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CRITICAL FUJITA EXPONENTS FOR A CLASS OF

QUASILINEAR COUPLED PARABOLIC EQUATIONS

YUANYUAN NIE, YAN LENG, XU ZHAO, QIAN ZHOU

Abstract. This article concerns the critical Fujita exponents for a class of

quasilinear coupled parabolic equations. Using energy estimates, suitable su-
persolutions, and the comparison principle, the blow-up theorem of Fujita type

is established, and the critical Fujita exponent is obtained. Furthermore, we

show that the critical case belongs to the blow-up case.

1. Introduction

In this article, we study the critical Fujita exponent for the Cauchy problem of
quasilinear coupled parabolic equations

∂u

∂t
= ∆um + (|x|+ 1)λvp, x ∈ Rn, t > 0, (1.1)

∂v

∂t
= ∆vm + (|x|+ 1)µuq, x ∈ Rn, t > 0, (1.2)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Rn, (1.3)

where p, q > m > 1, λ ≥ 0,

µ =
λ(q −m) + 2(q − p)

p−m
≥ 0 (1.4)

and 0 ≤ u0, v0 ∈ C0(Rn) are nontrivial.
The earliest research on critical exponents of parabolic equations was published

in 1966 by Fujita [5]. It was demonstrated that the Cauchy problem of the heat
equation

∂u

∂t
= ∆u+ up, x ∈ Rn, t > 0

admits no nontrivial nonnegative global solution when 1 < p < pc = 1 + 2/n,
otherwise, it admits both nontrivial global (with small initial data) and nonglobal
nonnegative (with large initial data) solutions when p > pc. Subsequently, in
[9, 13, 31], it was proved that any solution blows up in the critical case p = pc.
Herein, pc is termed the critical Fujita exponent, and the corresponding results
constitute the blow-up theorem of Fujita type.

Fujita’s famous work reveals the relationship between the asymptotic behavior
of the solutions to nonlinear partial differential equations and the exponents of the
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nonlinear internal sources. Since then, many important results have been obtained,
including different types of equations and systems in various geometries with or
without degeneracies or singularities, different boundary conditions, and different
extension directions. For more detail, we refer the reader to works [1, 2, 3, 8, 9,
12, 15, 16, 17, 18, 11, 25, 35, 21, 23, 24, 26, 30, 31, 34, 36, 37, 38, 39, 40] and the
references therein.

For the Cauchy problem, Galaktionov et al. [6, 7] studied the single slow diffusion
equation

∂u

∂t
= ∆um + up, x ∈ Rn, t > 0,

where p > m > 1. It was proved that the critical Fujita exponent is pc = m+ 2/n.
The Cauchy problem of the equation

|x|λ1
∂u

∂t
= ∆um + |x|λ2up, x ∈ Rn, t > 0

with p > m and 0 ≤ λ1 ≤ λ2 < p(λ1 + 1) − 1 was formulated as pc = m + (2 +
λ2)/(n+ λ1) in [29]. Furthermore, the authors proved that the critical case p = pc
is also a blow-up case.

For the Cauchy problem of the following coupled semilinear parabolic system,

∂u

∂t
= ∆u+ tβ1 |x|α1vp,

∂v

∂t
= ∆v + tβ2 |x|α2uq, x ∈ Rn, t > 0,

where α1, α2, β1, β2 ≥ 0, and p, q ≥ 1. Escobedo and Herrero in [4] considered this
Cauchy problem with α1 = α2 = β1 = β2 = 0, and they proved that the critical
Fujita curve is

(pq)c = 1 +
2

n
max{p+ 1, q + 1}.

More general, if β1 = β2 = 0, Mochizuki and Huang ([19]) proved that the critical
Fujita curve is

(pq)c = 1 +
1

n
max

{
(α1 + 2) + (α2 + 2)p, (α2 + 2) + (α1 + 2)q

}
with 0 < α1 < n(p − 1) and 0 < α2 < n(q − 1). If α1 = α2 = 0, it was proved in
[27] that the critical Fujita curve is

(pq)c = 1 +
2

n
max{(β2 + 1)p+ β1 + 1, (β1 + 1)q + β2 + 1}

with pq > 1. There are also some studies on the Cauchy problem of the coupled
porous medium systems with fast diffusion

∂u

∂t
= ∆um1 + vp,

∂v

∂t
= ∆vm2 + uq, x ∈ Rn, t > 0, (1.5)

where 0 < m1, m2 < 1, p, q ≥ 1 and pq > 1. Qi and Levine ([22]) proved that the
critical Fujita curve of the Cauchy problem of (1.5) is

(pq)c = m1m2 +
2

n
max{m2 + p,m1 + q},

and proved that any nontrivial solution to the Cauchy problem of (1.5) must blow
up in finite time if pq < (pq)c, whereas both nonnegative nontrivial global and
blowing-up solutions exist if pq > (pq)c with m1 = m2.

They pointed out that the method of constructing global supersolutions fails
when m1 ̸= m2 because of the different propagation rates of the two types of
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diffusion. Later in [10], it was shown that for the “very fast diffusions” case that
0 < m1, m2 < (n − 2)+/n, the Cauchy problem of (1.5) admits nontrivial global
solutions if the initial data is small enough althoughm1 is not equal tom2. Recently,
the problem (1.1)–(1.3) with the special case λ = 0 was considered in [14], and it
was shown that the critical Fujita exponent is pc = m + 2/n. However, the result
for the critical case p = pc remains unknown.

In this paper, we prove that the critical Fujita exponent of problem (1.1)–(1.3)
is

pc = m+
λ+ 2

n
. (1.6)

As in [20, 14, 21, 28, 29], we study the blowing-up properties of solutions by the
integral estimates, and global existence of solutions by constructing a pair of suit-
able self-similar supersolutions. Note that the choice of µ is used to ensure that
self-similar supersolutions have the same support set. This is still open to the other
µ. Furthermore, we prove that the critical case p = pc can be classified as a blow-up
case by analyzing the asymptotic behavior of the solutions.

This article consists of three sections. In §2, we introduce several basic definitions
and theorems. Subsequently, in §3, we prove the blow-up theorems of Fujita type
for the problem (1.1)–(1.3). Subsequently, the critical case p = pc is considered in
§4.

2. Preliminaries

In this section, we introduce some basic definitions and relevant lemmas.

Definition 2.1. Assume that 0 < T ≤ +∞ and u, v are two nonnegative functions.
If

u, v ∈ C([0, T ), Lm
loc(Rn)) ∩ L∞

loc((0, T ); L
∞(Rn))

and for any 0 ≤ φ, ψ ∈ C2,1(Rn × [0, T )) vanishing when t near T or |x| being
sufficiently large, the integral inequalities∫ T

0

∫
Rn

u(x, t)
∂φ

∂t
(x, t)dxdt+

∫ T

0

∫
Rn

um(x, t)∆φ(x, t)dxdt

+

∫ T

0

∫
Rn

(|x|+ 1)λvp(x, t)φ(x, t)dxdt+

∫
Rn

u0(x)φ(x, 0)dx ≤ (≥) 0,∫ T

0

∫
Rn

v(x, t)
∂ψ

∂t
(x, t)dxdt+

∫ T

0

∫
Rn

vm(x, t)∆ψ(x, t)dxdt

+

∫ T

0

∫
Rn

(|x|+ 1)µuq(x, t)ψ(x, t)dxdt+

∫
Rn

v0(x)ψ(x, 0)dx ≤ (≥) 0

hold, then (u, v) is said to be a super (sub) solution to (1.1)–(1.3) in (0, T ). Fur-
thermore, (u, v) is said to be a solution to (1.1)–(1.3) in (0, T ) if it is both a
supersolution and a subsolution.

Definition 2.2. Assume that (u, v) is a nontrivial solution to (1.1)–(1.3). If for
some 0 < T < +∞,

∥u(·, t)∥L∞(Rn) + ∥v(·, t)∥L∞(Rn) → +∞ as t→ T−,

then (u, v) is said to blow up in the finite time T . Otherwise, (u, v) is said to be a
global solution.
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Based on the classical theory of quasilinear parabolic equations (see [32, 33]), we
have the following result.

Lemma 2.3. For any 0 ≤ u0, v0 ∈ L1
loc(Rn)∩L∞(Rn), there is at least one solution

to (1.1)–(1.3) locally in time.

Theorem 2.4. Assume that (u1, v1) and (u2, v2) are two solutions to (1.1)–(1.3)
in (0, T ) with nonnegative initial data (u0,1(x), v0,1(x)) and (u0,2(x), v0,2(x)), re-
spectively. If (u0,1, v0,1) ≤ (u0,2, v0,2) a.e. in Rn, then (u1, v1) ≤ (u2, v2) a.e. in
Rn × (0, T ).

3. Blow-up theorems of Fujita type

In this section, we prove blow-up theorems of Fujita type for problem (1.1)–(1.3).

Theorem 3.1. If m < p < pc, any nontrivial solution to (1.1)–(1.3) blows up in
finite time.

Proof. We denote Br as a ball in Rn with radius r centered at the origin. Assume
that (u, v) is a nontrivial solution to (1.1)–(1.3). Set

wl(t) =

∫
Rn

(
u(x, t) + lθv(x, t)

)
ψl(x)dx, t > 0, (3.1)

where θ is a constant to be determined, l > 1,

ψl(x) =


1, 0 ≤ |x| ≤ l,
1
2

[
1 + cos π(|x|−l)

l

]
, l < |x| < 2l,

0, |x| ≥ 2l,

x ∈ Rn.

Then for x ∈ B2l \Bl, we have

|∇ψl(x)| ≤ C1l
−1, |∆ψl(x)| ≤ C1l

−2, ∆ψl(x) ≥ −C1l
−2ψl(x).

where C1 is a constant that depends only on n but is independent of l. By (1.1)
and (1.2), we obtain

dwl(t)

dt
=

∫
B2l

um(x, t)∆ψl(x)dx+

∫
Rn

(|x|+ 1)λvp(x, t)ψl(x)dx

+ lθ
∫
B2l

vm(x, t)∆ψl(x)dx+ lθ
∫
Rn

(|x|+ 1)µuq(x, t)ψl(x)dx.

(3.2)

From the Hölder inequality we obtain∫
B2l

um(x, t)∆ψl(x)dx =

∫
B2l\Bl

um(x, t)∆ψl(x)dx

≥ −C1l
−2

∫
B2l\Bl

um(x, t)ψl(x)dx

≥ −C2l
n−2−(n+µ)m/q

(∫
Rn

(|x|+ 1)µuq(x, t)ψl(x)dx
)m/q

,
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B2l

vm(x, t)∆ψl(x)dx =

∫
B2l\Bl

vm(x, t)∆ψl(x)dx

≥ −C1l
−2

∫
B2l\Bl

vm(x, t)ψl(x)dx

≤ −C2l
n−2−(n+λ)m/p

(∫
Rn

(|x|+ 1)λvp(x, t)ψl(x)dx
)m/p

,

where C2 > 0 is a constant independent of l. From these two estimates and (3.2),
one can obtain

dwl(t)

dt

≥
(∫

Rn

(|x|+ 1)µuq(x, t)ψl(x)dx
)m/q

×
(
lθ
(∫

Rn

(|x|+ 1)µuq(x, t)ψl(x)dx
)(q−m)/q

− C2l
n−2−(n+µ)m/q

)
+
(∫

Rn

(|x|+ 1)λvp(x, t)ψl(x)dx
)m/p

×
((∫

Rn

(|x|+ 1)λvp(x, t)ψl(x)dx
)(p−m)/p

− C2l
n−2−(λ+n)m/p+θ

)
.

(3.3)

It follows from the Hölder inequality that∫
Rn

u(x, t)ψl(x)dx

≤
(∫

Rn

(|x|+ 1)−µ/(q−1)ψl(x)dx
)(q−1)/q(∫

Rn

(|x|+ 1)µuq(x, t)ψl(x)dx
)1/q

,∫
Rn

v(x, t)ψl(x)dx

≤
(∫

Rn

(|x|+ 1)−λ/(p−1)ψl(x)dx
)(p−1)/p(∫

Rn

(|x|+ 1)λvp(x, t)ψl(x)dx
)1/p

,

which indicate that∫
Rn

(|x|+ 1)µuq(x, t)ψl(x)dx

≥


C3

( ∫
Rn u(x, t)ψl(x)dx

)q

l−qn+n+µ, if − qn+ n+ µ < 0,

C3

( ∫
Rn u(x, t)ψl(x)dx

)q

(ln l)1−q, if − qn+ n+ µ = 0,

C3

( ∫
Rn u(x, t)ψl(x)dx

)q

, if − qn+ n+ µ > 0,

(3.4)

∫
Rn

(|x|+ 1)λvp(x, t)ψl(x)dx

≥


C3

( ∫
Rn v(x, t)ψl(x)dx

)p

l−pn+n+λ, if − pn+ n+ λ < 0,

C3

( ∫
Rn v(x, t)ψl(x)dx

)p

(ln l)1−p, if − pn+ n+ λ = 0,

C3

( ∫
Rn v(x, t)ψl(x)dx

)p

, if − pn+ n+ λ > 0,

(3.5)

where C3 is a constant independent of l.
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First, consider the case in which −qn + n + µ < 0 and −pn + n + λ < 0. It
follows from (3.3)–(3.5) that

dwl(t)

dt
≥ C

m/q
3 l(−qn+n+µ)m/q

(∫
Rn

u(x, t)ψl(x)dx
)m

×
[
C

1−m/q
3 l(−qn+n+µ)(q−m)/q+θ

(∫
Rn

u(x, t)ψl(x)dx
)q−m

− C2l
n−2−(n+µ)m/q

]
+ C

m/p
3 l(−pn+n+λ)m/p

(∫
Rn

v(x, t)ψl(x)dx
)m

×
[
C

1−m/p
3 l(−pn+n+λ)(p−m)/p

(∫
Rn

v(x, t)ψl(x)dx
)p−m

− C2l
n−2−(n+λ)m/p+θ

]
≥ −C4l

κ(θ)wm
l (t) + C3l

−qn+n+µ+θ
(∫

Rn

u(x, t)ψl(x)dx
)q

+ C3l
−pn+n+λ−pθ

(∫
Rn

lθv(x, t)ψl(x)dx
)p

,

(3.6)

where

C4 = max{C2C
m/q
3 , C2C

m/p
3 }, κ(θ) = max

{
−mn+n−2, −mn+n−2−(m−1)θ

}
.

We choose

θ =
q − p

p+ 1

(
n− λ+ 2

p−m

)
.

It is clear that −qn+ n+ µ+ θ = −np+ n+ λ− pθ = Θ with

Θ =
−p2qn− p2n+ pqmn+ pmn+ (λ+ 2)(pq − p2)

(p+ 1)(p−m)
+ λ+ n.

Then we obtain

dwl(t)

dt
≥ −C4l

κ(θ)wm
l (t)

+ C3l
Θ
[( ∫

Rn

u(x, t)ψl(x)dx
)q

+
(∫

Rn

lθv(x, t)ψl(x)dx
)p]

≥ wm
l (t)

[
−C4l

κ(θ) + 2−(p+q)C3l
Θ ·min

{
wp−m

l (t), wq−m
l (t)

}]
.

(3.7)

It follows from p < pc that κ(θ) < Θ. Because wl(0) is nondecreasing with respect
to l ∈ (0,+∞) with sup

{
wl(0) : l ∈ (0,+∞)

}
> 0, there exists l1 > 1 such that

C4l
κ(θ)
1 ≤ 2−(p+q+1)C3l

Θ
1 min

{
wp−m

l1
(0), wq−m

l1
(0)

}
. (3.8)

From (3.7) and (3.8), we obtain

dwl1(t)

dt
≥ 2−(p+q+1)C3l

Θ
1 min

{
wp

l1
(t), wq

l1
(t)

}
, t > 0.

Due to p, q > m > 1, there exists a constant T∗ ∈ (0,+∞) such that

wl1(t) =

∫
Rn

(
u(x, t) + lθ1v(x, t)

)
ψl1(x)dx→ +∞ as t→ T−

∗ .
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Since suppψl1(x) = B2l1 , we have

∥u(·, t)∥L∞(Rn) + ∥v(·, t)∥L∞(Rn) → +∞ as t→ T−
∗ .

That is, (u, v) blows up in finite time.
Let us consider the case in which −qn + n + µ = 0 and −pn + n + λ < 0. It is

assumed that θ = 0. It follows from (3.3)–(3.5) that

dwl(t)

dt
≥ C

m/q
3 (ln l)(1−q)m/q

(∫
Rn

u(x, t)ψl(x)dx
)m

×
[
C

1−m/q
3 (ln l)(1−q)(q−m)/q

(∫
Rn

u(x, t)ψl(x)dx
)q−m

− C2l
n−2−m(n+µ)/q

]
+ C

m/p
3 l(−pn+n+λ)m/p

(∫
Rn

v(x, t)ψl(x)dx
)m

×
(
C

(p−m)/p
3 l(−pn+n+λ)(p−m)/p

(∫
Rn

v(x, t)ψl(x)dx
)p−m

− C2l
n−2−m(n+λ)/p

)
.

(3.9)

Thanks to

n− 2−m(n+ µ)/q < 0, and n− 2−m(n+ λ)/p < (−np+ n+ λ)(p−m)/p,

there exists sufficiently large l2 > 1, such that

dwl2(t)

dt
≥ C

m/q
3 (ln l2)

m(1−q)/q
(∫

Rn

u(x, t)ψl2(x)dx
)m

× 1

2
C

(q−m)/q
3 (ln l2)

(1−q)(q−m)/q
(∫

Rn

u(x, t)ψl2(x)dx
)q−m

+ C
m/p
3 l

−mn+m(n+λ)/p
2

(∫
Rn

v(x, t)ψl2(x)dx
)m

× 1

2
C

(p−m)/p
3 l

(−np+n+λ)(p−m)/p
2

(∫
Rn

v(x, t)ψl2(x)dx
)p−m

≥ C5

((∫
Rn

u(x, t)ψl2(x)dx
)q

+
(∫

Rn

v(x, t)ψl2(x)dx
)p)

≥ 2−(p+q)C5 min{wp
l2
(t), wq

l2
(t)},

where C5 denotes a constant that depends only on l2. The same discussion as above
shows that (u, v) blows up in finite time.

For the other cases, we still assume that θ = 0. Similar to the second case, we
can prove that (u, v) blows up in finite time. □

Now we construct self-similar supersolutions to (1.1) and (1.2). Set

u(x, t) =
U((t+ 1)−β(|x|+ 1))

(t+ 1)α
, v(x, t) =

V ((t+ 1)−β(|x|+ 1))

(t+ 1)α
, (3.10)

for (x, t) ∈ Rn × [0,+∞), where U, V ∈ C1([0,+∞)) with Um, V m ∈ C1([0,+∞))
and

α =
λ+ 2

2(p− 1) + λ(m− 1)
, β =

(p−m)α

λ+ 2
.
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If the following inequalities

(Um)′′(r) +
n− 1

r
· |x|+ 1

|x|
(Um)′(r) + βrU ′(r) + αU(r) + rλV p(r) ≤ 0, (3.11)

(V m)′′(r) +
n− 1

r
· |x|+ 1

|x|
(V m)′(r) + βrV ′(r) + αV (r) + rµUq(r) ≤ 0 (3.12)

hold for r > 0 and x ∈ Rn, then (u, v) given in (3.10) is a supersolution to (1.1)
and (1.2).

Lemma 3.2. Assume that

U(r) = V (r) =
(
η −Ar2

)1/(m−1)

+
, r > 0, (3.13)

where s+ = max{0, s}, η > 0 and

A =
(m− 1)(p−m)α

mn(p+ pc − 2m)
.

Then, when p > pc, there exists sufficiently small η > 0, such that (u, v) defined by
(3.10) and (3.13) is a supersolution to (1.1) and (1.2).

Proof. It is not difficult to cheek that U, V ∈ C1([0,+∞)) satisfy Um, V m ∈
C1([0,+∞)) and (3.11), (3.12) hold for r ≥ (η/A)1/2 and x ∈ Rn.

For 0 < r < ( η
A )1/2, following from direction calculations, it yields that

(Um)′′(r) +
n− 1

r
(Um)′(r) + βrU ′(r) + αU(r)

=
( 2A

m− 1

( 2Am

m− 1
− β

)
r2U1−m(r) +

(
α− 2Amn

m− 1

))
U(r)

and

(V m)′′(r) +
n− 1

r
(V m)′(r) + βrV ′(r) + αV (r)

=
( 2A

m− 1

( 2Am

m− 1
− β

)
r2V 1−m(r) +

(
α− 2Amn

m− 1

))
V (r).

It follows from 2Am
m−1 < β that there exists some η1 > 0 such that for any 0 < η < η1,

(Um)′′(r) +
n− 1

r
(Um)′(r) + βrU ′(r) + αU(r) < − (p− pc)α

2(p+ pc − 2m)
U(r)

and

(V m)′′(r) +
n− 1

r
(V m)′(r) + βrV ′(r) + αV (r) < − (p− pc)α

2(p+ pc − 2m)
V (r).

Owing to (Um)′(r) = − 2Amr
m−1 U(r) ≤ 0 and (V m)′(r) = − 2Amr

m−1 V (r) ≤ 0, we obtain
that for any 0 < η < η1, it holds

(Um)′′(r) +
n− 1

r
· |x|+ 1

|x|
(Um)′(r) + βrU ′(r) + αU(r)

< − (p− pc)α

2(p+ pc − 2m)
U(r),

(3.14)

(V m)′′(r) +
n− 1

r
· |x|+ 1

|x|
(V m)′(r) + βrV ′(r) + αV (r)

< − (p− pc)α

2(p+ pc − 2m)
V (r).

(3.15)
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From the definition of U , V and λ, µ ≥ 0, there exists η2 ∈ (0, η1) such that for
any 0 < η < η2,

rµUq−1(r) = rλV p−1(r) ≤ A−λ/2η(p−1)/(m−1)+λ/2 <
(p− pc)α

2(p+ pc − 2m)
,

which together with (3.14) and (3.15), shows that for and 0 < η < η2, (3.11) and

(3.12) hold for 0 < r <
(
η
A

)1/2
and x ∈ Rn. □

Theorem 3.3. For p > pc, there exist both nontrivial global and blow-up solutions
to (1.1)–(1.3).

Proof. It follows from Lemma 2.4 and Lemma 3.2 that (1.1)–(1.3) has a nontrivial
global solution with small initial data. Below, we prove the blowing-up properties
of solutions to (1.1)–(1.3) with large initial data. Set

w̃l(t) =

∫
Rn

(
u(x, t) + v(x, t)

)
ψl(x)dx, t ≥ 0,

where l > 1 and (u, v) is a solution to (1.1)–(1.3). According to (3.3) and the
Hölder inequality, we have

dw̃(t)

dt
≥

(∫
Rn

u(x, t)ψl(x)dx
)m(∫

Rn

(|x|+ 1)µ/(1−q)ψl(x)dx
)m(1−q)/q

×
[( ∫

Rn

u(x, t)ψl(x)dx
)q−m(∫

Rn

(|x|+ 1)µ/(1−q)ψl(x)dx
)(1−q)(q−m)/q

− C2l
n−2−m(n+µ)/q

]
+
(∫

Rn

v(x, t)ψl(x)dx
)m(∫

Rn

(|x|+ 1)λ/(1−p)ψl(x)dx
)m(1−p)/p

×
[( ∫

Rn

v(x, t)ψl(x)dx
)p−m(∫

Rn

(|x|+ 1)λ/(1−p)ψl(x)dx
)(1−p)(p−m)/p

− C2l
n−2−m(n+λ)/p

]
≥ w̃m

l (t)
(
− C2C6 + 2−(p+q)C7 min

{
w̃p−m

l (t), w̃q−m
l (t)

})
, t ≥ 0,

(3.16)
where

C6 = max
{
ln−2−m(n+µ)/q

(∫
Rn

(|x|+ 1)µ/(1−q)ψl(x)dx
)m(1−q)/q

,

ln−2−m(n+λ)/p
(∫

Rn

(|x|+ 1)λ/(1−p)ψl(x)dx
)m(1−p)/p}

,

C7 = min
{(∫

Rn

(|x|+ 1)µ/(1−q)ψl(x)dx
)1−q

,
(∫

Rn

(|x|+ 1)λ/(1−p)ψl(x)dx
)1−p}

are positive constants depending on λ, m, n, p, q and l. If (u0, v0) is so large that

C2C6 ≤ 2−(p+q+1)C7 min
{
w̃p−m

l (0), w̃q−m
l (0)

}
,

then (3.16) indicates that

dw̃l(t)

dt
≥ 2−(p+q+1)C7 min

{
w̃p

l (t), w̃
q
l (t)

}
, t > 0.

It can be proven by the same process as in Theorem 3.1 that (u, v) blows up in
finite time. □
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4. Critical case

In this section, we consider the critical case

p = pc = m+
2 + λ

n
. (4.1)

For this case, one obtains

−qn+ n+ µ = −pcn+ n+ λ = −mn+ n− 2 < 0, (4.2)

and (3.6) and (3.7) still hold. The proof is based on the following three lemmas.

Lemma 4.1. Assume that (u, v) is a nontrivial global solution to (1.1)–(1.3) with
p = pc, then there exists a constant M0 > 0 independent of t, such that∫

Rn

(
u(x, t) + v(x, t)

)
dx ≤M0, t > 0. (4.3)

Furthermore, it holds that

d

dt

∫
Rn

(
u(x, t) + v(x, t)

)
dx

≥ 1

2

∫
Rn

(
(|x|+ 1)µuq(x, t) + (|x|+ 1)λvpc(x, t)

)
dx.

(4.4)

Proof. For any sufficiently large l > 1, (3.7) implies

dwl(t)

dt
≥ wm

l (t)l−mn+n−2
(
− C4 + 2−(pc+q)C3 min

{
wpc−m

l (t), wq−m
l (t)

})
,

where wl is defined by (3.1) with θ = 0. Similar to the end of the proof of Theorem
3.1, there exists some l3 > 1, such that for any l > l3,

2−(pc+q+1)C3 min
{
wpc−m

l (t), wq−m
l (t)

}
≤ C4,

i.e.

wl(t) ≤ max
{(

2pc+q+1C−1
3 C4

)1/(pc−m)
,
(
2pc+q+1C−1

3 C4

)1/(q−m)}
. (4.5)

Let l → +∞ in (4.5); then, we can obtain (4.3).
From the Hölder inequality and (4.3), we obtain that for any l ≥ 1,∫
B2l

um(x, t)∆ψl(x)dx =

∫
B2l\Bl

um(x, t)∆ψl(x)dx

≥ −C1

l2

∫
B2l\Bl

um(x, t)ψl(x)dx

≥ −C1

l2

(∫
B2l\Bl

uq(x, t)ψl(x)dx
)(m−1)/(q−1)(∫

B2l\Bl

u(x, t)ψl(x)dx
)(q−m)/(q−1)

≥ −C1

l2

(∫
Rn

(|x|+ 1)µuq(x, t)ψl(x)dx
)(m−1)/(q−1)

×
(∫

Rn

(
u(x, t) + v(x, t)

)
dx

)(q−m)/(q−1)

≥ −C8

l2

(∫
Rn

(|x|+ 1)µuq(x, t)ψl(x)dx
)(m−1)/(q−1)

and∫
B2l

vm(x, t)|∆ψl(x)|dx ≥ −C8

l2

(∫
Rn

(|x|+ 1)λvpc(x, t)ψl(x)dx
)(m−1)/(pc−1)

,
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where C8 > 0 is a constant independent of l. Substituting the above two inequalities
into (3.2) yields that for t > 0,

dwl(t)

dt
≥

(∫
Rn

(|x|+ 1)µuq(x, t)ψl(x)dx
)(m−1)/(q−1)

×
(
− C8

l2
+
(∫

Rn

(|x|+ 1)µuq(x, t)ψl(x)dx
)(q−m)/(q−1))

+
(∫

Rn

(|x|+ 1)λvpc(x, t)ψl(x)dx
)(m−1)/(pc−1)

×
(
− C8

l2
+
(∫

Rn

(|x|+ 1)λvpc(x, t)ψl(x)dx
)(pc−m)/(pc−1))

.

By letting l → +∞, (4.4) is obtained. □

Lemma 4.2. Under the assumption of Lemma 4.1, there exist three positive con-
stants M1, M2, M3 > 0 independent of l and t, such that for any sufficiently large
l > 1,

dwl(t)

dt
≥Mm−τ

1 l−mn+n−2wm−τ
l (t)

(
−M2

(∫
B2l\Bl

(u(x, t) + v(x, t))ψldx
)τ

+M
−(m−τ)
1 M3 ·min

{
wpc−m+τ

l (t), wq−m+τ
l (t)

})
,

(4.6)

where

0 < τ < min
{pc −m

pc − 1
,
q −m

q − 1

}
.

Proof. It is easy to verify that

n− 2− m(n+ µ)

q
+
τ(µ− (q − 1)n)

q
=

(−qn+ n+ µ)(q −m+ τ)

q
, (4.7)

n− 2− m(n+ λ)

pc
+
τ(λ− (pc − 1)n)

pc
=

(−pcn+ n+ λ)(pc −m+ τ)

pc
. (4.8)

Using the Hölder inequality, we obtain that for any sufficiently large l > 1,∫
B2l

um(x, t)∆ψl(x)dx =

∫
B2l\Bl

um(x, t)∆ψl(x)dx

≥ −C1l
−2

∫
B2l\Bl

um(x, t)ψl(x)dx

≥ −C1l
−2

(∫
B2l\Bl

(|x|+ 1)−(m−τ)µ/(q−m−(q−1)τ)dx
)(q−m−(q−1)τ)/q

×
(∫

B2l\Bl

(|x|+ 1)µuq(x, t)ψl(x)dx
)(m−τ)/q(∫

B2l\Bl

u(x, t)ψl(x)dx
)τ

≥ −C9l
n−2−(n+µ)m/q+τ(µ−(q−1)n)/q

(∫
Rn

(|x|+ 1)µuq(x, t)ψl(x)dx
)(m−τ)/q

×
(∫

B2l\Bl

u(x, t)ψl(x)dx
)τ

,∫
B2l

vm(x, t)|∆ψl(x)|dx



12 Y. NIE, Y. LENG, X. ZHAO, Q. ZHOU EJDE-2025/21

≥ −C9l
n−2−(n+λ)m/pc+τ(λ−(pc−1)n)/pc

(∫
Rn

(|x|+ 1)λvpc(x, t)ψl(x)dx
)(m−τ)/pc

×
(∫

B2l\Bl

v(x, t)ψl(x)dx
)τ

,

where C9 > 0 is a constant independent of l. Substituting the above two inequalities
into (3.2) with θ = 0, then using (3.4), (3.5), (4.2), (4.7) and (4.8), one gets that

dwl(t)

dt

≥ −C(m−τ)/q
3 C9l

−qn+n+µ
(∫

Rn

u(x, t)ψl(x)dx
)m−τ(∫

B2l\Bl

u(x, t)ψl(x)dx
)τ

− C
(m−τ)/pc

3 C9l
−pcn+n+λ

(∫
Rn

v(x, t)ψl(x)dx
)m−τ(∫

B2l\Bl

v(x, t)ψl(x)dx
)τ

+ C3l
−qn+n+µ

(∫
Rn

u(x, t)ψl(x)dx
)q

+ C3l
−pcn+n+λ

(∫
Rn

v(x, t)ψl(x)dx
)pc

≥ −Mm−τ
1 C9l

−mn+n−2wm−τ
l (t)

(∫
B2l\Bl

(
u(x, t) + v(x, t)

)
ψl(x)dx

)τ

+ 2−(pc+q)C3l
−mn+n−2 min{wpc

l (t), wq
l (t)}, t > 0.

Thus, (4.6) holds forM1 = max
{
C

1/pc

3 , C
1/q
3

}
,M2 = C9 andM3 = 2−(pc+q)C3. □

Lemma 4.3. Under the assumption of Lemma 4.1, there exists a constant M4 > 0
independent of l and t, such that for any sufficiently large l > 1,

d

dt

∫
Rn

(
u(x, t) + v(x, t)

)
ϕl(x)dx

≤ 2

∫
Rn

(
(|x|+ 1)µuq(x, t) + (|x|+ 1)λvpc(x, t)

)
dx

+M4l
(pc(n−2)−m(n+λ1))/(pc−m),

(4.9)

where

ϕl(x) = 1− ψl(x), x ∈ Rn.

Proof. Let ξ ∈ C∞
0 (Rn) satisfy 0 ≤ ξ(x) ≤ 1 for x ∈ Rn, ξ(x) = 1 if |x| < 2 and

ξ(x) = 0 if |x| > 3. For k ≥ l > 0, denote

ξk(x) = ξ
(x
k

)
, x ∈ Rn.

Obviously,

|∇ϕl(x)| ≤
C10

l
, |∆ϕl(x)| ≤

C10

l2
, |∆ξk(x)| ≤

C10

k2
, x ∈ Rn,
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where C10 > 0 is a constant independent of l and k. From Definition 2.1, we obtain

d

dt

∫
Rn

(
u(x, t) + v(x, t)

)
ϕl(x)ξk(x)dx

≤
∫
Rn\Bl

um(x, t)∆(ϕl(x)ξk(x))dx+

∫
Rn

(|x|+ 1)µuq(x, t)ϕl(x)ξk(x)dx

+

∫
Rn\Bl

vm(x, t)∆(ϕl(x)ξk(x))dx+

∫
Rn

(|x|+ 1)λvpc(x, t)ϕl(x)ξk(x)dx

≤
∫
B2l\Bl

um(x, t)|∆ϕl(x)|dx+

∫
B3k\B2k

um(x, t)|∆ξk(x)|dx

+

∫
Rn

(|x|+ 1)µuq(x, t)dx+

∫
B2l\Bl

vm(x, t)|∆ϕl(x)|dx

+

∫
B3k\B2k

vm(x, t)|∆ξk(x)|dx+

∫
Rn

(|x|+ 1)λvpc(x, t)dx.

(4.10)

Owing to the Hölder inequality, one obtains∫
B2l\Bl

um(x, t)|∆ϕl(x)|dx

≤
(∫

B2l\Bl

(|x|+ 1)−mµ/(q−m)|∆ϕl(x)|q/(q−m)dx
)(q−m)/q

×
(∫

B2l\Bl

(|x|+ 1)µuq(x, t)dx
)m/q

≤ C11l
n−2−m(n+µ)/q

(∫
B2l\Bl

(|x|+ 1)µuq(x, t)dx
)m/q

,

(4.11)

∫
B2l\Bl

vm(x, t)|∆ϕl(x)|dx

≤ C11l
n−2−m(n+λ)/pc

(∫
B2l\Bl

(|x|+ 1)λvpc(x, t)dx
)m/pc

,

(4.12)

where C11 > 0 is a constant independent of l and k. Similarly, one gets∫
B3k\B2k

um(x, t)|∆ξk(x)|dx

≤ C10

k2

∫
B3k\B2k

um(x, t)dx

≤ C10

k2

(∫
B3k\B2k

uq(x, t)dx
)(m−1)/(q−1)(∫

B3k\B2k

u(x, t)dx
)(q−m)/(q−1)

≤ C10

k2

(∫
Rn

(|x|+ 1)µuq(x, t)dx
)(m−1)/(q−1)(∫

Rn

u(x, t)ϕl(x)dx
)(q−m)/(q−1)

,

(4.13)∫
B3k\B2k

vm(x, t)|∆ξk(x)|dx

≤ C10

k2

(∫
Rn

(|x|+ 1)λvpc(x, t)dx
)(m−1)/(pc−1)(∫

Rn

v(x, t)ϕl(x)dx
)(pc−m)/(pc−1)

.

(4.14)
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Substituting (4.11)–(4.14) into (4.10) implies that

d

dt

∫
Rn

(u(x, t) + v(x, t))ϕl(x)ξk(x)dx

≤ C11l
n−2−m(n+µ)/q

(∫
B2l\Bl

(|x|+ 1)µuq(x, t)dx
)m/q

+
C10

k2

(∫
Rn

(|x|+ 1)µuq(x, t)dx
)(m−1)/(q−1)(∫

Rn

u(x, t)ϕl(x)dx
)(q−m)/(q−1)

+

∫
Rn

(|x|+ 1)µuq(x, t)dx

+ C11l
n−2−m(n+λ)/pc

(∫
B2l\Bl

(|x|+ 1)λvpc(x, t)dx
)m/pc

+
C10

k2

(∫
Rn

(|x|+ 1)λvpc(x, t)dx
)(m−1)/(pc−1)(∫

Rn

v(x, t)ϕl(x)dx
)(pc−m)/(pc−1)

+

∫
Rn

(|x|+ 1)λvpc(x, t)dx.

Letting k → +∞ in the above inequality yields

d

dt

∫
Rn

(
u(x, t) + v(x, t)

)
ϕl(x)dx

≤ C11l
n−2−m(n+µ)/q

(∫
B2l\Bl

(|x|+ 1)µuq(x, t)dx
)m/q

+

∫
Rn

(|x|+ 1)µuq(x, t)dx

+ C11l
n−2−m(n+λ)/pc

(∫
B2l\Bl

(|x|+ 1)λvpc(x, t)dx
)m/pc

+

∫
Rn

(|x|+ 1)λvpc(x, t)dx.

From the Young inequality and

(q(n− 2)−m(n+ µ))/(q −m) = (pc(n− 2)−m(n+ λ))/(pc −m),

we obtain that

d

dt

∫
Rn

(
u(x, t) + v(x, t)

)
ϕl(x)dx

≤ m

q

∫
B2l\Bl

(|x|+ 1)µuq(x, t)dx+
q −m

q
C

q/(q−m)
11 l(q(n−2)−m(n+µ))/(q−m)

+

∫
Rn

(|x|+ 1)µuq(x, t)dx+
m

pc

∫
B2l\Bl

(|x|+ 1)λvpc(x, t)dx

+
pc −m

pc
C

pc/(pc−m)
11 l(pc(n−2)−m(n+λ))/(pc−m) +

∫
Rn

(|x|+ 1)λvpc(x, t)dx

≤ 2

∫
Rn

(
(|x|+ 1)µuq(x, t) + (|x|+ 1)λvpc(x, t)

)
dx+M4l

(pc(n−2)−m(n+λ))/(pc−m),

where

M4 = max
{q −m

q
C

q/(q−m)
11 ,

pc −m

pc
C

pc/(pc−m)
11

}
.

□
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Theorem 4.4. The nontrivial solution to (1.1)–(1.3) with p = pc blows up in finite
time.

Proof. We prove this theorem by contradiction. Assume that (u, v) is a nontrivial
global solution to (1.1)–(1.3) with p = pc. Set

Λ = sup
l>1,t>0

wl(t) = sup
t>0

∫
Rn

(
u(x, t) + v(x, t)

)
dx. (4.15)

From (4.3) and the nontriviality of (u, v), 0 < Λ < +∞. Owing to (4.15), for any
0 < ε < Λ, there exist l0 > 1 and t0 > 0 such that

wl0/2(t0) ≥ Λ− ε.

From (4.4) and (4.15), we obtain

1

2

∫ +∞

t0

∫
Rn

(
(|x|+ 1)µuq(x, t) + (|x|+ 1)λvpc(x, t)

)
dxdt

≤
∫
Rn

(
u(x, t) + v(x, t)

)
dx

∣∣∣t=+∞

t=t0
≤ Λ− wl0/2(t0) ≤ ε.

For any s ≥ t0, (4.9) gives∫
Rn

(
u(x, s) + v(x, s)

)
ϕl0/2(x)dx

≤ 2

∫ s

t0

∫
Rn

(
(|x|+ 1)µuq(x, t) + (|x|+ 1)λvpc(x, t)

)
dxdt

+M4

(1
2
l0

)(pc(n−2)−m(n+λ))/(pc−m)

(s− t0)

+

∫
Rn

(u(x, t0) + v(x, t0))ϕl0/2(x)dx

≤ 4ε+M4

(1
2
l0

)(pc(n−2)−m(n+λ))/(pc−m)

(s− t0)

+

∫
Rn

(
u(x, t0) + v(x, t0)

)
dx− wl0/2(t0).

≤ 5ε+M4

(1
2
l0

)(pc(n−2)−m(n+λ))/(pc−m)

(s− t0).

Letting l = l0 in (4.6) and combining it with the above inequality, we have

dwl0(t)

dt
≥Mm−τ

1 l−mn+n−2
0 wm−τ

l0
(t)

×
(
−M2

(
5ε+M4

(1
2
l0

)(pc(n−2)−m(n+λ))/(pc−m)

(s− t0)
)τ

+M
−(m−τ)
1 M3 ·min

{
wpc−m+τ

l0
(t), wq−m+τ

l0
(t)

})
.

Taking ε0 ∈ (0,Λ) and M5 > 0 such that

M2(5ε0 +M5)
τ ≤ 1

2
M

−(m−τ)
1 M3 min

{
(Λ− ε0)

pc−m+τ , (Λ− ε0)
q−m+τ

}
with 0 < τ < min

{
pc−m
pc−1 ,

q−m
q−1

}
, one obtains

dwl0(t)

dt
≥ 1

2
M3l

−mn+n−2
0 ·min

{
wpc

l0
(t), wq

l0
(t)

}
, t0 < t < t1, (4.16)
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where

t1 = t0 +
M5

M4

(1
2
l0

)−(pc(n−2)−m(n+λ))/(pc−m)

.

Integrating (4.16) over (t0, t1) with respect to t leads to

wl0(t1) ≥ wl0(t0) +
1

2
M3l

−mn+n−2
0 min

{
(Λ− ε0)

pc , (Λ− ε0)
q
}
(t1 − t0)

≥ wl0(t0) + 2(pc(n−2)−m(n+λ))/(pc−m) min
{
(Λ− ε0)

pc , (Λ− ε0)
q
}

× M3M5

2M4
l
−mn+n−2−(pc(n−2)−m(n+λ))/(pc−m)
0 .

Noting that

−mn+ n− 2− (pc(n− 2)−m(n+ λ))/(pc −m) = 0,

one has ∫
Rn

(
u(x, t1) + v(x, t1)

)
dx ≥ wl0(t1) ≥ wl0(t0) + δ0 ≥ Λ− ε0 + δ0

with

δ0 =
M3M5

2M4
min

{
(Λ− ε0)

pc , (Λ− ε0)
q
}
2(pc(n−2)−m(n+λ))/(pc−m)

being a positive constant independent of l0. Obviously,

w(2l0)/2(t1) = wl0(t1) ≥ Λ− ε0 + δ0 ≥ Λ− ε0.

The same argument leads to∫
Rn

(
u(x, t2) + v(x, t2)

)
dx ≥ w2l0(t2) ≥ w2l0(t1) + δ0 ≥ Λ− ε0 + 2δ0,

where

t2 = t1 +
M5

M4
(l0)

−(pc(n−2)−m(n+λ))/(pc−m).

Repeating the above process, one gets that for any positive integer i,∫
Rn

(
u(x, ti) + v(x, ti)

)
dx ≥ w2i−1l0(ti) ≥ w2i−1l0(ti−1) + δ0 ≥ Λ− ε0 + iδ0

with

ti = ti−1 +
M5

M4
(2i−2l0)

−(pc(n−2)−m(n+λ))/(pc−m).

Letting i→ +∞ implies

sup
t>0

∫
Rn

(
u(x, t) + v(x, t)

)
dx = +∞,

and this contradicts (4.3). □
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