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EXISTENCE OF POSITIVE SOLUTIONS FOR SYSTEMS OF
QUASILINEAR SCHRODINGER EQUATIONS

AYESHA BAIG, ZHOUXIN LI

ABSTRACT. In this article, we study the existence of standing wave solutions
for the quasilinear Schrodinger system

—e2Au + W(z)u — re?A(w?)u = Qu(u,v) in RY,
—e2Av 4 V(z)v — ke A(w?)v = Qu(u,v) in RV,
w,v>0 inRY, wveHYRY).
where N >3, k>0, >0, W,V : RN — R are continuous functions that fall
into two classes of potentials. To overcome the lack of differentiability, we use
the dual approach developed by Colin—Jeanjean. The existence of solutions is

obtained using Del Pino—Felmer’s penalization technique with an adaptation
of Alves’ arguments [1].

1. INTRODUCTION

In this article, we examine the existence of solutions to the system of quasilinear
Schrodinger equations (QLSE):

—2Au+ W(z)u — ke’ A(u®)u = Qu(u,v) in RV,
—e?Av+ V(x)v — k2 A(wH)v = Qy(u,v) in RY, (1.1)
w,v>0 inRY, wve HY(RY).

where N >3, k>0, >0, W,V : RY — R are continuous functions that fall
into two classes of potentials introduced in [I]. The functions Q, Q. : R.? - R
are continuous functions denoting partial derivatives of the function Q : R+2 — R,
which belongs to the class of C! and is p-homogeneous.

Systems of type are related to various applications in hydrodynamics, Hei-
delberg ferromagnetism, Magnus theory, condensed matter theory, and dissipative
quantum mechanics.
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By a simple change of variables, system is equivalent to the system
—Au+ W(ex)u — kAU*)u = Qu(u,v) in RV,
—Av +V(ex)v — kAW v = Qy(u,v) in RY, (1.2)
u,v >0 in RN

Considering the potential values of x, assumptions regarding potentials, and
various nonlinearity types, numerous studies have explored the existence of solutions
for system (L.1]), particularly when x % 0, as seen in [5, [6, 8| 10, 11, 19].

Recently, numerous articles have examined the scalar equation:

—?Au+ V(z)u — ke?A(w?)u = g(u), in RY, (1.3)

where N > 3, k € R, € > 0 are real parameters, and V : RY — R satisfies certain
geometries. The function g : R — R is continuous. This kind of equation frequently
appears in various models, notably in connection with standing wave phenomena
within the quasilinear Schrédinger equation.
0z

—iaa = —?Az+ F(2)z—re2Ap(|2)2)p'(|12)2)z — f(|2*)z, for all z € RN, (1.4)
where z : R x RN — C, F represents the potential,  is a real constant, and f, p
are real-valued functions. When p(s) = s, this equation arises in fields such as fluid

mechanics, plasma physics, dissipative mechanics, and condensed matter theory.
The stationary solutions of (1.4]) take the form

z(t,x) = exp ( . %)u(m), EeR, (1.5)
where u represents the solution to equation with V(z) = F(z) — FE and
g(u) = f(u?)u. For the physical motivation of equation , readers are referred
to [13, 12, [14] and references therein.

The semilinear scenario, identified by x = 0, has undergone thorough examina-
tion in recent years. For instance, del Pino and Felmer [I7] studied the problem:

—?Au+V(z)u=qu), mRY, u>0 inRY, weHRY). (1.6)

where € > 0, N > 3, and ¢ : R — R is a subcritical nonlinearity. The function V is
a locally Holder continuous potential satisfying

= i < =i i . .
0<a m161]11{1\] Viz) <V 1ng(aU) < min V(x) (1.7)

In [I7], the authors introduced the penalization method and proved that if V
satisfies , then has a solution u. that concentrates at a minimum of V.
Alves, do O, and Souto [3] also studied and proved the same result as in [I7]
for V satisfying , with the subcritical nonlinearity perturbed by a critical term.

Alves [I] studied problem with the nonlinearity ¢ : R — R being continuous
and having subcritical or critical growth. Alves [I] introduced for the first time two
interesting classes of potential V', namely:

Class 1: The potential V satisfies the Palais-Smale (PS) condition, with the fol-
lowing conditions:

(A1) There exists Vo > 0 such that V(x) > Vo, for all # € RY, where V, =

infRN V(.’L‘)
(A2) V € C?(RY) and V,g—;/i, aa(??ng are bounded across RY, for all i,j €
{1,2,3,...,N}.
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(A3) V adheres to the Palais-Smale (PS) condition, that is, if (z,,) € RY, with
(V(xy,)) being bounded and VV (x,,) — 0, then (x,,) possesses a convergent
subsequence.

Class 2: The potential V' lacks critical points along the boundary of some bounded
domain. Within this class of potentials, V' satisfies (A1), (A2) and

(A4) there exists a domain A C RN where VV (z) # 0 for all z € JA.

Given that V falls into either Class 1 or Class 2 and taking into account certain
conditions met by the nonlinearity, the author demonstrated the existence of a
positive solution for € > 0 sufficiently small.

Alves [2] explored the presence and concentration of solutions for the system
derived from with k = 0:

—2Au+ W(z)u = Qu(u,v) inRY,
—e?Av+V(z)v = Qy(u,v) in RV, (1.8)
w,v>0 inRY, wve HY(RY).

where the functions W,V : RY — R are Holder continuous satisfying W (x), V (z) >
a > 0 in RY and the condition:

(5) There exists an open and bounded set A C RY, with zg € A and p > 0,
such that W(x),V(z) > p, for all x € A and W (xg), V(zo) < p.

Severo and Silva [I9] employed the variational approach within an appropriate
Orlicz space to examine a system of type with k = 1. Recently, Arruda-
Figueiredo and Nascimento [4] considered the two classes of potentials introduced
by Alves in [1] and showed the existence of solutions for the system (L.8).

Motivated by these works, and mainly by [ 2 [ [I7] [19], we study system
for kK = 1. We shall refer to the potential V as belonging to Class 1 when it satisfies
(A6)—(A8), and as belonging to Class 2 when it satisfies (A6), (A7), (A9) where

(A6) There exist Voo, Vo > 0 such that Vo < V(x) < Vo, for all z € RY, where

Vo = inf]RN V(x)

(A7) V€ C*(RY) and V, 22, ajfa‘;j are bounded in RV, for i,j € {1,2,...,N}.

(A8) V satisfies the PS-condition, that is, if (z,) C RY, such that V(x,) is

bounded and VV(z,,) — 0, then (z,,) possesses a convergent subsequence.

(A9) There exists a domain A C R exists where VV(z) # 0 for every x € dA.

Notation Let H'(RY) be the Sobolev space with norm

1/2
lull ey = (JlullZageny + 1 Vuldan ) -
Let 2* be the Sobolev critical exponent

2N

=
N-2

for N > 2.

Now, we present the assumptions on the function . Let Rﬁ_ := [0, +00) X
[0,+00), we assume that the nonlinearity @ € C*(R%,R) is p-homogeneous with
subcritical growth. More precisely, our hypotheses on @ are:

(A10) There exists p € (4,2.2%), such that Q(tu,tv) = t?Q(u,v) for all t > 0,

(u,v) € Rgﬂ where 2* = ]\2,72 and N > 3.
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(A11) There exists C' > 0 such that
|Qu(u,v)| +1Qu(u,v)| < C(JulP~" + v~
for all (u,v) € R%.
(A12) Q,(0,1) = 0,Q,(1,0) = 0.
(A13) Qu(1,0) = 0,Q,(0,1) = 0.
(A14) Q(u,v) > 0 for each u,v > 0.
(A15) Qu(u,v), Qu(u,v) > 0 for each (u,v) € R%.

Since @ is a homogeneous function of degree p > 4, it follows that
pQ(U7 U) = uQu(uv U) +vQy (uv U)'

Moreover, V@ is a homogeneous function of degree p — 1.
A prototype of function @) that satisfies (A11)—(A15) is

Hiuo)i=alul? + 3 bihul ol + ol
a;+Bi=p
where a,b;,c € R, a; + 8; = p, o, 8; > 1,4 € I, with I denoting a finite subset of
N.

Definition 1.1. We say that the pair (u,v) € H*(RY) N LS,
(T1)) if w,v > 0 almost everywhere in RV and satisfies

52/ (1 +2u*)VuVe + 2/ |Vu|?up + / W (ex)up = / Qu(u,v)p,
RN RN RN RN
for all € C§°(RY), and

€2 /RN(I —|—2v2)VvV¢+2/RN |Vv|2v¢+/RN Viex)vgp = Qv (u,v)o,

RN

(R™) is a solution to

for all ¢ € C5°(RY).

Theorem 1.2. Assume that W and V satisfy (A6) and that either W orV falls into
Class 1 or class 2. Furthermore, suppose that Q satisfies (A10)—(A15). Then system
has a solution for each € € (0,eq). Moreover, u.,v. € C’llo’f(]RN) N L2 (RY),
and there exist constants Cq,Ca,Cs,Cy > 0 satisfying

us(w) < Crexp(—Calz/e]), ve(x) < Cyexp(~Cula/e]), Vo eRY.

Remark 1.3. Theorem [1.2] extends the findings of Arruda-Figueiredo and Nasci-
mento [4, Theorem 1.1] in at least two ways:

(1) The first is that we consider (x # 0), which leads to entirely different esti-
mates (regarding the functional and the solution to the auxiliary problem)
when compared to the case of (k = 0).

(2) The second difference is that, unlike [4 Theorem 1.1], we do not require
both potentials V' and W to belong to the same Class 1 or Class2. We only
require that one of the potentials belongs to one of these classes and that
the other satisfies condition (A6).

We recall that J € C!'(E,R) satisfies the Cerami condition on level b, denoted
by the (Ce)p, condition, if any sequence (u,) C E for which
(1) J(un) =0,
(i) (" (un)ll & (lun ]l +1) = 0 as n — oo,
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possesses a convergent subsequence.

J satisfies the Cerami condition, denoted by (Ce), if it satisfies (Ce)y, for every
b € R. We say that (u,) C E is a (Ce)y, sequence if it satisfies (i) and (ii). We also
say that (u,) C E is a (Ce) sequence if it is a (Ce)}, sequence for some b € R.

To demonstrate our primary finding, we will use the following variant of the
Mountain Pass Theorem.

Theorem 1.4 ([20]). Let E be a real Banach space and J : E — R be a functional
of class C'. Let S be a closed subset of E, which disconnects (arcwise) E into
distinct connected components Ey and Es. Suppose further that J(0) = 0 and

(1) 0 € Ey and there exists o > 0 such that J(v) > « for allv € S.
(2) There exists e € Ey such that J(e) < 0.

Then, J possesses a (Ce). sequence with ¢ > « given by

= inf J(~y(t)) >
¢:i= Inf max () > a,

where
I:={yecC(0,1],E) : v(0) = 0,7(1) € J((—00,0]) N Ey}.

This article is structured as follows: In Section 2, we reframe the system and
introduce an auxiliary system. Initially, we propose an equivalent system through
an appropriate variable transformation as discussed in [7, I5]. To address the
issue of compactness, we then define the auxiliary system , following the
methodology presented in [8]. Section 3 focuses on the analysis of the positive
solution of the auxiliary system , employing a variant of the Mountain Pass
Theorem (Theorem that does not require the (PS) condition. This is used to
generate a Cerami sequence at the mountain-pass level. Subsequently, we adapt
Del Pino’s strategies to identify a solution for the auxiliary problem and
examine certain solution properties of the auxiliary system. Finally, Section 4 is
dedicated to the proof of Theorem [T.2]

2. REFORMULATION OF THE SYSTEM AND THE AUXILIARY SYSTEM

Assuming (A6), we consider the closed subspace of H}(RY) x H'(RY),

X = {(w,z) e HY(RY) x HY(RM) : / (W (ez)w? + V(ex)2?] < oo}

RN
which is a Hilbert space when endowed with the norm

1w, 2)||2 = /RanF FIV? + W (en)w? + V(ex)22].

The natural functional associated with (1.2)) is

Je(u,v) = % /RN[(I + 2u?)|Vul? + (1 + 20?)|Vo]? + W (ex)u? + V (ex)v?]

- Q(EZ’, U, U),
RN
which is not well-defined in X. To address this challenge, we adopt the variable
transformation proposed by Colin and Jeanjean [7], and by Liu, Wang, and Wang
[15].
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For this we consider w = f~1(u) and z = f~*(v), where f : R — R is defined by

O {W*éf%)’ (0 +ec), (2.1)
—f(=t), in (—o00,0].

Lemma 2.1. The function f satisfies the following properties:

(1) f is uniquely defined, C*°, and invertible.
2) [f/ (O <1 and |f(t)] < Jt], fort e R.
3) £ 1 ast—o0.
(4) L\/?—) V2 as t — 0.
(5) L2 < ol (0) < £ ).
(6) |f(t)] < 2Y4(t|Y/2, for all t € R.
2
(1) L8 <tf()f'(t) < f2(1), for all t €R.
(8) There exist constants C1,Cq > 0, such that:

@O = Gl if el < 15

[fO = Colt'2, if |t > 1.
9) 1f@&)f @) < %, for allt € R.

(10) The function t — f2(s)f'(s) is increasing on (0,00) for each g > 1.

With the exception of property (10), all other properties are derived from [9]
Lemma 2.1] (see also [7, [16] [I5]). For property (10), refer to Reference [8, Remark
3.1].

Following the variable transformation

IE(U),Z) = Js(f(’lU),f(Z)),

we obtain the functional

Lw.z) = 3 [ IVl + [V + Wiea) ) + V(o) ()7

- / Q(ex, f(w), £(2),
RN

which is well-defined in X. More precisely, I. is of class C1(X,R) (because of (A6),
(A11), and the properties of f). The Gateaux derivative is

I (w, )6, 9)
= [ Ve VeV + [ W) fw)f o+ VE G Gl gy

RN
- [ 1Quler S, S )6+ Qu(er. f(w). SN ()]
for all (w, 2), (¢, ) € X.

Let (w,z) € X be a critical point of the functional I.. Then (w, z) constitutes a
weak solution to the reformulated system below:

—Aw + W (ex) f(w)f' (w) = Qulex, f(w), f(2))f'(w), nRY,
Az +V(ez)f(2)f'(2) = Q:(ex, f(w), f(2))f'(2), inRY, (2.3)

w,z >0, w,zEHl(RN).
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Proposition 2.2. If (w, 2) € XN[L (RN)]? is a critical point of 1., then (u,v) =
(f(w), f(2)) is a solution for (1.2).

For a poof of the above propostion, see [19, Proposition 2.5].

To apply the variational method and find a solution to (L.2)), we will use the
Penalization Method developed by del Pino and Felmer [I7], following the ideas of
Alves [2]. Given our interest in securing a positive solution for , we assume
that

Q(u,v) =0 ifu<0orov<0. (2.4)

Let us fix @ > 0 and let  : R — R be a non-increasing C' function satisfying

C
n=1 in(—o0,al, n=0 in [ba,+), 7 <0, and W|SE7 (2.5)

where the constant C' is independent of a.
Using the function 7, we define @ : R? — R by

Qs t) = n(l(s,)NQ(s, 1) + [1 = n(|(s, ONA(S® + £, (2.6)
where
A= max{g(ig :(s,t) eR*a < |(s,t)] < 5a}. (2.7)

Note that A > 0 and A — 0 as a — 0T. Thus, we can assume that:
1
A< 1 min{Wy, Vo}, W(z) > Wy >0, V(z)>V, >0, (2.8)

where Wy, Vj are obtained from (A6).
Now, fixing a bounded domain Q C RY, we define the function H : RY xR? - R
by:
H(xz,s,t) = xa(®)Q(s,t) + [1 — xa(2)]Q(s,t), (2.9)
where xq denotes the characteristic function of Q.

Lemma 2.3. The function H and its derivatives Hy and Hy satisfy the following
properties:

(A16) pH(x,s,t) = sHs(x,s,t) + tHy(x,s,t) for each x € Q.

(A17) 2H(z,s,t) < sHy(x,s,t) + tHy(x,s,t) for each x € RN \ Q.

(A18) Fizing k = ;%2, we can choose a > 0 sufficiently small such that

1
sHg(x,s,t) + tHi(x,s,t) < E[VV(:L‘)S2 +V(@)tY], nRV\Q,

Bt [Hlmed) Tmin{Io, Vo), iRV \ Q.
a a

For a proof of the above lemma see [2, Lemma 2.2]. Now, our objective is to
study the existence of solutions for the auxiliary system

—Aw+ W (e2) f(w) ' (w) = Hylew, fw), F()f (w), nRY,
Az +V(ex)f(2)f'(2) = Ho(ex, f(w), [(2))['(2), inRY, (2.10)
w,z>0, w,ze H(RY).
Remark 2.4. If (w, z) is a solution of satisfying
|(f(w(@)), f(2(2)))] < a, VzeRY\Q.,
then (w, z) will be a solution , where Q. := {z € RY : ez € Q}. Thus, our
5.10)

goal is to obtain solutions of | with this property.
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Associated with the system (2.10]), we define on X the functional

B.w,2) = 5 [ [Vl + [V + Wea)(w) + Vo))

(2.11)
- H(€x>f(w)7f(2))

RN

Under conditions (A7) and (A11), it is possible to show that the functional ®.
is of class C'! with Gateaux derivative

@, 2)(0,¢)
= [ [Vu¥o Vel + [ W(ea) fw)f (w)o + VEDTG e )

RN

= [ (e, ) DS )6+ B (e, fw). FGDS (el

for any (w,z2),(¢,¢) € X. Therefore, the critical points of ®. are precisely the
weak solutions of (2.10]).

For each p > 0, consider the set
Y, ={(w,2) € X :¥(w,2)=p"}, (2.13)
where

U(w,z) = /}RN[|Vw|2 + V22 + W(ex) f2(w) + V(ex) f2(2)]. (2.14)

Since W is continuous, ¥, is a closed subset in X that disconnects X into
X1 :={(w,2) € X : U(w,2) > p*}, Xy:={(w,2) e X:T¥(w,z2)<p’}

The following lemma guarantees that the functional ®. meets the geometric condi-
tions required by the Mountain Pass Theorem.

Lemma 2.5. The functional ®. satisfies the following conditions:

(i) There exist constants p, o > 0 such that ®.(w,z) > «, for all (w,z) € 3,.
(ii) For every e € (0,1], there exist (e1,e3) € Xo such that D-(e1,e2) < 0.

Proof. Using (A16)—(A18), we obtain

RN

H(ex, f(w), f(2)) < /Q H(ex, f(w), (2))
1

+ o5 v e, (W (ex) f(w)® + V(ex) f(2)?].

By (2.9) and (A12), we have

Hiex, f(w), f(2)) < C/RN(\J“Q(w)V’/2 + 12 ()P?)

1 2 2
+ o RN\QE[W(EQT) f(w)? +V(ex) f(2)%).

B (2.15)



EJDE-2025/24 SYSTEMS OF QUASILINEAR SCHRODINGER EQUATIONS 9

Applying Holder’s inequality and the embedding of DV2(RY) into L  (RY), we
obtain

/ H(ex, f(w), f(2) da
RN

<o [ 1rwra) ([ 1rwee)

ap

co( [ r@pa)™ ([ 1P a) T

- i RV\0, [W(ew) f(w)* +V(ex)£(2)°] da (2.16)

-2t
2

< oo / V() d)

(1-ZP)2*
2

ropm( / V()P de)
1

% oo, [I/V(z;‘:z:)f(w)2 + V(Ex)f(z)z} dx

where o := % and C > 0.

Noting that for each (w, z) € ¥,,
[ ovewr <z [ ver <20
RN RN

/ IV(f2(2) < 2/ |Vz|? < 2p°.
RN RN
From ([2.11)), (2.17), and (2.16)), we obtain

(2.17)

bew,2)2 S [ V0P + Va4 W (e fw)? + V(e ()] da

o _apy2t C o 1—2py2”
_ ppCp(l 2)2 _ ppc’p( 2 )73 |
op/2 op/2
VE) P WOp

Thus,

k—1

P (w,2) > WpZCp(2N+2p)/(N+2), V(w,z) € ).
Since 2%%;” > 2 because p > 4, we can choose o > 0 sufficiently small, such

that

O (w,z) >a>0, Y(wz) eX,
which proves (i). Now, note that, by condition (H;), there exist constants Cs3, Cy >
0 such that
H(ex,s,t) > Csl(s,t)[P — Cy, V(w,8,t) € QxR (2.18)
Assume without loss of generality that 0 € Q. Let ¢ € C§°(RY,[0,1]) be such
that supp¢ C B,.(0) C Q, for some r > 0. Since B,(0) C Q. for all € € (0,1],
f(tp) >0 for all t > 0, and W(ex) < Wy, V(ez) < Vo in RN, by (2.18)), for all
t > 0, we have

£ 2, 1 2
vo. )< g [ [V ag [ Wt Va0
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€ [ 1(f00), f0)P + CalB, O]
B,(0)

Thus,
1
O ((tg,tg)) < 1?5 2V + [Wao + Vio]$?) — C P
ooy <l [ @voR a4 valet) -3 [ ireor]
+C4|B7"(O)|'

From property (6) of Lemma it follows that the function @ is decreasing
fort > 0. Since 0 < tp < ¢, forallz € Q. and ¢t > 0, we obtain f(t)p(x) < f(tp(z)).
Hence, for all € € (0,1] and ¢t > 0, we have

o ((t¢,19))

1 P(t
<t [ @veP+ W+ vale?) ~ ) [ o] + o))

2 /.0 2 JB.(0)

(2.19)
From property (5) of Lemma and since p > 4, we conclude that
o fP) FONP 2 o

t—1>15-noo t2 - t—;-&-moo (W) £ = 00 (2-20)
Hence, by (2.19)) and (2.20]), the proof of (ii) is complete. O

3. EXISTENCE OF POSITIVE SOLUTIONS FOR THE AUXILIARY SYSTEM

By Theorem and Lemma there exists a Cerami sequence for ®. at the
level

ce = inf Jnax P (v(t)), (3.1)

where
Lo ={y€C([0,1,X) :7(0) =0, (1) € 27" ((—00,0]) N X2},
Xo={(w,2) € X : ¥(w,z) < p*}.
That is, there exists (wy, 2,) C X, such that
Do (wn, 2n) = e+ 0n(1), and (14 [[(wn, 20) DI PL(wn, 20) [« = 0n(1).  (32)
Lemma 3.1. Every Cerami sequence (Wy, z,) for ®. is bounded in X.

Proof. Indeed, let

_ (Swn)  flzn)
(¢n7§0n) T (f/(wn)’ f,(zn)>
AS 21 () 2£(z0)
Wn Zn
we have
[@nll < 2llwnll,  llenll < 2[znll

Hence, by (3.2), ®.(wn, 2)(Pn, ©n) = 0r(1); thus,

1
e +on(1) = Po(wn, 2,) — 5<1>’g(wn, 2n)(On, on)

- L5 )l
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530+ 2L v

+
l\;?—l %\

-) / V)P + V(e) )]
%/ (ew, f(wn), f(z)) + fzn) H(ew, f(wn), £ (za))
1
Since
1 + m <92
1+2f2(t) — 7

by (A16), we have

1 2
2 p

Cce + On(]-) > (

2 2
)/RN(W“’"' V)
) [ )2 + Vo )]

+
—~
[N
D=

[f (wn)Hy (e, f(wn), f(2n)) + f(zn)H (e, f(wn), f(2n))]

+

s e S R
z
—
o]

pH(ex, f(wn), f(zn))-

%\%\

By (A17) and (A18), it follows that:

p—4 2 2

Cce + On(l) Z W . (|vwn| + |Vz”| )
1 1 2 2

+G3) / (W () £ (wn) + V (e2) f(2)]

[ Hew S fe)
2224 [ (omp - 9)
+ (* L i) / [W(Ex)fQ(wn) + V(E.’I?)fQ(Zn)] .
Using k = %, we obtain

ot on() 2, [ (0, +[V2) + Wea) fPwn) + Vi) )] (63)
where

—4 p—2
2p 1 dp

Thus, to show that (w,, z,,) is bounded, it suffices to demonstrate the existence of
a constant C' > 0 such that

/(W( r)w? +V(ex)z2) < C, VneN.
RN

Cp :mm{ }>O, since 4 < p < 2.2%.
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Using Lemma [2.1] and (3.3)), we obtain
1
/ W(ex)w? < —/ W(ex) f(wn)? < ¢+ o0,(1).
jwnl<1 C Jwai<1
Then

/ W(ex)w? < Wy w2’
{lwn|>1} RN

< WOOS( B \an|2)2*/2

< WaoS(ce + 0,(1)) /2.
Similarly, we conclude that (V (ex)22) is bounded in L (RY). Therefore, (w,,, 2,)
is bounded in X. g

Lemma 3.2. Suppose that (wy, z,) — (w, 2) in X. Then:
(i) Given & > 0, there exists R > 0 such that
lim sup / [V ? + [Vanl2 + W(ew) 2 (wn) + V(ex) f2(20)] < &
RN\BRr(0)

(i)
lim (W (ex) f(wn) f' (wn)wn + V(e) f(20) f' (20) 2]

n—oo RN

= [ W) f)f )+ V() ().
(iii)
ti [ [Hu (e, f(wn), FGa) S (i + e, f(,), £z (z0) 7]

n—oo RN

= /RN [Hy (e, f(w), f(2))f'(w)w + H.(ex, f(w), f(2))f'(2)z].
(iv) If (wn(2), 20 (z)) = (w(2), 2(2)) a.c. in RN and
Jm [ W) P +VEnfe)] = [ Ve )+ Vo).
then
Jim [ (W (ea) 2w —w) +V(er) (o0 =) = 0.
Proof. Consider the cutoff function ¢r € C*(RY), such that ¢x = 0 in Bp/2(0),
¢r =1in RN\ Bg(0), 0 < ¢r < 1, and [Vér| < C/R, where the constant C' > 0

is independent of R.
Since (wy, z,) is bounded, we have

f/(wn)’

(I)/s (Wn, 2n) (¢R

Thus

)
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# [ (G T+ 525720 Vo

+ [ W Pwon+ [ Ve Peon

= /RN [Hu(ex, f(wn), f(z)) f(wn)or + H (e, f(wn), f(20)) f (2n)dR] + 0n(1).

Choosing R > 0 such that . C Bg/2(0), by (A17) and (A18), we have

[ 0Vl FaaPion+ (1= ) [ W) ) + Vi) ()] on
RN RN

=7 /]RN (JJ:((ZZ)) Vwn + }f/((zzz)) Vzn>V¢R +o0,(1).

Using Lemma the Cauchy-Schwarz inequality, the boundedness of (wy,, z,),
and |Vog| < C/R, we obtain:

1

A= [ T Vel + W) £ (wn) + V(o) )]
RN\Br(0)

< 2 (lwnll 2@ [Vwn Vor + ll2nll L2 IV 20 Vor])

M
S fc + On<1)7

which completes the proof of (i).

(ii) The proof of (ii) follows from (i) and the property f(t)f’(t) < f2(t), we have

tim sup W (=) f(wa) £ (wn)wn + V(@) f(za) £/ (2a)2n = 0r(1).  (3.4)
RN\BRr(0)

n—oo

Since wy, — w and z, — z in L (RY), we have

loc
wp(z) = w(z), z,(z) = 2(z) ae. in RY,
lwn (@) < g1(z), |2n(2)] < g2(2), 91,92 € L*(Br(0)), s€[1,2%).

By the Lebesgue Dominated Convergence Theorem, we have

lim (W (ex) f(wn) f'(wn)wy + V(ex) f(2n) f' (2n) 2n]
") BRr(0) (3.5)
= [ W@ @t Ve e ()2,
From and (3.5)), we obtain item (ii).
(iii) Now, using item (i) and that ®L(wy, 2, ) (W, 2n) = 0, (1), we have
h:isolip /RN\BR(O) [Hw<5xaf(wn)vf(zn)>f (wn>wn (3.6)

+ Hz<5xa f(wn)7 f(zn»f/(zn)zn] = 03(1)'
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Using that Q. C Bg(0), hypothesis (A18), the convergence w, — w, z, — z in

L; (RM), and applying the Lebesgue Dominated Convergence Theorem, we obtain

loc

lim [Hu (e, f(wn), f(2n)) f (wn)wn + Hx(ex, f(wn), f(20)) [ (2n) 2]

_ /B o Holer: £, FEN e+ Ha e, £, SEDF (),

(3.7)
Thus, from (3.6) and (3.7)), we obtain item (iii). O
Proposition 3.3. The functional ®. satisfies the Cerami condition for each level

Ce.
Proof. Let (wy, 2,) C X be such that
D (wn, 2n) = ¢ +0p(1) and (14 [[(wn, 20) DR (wn, 20) [l = 0n(1).

By Lemma (Wn, z,) is bounded in X. Thus, up to a subsequence, (wy,, z,) —
(w, z) in X. Furthermore, since

(I)le(wn» 2 ) (Wny 2n) = 0n(1),

using (iii) from Lemma we obtain

lim N [[Vwal® + [Vzn > + W(ez) f(wn) [/ (wi)wy + V(ex) f(20) f'(2n) 2]

n— oo R

= lim [Hu (e, f(w), f(2))f (w)w + H.(ex, f(w), f(2))f'(2)z].-

n—oo JpN
(3.8)
Now, using that ®(wp, 2,)(¢,¢) = 0,(1) for every ¢, € C5°(RY), by passing
to the limit combined with the Lebesgue Dominated Convergence Theorem, we
obtain ®.(w, z)(¢, ¢) = 0. It follows that ®L(w, z)(¢,p) = 0 for every ¢, € X. In
particular, ®’ (w, z)(w, z) = 0, i.e.,

/ [Vl + [V + W(ex) £ (w) ' (whw + V(ez) £(2) f(2)]
By (3.9)
- / [l J(), S 7wy + H(er, ), f:)T'(2)2).

Combining (3.8) and (3.9, we have

lm [ [[Vwn|? + V2> + W(ez) f(wn) f/(wn)wn + V(ex) f(2n) f'(2n) 2n)

n—oo

= lim [ [[Vul? + V2P + W(er) f(w) £ (whw + V(ex) f(2) f'(2)2] -

n—oo JpN
(3.10)
Using (ii) from Lemma [3.2] and (3.10), it follows that
lim [[Vwn|? + V2, ?] = / [[Vw]* +|Vz[?].
N RN

n—oo R

Since (wp, zn) — (w, z) in X, we have

lim [Vw, - Vw + Vz, - Vz] = / [[Vw|® +[V2]?].
RN

n—oo RN
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Thus,
Jim [ [V (w0 = w490 = 2) ] =0

Observing that
[wn —w]| < C [‘I'W(wn —w) + Uy (w, — w)Q*/z] ;
o = 2l < C [Ty (an = ) + Ty (e — 2)2/2]
where
ol =)= / V(wn —w)? + | V() (w, - w),
RN RN
we conclude that

1w, 20) = (w, 2)]?

< O Ww (wn — w) + Uy (wn — )2 + Ty (20 = 2) + Ty (20 — 2)* /7]
< C[\IJW(wn - w) + \va(zn - 2) + (\I/W(wn _ w) + \I/V(Zn . Z))Q*/Q]'

15

(3.11)

Using (iv) from Lemma and (3.11)), up to a subsequence, we have (wy,z,) —
U

(w, z) in X. This completes the proof of the proposition.

Theorem 3.4. Suppose (A6), (A10)-(A15) are satisfied. Then, for everye € (0,1],

the auziliary system (2.10) has a weak solution (we, z:) € X, such that
P (we,2:) =cc. and ”(ws,ZE)HQ < Cfe- + Cg*/2)7
where C' > 0 is a constant independent of €, and c. is defined by (3.1)).

(3.12)

Proof. Using Lemma Proposition |3.3, and Theorem [1.4] we conclude that the

functional ®. has a critical point at

= inf P t)) >
ce := Inf max (v(t) = «,

where
I':={y€C([0,1],X):7(0) =0,%(1) € 27! ((—00,0]) N X>},
and o is given in Lemma [2.5] Thus, there exists (w., z.) € X, such that
O (we,2:) =ce, and  PL(we,z:) = 0.
Therefore, (we, z:) is a solution of .

Consider (we, Z:) as a test function and note that H(ex,s,t) =0 for all s, <0

and
W(E$)f(w€)f/(ws)u7€, V(Ex)f(za)f/(za)za > 0.
Then we obtain

Hw8725||2D1,2(]RN) = / vae|2 + |v55|2]
RN
< Vw:Vw, + W(ex) f(we) f'(we ) e
RN RN

+ V2. VZz, —|—/ V(ex)f(ze)f (2¢)ze

- / H(ex, f(we)) f (we). + / Hiex, f(z))f(22)7 < 0.
RN RN
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Therefore, ||1ZJ5,ZE||%1,2(RN) = 0. Hence, (W, z.) = 0, and consequently, (we,z:) =
(wh,z+) > 0 a.e. in RY. By elliptic regularity, we have (w.,z.) € C1H*(RY) (see

g 1%e

I did not find Lemma  the proof of Lemma ??). Thus, w. > 0 in RV,
34 Proof of (3.12). Let
N flwe)  f(ze)
(w5726) - (f/(wg)v f/(ZE))
Since

1 .
O, (w., z:.) — ];‘I)’E(wg,ze)(wg,zs) = c.,

Using (A16), we obtain

2
2 [ [5- 50+ gy v

“ o B30 gy I

+ (% — %) /RN [W(Ex)fQ(wg) + V(E:c)fz(zs)]

+ l/ [f(wa)Hw(Exa f(ws)a f(ZE)) + f(Za)Hz(Exa f(wa)a f(zs))]
P JrNv\Q,
1

_ ; /RN pH (ex, f(we), f(ze)).

Using the inequality 1 + % < 2 and (A18), we obtain:
1 2

o2 (3-7) /RN (Ve + V2 ]?]

(5= 3) [ W) ) + Vien) 2z
+ */ [f(we)Hy(ex, f(we), f(2:)) + f(ze) Hz (e, fwe), f(2e))]
RN\Q.

1
- /R pH(ea, fwe). [ (=),

which gives
—4
oz (P )| [ 19w 4 9 + Weo) fwe) + Vi) )|
p RN
= [ Hlew ). 1),
RN\Q.
Since k = ;:%7 by (A18), Lemma and the above inequality, we have

1
ooz g [ w9+ W(ea)u? + V(ex)s?
2k L g Jwe |2 <1
(3.13)
H[ o WP +VEn ).
|wel,|ze|>1

for some constant C' > 0, independent of ¢.
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Using (3.13)) and the embedding H'(RY) c DV2(R"), we obtain

. 2% /2
/ W () w.|? < WOO/ o2 < WOOS(/ va.?) T (4)
[we]|>1 Jwe|>1 RN

Similarly, the conclusion holds for (V (ex)z2).

Combining (3.13) and (3.14]), we obtain (3.12)), wich completes the proof. O

Lemma 3.5. Let (we, z:) be the solution of (2.10) obtained in Theorem and
let the sequences €, € (0,1) and (x,) C RN be such that e, — 0 as n — oo. The
sequences (0,) and (¥,,) defined by

On(x) :=we, (x+xp), In(z) =2, (x+ )

belong to L= (RYN) N C(RY) and have subsequences that converge uniformly over
compact sets of RN to 0,9 € L>®(RN) N C(RY), respectively. Moreover, there exist
constants Cv,Csy,Cz,Cy > 0 such that

0(z) < Crexp(—Calz]), VI(z) < Czexp(—Cylz]), VRN,

The proof of the above lemma follows from adapting the arguments used in the
proof of [I8, Lemma (4.1)], combined with [4, Corollary 4.3].

Lemma 3.6. Suppose that W and V' satisfy (AG), and that either W or V belongs
to Class 1 or class 2. Furthermore, suppose that Q satisfies (A10)—-(A15). Then

Me := max |(we(x),2:(2))| = 0 as &— 07,
where we define e := Bg_j..
Proof. Assume, by contradiction, that the lemma is not true. Then, there exist
§ > 0 and a sequence ¢, — 01, such that

me, >0, VneN
Since we,,, 2, € CH*(RY), there exist z,, € dBg_ ., such that
w? (zn) + 22 (zn) > 6%, YneN (3.15)

We define the functions 6,,,9, : RN — R by

On(z) == we, (T +xp), Un(x) =2, (T + xp).

By Lemma the sequence (we,,, z¢,,) is bounded in X. Thus, by the invariance of
RY by translation, (#,,%,) is also bounded in X. Moreover, (6,,,7,) is a solution

of the following system in R¥:
_Aon + W(Enx + €nxn)f(9n)fl(0n) = Hw(gnx + Enn, f(en)a f(?gn))f/(en)v
) (0n) = H

_Aﬂn + ‘/(5713j + 5n-rn)f('l9n l('ﬂn Z(E’le + enn, f(on)v f(ﬂn))f,(ﬂn)a

0,90 >0, 0,,9, c H'(RV).
(3.16)
Note that, up to a subsequence, (0,,,9,) — (0,9) in X, for some (6,9) € X. By
Lemma (0,) and (¥,) converge uniformly over compact sets of RV to 6 and
9, respectively. Moreover, 6,9 € C(R¥Y). Thus, from this fact and the condition
above, it follows that:
62(0) 4+ 9%(0) > 2.
Hence,
0#£0 or 9¥#0. (3.17)
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Since (W (epzy)) and (V(e,x,)) are bounded, there exist ayw, ay > 0 such that
Wenxn) = aw, Vi(enzn) — ay. (3.18)

It follows from ([3.16)) that

VO0.Vo+ | W(ent +enty)f(0n)f (0n)0
RY RY (3.19)
= | Hy(en® 4 enn, f(0n), f(90)) ' (0n)p + 0n(1),

RN
and similarly,

Vi,V + V(ent + entn) f(90)f' (9n) e
RN RN

= - H.(ena + enn, f(On), f(0n)) f'(U0n)p + on(1).
Using (3.19) and (3.20]), passing to the limit, and the density of C§°(RY) in H!(RY),
we obtain

/ VOV6 + aw F(8)(0)¢] = / a1 (. £(0). () ' (0)o, (3.21)
RN RN

(3.20)

[ 90V +av o) 06 = [ e f @500 ). (32
for all (¢, ¢) € X, where

g1(@, £(8), F(9)) == L(2)Qu(f(8), F()) + (1 = [(2))Qu(£(6), f(9)),

g2(, £(0), F(9)) == I(2)Qu(£(6), F(¥)) + (1 — [(2))Q
for some function I € L®(RN).

Noting that (6,9) € W22(RN) N L®(RY) and
V() (w) = (f)(w)Vw + f(w)f"(w)Vw,  f"(w) = =2f (w)[f (w)]*,
for all w € HY(RY), by property (2) of Lemma we have that (ff’)(w) €
HY(RN) for all w € HY(RY). Thus, there exist ¢;,¢; € C§°(RY) such that
6, = GOI <5 oy = UNOI <5 GeN  (323)

We assert that (3.17)) and (3.21)) imply that 6 Z 0 and ¢ # 0. Indeed, suppose,
by contradiction, that # Z 0 and ¥ = 0. Since f(0) = 0, by (2.4), (3.15]), and (3.19)),

L 90F waw [ o0 [ o s@).0000 -0

Using that § > 0, we conclude that § = 0, and thus, (0,9) = (0,0), which
contradicts . A similar conclusion is obtained if we consider # = 0 and 9 # 0.
Thus, the assertion is true.

Now, suppose W satisfies the (PS) condition, that is, W belongs to Class 1.
Choosing 99; as a test function in , we have

Ox;
/R LAY @?) + » W (enz + entn) f(6,) f’(on)g‘bz
| Huenr + enwn, F0.), FO)F 022 = 0,1).

RN a.’I}l
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Thus, exploring the fact that § # 0 and arguing, we can conclude that
VW(enzn) =0, W(epzn) = aw.

Thus, (g,2,) is a (PS)a,, sequence for W. Therefore, from (A8), (¢,2,) should
have a convergent subsequence, but

1
len®n| = Re,, = — — 00 as n — 0.
En

Therefore, the lemma is true for W in Class 1. The case where V belongs to Class
1 is analogous. O

Lemma 3.7. Suppose that W and V' satisfy (A6) and that either W or V belongs
to Class 2. Furthermore, suppose that Q) satisfies (A10)-(A15). Then

me = max |(ue(x),ve(x))] =0 ase— 0T,

where we define Q. = LA with A given in hypothesis (A9).

T e
Proof. Assume, for the sake of contradiction, that the statement does not hold.
Then, there exists a constant § > 0 and a sequence &, — 0" such that

> .
xlerna%zx |(ue, (2),ve, ()] > 9, ¥YneN

En

This implies that for each n, there exists a point x,, € ), satisfying

|(ue,, (Tn), ve,, (z0))] 2 0.
We define the translated functions
On(x) :i=ue, (T4 2p), n(x) =0, (4 x4).
Since (ue,, v, ) is a solution of the auxiliary system (2.10)), the pair (6,,,,,) satisfies
the system
—Ab, + W(enx + entn) f(00)F (0n) = Hu(en® + entn, f(0n), F(On)f (0n),
AV, + Vi(ent + enzn) f(90) f (9n) = H,(en® + enn, f(On), fF(O0))f (0n).

From the boundedness of (u.,,v., ) in H'(RY™), the sequences (f,,9,) are also
bounded in H*(RY). Specifically, there exists a constant C' > 0 such that

100l @nvy <Oy Onllm@yy <C, VneN.

By the Sobolev embedding theorem, up to a subsequence, (6,,%,) converges
weakly in H'(RY) and strongly in L} (RY), for p € [2,2*], to some (0,9) €
HY(RY).

The strong convergence in L} C(RN ) implies that for each compact set K C RY,
we have

n—o0

lim / 10, (z) — 0(2)|Pdz = 0, Tim / 19, () — 9(x)|Pdz = 0.
K n—oo K
In particular, for K = B;(0) (the unit ball centered at the origin), we have

lim 0, (x) — 0(x)|?dx =0, lim [0, (x) — O(x)|*dx = 0.
n—o00 B1(0) n—o00 B1(0)

From the assumption |(ue, (z5), ve, (zr))| > J, we have
0,(0) = ue, (zn), Un(0) =0, (x4).
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Since (6,,,9,) converges strongly in LY (RY), it follows that

loc

00 +9(0)* = Tim (6,(0)° +0,(0)?) > &°.

This implies that at least one of § or ¥ is not identically zero. Without loss of
generality, assume 6 Z 0.

Using the convergence of (6,,9,) and the continuity of W,V and H, we can
pass to the limit in the weak formulation of the system. This yields

—Ab + aw f(0)f'(0) = gi(x, £(0), f(9))f(6),
— A9+ ay f(0)f'(9) = ga(z, £(0), fF(9)) f' (D),
where

aw = lim W(e,z,), ay = lim V(e x,),
n— 00 n—r 00

and g1, g2 are the limits of H,, and H,, respectively.

Since W or V belongs to Class 2, we have (A9), which implies that VV (z) # 0
for all x € OA. Now, observe that the sequence (e,x,,) lies on A, , and as &, — 0,
Enn — xp € OA, and by the continuity of VV, we have VV (zy) = 0. However,
this contradicts (A9), which requires that VV'(zq) # 0 for all zy € JA.

The contradiction implies that our initial assumption must be false. Therefore,
we conclude that

nax |(ue(x),ve(x))] = 0 ase— 07, O

4. PROOF OF THEOREM
Proof. Suppose, by contradiction, that there exists y. € RY \ Q. such that

we(y) = 17 (5)

Combining the previous lemma with the fact that |(we(z), z.(x))| — 0 as |z| = +o0,
see Lemma we conclude that there exists a maximum point z. € RV \ Q. for
We.

Since (we, z.) € Co(RN) N L>®°(RYN) is a solution of (2.10), we have

W (ewe) f(we () f'(we () = Hu(exe, flwe(2:)), fze(22))) f (we(22)).

Using that f is an increasing function and f’ > 0 in (0, 00), we obtain
a
WO§ S Hw(€x€7 f(ws(ms))v f(zi(xf)))7

which contradicts hypothesis (A18).
Thus, we conclude that

we(z) < f1 (g) in RV \ Q..
Similarly, we have
-1 (4 . N
ze(z) < f (5) in RY \ Q..

Hence,

(f(we), f(z))| <@ in RV \ Q..
Therefore, by the definition of H, (w, z:) is also a solution of (2.3)). O



EJDE-2025/24 SYSTEMS OF QUASILINEAR SCHRODINGER EQUATIONS 21

REFERENCES

[1] C. O. Alves; Ezistence of standing waves solutions for a Nonlinear Schrodinger equation in
RY, J. Elliptic Parabol. Equations, 01 (2015), 231-241.

[2] C. O. Alves; Local mountain pass for a class of elliptic system, J. Math. Anal. Appl., (2007),
135-150.

[3] C. O. Alves, J. M. B. do (57 M. A. S. Souto; Local mountain-pass for a class of elliptic
problems in RN involving critical growth, Nonlinear Anal., 46 (2001), 495-510.

[4] S. C. Q. Arruda, G. M. Figueiredo, R. G. Nascimento; Ezistence and asymptotic behavior of
solutions for a class of semilinear subcritical elliptic systems, Asymptotic Analysis (2021),
1-20.

[5] C. Chen, H. Yang; Multiple solutions for a class of quasilinear Schrédinger systems in RY
Bull. Malays. Math. Sci. Soc., 42 (2019), 611-636.

[6] J. Chen, Q. Zhang; Ezistence of ground state solution of Nehari-PohoZaev type for a quasi-
linear Schrodinger system, Differential and Integral Equations, 34(1/2) (2021), 1-20.

[7] M. Colin, L. Jeanjean; Solutions for a quasilinear Schrodinger equation: a dual approach,
Nonlinear Analysis 56 (2004), 213-226.

[8] F. J. S. A. Corréa, G. C. G. dos Santos, L. S. Tavares; Solution for nonvariational quasi-
linear elliptic systems via sub-supersolution technique and Galerkin method, Zeitschrift fiir
angewandte Mathematik und Physik, 72 (2021), 1-15.

[9] X.-D. Fang, A. Szulkin; Multiple solutions for a quasilinear Schréodinger equation, J. Differ.
Equations 254 (2013), 2015-2032.

[10] G. M. Figueiredo, M. F. Furtado; Multiple positive solutions for a quasilinear system of
Schrédinger equations, Nonlinear Differ. Equ. Appl. NoDEA, 15, no. 3 (2008), 309-334.

[11] Y. Guo, Z. Tang; Ground state solutions for quasilinear Schréodinger systems, J. Math. Anal.
Appl., 389, no. 1 (2012), 322-339.

[12] R. W. Hasse; A general method for the solutions of nonlinear soliton and kink Schrédinger
equations, Z. Physik 37 (1980), 83-87.

[13] E. W. Laedke, K. H. Spatschek, L. Stenflo; Evolution theorem for a class of perturbed envelope
soliton solutions, J. Math. Phys. 24 (1983), 2764-2763.

[14] H. Lange, B. Toomire, P. F. Zweifel; Timedependent dissipation in nonlinear Schrédinger
systems, J. Math. Phys. 36 (1995), 1274-1283.

[15] J. Liu, Y. Wang, Z. Wang; Soliton solutions for quasilinear Schrédinger equations II, J.
Differential Equations, 187 (2003), 473-493.

[16] J. M. do é, U. Severo; Solitary waves for a class of quasilinear Schrédinger equations in
dimension two, Calc. Var. Partial Differential Equations, 38 (2010), 275-315.

[17] M. del Pino, P. L. Felmer; Local Mountain Pass for semilinear elliptic problems in unbounded
domains, Calc. Var. Partial Differential Equations 4 (1996), 121-137.

[18] G. C. G. dos Santos, L. C. Fontinele, R. G. Nascimento, S. C. Q. Arruda; Solutions for a
quasilinear Schrodinger equation: Subcritical and critical cases, J. Math. Phys., 64, no. 5
(2023).

[19] U. Severo and E. da Silva; On the ezistence of standing wave solutions for a class of quasi-
linear Schrédinger systems, J. Math. Anal. Appl., 412 (2014), 763-775.

[20] E. A. B. Silva, G. F. Vieira; Quasilinear asymptotically periodic Schrodinger equations with
critical growth, Calc. Var. Partial Differ. Equations 39 (2010), 1-33.

ADDENDUM POSTED BY THE AUTHORS ON MARCH 27, 2025

A significant portion of this article overlaps with the doctoral thesis “Existéncia
de solugao positiva para um sistema de equagoes de Schrodinger” by Laila Con-
cei¢ao Fontinele. The thesis is publicly available at
https://scholar.google.com.br/scholar?hl=pt-BR&as_sdt=0%2C5&q=tese+laila+
fontinele&btnG=
and
https://pdm.propesp.ufpa.br/ARQUIVOS/teses/2022/Tese’20Laila’,20Concei’,
C3%AT7%,C3%A30%20Fontinele . pdfl
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Specifically, the following areas show direct overlap between this article and the
thesis:

e Definition 1.1, Theorem 1.2, and Remark 1.3 of this article correspond
directly to Defini¢ao 3.1, Teorema 3.1, and Observacao 3.1 in the thesis
(page 107).
e Theorem 1.4 of this article corresponds to Teorema 1.2 in the thesis (page
20).
e Section 2: “Reformulation of the system and the auxiliary system” in the
article mirrors “Secao 3.2 - A reformulagod do sistema e o sistema auxiliar”
in the thesis (page 107).
e Theorem 3.4 of this article corresponds to Teorema 3.2 in the thesis (page
120).
We respectfully acknowledge the original work by Dr. Fontinele and her supervisors
published in 2022 while this article was published in 2025.

AYESHA BAIG
DEPARTMENT OF MATHEMATICS AND STATISTICS, CENTRAL SOUTH UNIVERSITY, CHANGSHA 410083,
CHINA

Email address: ayee_sha@qq.com

ZHOUXIN L1 (CORRESPONDING AUTHOR)
DEPARTMENT OF MATHEMATICS AND STATISTICS, CENTRAL SOUTH UNIVERSITY, CHANGSHA 410083,
CHINA

Email address: 1735881486@qq.com



	1. Introduction
	2. Reformulation of the system and the auxiliary system
	3. Existence of positive solutions for the auxiliary system
	4. Proof of Theorem ??
	References
	Addendum posted by the authors on March 27, 2025

