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CONCENTRATION-DIFFUSIVE EQUATIONS AND A
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ABSTRACT. In this article, we consider a model coupled with the Brinkman
heat-convective and concentration-diffusive equations for a mixed gas flow in a
porous media. The specificity of this model lies in the presence of a volumet-
ric mass source depending on temperature and concentration in mass balance
equation. We will prove the existence and uniqueness of the smooth local solu-
tions for the 3-D Cauchy problem. As a byproduct, we show the convergence
of the approximate solutions based on an iteration scheme.

1. INTRODUCTION

The fundamental model we study is based upon the Brinkman equation for the
mixed gas flow and the concentration-diffusive equation for the gas concentrations
in porous media. These make it possible to model the performance of the adsorp-
tion column in a portable oxygen concentrator (see [19]), and the heat-convective
equation for the temperature. Thus, let p(z,t),u(x,t), 8(x,t) and w;(z,t) be the
density, velocity, temperature of gas mixture and the concentration of i-gas compo-
nent, respectively, where x is the position, ¢ denotes time and ¢ = 1,2,...,n. Then,
the balance equations of mass, momentum and concentrations are

pt + div(pu) = Qo(w, 0),
(pu), +div(pu®u) + VP + o 'u = 2udivD(u) + vV divu, (1.1)
w; —dfAw + (u, V)w + wdivu = S(w, 0),
where w = (w1, ...,w,). The balance equation of energy is

(pE): + div(puE + Pu) = kA0 + div (QMD(u)u + vdiv uu) +Q1(w,0), (1.2)

where Qo(w, 0) is the mass source, o > 0 denotes the permeability of the porous
medium, ¢ > 0 and v > 0 are the shear and bulk viscosities, respectively, d; > 0
is the dispersion coefficient, S(w, ) = (S1,...,S,), S; is the concentration deposit
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rate of i-gas component, F = e + %uQ is the specific total energy, e is the specific
internal energy, k > 0 is the heat-conducting coefficient, Q1 (w, 6) is the heat source,
and D(u) is the deformation tensor given by

D(u) = 5 (Vu + (Vu)").

where (Vu)? denotes the transpose of matrix Vu. The mass source Qo(w,0),
the heat source Q1(w, ) and the concentration deposit rate, S(w, #) are the given
smooth functions for the gas concentration w and the temperature 6. Also, for the
pressure P and the internal energy e, we assume that

P=P(p,0;w), P,(p,0;w)>0, P, (p,6;w)>0, (1.3)
e=e(p,0), egp(p,0)>0. (1.4)
The specificity of the system ((1.1]) lies in the presence of the mass source Q.

If we set Qo = 0 and p = 1, then the system (l.1)); and (L.1)2 reduces to the
Brinkman equation

divu =0,

1.5
W — pAu+ (u-V)u+ VP +a tu=0, (1.5)

which was first proposed by Brinkman [2] in 1947. The system describing the
viscous flow of incompressible fluids in porous media was extensively investigated
in the last several decades (see, e.g., [20] Bl 22| 24 18], 27, 13| 111, 14} [15] 17, 25| 26]
and references therein). However, the studies in above works depend essentially on
the fact that the velocity is solenoidal, that is, divu = 0.

Recently, the diffusive interface model for tumor growth have been developed
and analyzed, which reduces to the system

divu = Si(p, x),
—pAu —vVdivu+ VP +a tu=(J+¢)Vy,
xt + div(xu) = mAJ + Sa(¢,x), J=-Ax+ ¥ (x) — xe,
ot — dfAp + div(pu) = S3(e, x),

(1.6)

which consists of the Brinkman equation with mass source (for fluid flow), Cahn-
Hilliard (for the tumor density) and reaction-diffusion (for the nutrient or other
chemical factors) equations. The model is a description of the evolution of a
two-phase cell mixture, containing tumour cells and healthy host cells, surrounded
by a chemical species acting as nutrients only for the tumour cells, and is trans-
ported by a fluid velocity field. The variable x denotes the difference in the volume
fractions of the cells, with the region {x = 1} representing the tumour cells and
{x = —1} representing the host cells, while ¢ denotes the concentration of the nu-
trient. The fluid velocity wu is taken as the volume averaged velocity, with pressure
p, and J denotes the chemical potential associated to x. Also, the function ¥ is
potential energy density and S;(i = 1,2,3) are generic source terms that can be
specified depending on the application (see [8, [I2] for more details in the model
derivation).

An interesting feature of the system is that the velocity is not solenoidal,
that is, divu # 0. Recently, considerable progress has been obtained for the theo-
retical and numerical studies of the system . The existence of weak solutions
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was established in [5] and the analysis of weak and stationary solutions of this sys-
tem with singular potentials was considered in [7]. Numerical investigations can be
found in [9]. A simplified version of this model was investigated in [6], where the
time derivative and the convection term in the nutrient equation are neglected. For
this model, the authors proved strong well-posedness and showed that the solutions
converge to the corresponding Cahn-Hilliard-Darcy model, that is, the system
with p=v =0.

On the other hand, there are a few results concerning the Brinkman equation
with non-constant density. If we set Qo = 0, o = a = 1 and v = 0, and assume
that the terms u; and (u- V)u vanish, then the system 1 and 2 reduces to
the system

pt +div(pu) =0, Au—u= Vp,
where p = p(p), which is equivalent to

pe = div (p(1 = A)~'Vp(p)) . (1.7)

For Cauchy problem of the system , the existence of the strong and smooth
solutions was proved in [I] for 1-D case and in [I6] for multi-D case, respectively.
In [23], the existence of weak solutions was established for Cauchy problem of the
following 1-D regularized Brinkman equation

pt = Ozap + Oy (P(l - 3m)*1az(p2)) .

Although considerable progress has been obtained for the mathematical studies
concerning the Brinkman equation in different settings, most of these results are
obtained for the case where the fluid density is constant. Moreover, there is little
result for the full system except for [19], where they employed the model to
simulate the microporous adsorption of nitrogen in a portable oxygen concentrator
by using COMSOL Multiphysics. Thus, we will prove the existence and uniqueness
of the smooth solutions to the 3-D Cauchy problem for the general system ,
[L2).

More precisely, we consider the system , in R? with the initial condi-
tions

(p7u7waa)(m50) = (p07u07W0700)(I) — (5507‘7‘/?0_) as |.’,E‘ — 00, (18)

where p,w = (w1, ...,wW,), 0 are given positive constants.

Notation. L?(R?) and W} (RR?) denote the usual Lebesgue and Sobolev spaces on

R?, with norms | - [[z» and || - ||, respectively. When p = 2, we denote Wr(R3)
by H*(R?) with the norm |- || z» and || - ||zo = || - || will be used to denote the usual
L?—norm. The notation ||(A1, Aa, ..., A;)| g+ means the summation of || A;]| g«

from ¢ = 1 to ¢ = [. For an integer m, the symbol V" denotes the summation of all
terms D® with the multi-index « satisfying |a| = m. We omit the spatial domain
R3 in integrals for convenience.

The main result of this paper can be stated as follows.

Theorem 1.1. Assume (1.3)), (1.4) and
Qo(w,0) =0, S(w,0)=0, Qi(w,0)=0. (1.9)
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Suppose that the initial data pg, g, w0 satisfy

(pO — p,up, Wo — W,oo - 0_) € HN(RS)v

. . . (1.10)
x1€r1]1£3 po(z) >0, xlélﬂgs wo(z) >0, xlélﬂgs Oo(x) >0

for an integer N > 3. Moreover, there is a constant My, such that pg,ug, Wo, 0y
satisfy

H(po—ﬁ,llo,Wo—W,Qo—é)HHN SM(). (1.11)

Then, there exist constants Ty and C depending on My such that the unique smooth

solution (p,u,w,0) of the Cauchy problem (L.1)), (1.2) , (1.8) exists on the time
interval [0, To] with the properties:

(,0 —pu,w— Wae - 0_) € C([OaTO];HN(RB))v Vﬂ € L2(OaTO; HN(Rg)),

1.12
u e L*(0,Ty; HNTH(R?)), (Vw,V0) € L*(0,Ty; HY (R?)) (1.12)
and
t
e 1] N 7
\ . 0 (1.13)
+ [ alfmtr + [ (w90 far < €
for all t € [0, Tp)].
Remark 1.2. Assumption come from system satisfying
= — iM;i(w; — w;),
Qo(w) ;a (wi —w;) (1.14)

S,' = Oéi(’wi — wi), 1= 1,2, ey S(W) = (51,82,...,Sn),

where «; > 0 is the macroscopic mass transfer rate of i-gas component into ze-
olite particles, and M; > 0 and w; > 0 are the molecular weight and the mean
concentration of i-gas component, respectively (see [19, (4) and (12)]).

Next, we show the convergence of the approximate solutions based on the iter-
ation scheme. To this end, we first reformulate the Cauchy problem (1.1}, (1.2) ,

(T8). By using (L)1, E = e(p, 0) + % and
div(pu ® u) = div(pu)u + p(u, V)u,
we rewrite (1.1)2 and as
pu; + p(u, V)u+ Qo(w,0)u + VP + a 'u= pAu+ (u +v)Vdivu,
pet—i—pu-Ve—l—Qo(w,Q)(e—ku;) + Pdivu (1.15)
= Qo(w,0)u’® + a 'u® + KAO + 2uD(u) : D(u) + A(divu)? + Q1 (w, 6).
By using the thermodynamical relation

7P26p(pa 0) = 0P (p,0; w) — P(p,0; w)
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(see [10, (1.6)]), we rewrite (1.15))> as
OPy(p,0;w) .. K
0 -Vo+ ————=d ——FAf
N 0.0 T peal,0)
2uD()'IXu)+A(&VUV Q1(w,0) (1.16)
(p,9) pee(p,ﬂ) peo(p, 0)
1
ot (iQo 2ol — Qo(w, 0)e(p,6)).

Setting

p=p—p M=wW-W, C:0—9
and using assumption 7 we rewrite system 1, 17 3, as
follows:

wt + ﬁdivu +u- VSD - VWQO(V_Vaé) cm — QB@(W7é)C = G1(<p,u, m, C)a

ut——A —t)\Vdivu+i7u+MV<p
p ap p
Py(p, 0;w " P,.(p,0;w
+ 9(p7_7w)v<+z 1( > W)va
i=1 P
= G2(<p7 u7 m7 C)?
—dfAm + wdivu — Dy S(W,0)m — Sj(Ww,0)¢ = Gs(p,u, m, (), (1.17)
0P(p,0; w) diva

pee(p79) ~ ~

~ peolp, 0) peo(p,0)
e(p,0)

+ m(vaO(w;é) m + QOH( )C) +G4(sﬁ,u m, C)

where Dy S(W,0) = (aséf,é))" ,
i Jig=1

G1(<P7 u, m, C)
_ e e L (1.18)
= —pdivu+ (Qo(w,6) — Qo(¥, ) = VuQo(W,0) - m — Qhy(w,0)C),
GQ(QO,II,III,C)
7(“3 V)u - (QO(W7 9) - QO(Wa 0_))“ + h1(90, Ca m)th + h2(§07 g, m)VC
+ 3 hailp G m)Vm; = ha(g) (Au+ (4 + )V diva) + a0~ ha(p)u,
i=1
Il Gom) = TP Bl ), (1.19)
hg(@,(,m) _ P@(ﬁa gv W) _ PQ(p7p0’W),
hSi(@;Cym): Pwi(ﬁ107w) _ Pwi(p,ﬂ;w), h4(§0) 17 1
p p PP
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G3(903 u, 1m, C)

—(u,V)m — mdivu + (S(w, 0) — S(w,0) — DWS(w, 0)m — S} (W, e’)g),
(1.20)

EJDE-2025/23

and
G4(SO7 u, m, C)
= —u- V¢ - khs(p, OAC — o, C,m )divu

2uD (u) : D (u)  A(divu)® <1 (w,0) +a- >u2
peq(p, 0) pea(p0) e (p,0

2

+h5<PC(Q1 le-vé) hmoC( w.0))

(Ql —Q1(W,0) — V@1 (W,0) - m — Q19‘7V9_C)
)

€ )
pop (1.21)

(Qo W,0) = VuQo(W, 0) - m — Qpy(w,0)C ),
halp.C) = 1
TN G5, 0)  pealp.6)’
0P (p,0;w) _ 0P(p,0;w)
h 6, M) =
(o ¢m) pea(p,0) peo(p,0)
e(p,9) e(p,9)
hr(p, () = ——%- — )
"eid) peo(p,0)  pea(p,0)
Also, the initial condition is reformulated as
((pauam,C)(an) = (@Ovuo,mOaCO)(x)
= (po(z) — p,ug, wo — W, 0p(z) — 6) .

Based on the above reformulation, we construct the following iteration scheme:

" es (p,0

—

(1.22)

Pt + ﬁdivu + uj_l ! VSO - Von(W,é) cm — Qé)@(w7 é)(
=Gl<soﬂ‘-%uj-1 i, ¢,

utfﬁA levu+iu+$V@
p p ap p
(

Py(p, 0; w 0, (P, 0; W
—l—epw)V(—i—ZMVmi

7
MR
]l

= GQ(SOJ_ 7uj_17m] 17<j_1)7

—dyAm + wdivu — Dy, S(W, 0)m — Sy(w, )¢

j—1 j—1 j—1 j—1
= G3(30J 7uJ 7mj 7<J )7

0P9(ﬁ30_aw) .
ey
K val(W,é) -m + Qlle(v_v?é)c
= —A
peo(p, 3)_ o pea(p,0)
+ _e(p’_e), (VWQO(Waé) m+Q69(W7§)<) +G4(SOJ Y 1,mJ*1,CJ71)’
peq(p,0)
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(p,u,m,()(x,0) = (o, ug, mg,{p)(x), x €9, (1.23)
for each fixed (@/~1,w/=1, m/~1 ¢971) € Xn(0,t9), j =1,2,..., where
(%, u®,m®,¢%) = (o, ug, mo, o)
and
Xn(0,t0) = {(p,u,m, ) € O([0,20); HY (R%)) : Vip € L2(0,10; HY " (R?)),
u € L*(0,to; HNTH(R?)), (Vm, V() € L*(0,t0; HY (R?)) }.

Theorem 1.3. Let {(¢/,u/,m7,(7)}3°, be the sequence of the approzimate sulu-
tions given by the iteration scheme (1.23|). Then, under the assumptions of Theorem

it holds that
(¢, v/, m?, (7)) = (p,u,m,() *weak in L0, Ty; HY (R?)),
w —u  weak in L?(0, Ty; HVNTL(RY)),
(Vm’,V¢T) = (Vm, V() weak in L*(0,Ty; HY (R?)),
(¢?, 0, m?, ¢7) = (p,u,m,¢) strong in L*(0, To; Hiv *(R?)),

where HY "1 (R3) denotes the space HN=1(Q) for any bounded domain Q of R3,

loc

and (p,u,m, () is the smooth unique solution to the Cauchy problem (1.17)), (1.22)
on [0, Ty satisfying (1.12]).

Before finishing this section, we recall the following useful Lemmas which we will
use extensively.

Lemma 1.4 ([]). Let Q =R%, sy > s and sy > s be such that either

11 1 11
31+82—32d(—+f—7)20, sj—s>d(f—f), =12
q1 q2 q q; q
or
11 1 11
31—|—82—s>d<—+f—*>20, sj—szd<f—7), =12,
q1 q2 q q; q

then (u,v) — u-v is a continuous bilinear map from W71 (2) x Wi1(Q) into W7 ().

Lemma 1.5 ([2I, Lemma 2.5]). Let f(¢) and f(p,w) be smooth functions of ¢

and (@, w), respectively, with bounded derivatives of any order, and ||| g (rs) +
lw]| L msy < C. Then for any integer m > 1, we have
IV f(@)llr < CIV™ @l Lr,

V™ flp,w)lr < CIV™ (@, w)]|Le,

for any 1 < p < oo, where C may depend on f and m.

(1.24)

Lemma 1.6 ([2I, Lemma 2.6]). Let @ be any multi-index with |a| = k and 1 <
p < 00. Then there exists a constant C' > 0 such that

1D (f9) e < CUS LoV gllzes + [IVF Fllzes llgllzea),
1D, Alglize < CUV Fllzor IV gllzes + [IVF Fllzes llgllLea),

where f,g € Sis the Schwartz class, 1 < pa,ps < 00 such that% = p%—&—p% = p%—l—p%,
and [D*, flg = D*(fg) — fDg.

(1.25)
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2. LINEARIZED PROBLEM

In this section, we study the linearized system

o +pdivu+ A Ve —ag-m— bl =Gy,
A A

p,,
_'l Vmi = GQ,
P

1P P, -
ut_gAu— leVu—‘ri_u‘i'TpV@'i_Tng—i_Z
p; ap p p P

- - (2.1)
m; — dfAm + wdivu — Mm — B( = Gg,

OP, a - b é _
G+ O v = S AC BTRERE | E (5 m ) + G
pPEg PEY pPeo PEo

where A,G1, Gy, Gs and G4 are the given functions, and we used the following

notations: 8y = VwQo(W,0), by = Q4p(W,0), P, = P,(p,0; W), Py = Py(p,0; W),
RU;’ = Rvi(ﬁv é;W), M = DWS(Wa0_>7 B = S’Q(W,é)7 ep = eo(p, é)’ e = e(p, g)a
a; = VWQ1<W, é) and Bl = Q/w(W, é)

We first consider an estimate for the linearized system .

Theorem 2.1. Let 0 < T < oo. Assume that (o, ug, mg, (o) € HY(R3) for an
integer N > 3. Also, suppose that

A€ L>0,T; HN(R?), Gy e L*(0,T;HY(R?))

2.2
Gy, G3, Gy € L2(0,T; HNH(R?)). (22)

Let

(p,u,m,¢) € C([0,T); HN(R?)), Vg e L*(0,T; HN ' (R?)),

uec L20,T; HNTYR?)), (Vm, V() € L3(0,T; HY (R?)) (2:3)

and (p,u,m, () be a solution of (2.1)). Then there exist positive constants Cy and
cp, independent of t, such that

t t t
s, m, ) (6) 2w + / IV l2prdr + / lalZmsrdr + / 1(Vm, V)2 dr
T
< o[l m OO + [ (1l + /(G G Go) ) ]
T 2 T
[ el At [ (1 A ar]
0

(2.4)
for each t € 10,T].



EJDE-2025/23 LOCAL SOLUTIONS FOR A BRINKMAN SYSTEM

Proof. Applying V* to (2.1)) yields
VF e, + pdiv VFu + v (A : w) — &y - VFm — b VFC = VEG,

A
Vi, — EAVRa — B2V div VEu - v’“
p p

P P, »
_’_?ka-ﬁ—l GVHIC‘FZ 1vk+1m _vaQ’
i=1
VFm,; — d;AVFm + w div VFu — MV*m — BV*¢ = VG,
Ve, + PP gy vk T aphe B VIm A bV
peo peo peo
e

— — (2 VFm + B V() = VAGy,
peo
where £ =0,1,..., N.

Multiplying [2.5), by V*u and using (2.5)),, we have

1 .
(Hvk 1% + §||vk<p||2) +5/(u|vk“u|2+()\+,u)|d1vvku|2) da

2dt

p 'LU
+ _—2||Vku||2 -2 /ngdivvkudx— — /Vkm div VFudz
ap p —

P _
- FQ/V%(EO ' Vkm—l—bovkg)dx
k k b, k ok b, . k(2
= | V'Gy-V udw—i—? VeV Glal:r—ﬁ—2 div A|VTp|* dx

— ,]; / [Vk A} -VeVFodr,

where we used
VM (A V) =A -VVFp— [VF A] Vo

Multiplying (2.5), by ( ffl VEma,. .., F_)Z_’)" VFEm ), we have

n p _w
Z (thHVkmsz + dg || VF T my| ) —I—Z — /leVkquml dx

— / (kam + BVI“C) . (%V’“ml, ceey {515" mn> dx

1 pwn

p, p,
= /Vng . (_—_lvkmh e, —= Vkmn)da?.
pioy pion,
Multiplying (2.5)), by %"Vkﬁ , we have

69 d
20 dt
1
20

= ?/VkGQVdex.

P |
Zvk¢)? + ,vag“u?@ / div VFuv*C da

(a1 Vkm+b1VkC)Vdex+—/ a -V m—l—boVkC)Vdex

(2.5)

(2.6)

(2.7)

(2.8)
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Adding (2.6)-(2.8]) yields

1d = P, é
vk 2 ,0 vk 2 Wi vk 112 Te vk 2)
3 (174 + 195l + 3 e im + 195

EJDE-2025/23

1 1
+ = VEul? + (A + divVFul?) dz + — ||VFu|)?
; J 9 o ] div V) de+ |9l 29

d Pwl
+Z L IV P+ S5V R

:Jk+Jk+Jk7

where

Jh = 7/ (kam + kag) : (Zj}ivkml, o 5”” Vkmn> da

Wn,
P - 1 b
_ %/V’“gp(éo-vkm+bovkg>dm— ?/ (al-v’“m+blv’“<)v’“<dm
p po

+§/(50-vkm+60vkg)vkgdx,
o

P P
JE = —ﬁ—g/divA|Vk<p|2d:c— ?g/ [Vk,A] VoV da,

p —
JP = /Vng-Vkudw—i— _—P/vkkalder %"/vk@vkgdx

w Pw
/Vk . lvkml,...7%vkmn>dx.
py
(2.10)
Summing (2.9)) for £ =0,1,..., N we obtain
1d 9
57 (Il + fusouHN +Z W+ Sl
1 d P
+ inwn%w + ﬁgnunm + T+ 5 VG (2.11)
N
<> Jh+ Z JZ + Z J3,
k=0
where Wi, = min{wy,...,w,} > 0 and P, = min{Py,...,P,} > 0 because of
(T3).
Using Hoélder inequality and (1.25)), we obtain from (2.10]) that
N N
Soa <> (198 ml + 195¢)) (Iv ] + V5] + IV5¢]))
k=0 k=0 (2.12)
< C (Il + Il + ¢ ),
N
Sy (IV Al 195l + [Vl = [V AL V46
— —~ (2.13)

< ClAlmv el



EJDE-2025/23 LOCAL SOLUTIONS FOR A BRINKMAN SYSTEM 11

and
N N-1
>t < 03 (IV*Gall [V ull + IV Gs Vil + VA Gl 74¢]))
k=0 k=0

+cZ|\val|\||vk¢||+c|/vN 'Gy - VNV udx|

. (2.14)
+O[/VN—1G4VN+1cdx\
P, P,
+C’/VN*1G3- (S, Sty i, Y da|
puy ploy,
< C(IIGlllﬂwllsollHN + (G2, G3, Ga) |l v HV(u,mC)HHw).
Substituting - into , we obtain
7’11)7; ée
(- ﬁ—Pnson%{N + Z o lmilfgs + 1€l )
2 d¢Poin K
f||Vu||HN + ol + SV + FAAQS (2.15)

< c(umnHN + ||¢\|HN + ||¢||HN) + ClA L ol
+ C(IG I + (G G G -1 ).

On the other hand, noticing that
/Vkut VRl de
d
- %/V’“u~vk+1gpdz — BV divul? - /V’“divuV’“(A~Vgp> dx
+/vk divu(éo : vkm+50vkg) der/deivquGld:v
because of 1, and multiplying ([2.5), by V**1¢ we have
d P
pr /Vku VR o da + ?’Jnvk“@n? = Jt+ T2+ p| V¥ divm)||?, (2.16)
where
P,
Jt= /VkG2~Vk+1g0dx - 4/vk+1<-vk+1¢d:¢
1 by vhHL
—— [ Vu-V

ap
A N T vz dm—l—u V div VFu - V1o da
P ¥ p 4 (2.17)

"\ P,,
—/Vk divuvaldx_Z%/Vkai-Vk+1<pdgc
i=1

- /vk divu(ao : Vkm+5()VkC) dz
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and
JP = / % divuvk(A-w) dz. (2.18)
Using Holder inequality and (| -, we obtain from (2.17) and ( - ) that
N—-1
7t < C(IGsllav-1 + 1wl + ||Vu||HN)Hso||HN
k=0
+ Cllall g~ |Gilgy-2 + Cllml[ g [l g (219)
+ Cllull g~ (mf[ rv-2 + [[Cllv-1) '
< C(IG1 3w + G v + 11,1, m, ) 1)
+ OVl llelav
and
Y <o Z IVl (AL 1950 + [Vl o V- A )
P (2.20)
< CIIAIIHNIIVHIIHN el g,
respectively.

Summing (2.16]) for £k =0,1,..., N — 1, and using and ( , we obtain
d
o [T g
dt 7
< IVullp +C(1+ AR )l (2.21)

+ C(IGI + 1G -1 + 1l (o1, m, O ).

We can assume 0 < € < 1 without loss of generality. And we choose § € (0, 1] to

be suitably small. Then, adding (2.15)) and 8 x (2.21]), we obtain

d 8P
B0+ 21Vl + (57 = 8) [Vl
2 dmeln K 2
Vm —=||V
+ ol + S Tm o+ IV 0
<o(lGuln + ||<G27G3,G4>||%1N-1)
+C(L 1Al ) (oo m. Q)
where
B(t) = ||u|\HN+ﬁZ / Vi Vs + 2 ol
(2.23)

0
7 Il

+Z

1 .
By (2:23) and (L.3)), we can choose a small 8 € (0, 3] independent € € (0, 1]
such that
B(t) = (¢, u,m, ¢)(1) | Fn (2.24)
uniformly for all ¢ € [0, T].
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Integrating (2.22)) over ¢ € [0, 7], and using (2.24), (1.3) and the smallest of 3,

we have

t t t
(o0, ) (B)| g + / IVl sdr + / T / |(Von, V&) [3ndr
t
< (o u,m, )(O)|%m +C / (14 1A ) (0.0, C) e

t
+C [ (161 B + (G2 Gau G )
0

(2.25)
Applying Gronwall inequality to (2.25)) yields
(o, w,m, Q) (#)|[7n < CAL(T)e=T, (2.26)

where

T
M (T) = e OO s + [ (16 + (G, G G v )

T
ral) = [ (14 AR )
0
By (2.25) and ([2.26)), we obtain (2.4]). The proof of Theorem is complete. [

Next, applying Theorem it is easy to prove the existence and uniqueness of
the smooth solution for the linearized system (2.1)) by the standard methods. We
will omit the proof for brevity.

Theorem 2.2. Let 0 < T < oo. Assume that (g, ug, mg, (o) € HY(R3) for an
integer N > 3. Also, suppose that (2.2) holds. Then, there exists a unique solution
(o, m,u, () of the linearized system (2.1) satisfying (2.3)) and (2.4)).

3. PROOF OF MAIN RESULTS

We first prove the existence of the smooth local solutions to the reformulated

system ((1.17)), (1.22)) using Theorem To this end, we define a set
ZM(O7 tO) = {(@7 u,m, C) € XN(Oa tO) : ||(§07 u,m, C) ||2XN(O,t0) S M7
0<my" <p+o(x,t), w+m(z,t), 0+ ((z,t) <mo}
for a positive constant mg > 1 and an integer N > 3, where
M = 4Cy| (0, up, mg, (o) ||%~, Co is the constant determined in (2.4), (3.1
and
to
om0y = s 1o m QO + [ 19olosdr
0<t<to 0 (3 2)
to t :
+ [ Il + [ 1(Vm, VO Fyvar.
0 0

Noticing that
QO(W, 0) - QO(Wa 0_) - VWQO(W’ 0_) cm — Qée(w7 é)C = O(m2 + Cz)a
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and using Lemma [1.4] and (1.24)), we have

[l v dr <€ sup @ B [ 9w s < €%,
0 0

0<t<to

and
/O [Qo(w/~1,67~1) — Qo(W,0) — VwQo(W,0) - m’ ! — Qp (W, 0)¢7 |7 ndr

<C sup ||(mj_1,€]_1)||§w/ 1=, =) [y edr < CMPtg
0

0<t<to

for (@~ w/=t m/~t (771 € ZN(0,t), j = 1,2,.... Therefore, from (1.18) we
obtain that

G1(<pj—17uj—l’mj—17<j—l) € L2(07t0§HN(R3))7
fo ji—1 -1 i—1 ~j—1Y2 2 (3'3)
[ G G B < OMA 1+ 1),
0
By using Lemma and (|1.24)), we have
| 1w e <€ s [ IV v < 0%,
>UxUto

/0 " 1(Qo(w, 6) — Qo(w, B))ul%w_rdr

<C sup [[(m?H TN Fy sup [0/ T F v ato < CM P,
0<t<tg 0<t<tg

/ I (7, ¢ mI =)V | dr
0

. . . to .
<0 s @O [ 19 ar <O
0<t<to 0

to ‘ . ' '
[ e iV e
0

<C sup (@O mI Y / VG |ywdr < CM,
0

0<t<tg

Z/ th}i(soj_lvCj_lam]_l)vmgiluzN—ldT
i=170

. . . to .
< C sup ||(90]_1,C]‘1,m3—1)||§w/ |Vm?~ 1|2,y dr < CM?,
0

0<t<to

to ) ) )
| a1 (™ 4 Gt )V v ) s
0

<C s [ i [ IV pdr < 2%
0<t<to 0

to . . . .
/ 1ha(’ =)0~ [ Fvrdr < C sup [l Mg sup [[u? MGt < CMPt
0 0<t<to 0<t<to



EJDE-2025/23 LOCAL SOLUTIONS FOR A BRINKMAN SYSTEM

15
for (p?~tw/=t, mi=t 971 € Zn(0,tg), j

= 1,2,.... Therefore, from (1.19) we
obtain , _ 4
Go(p'h /™ m? ™ 77 € L2(0, to; HYTH(R?)),

to ) ) )
/ [Ga( ™t W™t m/ =t I |12 ndr < OM2(1 + ty).
0

By similar arguments, we obtain from (1.20) and ([1.21)), respectively, that
G3(90j_17 uj_17 mj_17 Cj_1)7

(3.4)

(3.5)

16w i G s < CMP(1 - 0)
0
and

to ) ) )
/ [Ga(p? 0= m? = Y|4y adr < CMP(1 + t).
0

(3.6)
Also, we have

Wl e L°°(0,to; HY(R?)),  sup |0/~ !y~ < M. (3.7
0<t<to
From ({3.3))-(3.7) and Theorem

there exists a unique solution (¢, u/, m7, (7) €
Xn(0,to) to the linearized system (1.23) satisfying

t t
17, 0!, m?, ¢7) (8)[3x +/ IIVWII?{N—ldTJr/ Ve[ x - dr
0 0

t
+/ [(Vm?, V) |5~ dr
0

to . . . .
< Gl (9o, o, m0, Go) 3 + / (1G] B + (G G4 G i )

i coto (1+S‘1Po<t<t /=112 N)
X [1+t0<1—|— sup [u? 1”%11\1)6 = " }
0<t<to

(3.8)
for any t € [0, ¢o], where

G{_l = G1(<Pj_17 uj_17 mj_17 (j_1)7 G%_l = G2(Q0j_1a uj_17 mj_la
¢7h, GE=Gs(¢ el md T Y,

Gi_l = G4(g0j715 uj717 mj717 Cj71)7
and we used that

| (I B Jar < to (14 sup w1
0 0

<t<to )
Therefore, choosing ty small such that

0<t<tg

. cot0(1+sup Huj*lH2 )
to(l—l— sup |u’ 1||§{N)e ost=to ) <
and

t() . . . .
/0 (G o + (G G G4 i ) < (20, 0, 0, o)
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which is possible because of (3.3))-(3.7)), from (3.8)) we obtain

62 0 O + [ 19 sty + [ 190 e
o [ 1w, 90 (39
< 4Co || (0, o, mo, Co) |3~

for any ¢ € (0.1, By wsing (CI0), 5+ ¢(a.8) = po(x) + (9(a.1) — o(a.0)),

w+m(z,t) = wo(z)+(m(z, t) —m(z,0)), and (+p(z, t) = o (x)+(¢(x, 1) —((=,0)),
we can choose the small ¢ > 0 such that

myt < p+(z,t), w+m(z,t), 0+ C(z,t) < mo. (3.10)
By , , and , we obtain
(¥’ u!,m?, ¢7) € Zn(0,t0)
for j =1,2,.... Moreover, by using and , we have

{(¢7, 0, mj,Cj)}‘;';l is bounded in L>(0,to; HY (R?)),
{Vg@j};‘;l is bounded in L?(0,to; HY 71 (R?)),
{u’}32, is bounded in L*(0, to; HYNTHR3)),
{(Vm’,V(¢7)}32,  is bounded in L*(0, to; HY (R?)).

(3.11)

Also, by using (3.11)) and (3.3)-(3.7), from (1.23]) we obtain

{0:(¢? , 0!, m7 Cj)};‘;l is bounded in L*(0,to; HV~1(R?)). (3.12)

By using (3.11)), (3.12)) and the compactness result, there exist the subsequences of
{(¢?, 0, m? (7)} (denoting them as {(¢?, u?, m?, (7)} still) such that when j — oo,
it holds that
(¢, 0/, m?, (%) = (p,u,m,() *weak in L>(0,to; HY(R?)),
Vel — Vo  weak in L*(0,t0; HY71(R?)),
w — u  weak in L?(0,to; HNT1(R?)), (3.13)
(Vm’,V¢?) — (Vm, V() weak in L*(0, to; HY (R?)),
(¢, 0/, m’,¢') = (p,u,m, () strong in L2(0, to; Hpy ' (R?)),

loc
and

(p,u,m, () € L=(0,t0; HN(R?)), Vo € L*(0,t0; HY H(R?)),

u e L2(0,t; HNTH(R)),  (Vm, V¢) € L2(0, to; HY (R?)). (3.14)
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By using (3.13) and (1.19)-(1.21), we have
to . . to
/ /uJ*1 -Vl zn(t) de dt — / /u - Vpzn(t) dx dt,
0 0

to ] ) ) ) to

/ / i I, N en(t) dedt — / / G (i, w,m, O) 2y (¢) dr

0 0

to B B B B tO
/ /G2(90]71’u]71,m]71,<]71) . Zn(t) dx dt — / /GQ(QO,U,III,C) . Zn(t)dtha
0 0

tO . . . . tO
/ / Gl Wt mI Y (Y () de dt / / Gis(p,u,m, ¢) - z(t)dxdt,
0 0

to ) ) ) . to
| Gttt e dede s [ [ Gateoum, (e do
0 0
(3.15)
for all z € {C§°(R?)}?, 2z € C§°(R3) and n € C§°(0,t). Moreover, by using (3.13))
and (3.15)), it is easy to check that (¢, u,m, () is a solution to the system (1.17]),
(1.22)). Then, setting

p=p+y, w=w+m, 0=0+¢,

and by using (1.17)), (1.22), (1.18)-(1.21)), and (3.14), we know that (p,u, w,0) is
a solution to the Cauchy problem (11.2) satisfying . Also, the
estimate follows from and The proof for the uniqueness of the
local solution is standard, so we will omit it for brevity. The proof of Theorem [L.1
is complete.

Theorem follows form (3.13) and the uniqueness of the solutions to the

Cauchy problem (LI), (T2) . (LJ).
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