), (4.2), (4.7) and (4.8), one gets that

dw(t)
dt

> —Cg(,m_T)/qu;l—q”JrnJm / w(x, t)(x ) _T(/ u(m,t)wl(x)dx>T
Rn B2 \B,

e e R / (e pae)z) " ( / o tyin(a)da )
B2 \B;
Fogrmomn / (e, () ) Cytpen A ( / o, tyn(a)de)
> _ern—Tcglfmn#*anwl"L_T(t)(/ (u(m,t) + U(x,t))1/1l(1:)d1:)T
B2 \B;

+ 2_(pc+Q) C3l_mn+n_2 min{wl C(t)y U}?(t)}, t> 0

)(m—T)/pc

n

Thus, (4.6 holds for M; = max {C’;/p“, C?}/q}, My = Cy and My = 2=ty O

Lemma 4.3. Under the assumption of Lemmal[d.1] there exists a constant My > 0
independent of | and t, such that for any sufficiently large | > 1,

d
@ [, (@@ + o 8)su)de
< 2/ (2] + 1) u?(z,t) + (Jz| + 1) 0P (2, 1)) da (4.9)

+ MylPe(r=2)=m(n+A1))/(pe—m)

where
oi(x) =1—1Y(z), xeR"

Proof. Let & € C§°(R™) satisfy 0 < &(z) < 1 for z € R, {(x) = 1if |z] < 2 and
&(z) =0if |z| > 3. For k > 1 > 0, denote

T n
§k(x):§<g>, reR
Obviously,
C C Cho
Vo) < =7 Aa@) < 50 1AG@)I < 55, T eR
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where Cip > 0 is a constant independent of [ and k. From Definition [2.I] we obtain

al.. (u(w,t) + v(z, 1)) di(x)& (x)d

< /R"\Bl u"™ (2, ) A (2)€k (x))d + /Rn(|x\ + D)t (z, £) gy ()€, (2)da

+ /R”\Bl V™ (2, ) A () (2))dz +/ (|| + 1) vPe (2, t) dy ()& (z)da

n

(4.10)
< / u™ (x, t)|A¢y(z)|dx —|—/ u™ (2, t)| A&k (x)|dx
le\Bl BBk’\BZk,
—|—/ (|| + 1)“uq(ac7t)dx+/ "™ (x,t)| A (z)|dx
n B\ By
+/ 0™ (2, )| A&y (@) |da: +/ (|| + 1) vPe (z, t)d.
B3\ Bak n
Owing to the Holder inequality, one obtains
/ u(x,t)|Ady(x)|dx
By \B;
(g=m)/
< (/ (|| + 1)"”“/(‘1‘7”)|A¢l(x)|‘Z/(q‘m)dx) a e
Ba\ By (4 11)
m/q ’
X (/ (|| + 1)“uq(x,t)dx>
Ba\ By
m/
< Ouz"—g—m("w‘l( / (|| + 1>“uq<w,t>dx) "
Ba\ By
/ o™ (x,t)|Ad(x)|dx
Ba\ B (4.12)

< C11l"_2_m("+’\)/pc(/

m/pe
(|z] + l)Avpc(x,t)dx) ,
B\ B;

where C1; > 0 is a constant independent of [ and k. Similarly, one gets

/ ™ (@, 1) Ady(x)|de
B3\ B2k

C
< —120 u™ (z,t)dx
k B3k \Bak

C (m—1)/(q—1) (a=m)/(q—1)
< —120(/ UQ(x,t)dx) ! (/ u(axt)dx) ! !
k B3\ Bak B3\ B2k

< /R (] s nae) / nu(m,t)@(x)dx)(q*m)/ v
(4.13)

/ " (x, t)| Ak (z)|dx
B3\ B2

C (m—1)/(pc—1) (pe—m)/(pe—1)
< %(/ (|x|+1)’\vp°‘(ac7t)dx) (/ v(x,t)gbl(x)dx) :
R‘n, n

(4.14)
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Substituting (4.11)—(4.14) into (4.10) implies that
d
G [ w0 + o)

< Oyl 2mntm)/a ( /
Bai\B;

EJDE-2025/21

(lz] + D)Pu?(x, t)dx) e

C (m=1)/(q—1) (g=m)/(qg—1)
+ 2 ([ el 1y, e ([ s tia)
k2 Rn R™

+ /n(\x| + Dl (z, t)dx

ep—
Ba\ By

m/pe

(|z] + 1) vPe (x,t)da:)

C (m=1)/(pe—1) (pe—m)/(pc—1)
+ 2 (/ (|| + 1)’\1)”“ (m,t)dx) (/ v(x7t)¢l(x)dx)
2\ Jon .

+ /n(\x| + 1) Pe(z, t)d.

Letting K — 400 in the above inequality yields

& [ (a0 )oY

< Opplr2mint)/a ( /

m/q
(|| + 1)uuq(x,t)dx) +/ (|Jz| + 1) u?(z, t)dx
Bai\B; Rn

m/pe
+Cuz"—2-m<"+k>/m( / (|| +1)’\vp0(m7t)dx>
B\ B,

+/ (|| 4+ 1) vPe (z,t)d.
From the Young inequality and

(g(n—2) =m(n+p))/(g—m) = (pc(n—2) —m(n+A))/(pc —m),
we obtain that

d
i@ L, (W@t + @ )aa)de

< (|| + 1)l (2, t)da + L2 0¥/ (@~ (a(n=2)=m(n+u))/(a=m)
49 JBy\B, q

- / (Ja| + 1)t (2, t)de + (Jz| + 1) P (2, t)da
R™ Pe JBy\B;
+ De _mCflc/(]?c—m)l(pc(n72)fm(n+)\))/(pcfm) +/ (|| + 1))‘vp”(x,t)dx

n

(&

<2 [ ((Jal+ DMt t) + (fa] + 1707 (o)) Ml e,
RTL
where

c
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Theorem 4.4. The nontrivial solution to (L.1)—(1.3)) with p = p. blows up in finite
time.

Proof. We prove this theorem by contradiction. Assume that (u,v) is a nontrivial

global solution to (L.1)—(1.3) with p = p.. Set

A= sup w(t) = sup/ (u(z,t) + v(z,t))da. (4.15)
1>1,t>0 >0 JRn

From (4.3) and the nontriviality of (u,v), 0 < A < +00. Owing to (4.15]), for any
0 < e < A, there exist Iy > 1 and ¢ty > 0 such that

wlo/g(to) >A—e.

From (4.4) and (4.15)), we obtain

+o00
;/to /n ((|l’| + 1)“uq(x,t) 4+ (|1-| + 1)/\Upc(1',t))d$dt

t=+o0
S A — U}lo/g(to) S E.

< /n (u(z,t) +v(z,t))dx

For any s > tg, (4.9) gives

/Rn (u(x’ s) + v(z, 8))¢lo/2($)dx

t=to

- 2/; / (el + )@, ) + (o] + 1) 0" (@, 1)) dedt

1.\ (Pe(n=2)—m(n+A))/(pc—m)
+ M4 <§lo)

+ /n (u(zx, to) + U(xvto))@o/g(x)dx

(S — to)

) (Pe(n=2)—m(n+A))/(pc—m)

1
<de M4<§lo (s — to)

+ / (u(x, to) + v(az,to))dx — wy, 2 (to)-

1.\ (Pe(m=2)=m(n+A))/(pc—m)
S 5¢ + M4 <§lo> (S — tg).
Letting [ = Iy in (4.6)) and combining it with the above inequality, we have
dwl (t) m—Tij—mn—+n— m—T
T(; > Mg 2“’10 (t)

y (_ M, (55 LML (%lo) (pc(an)*m(nnLA))/(prm)(8 B tO))T

o+ My M i {7, wl (1)),

lo

Taking ¢ € (0,A) and M5 > 0 such that

1 —(m—-7 . _ _
M (5eg + M5)™ < §M1 (m=7) Mfy min {(A = e0)Pe ™7 (A — 0)?™F7})
with 0 < 7 < min {];‘:_"f, %}, one obtains
d t 1
wéft( ) > 5 Malg ™2 min {wpr (8), wiy (1)}, to <t <t (4.16)
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where

t— b0+ M5 (1l )*(Pc(n*2)*m("+>\))/(pﬁm)
1=t (g .

Integrating (4.16|) over (¢o,t1) with respect to t leads to

1 .
wi, (tl) > wi, (to) + §M3lo—mn+n—2 min {(A - Eo)pc, (A - €0)q}(t1 - to)

> wy, (to) + 2= =m(nFN)/ (Pe=m) 1y {(A —e0)Pe, (A —£0)?}

M3 M5 l—mn+n—2—(pc(n—2)—m(n+>\))/(pc—m)
2M, ° '

Noting that
—mn 41— 2 = (peln — 2) = m(n+ N)/(pe —m) = 0,
one has
/n (u(w,t1) +v(z, t1))dz > wy, (1) > wy,(to) + 60 = A — 0 + o
with

min { (A — o), (A — 50)‘1}Q(Pc(n*Q)*M(n+>\))/(pcfm)

being a positive constant independent of /5. Obviously,
W(a)/2(t1) = wiy(t1) > A — €0 + 6o > A — €.
The same argument leads to

/ (u(a:,t2) + U(ﬂ?,tz))dx > way, (tg) > wzlo(tl) + 00 > A — g9 + 20,

where

Mr
to =t 5 (1)~ (Pe(n=2)=m(n+X))/(pe—m)_
2 1 + M4( 0)

Repeating the above process, one gets that for any positive integer i,
/ (u(m, t;) + U(l‘7 ti))dl‘ > Wai-1p, (ti) > Wai-1y, (tifl) + g > A —eg +idg

with
b= i1+ 5 (=2 )~ (e(n=2)=m(n )/ (pe—m)
M,
Letting ¢ — 400 implies

sup/ (u(z,t) + v(z,t))dz = 4o,
>0 JRn

and this contradicts (4.3)). O
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