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EXACT BOUNDARY CONTROLLABILITY FOR WAVE

EQUATIONS WITH FIXED AND MOVING BOUNDARIES IN

TWO-DIMENSIONAL CONVEX-COMPLEMENTED DOMAINS

RUIKSON S. O. NUNES, MIGUEL R. NUÑEZ-CHÁVEZ

Abstract. The purpose of this article is to study exact boundary problems

for the standard wave equation in domains that are the exterior of a convex
compact set of R2, where both have a common boundary part. We consider

two cases: first where the boundary domain is fixed, and where a part of

the boundary is moving. In both cases we consider control problems with
controls acting only one part of the boundary. For the fixed boundary case the

control is of Neumann type, and for the moving boundary case the control is a

conormal derivative type. The controllability method used here was developed
by Russell [17].

1. Introduction

Let A ⊂ R2 be a bounded domain whose boundary ∂A is smooth by parts. Let
γ ⊊ ∂A be a part of the boundary. The pair (A, γ) is called convex-complemented
when there is a convex compact region A∗ ⊆ R2 with

A ⊆ R2 −A∗ and γ ⊆ ∂A∗.

Let Ω ⊂ R2 be a convex bounded domain whose boundary ∂Ω is smooth by
parts with no cusps, with ∂Ω = Γ0 ∪ Γ1 where Γ0 ⊊ ∂Ω, and Γ0 ∩ Γ1 = {P0, P1}
where P0, P1 ∈ R2. We also requires that Ω be in only one side of its boundary ∂Ω
and the pair (Ω,Γ0) be a convex-complemented with respect to the convex compact
domain Ω∗. Here, we requires that the boundary ∂Ω∗ be smooth, connected, and
compact curve as illustrated in the Figure 1.

Now, let us consider the moving boundary domain Ωt ⊂ R2 whose boundary
∂Ωt = Γ0 ∪ Γ1t for all t ∈ R. We require that Γ0 ∩ Γ1t = {P0, P1}, for all t ∈ R.
The moving part Γ1t of the boundary ∂Ωt is such that Γ10 = Γ1 and it may has
two configurations.

Firstly, we can have

Γ1t =
{
x ∈ R2 : x = α(t)y, y ∈ Γ1

}
, for all t ∈ R.
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Figure 1. The pair (Ω,Γ0) is convex-complemented. Ω∗ is the
convex complement.

In this case, Ωt is illustrated in Figure 2.
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Figure 2. The pairs (Ω,Γ0) and (Ωt,Γ0) are convex-
complemented. In both cases, Ω∗ is the convex complement.

Another configuration for Ωt is

Γ1t =
{
x ∈ R2 : x = α(t)y, y ∈ Γ1

}
∪ γ1 ∪ γ0 , for all t ∈ R,

where γ0 and γ1 are the straight segments joining the points P0 to α(t)P0 and P1

to α(t)P1 respectively.
Here α : R → R+ ∪ {0} is a piecewise continuous bounded function, where α

such that, for each t ∈ R, the pair (Ωt,Γ0) is a convex-complemented with respect
to Ω∗. An illustration for the domain Ωt is shown in Figure 3.
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Figure 3. The pairs (Ω,Γ0) and (Ωt,Γ0) are convex-
complemented. In both cases, Ω∗ is the convex complement.

For the well posedness of the initial boundary value problem we require

Ωt × R ⊂ ∪x∈Ω

{
(x, t) ∈ R2 × R : |x− x|2 ≤ t2

}
. (1.1)

The boundedness of movement function α implies in the existence of a bounded

domain Ω̃ ⊂ R2 such that Ωt ⊆ Ω̃, for all t ∈ R. The boundary of Ω̃ is denoted

by ∂Ω̃ and it is such that Γ0 ⊂ ∂Ω̃. Furthermore, the pair (Ω̃,Γ0) has the convex-
completed property with respect to the domain Ω∗.
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Now, for T > 0, let us consider the non-cylindrical domain of R2+1,

QT = ∪0<t<TΩt × {t}

whose the lateral boundary is Σ0 ∪ ΣT , where ΣT = ∪0<t<TΓ1t × {t} and Σ0 =
Γ0 × [0, T ].

We denote by (νx, νt) the outward unit normal vector defined almost everywhere
on Σ0 ∪ ΣT . Particularly, when we consider the cylindrical boundary ∂Ω × [0, T ]
its outward unit vector becomes ν = (νx, 0).

Remark 1.1. Assumption (1.1) ensures that the surface Σ0 ∪Σt for t ∈ R is time-
like which is a important property in order to guarantee that the initial boundary
value problems is well posed on QT .

This studies two special exact boundary control problems for the standard wave
equation. In the first problem we study a control problem for wave equation on the
cylindrical domain Ω× [0, T ]. In the second one we consider a control problem for
wave equation on the non-cylindrical domain QT . In both problems we consider the
null Neumann condition on Σ0 and the controls acting on Σ1 = Γ1 × [0, T ] and ΣT

respectively. Here we work the exact boundary controllability method established
by Russell [16, 17]. One of the key elements of the Russell’s method is the local
energy decay of the system to be studied. Here, we use a local energy decay estimate
for the standard wave equation in an exterior domain presented in [18].

From the point of view of applications there are many situations involving do-
mains like Ω and Ωt. For example, a flexible membrane which is attached to a rigid
pillar by means of a part of its boundary. Without any variation in the tempera-
ture of the environment the membrane has no dilation and thus the complementary
non fixed part of its boundary remains static, so such membrane represents the a
domain like Ω. On the other hand, if there is a variation in the temperature, the
membrane has a dilation or a contraction, causing the mobility of its non fixed
boundary part, in this case the membrane represents a domain like Ωt.

To state our results we need some essentials notation. LetO ⊂ R2 be an arbitrary
domain. We denote by L2(O) and H1(O) the Lebesgue and Sobolev spaces, with
theirs usual norms ∥ · ∥L2(O) and ∥ · ∥H1(O) respectively (see [1]).

Now, let (O, γ) be a pair convex-complemented, we denote

H1(O) =
{
u(x) ∈ H1(O) : ∂νu(x) = 0 if x ∈ γ

}
. (1.2)

The topology of H1(O) is induced from H1(O). Here, the space H1
0(O) is the

closure C∞
0 in H1(O) provided with the norm of H1(O). Particularly, as the pair

(Ω,Γ0) is convex-complemented we have

H1(Ω) =
{
u(x) ∈ H1(Ω) : ∂νu(x) = 0 if x ∈ Γ0

}
, H1

0(Ω) = C∞
0 (Ω)

∥·∥H1(Ω) .

Theorem 1.2. Let Ω be as defined above. Given (f, g) ∈ H1(Ω) × L2(Ω), there
exist T > 0 sufficiently large and a control function h(·, t) ∈ L2(∂Ω × [0, T ]) such
that the solution u ∈ H1

loc(Ω× [0, T ]) of the problem

utt −∆u = 0 in Ω× [0, T ]

u(·, 0) = f, ut(·, 0) = g in Ω

∂νu(·, t) = 0 on Σ0,

∂νu(·, t) = h(·, t) on Σ1,

(1.3)
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satisfy the final condition

u(·, T ) = 0 = ut(·, T ) in Ω. (1.4)

Theorem 1.3. Let Ω and Ωt be as defined above. Given (f, g) ∈ H1(Ω)× L2(Ω),
there exist T > 0 sufficiently large and a control function h(·, t) ∈ L2(Γ1t × [0, T ])
such that the solution u ∈ H1

loc(QT ) of the problem

utt −∆u = 0 in QT

u(·, 0) = f, ut(·, 0) = g in Ω

∂νu(·, t) = 0 on Σ0,

νtut −∇u · νx = h(·, t) on ΣT ,

(1.5)

satisfy the final condition

u(·, T ) = 0 = ut(·, T ) in ΩT . (1.6)

Note that in both problems (1.3) and (1.5) the controls acts only one part of
the boundary. In the problem (1.3) the control is of Neumann type and acts on Σ1

while in (1.5) the control acts on the moving boundary part ΣT and the control is
established via conormal derivative of the solution u.

Russell [17] developed a technique, based in [16], for studding an exact boundary
control problem for wave equation with control acting only on a part of boundary
of the domain. However, in [17] it is considered domains only fixed boundaries
and with Dirichlet null condition on one part of the boundary. Here, it is used the
Russell’s technique but we go a step more by studying both exact boundary control
problem with moving and fixed boundaries with Neumann null condition on the
part of the boundary where the controls do not act.

In the literature there are also many works dealing with exact boundary control
problems on non-cylindrical domains, using as HUM method (see [9]) as Russell’s
method, to cite a few see [2, 3, 4, 10, 11, 13, 14] and their references. When the
boundary mobility is bounded, as considered here, we observe an advantage using
the Russell’s method instead of HUM because the original system do not need to
be transformed into a system with variable coefficients as in [4, 11]. On the other
hand, the applicability of Russell’s method requires some properties of the system.
Some of them are: linearity, time reversibility, local energy decay, and suitable trace
theorems. With respect to local energy decay estimates for the problem considered
here we use a decay estimate present in [18], which will presented in the next section.
With respect to traces, the theorems we will use are presented in [19].

As seen above, the Russell’s method requires many properties of the system
but it has the advantage of requiring very little on the geometry of the domain.
From this fact, we can consider the limiting function α, defined above, to be only
piecewise smooth.

The rest of this artile is organized as follows. In Section 2 we presents a brief
summary with respect to traces, extension and decay properties. Section 3 is ded-
icated to proof Theorem 1.2. In Section 4, we consider a special extension result.
In Section 5, we prove Theorem 1.3.

2. Preliminaries results

In this section we state some preliminaries results which are essential for applying
Russell’s controllability method. We make a brief presentation about the trace,
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extension and local energy decay results which are fundamental ingredients in the
Russell’s method. We considering Ω as the domain as defined in the introductory
function whose boundary is ∂Ω = Γ0 ∪ Γ1 where Γ0 is a smooth curve. Also we
consider the pair (Ω,Γ0) being a convex-complemented. So, we let Ω∗ be the a
complementary convex domain associated with Ω.

Let us denote Ω∗
∞ = R2 − Ω∗. It is clear that the pair (Ω∗

∞,Γ0) is convex
complemented, because we have Ω∗ a convex compact set in R2 such that Ω∗

∞ ⊂
R2 − Ω∗ and Γ0 ⊊ ∂Ω∗ = ∂Ω∗

∞. So, from (1.2) it is possible to define the space
H1(Ω∗

∞).
For technical reasons to apply Russell’s method under the following assumptions.

(A1) Let B = B(0, R), with R > 0, be a disc where Ω ∪ Ω∗ ⊂ B. Assume that there
exist a bounded linear operator P : H1(Ω) → H1(Ω∗

∞) such that for u ∈ H1(Ω) the
extension ũ = Pu satisfy the following:

(1) ∂ν ũ = 0 in ∂Ω∗;
(2) ũ = u in Ω;
(3) ũ = 0 in R2 −B;
(4) ∥Pu∥H1(Ω∗

∞) ≤ C∥u∥H1(Ω), where C is a positive real constant independent
on u.

Under the above assumptions, we proof the following extension result.

Lemma 2.1. Let Ω, Ω∗ and Ω∗
∞ be as above and consider the domain Ωδ = {x ∈

Ω∗
∞ : |x − y| ≤ δ, for y ∈ Ω}, where δ is a positive constant. Then there exists a

bounded linear operator E1 : H1(Ω) → H1(Ω∗
∞), such that for each f ∈ H1(Ω) we

have E1f |Ω = f with supp(E1f) ⊂ Ωδ and ∥E1f∥H1(Ω∗
∞) ≤ C∥f∥H1(Ω) for some

constant C > 0.

Proof. Let φ ∈ C∞
0 (Ω∗

∞) be a function such that φ = 1 in Ω and φ in Ω∗
∞ − Ω δ

2
.

By considering the operator P of Assumption (A1), let us define E1f = φPf
for f ∈ H1(Ω). Note that E1 : H1(Ω) → H1(Ω∗

∞) is linear, E1f |Ω = f in Ω
and supp(E1f) ⊂ Ωδ for all f ∈ H1(Ω). Note now that E1 = Mφ ◦ P where
Mφ : H1(Ω) → H1(Ω∗

∞) the multiplication operator defined by Mφ(ϕ) = φϕ is a
bounded linear operator. So, it follows that E1 is a bounded linear operator. □

Another important ingredient in the application of Russell’s controllability method
is the trace regularity of the conormal derivative on time-like surfaces of the so-
lutions of the initial boundary value problem to be studied. Next, we mention a
result on the regularity of the traces of the solution of the wave equation which it
is essential in the proof of Theorems 1.2 and 1.3.

Let us begin with some notation and definitions. Let P (ξ,D) be a linear second
order hyperbolic partial differential equation with C∞ coefficients depending on
ξ in some open bounded domain Ξ ⊂ RN . Being Σ ⊂ Ξ an oriented smooth
hypersurface which is time-like and non-characteristic with respect to P (ξ,D). Let

η = (η1, · · · , ηN ) be a normal unit to Σ. If
∑

aij ∂2

∂ξi∂ξj
is the principal part of

P (ξ,D), then the expression ∂u
∂η =

∑
aij ∂u

∂ξi
ηj defines the conormal derivative of u

relative to the P (ξ,D) along Σ. An important fact is to know what the regularity
of the traces of the conormal derivative on surfaces, for this purpose we turn to
[19]. Considering Ξ ⊂ RN , with N ≥ 2, [19, Theorem 2] shows that if u ∈ H1

loc(Ξ)

is such that P (ξ,D)u ∈ L2
loc(Ξ) then

∂u
∂η ∈ L2

loc(Σ).
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Particularly, if we consider P (ξ,D) as being the standard wave operator, its

principal part will be ∂2

∂t2 −
∑N

i=1
∂2

∂x2
i
. Now, if γ is a smooth hypersurface in RN

we consider the surface γ × R whose unit normal vector is ν = (νx, νt), where
νx = (ν1, · · · , νN ). In this case the conormal derivative of u along γ × R is ∂u

∂ν =
νtut −∇u · νx. Particularly, if we apply the trace result mentioned in the previous
paragraph for the wave operator we obtain the following result.

Lemma 2.2. Let u ∈ H1
loc(Ω

∗
∞ × R) be the solution of the initial-boundary value

problem

utt −∆u = 0 in Ω∗
∞ × R

u(·, 0) = u0, ut(·, 0) = u1, in Ω∗
∞

∂νu(·, t) = 0, on ∂Ω∗
∞ × R

(2.1)

with initial data (u0, u1) ∈ H1(Ω∗
∞)×L2(Ω∗

∞), where supp(u0), supp(u1) ⊂ Ω∗
∞. Let

γ be a smooth hypersurface in Ω∗
∞, with no self intersection and considers surface

γ × R whose the unit normal vector is ν = (νx, νt). Then the conormal derivative
of u along γ × R has trace νtut −∇u · νx ∈ L2

loc(γ × R).

Remark 2.3. If the surface γ×R in Lemma 2.2 is cylindrical then the component νt
of the normal vector ν = (νx, νt) is null, that is νt = 0. So, in this case, the conormal
derivative coincides with normal derivative, that is, νtut −∇u · νx = −∇u · νx.

2.1. Local energy decay. Local energy decay plays a fundamental role in the
proof of the control problems proposed in this article. Particularly, we are interested
in local energy decay estimates for the wave equation in exterior domains. With
respect to this topic there are many paper available in the literature, to cite a few
see [5, 6, 7, 12, 18, 20, 21] and references there in. In this paper, we are interested
in a local decay estimate presented in [18]. To have such result let us consider the
initial initial-boundary value problem

utt −∆u = 0 in Ω∗
∞ × R

u(·, 0) = u0, ut(·, 0) = u1, in Ω∗
∞

∂νu(·, t) = 0, on ∂Ω∗
∞ × R

(2.2)

Let O ⊂ Ω∗
∞ be a bounded domain. The energy of the solution u of the (2.2)

confined in O is

E(t,O, u) =
1

2

∫
O
[|∇u|2 + |ut|2 + |u|2](x, t)dx. (2.3)

If there exist a positive constant C (independent on initial data) and a function
p(t) such that

E(t,O, u) ≤ Cp(t)E(0,O, u), (2.4)

with p(t) → 0, as t → +∞, we say the energy of (2.2) decays locally. In [7, 12] the
authors obtain local energy decay estimates for a exterior problem like (2.2) but
with null Dirichlet condition on ∂Ω∗

∞. In this article we are interested in a local
energy decay estimate but considering a null Neumann boundary condition ∂Ω∗

∞.
So, we turn to a result presented in [18, Lemma 2.1] where with a little adaptation
express the following local energy decay estimate.
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Lemma 2.4. Let (u0, u1) ∈ H1(Ω∗
∞) × L2(Ω∗

∞) with supp(u0), supp(u1) ⊂ O ⊂
Ω∗

∞, then there exist a positive real constant K, independent of u0 and u1, such
that the solution u of (2.2) satisfies

∥u(·, t)∥2H1(O) + ∥ut(·, t)∥2L2(O)

≤ K(1 + t)−2
{
∥u(·, 0)∥2H1(O) + ∥ut(·, 0)∥2L2(O)

}
,

(2.5)

for t > 0 sufficiently large.

The time reversibility of the wave operator has a central role to play in using
Russell’s controllability method. So, it is also necessary to know the local energy
decay estimates for the system (2.2) in reverse time. The next result shows a
estimate for the local energy in reverse time.

Lemma 2.5. Let T a positive real number and (u0, u1) ∈ H1(Ω∗
∞)× L2(Ω∗

∞) with
supp(u0), supp(u1) ⊂ O ⊂ Ω∗

∞. The solution u of the initial boundary value problem

utt −∆u = 0 in Ω∗
∞ × R

u(·, T ) = u0, ut(·, T ) = u1, in Ω∗
∞

∂νu(·, t) = 0, on ∂Ω∗
∞ × R

(2.6)

satisfies the estimate

∥u(·, 0)∥2H1(O) + ∥ut(·, 0)∥2L2(O)

≤ K(1 + T )−2
{
∥u(·, T )∥2H1(O) + ∥ut(·, T )∥2L2(O)

}
,

(2.7)

where K is a positive real constant independent on of the initial data (u0, u1).

Proof. Let v be the solution of the problem

(vtt −∆v)(·, τ) = 0 in Ω∗
∞ × R

v(·, 0) = u0, vτ (·, 0) = −u1, in Ω∗
∞

∂νv(·, τ) = 0, on ∂Ω∗
∞ × R

(2.8)

by applying estimate (2.5) to v we obtain

∥v(·, τ)∥2H1(O) + ∥vτ (·, τ)∥2L2(O) ≤ K(1 + τ)−2
{
∥v(·, 0)∥2H1(O) + ∥vτ (·, 0)∥2L2(O)

}
,

for τ > 0 sufficiently great. Making τ = T − t in latest inequality and observing
that u(·, t) = v(·, T − t) is solution of (2.6) satisfying the estimate (2.7). □

3. Proof of Theorem 1.2

Let Ω,Ω∗,Ω∗
∞ and Ωδ be domains as defined in the previous section. Given

an arbitrary (w0, w1) ∈ H1(Ω)× L2(Ω), according Lemma 2.1 and classical exten-
sion results in L2 we can obtain bounded linear extension operator E : H1(Ω) ×
L2(Ω) → H1(Ω∗

∞) × L2(Ω∗
∞) such that the extension (w̃0, w̃1) of (w0, w1), that is

(w̃0, w̃1) = E(w0, w1), satisfy supp(w̃0), supp(w̃1) ⊂ Ωδ. Let w the solution of the
initial boundary value problem

wtt −∆w = 0 in Ω∗
∞ × R

w(·, 0) = w̃0, wt(·, 0) = w̃1, in Ω∗
∞

∂νw(·, t) = 0, in ∂Ω∗
∞ × R.

(3.1)

Now, for T > 0 we define the bounded linear operator

ST : H1
0(Ωδ)× L2(Ωδ) → H1(Ω∗

∞)× L2(Ω∗
∞)
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such that ST (w(·, 0), wt(·, 0)) = (w(·, T ), wt(·, T )), where w is the solution of (3.1).
From the decay estimate (2.5), with O = Ωδ, applied to w we obtain the estimate

∥(w(·, T ), wt(·, T ))∥2H1(Ω∗
∞)×L2(Ω∗

∞) ≤ K(1 + T )−2∥(w̃0, w̃1)∥2H1(Ωδ)×L2(Ωδ)
, (3.2)

for T > 0 sufficiently large and K is a constant independent of the data (w̃0, w̃1).
In terms of the operator ST , inequality (3.2) becomes

∥ST (w̃0, w̃1)∥2H1(Ω∗
∞)×L2(Ω∗

∞)

≤ K(1 + T )−2∥(w̃0, w̃1)∥2H1(Ωδ)×L2(Ωδ)
,

(3.3)

for T > 0 sufficiently large and K is a constant independent on data (w̃0, w̃1).
Now we consider the cut off function ϕ ∈ C∞

0 (Ω∗
∞) such that ϕ ≡ 1 in Ωδ/2, and

ϕ ≡ 0 outside of Ωδ. Then, for each T > 0, we solve the backward initial boundary
value problem

ztt −∆z = 0 in Ω∗
∞ × R

z(·, T ) = ϕw(·, T ), zt(·, T ) = ϕwt(·, T ), in Ω∗
∞

∂νz(·, t) = 0, in ∂Ω∗
∞ × R,

(3.4)

where the function w is the solution of problem (3.1). We define the linear op-
erator ST : H1

0(Ωδ) × L2(Ωδ) → H1(Ω∗
∞) × L2(Ω∗

∞) by ST (z(·, T ), zt(·, T )) =
(z(·, 0), zt(·, 0)). Applying again the decay estimate (2.7), with O = Ωδ, for function
z, we obtain

∥(z(·, 0), zt(·, 0))∥2H1(Ωδ)×L2(Ωδ)

≤ K(1 + T )−2∥(z(·, T ), zt(·, T )))∥2H1(Ωδ)×L2(Ωδ)
,

(3.5)

for T > 0 sufficiently large and K is a constant independent on data (z0, z1).
In terms of the operator ST the inequality (3.5) becomes

∥ST (z(·, T ), zt(·, T ))∥2H1(Ωδ)×L2(Ωδ)

≤ K(1 + T )−2∥(z(·, T ), zt(·, T )))∥2H1(Ωδ)×L2(Ωδ)
,

(3.6)

for T > 0 sufficiently large and K is a constant independent on data (z0, z1).
We define ṽ(·, t) = w(·, t)− z(·, t) and note that ṽ satisfies

ṽtt −∆ṽ = 0 in Ω∗
∞ × R

ṽ(·, 0) = w(·, 0)− z(·, 0), ṽt(·, 0) = wt(·, 0)− zt(·, 0) in Ω∗
∞

∂ν ṽ(·, t) = 0, in ∂Ω∗
∞ × R

(3.7)

and

ṽ(·, T ) = w(·, T )− ϕw(·, T ) = (1− ϕ)w(·, T ) = 0 in Ω,

ṽt(·, T ) = wt(·, T )− ϕwt(·, T ) = (1− ϕ)wt(·, T ) = 0 in Ω,

since ϕ = 1 in Ω.
Note that the function ṽ solves the initial boundary value problem (3.7) and has

the desirable final state (ṽ(·, T ), ṽt(·, T )) = (0, 0) in Ω. Now an important step it
is to know if we can obtain T > 0 such that (ṽ(·, 0), ṽt(·, 0)) extend the initial data
(f, g) of the problem (1.3). That is, we wish establish solution for the equations

w(·, 0)− z(·, 0) = f, wt(·, 0)− zt(·, 0) = g in Ω.

This latest two equations can be rewriten as

(w0, w1)−R(z(·, 0), zt(·, 0)) = (f, g) in Ω, (3.8)
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where R denotes the restriction to Ω. So, we want to solve (3.8) for unknown
(w0, w1) ∈ H1(Ω)× L2(Ω). For this purpose we rewrite equation (3.8) in terms of
the operators ST and ST . Note that

(z(·, 0), zt(·, 0)) = ST (z(·, T ), ϕzt(·, T ))
= ST (ϕw(·, T ), ϕwt(·, T ))
= STMϕ(w(·, T ), wt(·, T ))
= STMϕST (w(·, 0), wt(·, 0))
= [STMϕSTE](w0, w1),

where Mϕ is the operator multiplication by ϕ. Thus, (3.8) becomes

(w0, w1)−RSTMϕSTE(w0, w1) = (f, g) in Ω. (3.9)

Denoting RSTMϕSTE by KT , equation (3.9) can be rewritten as

(I −KT ) (w0, w1) = (f, g) in Ω, (3.10)

where I is the identity operator in H1(Ω)× L2(Ω).
Now, for solving equation (3.10) it is sufficient to show that KT is a contraction

in H1(Ω) × L2(Ω). It is in this point where the energy decay takes place, by
considering inequalities (3.3) and (3.6) note that

∥KT (w0, w1)∥2H1(Ω)×L2(Ω) ≤ ∥STMϕSTE(w0, w1))∥2H1(Ωδ)×L2(Ωδ)

≤ K(1 + T )−2∥MϕSTE(w0, w1)∥2H1(Ωδ)×L2(Ωδ)

≤ C(1 + T )−2∥STE(w0, w1)∥2H1(Ωδ)×L2(Ωδ)

≤ CK(1 + T )−4∥E(w0, w1)∥2H1(Ωδ)×L2(Ωδ)

≤ C(1 + T )−4∥(w0, w1)∥2H1(Ω)×L2(Ω)

≤ C

(1 + T )4
∥(w0, w1)∥2H1(Ω)×L2(Ω),

where C in the above inequalities represents a positive real constant which may
vary from line to line. So, from the above inequalities we obtain

∥KT (w0, w1)∥H1(Ω)×L2(Ω) ≤
√
C

(1 + T )2
∥(w0, w1)∥H1(Ω)×L2(Ω), (3.11)

for T > 0 sufficiently large, being C a positive constant independent of the initial

data. Now, choosing a T > 0 such that
√
C

(1+T )2 ≤ c < 1 and for such T , KT is a

contraction. After, for such T , we take the solution (w0, w1) for (3.10) and take it
to the begin of the proof in order to obtain the function w, z and ṽ = w−z, where ṽ
solves (3.7) and has the desirable final condition (ṽ(·, T ), ṽ(·, T )) = (0, 0). Besides,
ṽ(·, 0) and ṽt(·, 0) extends f and g, respectively, from Ω to Ω∗

∞. To complete
the proof note that ṽtt − ∆ṽ ∈ L2

loc(Ω
∗
∞ × R), so, applying the trace regularity

result of Lemma 2.2 we have that the trace of conormal derivative of ṽ on surface
∂Ω× [0, T ] is well defined and it is locally square integrable. That is, ṽtνt−∇ṽ ·νx ∈
L2(∂Ω× [0, T ]). As the surface ∂Ω× [0, T ] is cylindrical follows that the component
νt of the normal vector (νx, νt) is null. So, the conormal derivative coincides to
normal derivative ∂ν ṽ on ∂Ω× [0, T ]. To finish the proof, we defines u := ṽ|Ω×[0,T ],
the restriction of ṽ to domain Ω× [0, T ] and h := ∂ν ṽ on ∂Ω× [0, T ] and observing
that the function u and h meet the conditions of Theorem 1.2.
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4. A special extension theorem

Let us consider the domains Ω, Ω∗
∞, and Ω̃ as defined in the previous sections. In

this section, we prove an important result which is of the fundamental importance
in the proof of Theorem 1.3. Such result is stated in lemma below.

Lemma 4.1. Let T be a positive real number. Each (v0, v1) ∈ H(Ω) × L2(Ω) can
be extended to (ṽ0, ṽ1) ∈ H(Ω∗

∞)×L2(Ω∗
∞) such that the solution v ∈ H1

loc(Ω
∗
∞×R)

of the problem
vtt −∆v = 0 in Ω∗

∞ × R
v(·, T ) = ṽ0, vt(·, T ) = ṽ1 in Ω∗

∞

∂νv = 0 on ∂Ω∗
∞ × R,

(4.1)

satisfies the condition

v(·, 0) = 0 = vt(·, 0) in Ω̃. (4.2)

Proof. Let δ be a positive real number, and Ω̃δ = {y ∈ Ω∗
∞ : ∃x ∈ Ω̃; |x−y| < δ} be

an open neighborhood of Ω̃. Given an arbitrary (w0, w1) ∈ H(Ω)×L2(Ω), according
Lemma 2.1 and classical extension results in L2 we can obtain bounded linear
extension operator E : H1(Ω)×L2(Ω) → H1(Ω∗

∞)×L2(Ω∗
∞) such that the extension

(w̃0, w̃1) of (w0, w1), that is (w̃0, w̃1) = E(w0, w1), satisfy supp(w̃0), supp(w̃1) ⊂ Ω̃δ.
Let w ∈ Hloc(Ω

∗
∞ × R) the solution of the initial boundary value problem

wtt −∆w = 0 in Ω∗
∞ × R

w(·, T ) = w̃0, wt(·, T ) = w̃1 in Ω∗
∞

∂νw = 0 on ∂Ω∗
∞ × R,

(4.3)

Now, for T > 0 we define the bounded linear operator

ST : H1(Ω∗
∞)× L2(Ω∗

∞) → H1(Ω∗
∞)× L2(Ω∗

∞)

such that ST (w(·, T ), wt(·, T )) = (w(·, 0), wt(·, 0)), where w is the solution of (4.3).

From the decay estimate (2.7), with O = Ω̃δ, applied to w we obtain the estimate

∥ST (w(·, T ), wt(·, T ))∥2H1(Ω∗
∞)×L2(Ω∗

∞)

≤ K(1 + T )−2∥(w(·, T ), wt(·, T )∥2H1(Ωδ)×L2(Ωδ)
,

(4.4)

for T > 0 sufficiently large and K is a constant independent on data (w̃0, w̃1).

Now we consider the cut off function ϕ ∈ C∞
0 (Ω∗

∞) such that ϕ ≡ 1 in Ω̃δ/2, and

ϕ ≡ 0 out side of Ω̃δ. Let z ∈ Hloc(Ω
∗
∞ × R) the solution of the initial boundary

value problem

ztt −∆z = 0 in Ω∗
∞ × R

z(·, 0) = ϕw(·, 0), zt(·, 0) = ϕwt(·, 0) in Ω∗
∞

∂νz = 0 on ∂Ω∗
∞ × R,

(4.5)

We define the linear operator

ST : H1(Ω∗
∞)× L2(Ω∗

∞) → H1(Ω∗
∞)× L2(Ω∗

∞)

by ST (z(·, 0), zt(·, 0)) = (z(·, T ), zt(·, T )). Applying again the decay estimate (2.5),

with O = Ω̃δ, we obtain

∥ST (z(·, 0), zt(·, 0))∥2H1(Ω̃δ)×L2(Ω̃δ

≤ K(1 + T )−2∥(z(·, 0), zt(·, 0))∥2H1(Ω̃δ)×L2(Ω̃δ)
,

(4.6)
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for T > 0 sufficiently large andK is a constant independent on data (z(·, 0), zt(·, 0)).
We define ṽ(·, t) = w(·, t)− z(·, t) and see that ṽ ∈ Hloc(Ω

∗
∞ × R) satisfies

ṽtt −∆ṽ = 0 in Ω∗
∞ × R

ṽ(·, T ) = w(·, T )− z(·, T ), in Ω∗
∞

ṽt(·, T ) = wt(·, T )− zt(·, T ) in Ω∗
∞

∂ν ṽ = 0 on ∂Ω∗
∞ × R,

(4.7)

and

ṽ(·, 0) = w(·, 0)− ϕw(·, 0) = (1− ϕ)w(·, 0) = 0 in Ω̃,

ṽt(·, 0) = wt(·, 0)− ϕwt(·, 0) = (1− ϕ)wt(·, 0) = 0 in Ω̃,

since ϕ = 1 in Ω̃.
Note that the function ṽ solves the homogeneous wave equation (4.7) and has

the desirable final state (ṽ(·, 0), ṽt(·, 0)) = (0, 0) in Ω̃. Now, an important step it
is to know if we may obtain T > 0 such that (ṽ(·, T ), ṽt(·, T )) be a extension of
the initial data (v0, v1) from H(Ω)×L2(Ω) to H(Ω∗

∞)×L2(Ω∗
∞). That is, we wish

establish solution for the equations

w(·, T )− z(·, T ) = v0, wt(·, T )− zt(·, T ) = v1 in Ω.

The two latest equations can be rewriting as

E(w0, w1)− (z(·, T ), zt(·, T )) = (v0, v1) in Ω. (4.8)

We want to solve (4.8) for the unknown (w0, w1) ∈ H(Ω)×L2(Ω). For this purpose
we rewrite equation (4.8) in terms of the operators ST and ST . Note that

(z(·, T ), zt(·, T )) = ST (z(·, 0), zt(·, 0))
= ST (ϕw(·, 0), ϕwt(·, 0))
= STMϕ(w(·, 0), wt(·, 0))
= STMϕST (w(·, T ), wt(·, T ))
= [STMϕSTE](w0, w1),

where Mϕ is the operator multiplication by ϕ. Thus, (4.8) becomes

(w0, w1)−RSTMϕSTE(w0, w1) = (v0, v1) in Ω, (4.9)

where R denotes the restriction to Ω.
As in the latest section, by denoting RSTMϕSTE by KT , equation (4.9) can be

rewritten as (
I −KT

)
(w0, w1) = (v0, v1) in Ω, (4.10)

where I is the identity operator in H(Ω)× L2(Ω). Equation (4.10) has (w0, w1) as
its unknown. Note that KT is a compact linear operator.

Proceeding analogously to the previous section and by considering inequalities
(4.4) and (4.6) we obtain

∥KT (w0, w1)∥H1(Ω)×L2(Ω) ≤
√
C

(1 + T )2
∥(w0, w1)∥H1(Ω)×L2(Ω), (4.11)

for T > 0 sufficiently large, where C is a positive independent on initial data. So,

choosing a T > 0 such that
√
C

(1+T )2 ≤ c < 1 and for such T , KT is a contraction.

Thus, we take the solution (w0, w1) for (4.10) and take it to the begin of the proof in
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order to obtain w, z and ṽ = w− z, where ṽ solves (4.7) and has the desirable final
condition (ṽ(·, 0), ṽ(·, 0)) = (0, 0). Besides, (ṽ(·, T ), ṽt(·, T )) ∈ H1(Ω∗

∞) × L2(Ω∗
∞)

is extension of (v0, v1) ∈ H1(Ω)×L2(Ω). By the end taken ṽ := v, we can see that
v satisfy (4.1) and the condition (4.2) finalizing the proof of the Lemma 4.1. □

5. Proof of Theorem 1.3

Let Ω, Ω∗, Ω∗
∞ and Ω̃ as defined in the initial section. See that the Ω̃ is a

domain with fixed boundary ∂Ω̃ = Γ̃ ∪ Γ0 where the pair (Ω̃,Γ0) has the convex-
complemented property with respect the convex domain Ω∗. Taking (f, g) ∈
H1(Ω)×L2(Ω), let us consider the extensions (f̃ , g̃) ∈ H1(Ω∗

∞)×L2(Ω∗
∞) of (f, g),

where supp(f̃), supp(g̃) ⊂ Ω̃. Let ũ ∈ H1
loc(Ω

∗
∞ × R) be the solution of the initial-

boundary value problem

ũtt −∆ũ = 0 in Ω∗
∞ × R

ũ(·, 0) = f̃ , ũt(·, 0) = g̃ in Ω∗
∞

∂ν ũ = 0 on ∂Ω∗
∞ × R,

(5.1)

Now, for a T > 0 sufficiently large, we take the state (ũ(·, T ), ũt(·, T )) ∈ H1(Ω̃)×
L2(Ω̃) and according to Lemma 4.1, changing Ω by Ω̃ the state (ũ(·, T ), ũt(·, T ))
can be extended to H1(Ω∗

∞)×L2(Ω∗
∞) such that the solution v ∈ H1

loc(Ω
∗
∞ ×R) of

the initial boundary value problem with extended data (ũ(·, T ), ũt(·, T )),

vtt −∆v = 0 in Ω∗
∞ × R

v(·, T ) = ũ(·, T ), vt(·, T ) = ũt(·, T ) in Ω∗
∞

∂νv = 0 on ∂Ω∗
∞ × R,

(5.2)

satisfies, at the instant t = 0, the condition

v(·, 0) = 0 = vt(·, 0) in Ω̃. (5.3)

Now, by considering ũ and v the solutions of (5.1) and (5.2) respectively. Defining

the function ū = ũ− v see that ū(·, 0) = f̃ , ūt(·, 0) = g̃ and

ū(·, T ) = 0 = ūt(·, T ) in Ω∗
∞.

Furthermore, the function u satisfy the initial-boundary value problem

ūtt −∆ū = 0 in Ω∗
∞ × R

ū(·, 0) = f̃ , ūt(·, 0) = g̃ in Ω∗
∞

∂ν ū = 0 on ∂Ω∗
∞ × R,

(5.4)

and the final condition

ū(·, T ) = 0 = ūt(·, T ) in Ω∗
∞. (5.5)

Note that ūtt −∆ū ∈ L2
loc(Ω

∗
∞ × R), so, applying the trace regularity result of

Lemma 2.2 we have that the trace of conormal derivative of ū on surface ΣT ×R is
well defined and it is locally square integrable. That is, ūtνt −∇ū · νx ∈ L2(ΣT ×
[0, T ]). So, we define u := ū|QT

, the restriction of ū to domain QT = ΩT × [0, T ]
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and h := ūtνt−∇ū ·νx on ΣT × [0, T ] and observing that the function u and satisfy
the initial boundary value problem

utt −∆u = 0 in QT

u(·, 0) = f, ut(·, 0) = g in Ω

∂νu = 0 on Γ0 × [0, T ]

νtut −∇u · νx = h(·, t) on ΣT

(5.6)

with the final condition

u(·, T ) = 0 = ut(·, T ) in ΩT , (5.7)

finalizing the proof of the Theorem 1.3.

Remark 5.1. Theorems 1.2 and 1.3 establish only the existence of the control
time T . But they do not provide a lower bound from which the control time can
be taken. A manner for obtaining lower estimates for the control time, using the
Russell’s controllability method, is to follow the ideas of analytic extension given
in [8, 14, 15]. In those papers it is shown the family of linear compact operators
{KT }T≥diam(Ω) and {K̄T }T≥diam(Ω)

extent analytically, to a sector of complex plane

Σ, to a family of compact linear operators {Kζ}ζ∈Σ and {K̄ζ}ζ∈Σ. In both papers
the analyticity was obtained by handing the explicit formulas of the solution of
the Cauchy problem in complete Rn × R. But here we have a difficulty applying
such technique because we do not have the explicit formulas for the solution to the
initial-boundary value problem for the wave equation in an exterior domain. So,
for this case, such analyticity must would be obtained by another manner.
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