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GLOBAL WELL-POSEDNESS TO A MULTIDIMENSIONAL

PARABOLIC-ELLIPTIC-ELLIPTIC ATTRACTION-REPULSION

CHEMOTAXIS SYSTEM

LING LIU

Abstract. In this article we study the initial-boundary value problem for the
attraction-repulsion chemotaxis system

ut = ∆u− χ∇ · (u∇v) + ξ∇ · (u∇w), x ∈ Ω, ; t > 0,

0 = ∆v − βv + αu, x ∈ Ω, t > 0,

0 = ∆w − δw + γu, x ∈ Ω, t > 0,

∂u

∂ν
=

∂v

∂ν
=

∂w

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

with homogenous Neumann boundary conditions in a multidimensional bounded
domain Ω ⊂ RN (1 ≤ N ≤ 4) with smooth boundary, where χ, ξ, α, β, δ and

γ are positive constants. We prove that under the assumption χα = ξγ the

corresponding system possesses a unique global bounded classical solution in

the cases N ≤ 3 or λ0γδξ∥u0∥10/7L1(Ω)
< 1

CGN
and N = 4. Moreover, the large

time behavior of solutions is also investigated. Specially, when χα = ξγ, the

solution of the system converges to (ū0,
α
β
ū0,

γ
δ
ū0) exponentially if ∥u0∥L∞(Ω)

is small.

1. Introduction

In this article, we study the global solvability, boundedness and asymptotic be-
havior to the attraction-repulsion chemotaxis system

ut = ∆u− χ∇ · (u∇v) + ξ∇ · (u∇w), x ∈ Ω, t > 0,

0 = ∆v − βv + αu, x ∈ Ω, t > 0,

0 = ∆w − δw + γu, x ∈ Ω, t > 0,

(1.1)

in a bounded domain in Ω ⊂ RN (N ≥ 1) with smooth boundary ∂Ω, where the
parameters χ, ξ, α, β, γ, and δ are positive constants. Here u stands for the
cell density, v denotes the concentration of an attracting signal, and w represents
the concentration of a repulsive chemical. This model was proposed in [32] for
describing the quorum effect in a chemotaxis process and in [28] for describing the
aggregation of microglia in Alzheimer’s disease.
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Before going into our mathematical analysis, we recall some important progresses
on system (1.1) and its variants. In the absence of chemorepulsive chemical (i.e.
chemorepellent), namely ξ = 0, w is decoupled from the system (1.1) and the first
two equations of (1.1) comprises a classical Keller-Segel model

ut = ∆u− χ∇ · (u∇v), x ∈ Ω, t > 0,

0 = ∆v − βv + αu, x ∈ Ω, t > 0,
(1.2)

which has been widely investigated (see [1, 30, 31]). For instance, it is well-known
that for large classes of initial data, solutions of system (1.2) blow up when either
N ≥ 3, or N = 2 and the total mass of cells is large, while global bounded solutions
can be constructed under appropriate smallness conditions on the initial data ([13,
39]). There is a large amount mathematical result of well-posedness and asymptotic
behavior for system (1.2) and its variants. One can refer to [1, 4, 5, 10, 14, 15, 18,
21, 26, 27, 29, 36, 38, 39, 41, 47] and references therein.

Unlike the classical Keller-Segel model (1.2), it appears to be difficult to find
a Lyapunov functional for (1.1), and thus the mathematical analysis for is more
challenging. However, in many biological processes, cells often interact with a
combination of repulsive and attractive signaling chemicals to produce various in-
teresting biological patterns [7, 32]. To describe such process of cells, Tao and Wang
[35] proposed the following coupled attraction-repulsion chemotaxis system

ut = ∆u− χ∇ · (u∇v) + ξ∇ · (u∇w), x ∈ Ω, t > 0,

τvt = ∆v − βv + αu, x ∈ Ω, t > 0,

τwt = ∆w − δw + γu, x ∈ Ω, t > 0,

(1.3)

where τ ∈ {0, 1}. In contrast to the Keller-Segel system, systems (1.3) describe an
indirect signal production mechanism, that is, the chemoattractant is not produced
by cells directly, but is controlled indirectly via parabolic equations or elliptic equa-
tions. From their study, a large variety of mathematical analyses have been devoted,
especially to the well-studied areas of global existence and blow-up of solutions in
variants of (1.3) (see [1, 11, 12]). Fujie and Senba [8] proved that system (1.3) with
homogeneous Neumann boundary conditions or mixed boundary conditions (no-flux
for nand Dirichlet conditions for v and w) possesses a unique and global bounded
classical solution for N ≤ 3, and showed the global boundedness of classical so-
lution to (1.3) with homogeneous Neumann boundary conditions for N = 4 and∫
Ω
u0 < (8π)2

χ in the radially symmetric setting (whereas this conclusion remains

valid without radial symmetry to the mixed boundary value problem). In their
later work [9], Fujie and Senba showed that the classical solution in will be blowing

up in finite or infinite time if N = 4 and ∥u0∥L1(Ω) ∈ ( (8π)
2

χ ,∞) \ {j · (8π)2

χ |j ∈ N}.
We point that the key ingredients for [8, 9] are a Lyapunov functional and an
Adams-type inequality. However, unlike the τ = 1, it seems to be difficult to find
an Adams-type inequality for (1.3) with the case τ = 0, and thus the mathematical
analysis is more challenging. And therefore, the boundedness of the case τ = 0 or
radially symmetric setting of the case τ = 1 of system (1.3) is still open.

In [17], for any β > 0 and δ > 0, the large-time behavior of (1.3) was explored
in the one-dimensional case. For a higher-dimensional case (N ≤ 3), [35] showed
that each solution of (1.3) converges to a unique trivial stationary solution under
the conditions that χα < ξγ and δ = β. Furthermore, similar results are also valid
for the critical condition that χα = ξγ ([16]). To the best of our knowledge, for the
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attraction-repulsion chemotaxis system (1.3), there is few rigorous mathematical
results on large time behavior of the solutions under the condition N = 4. From
this point of view, our results can be referred as an enrichment in this respect.
Additionally, recent studies have shown that the solution behavior can be also
impacted by the volume-filling or prevention of overcrowding (see [1, 2, 6, 48]), the
nonlinear diffusion (see [3, 33, 42, 43, 47]), and the logistic damping (see [22, 24, 44]).
In order to provide a more comprehensive description of the development of (1.3),
it is necessary to add the following supplementary content, with specific references
to [19, 20, 23, 25, 34, 45].

Inspired by the above works, we study system (1.2), and we will prove the global
solvability, boundedness and asymptotic behavior of the system for various ranges
of parameter values. For the sake of clearness, let us recall the Gagliardo-Nirenberg
inequality in the four-dimensional case

∥ϕ∥3L3(Ω) ≤ CGN∥∇ϕ∥2L2(Ω)∥ϕ∥
1/2
L2(Ω) + CGN,∗∥ϕ∥3L2(Ω) (1.4)

for all ϕ ∈ W 1,2(Ω), where CGN and CGN,∗ are some positive constants only de-
pending on Ω.

We consider the elliptic system

−∆w + δw = γg, x ∈ Ω,

∂w

∂ν
= 0, x ∈ ∂Ω,

where κ ∈ (1,+∞) and g ∈ Lκ(Ω). Then there exists a unique solution w ∈
W 2,κ(Ω). In addition, there exists a positive constant λ0 = λ0(Ω, δ) such that

∥v∥W 2,κ(Ω) ≤ λ0∥γg∥Lκ(Ω). (1.5)

The aim of this study is to provide some further insights into the existence of
global solutons as well as boundedness and large-time behavior for (1.1) in the
case χα = ξγ and N = 4. To prepare a precise statement of our main results,
let us fix the mathematical framework by considering (1.1) in a bounded domain
Ω ⊂ RN (1 ≤ N ≤ 4) with smooth boundary, where χ, ξ, α, β, γ, and δ are positive
constants. To state our results precisely, we specify the precise problem context by
considering (1.1) along with the boundary conditions

∂u

∂ν
=

∂v

∂ν
=

∂w

∂ν
= 0, x ∈ ∂Ω, t > 0, (1.6)

and the initial conditions

u(x, 0) = u0(x), x ∈ Ω. (1.7)

We shall assume throughout this paper that the initial data satisfy

u0 ∈ C0(Ω̄) with u0 ≥ 0 in Ω and u0 ̸≡ 0, x ∈ Ω̄. (1.8)

Within the above framework, our main results concerning the existence and
boundedness of global solutions to (1.1), (1.6), (1.7) read as follows.

Theorem 1.1. Let Ω ⊂ RN be a bounded domain with smooth boundary. Suppose
that the initial data satisfies (1.8). Then under the assumption χα = ξγ, we can
prove that
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(i) if λ0γδξ∥u0∥10/7L1(Ω) <
1

CGN
and N = 4, then system (1.1), (1.6), (1.7) pos-

sesses a unique global bounded classical solution (u, v, w). Besides, there
exists constant C > 0 independent of Υ(∥u0∥L∞(Ω)) such that

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W 1,∞(Ω) + ∥w(·, t)∥W 1,∞(Ω) ≤ CΥ(∥u0∥L∞(Ω))

for all t > 0;
(ii) if N ≤ 3, then system (1.1), (1.6), (1.7) admits a unique global bounded

classical solution (u, v, w). Moreover, there exists C > 0 independent of
Υ(∥u0∥L∞(Ω)) such that

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W 1,∞(Ω) + ∥w(·, t)∥W 1,∞(Ω) ≤ CΥ(∥u0∥L∞(Ω))

for all t > 0. Here Υ is a continuous function which is non-decreasing
respective to ∥u0∥L∞(Ω).

Remark 1.2. (i) Since Υ(∥u0∥L∞(Ω)) ≥ 1 is non-decreasing with respective to
∥u0∥L∞(Ω), Theorem 1.1 implies that suitably small ∥u0∥L∞(Ω) in system (1.1),
(1.6), (1.7) would provides the existence and boundedness of global solutions to
system (1.1), (1.6), (1.7).

(ii) The proof of Theorem 1.1 is inspired by [37, 22]. These results extend the
previous work obtained in [22, 44] which require r = 3/2 with N = 4 and r > 2N−2

N
for any N ≥ 1.

(iii) From [9], we know that here the condition for system (1.1), (1.6), (1.7) is
optimal.

In light of these results, it seems natural and inevitable that our second result, ad-
dressing asymptotic homogenization of all solution components, requires ∥u0∥L∞(Ω)

to be appropriately small. We then show that the smallness assumption on u0 forces
the corresponding solution in Theorem 1.1 to converge to (ū0,

α
β ū0,

γ
δ ū0) by using

the ODE theory and some careful analysis. Indeed, based on the global existence,
the solution has the following convergence property.

Theorem 1.3. Let χα = ξγ and Ω ⊂ RN (1 ≤ N ≤ 4) be a bounded domain with
a smooth boundary. Then for any u0 that satisfies (1.8), there exists ϵ0 > 0 such
that if u0 satisfies

∥u0∥L∞(Ω) ≤ ϵ

for some 0 < ϵ < ϵ0, then for any t > 0, there exists ρ1,∗ > 0 and C such that

∥u(·, t)− ū0∥L∞(Ω) ≤ Ce−ρ1,∗t, (1.9)

∥v(·, t)− α

β
ū0∥L∞(Ω) ≤ Ce−ρ1,∗t, (1.10)

∥w(·, t)− γ

δ
ū0∥L∞(Ω) ≤ Ce−ρ1,∗t, (1.11)

where ū0 := 1
|Ω|

∫
Ω
u0(x).

Remark 1.4. (i) This result partly improves the previous work obtained in Li-
Wang [22] and Xie-Zheng [44] which requires the logistic source f(u) = au − µur

with r = 2− (2/N) or r > 2− (2/N) and N ≤ 4.
(ii) To the best of our knowledge, these are the first results on boundedness of

the system in four-dimensional space in the case τ = 0.
(iii) From [9], we know that here the condition for system (1.1), (1.6), (1.7) is

optimal.
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(iv) Theorem 1.3 asserts that the solution of system (1.1), (1.6), (1.7) behaves
asymptotically in a similar manner to the case where β = δ and N ≤ 3 in [35]
(see also [24]), provided that the initial data u0 is sufficiently small in L∞(Ω).
However, for N > 3 the large-time behavior of system (1.1), (1.6), (1.7) is given as
an open problem. Hence, from this point of view, our results can be referred as an
enrichment in this respect.

2. Preliminaries

In this section, we present some basic properties of system (1.1), (1.6), (1.7). We
start with the existence theory and extensibility of the local solution. To this end,
by an adaptation of well-established fixed point arguments (see [40, Lemma 2.1] or
[46]), we can establish the following local existence result for system (1.1), (1.6),
(1.7).

Lemma 2.1. Let Ω ⊂ RN (N ≥ 1) be a bounded domain with smooth boundary.
Assume that the initial data satisfy (1.8). Then there exists a positive constant Tmax

such that (1.1) has a unique non-negative classical solution (u, v, w) satisfying

u ∈ C0(Ω̄× [0, Tmax)) ∩ C2,1(Ω̄× (0, Tmax)),

v ∈ C0(Ω̄× [0, Tmax)) ∩ C2,0(Ω̄× (0, Tmax)),

w ∈ C0(Ω̄× [0, Tmax)) ∩ C2,0(Ω̄× (0, Tmax)).

Moreover, if Tmax < ∞, then

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W 1,∞(Ω) + ∥w(·, t)∥W 1,∞(Ω) → ∞ as t ↗ Tmax. (2.1)

The following well-known Gagliardo-Nirenberg inequality will be frequently used
[46].

Lemma 2.2. ([46]) Let 0 < θ ≤ p < 2N
(N−2)+

. There exists a positive constant CGN

such that for all u ∈ W 1,2(Ω) ∩ Lθ(Ω),

∥u∥Lp(Ω) ≤ CGN (∥∇u∥aL2(Ω)∥u∥
1−a
Lθ(Ω)

+ ∥u∥Lθ(Ω)),

is valid with a =
N
θ −N

p

1−N
2 +N

θ

∈ (0, 1).

Some basic properties of the solution obtained in Lemma 2.1 can be derived as
follows.

Lemma 2.3. Under the assumption of local existence, we can obtain∫
Ω

u =

∫
Ω

u0 for all t ∈ (0, Tmax), (2.2)

β

α

∫
Ω

v =
δ

γ

∫
Ω

w =

∫
Ω

u0 for all t ∈ (0, Tmax). (2.3)

To deal with the repulsion mechanism in (1.1), inspired by [22] and [35], we
define

s(x, t) := χv(x, t)− ξw(x, t), (x, t) ∈ Ω× (0, Tmax).
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Then, recalling ξγ = χα, (1.1), (1.6), (1.7) can be rewritten as

ut = ∆u−∇ · (u∇s), x ∈ Ω, t ∈ (0, Tmax),

0 = ∆s− δs+ ᾱv, x ∈ Ω, t ∈ (0, Tmax),

0 = ∆v − βv + αu, x ∈ Ω, t ∈ (0, Tmax),

∂u

∂ν
=

∂s

∂ν
=

∂w

∂ν
= 0, x ∈ ∂Ω, t ∈ (0, Tmax),

u(x, 0) = u0(x), x ∈ Ω,

(2.4)

where ᾱ = χ(δ − β).

3. Proof of Theorem 1.1

Notation: Sometimes, we will use C,Ci to denote uniform constants hat may
be different on different lines.

In this section, we focus on the global existence and boundedness of solutions.
To this end, we shall establish a series of a priori estimates of solutions for system
(1.1), (1.6), (1.7), which play an important role in proving Theorem 1.1. And the
derivation of the uniform Lp bounds on u needs two cases. Firstly, we can obtain
the boundedness of ∥u∥Lp(Ω) (for any p > 1) under the assumption N ≤ 3.

Lemma 3.1. Let N ≤ 3. Then for any finite p > 2, there exists γ1 > 0 and
Υ1(∥u0∥L∞(Ω)) such that

∥u(·, t)∥Lp(Ω) ≤ γ1Υ1(∥u0∥L∞(Ω)) for all t ∈ (0, Tmax). (3.1)

Proof. According to the known results on elliptic boundary problem in L1(Ω) to-
gether with Lemma 2.3, we can have that for any l ∈ (1, N

(N−1)+
), there exists

C1(l,Ω) > 0 independent of u0 such that

∥w(·, t)∥W 1,l(Ω) ≤ C1∥u0∥L1(Ω) for all t ∈ (0, Tmax),

which combining with the Sobolev embedding, W 1,l(Ω) ↪→ L2(Ω) by N ≤ 3 and
l ∈ (1, N

(N−1)+
), derives that there exists C2 > 0 satisfying

∥w(·, t)∥L2(Ω) ≤ C2∥u0∥L1(Ω)

for all t ∈ (0, Tmax) [37, Lemma 3.1].
Testing the first equation in (2.4) with up−1 and integrating by parts, we obtain

1

p

d

dt

∫
Ω

up +
4(p− 1)

p2

∫
Ω

|∇up/2|2 = (p− 1)

∫
Ω

up−1∇u · ∇s

= −p− 1

p

∫
Ω

up∆s

=
p− 1

p

∫
Ω

up(ᾱv − δs)

=
p− 1

p

∫
Ω

up(χ(δ − β)v − δ(χv − ξw))

≤ p− 1

p
δξ

∫
Ω

upw for all t ∈ (0, Tmax).
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In light of the Hölder inequality and the Gagliardo-Nirenberg inequality (see Lemma
2.2), we can obtain some constant C3(p) > 0 such that

p− 1

p
δξ

∫
Ω

upw

≤ p− 1

p
δξ(

∫
Ω

u2p)1/2
(∫

Ω

w2
)1/2

≤ p− 1

p
δξ
(∫

Ω

u2p
)1/2(∫

Ω

w2
)1/2

≤ p− 1

p
δξC2∥u0∥L1(Ω)

(∫
Ω

u2p
)1/2

=
p− 1

p
δξC2∥u0∥L1(Ω)∥up/2∥2L4(Ω)

=
p− 1

p
δξC2C3(p)∥u0∥L1(Ω)

[
∥∇up/2∥

2
Np
2

−N
4

1−N
2

+
Np
2

L2(Ω) ∥up/2∥
2−2

Np
2

−N
4

1−N
2

+
Np
2

L
2
p (Ω)

+ ∥up/2∥2
L

2
p (Ω)

]
=

p− 1

p
δξC2C3(p)∥u0∥L1(Ω)

[ 4

p2

(∫
Ω

|∇up/2|2
) Np

2
−N

4

1−N
2

+
Np
2

(∫
Ω

u0

)p(1−
Np
2

−N
4

1−N
2

+
Np
2

)

+
(∫

Ω

u0

)p]
for all t ∈ (0, Tmax). Applying the Young inequality, one has

p− 1

p
δξ

∫
Ω

upw ≤ 2(p− 1)

p

∫
Ω

|∇up/2|2 + C4∥u0∥
p+

1−N
4

1−N
2

+
Np
2

L1(Ω) + C5∥u0∥p+1
L1(Ω)

with C4 > 0, where

C5 =
p− 1

p
δξC2C3(p).

Using the Gagliardo-Nirenberg inequality (see Lemma 2.2), we can obtain a positive
constant C6 > 0 such that

∥u∥p+
2
N

Lp+ 2
N (Ω)

= ∥up/2∥
2(p+ 2

N
)

p

L
2(p+ 2

N
)

p (Ω)

≤ C6(∥∇up/2∥2L2(Ω)∥u
p/2∥

4
N

L
2
p (Ω)

+ ∥u
2
p ∥

2(p+ 2
N

)

p

L
2
p (Ω)

)

= C6(∥∇up/2∥2L2(Ω)∥u∥
2p
N

L1(Ω) + ∥u∥p+
2
N

L1(Ω))

= C6(∥∇up/2∥2L2(Ω)∥u0∥
2p
N

L1(Ω) + ∥u0∥
p+ 2

N

L1(Ω)),

which implies that

∥∇up/2∥2L2(Ω) ≥
1

C6∥u0∥
2p
N

L1(Ω)

∥u∥p+
2
N

Lp+ 2
N (Ω)

− ∥u0∥
pN+2−2p

N

L1(Ω) (3.2)
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for all t ∈ (0, Tmax). Thus, we

1

p

d

dt

∫
Ω

up +
2(p− 1)

p

1

C6∥u0∥
2p
N

L1(Ω)

∥u∥p+
2
N

Lp+ 2
N (Ω)

≤ C7(∥u0∥L∞(Ω))

for all t ∈ (0, Tmax) with

C7(∥u0∥L∞(Ω)) =
2(p− 1)

p
[∥u0∥L∞(Ω)|Ω|]

pN+2−2p
N

+ C4[∥u0∥L∞(Ω)|Ω|]
p+

1−N
4

1−N
2

+
Np
2

+ C5[∥u0∥L∞(Ω)|Ω|]p+1

(3.3)

This and the Hölder inequality yields

1

p

d

dt

∫
Ω

up +
2(p− 1)

p

1

C6∥u0∥
2p
N

L1(Ω)

|Ω|−
2

pN

(∫
Ω

up
) p+ 2

N
p ≤ C7(∥u0∥L∞(Ω))

Upon an ODE comparison, we have∫
Ω

up(·, t) ≤ max{
∫
Ω

up
0, C(p)Λ(∥u0∥L1(Ω))} for all t ∈ (0, Tmax) (3.4)

with

C(p) = [
pC6

2(p− 1)
|Ω|

2
pN ]

p

p+ 2
N ,

Λ(∥u0∥L∞(Ω)) = [C7(∥u0∥L∞(Ω))[∥u0∥L∞(Ω)|Ω|]
2p
N ]

p

p+ 2
N .

As a consequence of (3.3) and (3.4), (3.1) is valid by a choice of

γ1 = [
pC6

2(p− 1)
|Ω|

2
pN ]

p

p+ 2
N + |Ω|,

Υ1(∥u0∥L∞(Ω)) = max{∥u0∥pL∞(Ω), [C7(∥u0∥L∞(Ω))[∥u0∥L∞(Ω)|Ω|]
2p
N ]

p

p+ 2
N }. □

Lemma 3.2. Let N = 4 and λ0αδξ+∥u0∥10/7L1(Ω) <
1

CGN
. Then for each finite p > 2,

there exists γ2 and Υ2(∥u0∥L∞(Ω)) such that

∥u(·, t)∥Lp(Ω) ≤ γ2Υ2(∥u0∥L∞(Ω)) for all t ∈ (0, Tmax). (3.5)

Proof. We will divide the proof into two steps.
Step 1. A bound for u in L∞((0, Tmax);L

2(Ω)): Multiplying the first equation in
(2.4) by u, integrating by parts and using the Hölder inequality, we have

1

2

d

dt

∫
Ω

u2 +

∫
Ω

|∇u|2 =

∫
Ω

u∇u · ∇s

= −
∫
Ω

u2∆s

=

∫
Ω

u2[−δs+ ᾱv]

=

∫
Ω

u2[−δ[χv − ξw] + χ(δ − β)v]

≤ δξ

∫
Ω

u2w
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≤ δξ∥u∥2L5/2∥w∥L5(Ω) for all t ∈ (0, Tmax). (3.6)

Then the Gagliardo-Nirenberg inequality (see Lemma 2.2) and Lemma 2.3 ensure
that the constant CGN > 0 and CGN,∗ are such that

∥u∥5/2
L5/2(Ω)

≤ CGN∥∇u∥2L2(Ω)∥u∥
1/2
L1(Ω) + CGN,∗∥u∥5/2L1(Ω)

≤ CGN∥∇u∥2L2(Ω)∥u0∥1/2L1(Ω) + CGN,∗∥u0∥5/2L1(Ω),

which implies that

∥∇u∥2L2(Ω) ≥
1

CGN∥u0∥1/2L1(Ω)

∥u∥5/2
L5/2(Ω)

− CGN,∗

CGN
∥u0∥2L1(Ω) (3.7)

In light of the Sobolev embedding theorem and elliptic Lp estimates, we can obtain
a constant λ0= λ0(Ω, β) such that

∥w∥L5(Ω) ≤ λ0∥γu∥L10/7(Ω) for all t ∈ (0, Tmax). (3.8)

Then from the Hölder inequality and Lemma 2.3 it follows that

λ0∥γu∥L10/7(Ω) ≤ λ0γ(

∫
Ω

u5/2)
1
5

(∫
Ω

u
)4/5

= λ0γ∥u∥1/2L5/2(Ω)
∥u0∥4/5L1(Ω)

for all t ∈ (0, Tmax). Inserting the above inequality as well as (3.7) and (3.8) into
(3.6), we derive that C4 > 0 such that

1

2

d

dt

∫
Ω

u2 +
1

CGN∥u0∥1/2L1(Ω)

∥u∥5/2
L5/2(Ω)

≤ λ0γδξ∥u0∥4/5L1(Ω)∥u∥
5/2

L5/2(Ω)
+

CGN

CGN,∗
∥u0∥2L1(Ω)

for all t ∈ (0, Tmax). This combined the Hölder inequality yields

1

2

d

dt

∫
Ω

u2 +
( 1

CGN∥u0∥1/2L1(Ω)

− λ0γδξ∥u0∥4/5L1(Ω)

)
|Ω|− 1

4

(∫
Ω

u2
)5/4

≤ CGN

CGN,∗
∥u0∥2L1(Ω) for all t ∈ (0, Tmax).

Recalling the hypothesis λ0γδξ+∥u0∥10/7L1(Ω) < 1
2CGN

, an ODE comparison implies

that ∫
Ω

u2 ≤ max{( CGN

CGN,∗
∥u0∥2L1(Ω))

4/5∥u0∥2L1(Ω)|Ω|
1
5 ,

∫
Ω

u2
0}

≤ max{( CGN

CGN,∗
∥u0∥2L∞(Ω)|Ω|

2)4/5∥u0∥2L∞(Ω)|Ω|
11
5 ,

∫
Ω

u2
0}

:= C6(∥u0∥L∞(Ω)) for all t ∈ (0, Tmax).

(3.9)
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Now, we can use the Sobolev embedding theorem and elliptic Lp estimates to deduce
that

∥∇s∥L∞(Ω) ≤ C7∥s∥W 2,6(Ω)

≤ C8∥v∥L6(Ω)

≤ C9∥v∥
W 2, 3

2 (Ω)

≤ C10∥u∥
L

3
2 (Ω)

≤ C10∥u∥L2(Ω)|Ω|
3
4

≤ C11C
1/2
6 (∥u0∥L∞(Ω)) for all t ∈ (0, Tmax)

(3.10)

with constants Ci > 0 (i = 7, 8, 9, 10, 11).

Step 2. A bound for u in L∞((0, Tmax);L
p(Ω)) for any p > 1: We test the first

equation in (2.4) with up−1 and use the Young inequality and (3.10) to deduce that

1

p

d

dt

∫
Ω

up + (p− 1)

∫
Ω

up−2|∇u|2

= (p− 1)

∫
Ω

up−1∇u · ∇s

≤ p− 1

2

∫
Ω

up−2|∇u|2 + p− 1

2

∫
Ω

up|∇s|2

≤ p− 1

2

∫
Ω

up−2|∇u|2 +
(p− 1)C2

11C6(∥u0∥L∞(Ω))

2

∫
Ω

up

(3.11)

for all t ∈ (0, Tmax). Next, recalling the Gagliardo-Nirenberg inequality (see Lemma
2.2) and Lemma 2.3, we can obtain positive constants C12 and C13 such that

(p− 1)C2
11C6(∥u0∥L∞(Ω))

2

∫
Ω

up

=
(p− 1)C2

11C6(∥u0∥L∞(Ω))

2
∥up/2∥2L2(Ω)

≤ C12C6(∥u0∥L∞(Ω))(∥∇up/2∥2
Np−N

2−N+Np

L2(Ω) ∥up/2∥2[1−
Np−N

2−N+Np ]

L2/p(Ω)
+ ∥up/2∥2L2/p(Ω))

= C12C6(∥u0∥L∞(Ω))(∥∇up/2∥2
Np−N

2−N+Np

L2(Ω) ∥u0∥
p[1− Np−N

2−N+Np ]

L2/p(Ω)
+ ∥u0∥pL1(Ω))

≤ C13C6(∥u0∥L∞(Ω))([
p2

4
]

Np−N
2−N+Np (

∫
Ω

up−2|∇u|2)
Np−N

2−N+Np ∥u0∥
p[1− Np−N

2−N+Np ]

L2/p(Ω)

+ ∥u0∥pL1(Ω)) for all t ∈ (0, Tmax)

(3.12)

which with the Young inequality implies that for some C14 > 0 such that

(p− 1)C2
11C6(∥u0∥L∞(Ω))

2

∫
Ω

up

≤ p− 1

4

∫
Ω

up−2|∇u|2 + C14[C
2−N+Np

2
6 (∥u0∥L∞(Ω)) + 1][∥u0∥L∞(Ω)|Ω|]p

(3.13)

for all t ∈ (0, Tmax). Collecting (3.11) and (3.13), we have

1

p

d

dt

∫
Ω

up +
p− 1

4

∫
Ω

up−2|∇u|2
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≤ C14(C
2−N+Np

2
6 (∥u0∥L∞(Ω)) + 1)[∥u0∥L∞(Ω)|Ω|]p for all t ∈ (0, Tmax)

with C15 > 0. This combined with the Hölder inequality and (3.12) implies that

1

p

d

dt

∫
Ω

up +

(∫
Ω

up

) 2−N+Np
Np−N

≤ C15(C
2−N+Np

2
6 (∥u0∥L∞(Ω)) + 1)[∥u0∥L∞(Ω)|Ω|]p

for all t ∈ (0, Tmax), with C15 > 0. Then, by an ODE comparison, we can obtain
positive constants C16 and Λ2(∥u0∥L∞(Ω)) such that∫

Ω

up ≤ max
{∫

Ω

up
0, C16Λ2(∥u0∥L∞(Ω))

}
for all t ∈ (0, Tmax). (3.14)

By choosing γ2 := C16 and Υ2(∥u0∥L∞(Ω)) := max{∥u0∥pL∞(Ω)|Ω|,Λ2(∥u0∥L∞(Ω))}
in (3.14), we eventually obtain (3.5). □

In conjunction with the estimate for the estimate for u in Lp(Ω) provided by
Lemmas 3.1–3.2, the latter entails boundedness of u as well as ∇v and ∇w in
L∞(Ω).

Lemma 3.3. Let N ≤ 4 and

Υ(∥u0∥L∞(Ω)) =

{
Υ1(∥u0∥L∞(Ω)), if N ≤ 3,

Υ2(∥u0∥L∞(Ω)), if N = 4.
(3.15)

where Υ1(∥u0∥L∞(Ω)) and Υ2(∥u0∥L∞(Ω)) are the same as Lemma 3.1 and Lemma
3.2, respectively. Then one can find ρ∗∗ > 1 independent of Υ(u0) such that the
solution of (1.1) from Lemma 2.1 satisfies

∥u(·, t)∥L∞(Ω) ≤ ρ∗∗Υ(∥u0∥L∞(Ω)) for all t ∈ (0, Tmax), (3.16)

∥v(·, t)∥W 1,∞(Ω) ≤ ρ∗∗Υ(∥u0∥L∞(Ω)) for all t ∈ (0, Tmax), (3.17)

∥w(·, t)∥W 1,∞(Ω) ≤ ρ∗∗Υ(∥u0∥L∞(Ω)) for all t ∈ (0, Tmax). (3.18)

Proof. In the following, we let κ∗∗,i(i ∈ N) denote some different constants, which
are independent of ∥u0∥L∞(Ω), and if no special explanation, they may depend on
Ω, α, β, γ, δ, ξ, χ.

Now, applying the Lp estimate for the second and third equations of system
(1.1), we derive that there exist positive constants κ∗∗,1, κ∗∗,2 as well as κ∗∗,3 and
κ∗∗,4 independent of ∥u0∥L∞(Ω) such that

∥v(·, t)∥2NW 2,2N (Ω) ≤ κ∗∗,1∥αu(·, t)∥2NL2N (Ω)

≤ κ∗∗,2Υ(∥u0∥L∞(Ω)) for all t ∈ (0, Tmax),
(3.19)

∥w(·, t)∥2NW 2,2N (Ω) ≤ κ∗∗,3∥γu(·, t)∥2NL2N (Ω)

≤ κ∗∗,4Υ(∥u0∥L∞(Ω)) for all t ∈ (0, Tmax),
(3.20)

where Υ(∥u0∥L∞(Ω)) is given by (3.15).
Now, applying the Sobolev embedding theorems, we derive that

W 2,2N (Ω) ↪→ W 1,∞(Ω),

and therefore, we conclude from (3.19) that there exists a positive constants κ∗∗,5
independent of u0 such that

∥c(·, t)∥W 1,∞(Ω) + ∥w(·, t)∥W 1,∞(Ω) ≤ κ∗∗,5Υ
1

2N (∥u0∥L∞(Ω)) (3.21)
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for all t ∈ (0, Tmax). Now, let h̃ = χ∇v − ξ∇w. Then by (3.21), there exists a
positive constant κ∗∗,6 > 0 such that

∥h̃(·, t)∥L∞(Ω) ≤ κ∗∗,6Υ
1

2N (∥u0∥L∞(Ω)) (3.22)

for all t ∈ (0, Tmax).
Next, by an associate variation-of-constants formula we can represent u(·, t) for

each t ∈ (0, Tmax) according to

u(·, t) = et∆u0(·)−
∫ t

0

e(t−s)∆∇ · (u(·, s)h̃(·, s))ds, t ∈ (0, Tmax). (3.23)

The maximum principle implies that

∥et∆u0∥L∞(Ω) ≤ ∥u0∥L∞(Ω), (3.24)

The last term on the right-hand side of (3.23) is estimated as follows. Invoking
the known smoothing properties of the Neumann heat semigroup and the Hölder
inequality to find κ∗∗,7 > 0 and κ∗∗,8 > 0 independent of ∥u0∥L∞(Ω) such that∫ t

0

∥e(t−s)∆∇ · (u(·, s)h̃(·, s)∥L∞(Ω)ds

≤ κ∗∗,7

∫ t

0

[1 + (t− s)−
1
2−

N
4N ]e−λ(t−s)∥u(·, s)h̃(·, s)∥L2N (Ω)ds

≤ κ∗∗,7

∫ t

0

[1 + (t− s)−
1
2−

N
4N ]e−λ(t−s)∥u(·, s)∥L2N (Ω)∥h̃(·, s)∥L∞(Ω)ds

≤ κ∗∗,8Υ
1
N (∥u0∥L∞(Ω)) for all t ∈ (0, Tmax)

(3.25)

by using Lemmas 3.1 and 3.2 and (3.21). Thus the proof is complete. □

Combining (2.1) with Lemma 3.3, we obtain that system (1.1), (1.6), (1.7) are
indeed global in time.

Proposition 3.4. Let 1 ≤ N ≤ 4. Then the solution of (1.1) is global on [0,∞).
Moreover, one can find independent of u0 such that the solution of (1.1) satisfies

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W 1,∞(Ω) + ∥w(·, t)∥W 1,∞(Ω) ≤ λ∗Υ(∥u0∥L∞(Ω)) (3.26)

for all t ∈ (0,∞).

Proof. Firstly, relying on (2.1) and Lemma 3.3, we find λ1,∗ > 0 independent of u0

with the property that

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W 1,∞(Ω) + ∥w(·, t)∥W 1,∞(Ω) ≤ λ∗Υ(∥u0∥L∞(Ω)) (3.27)

for all t ∈ (0, Tmax) with Υ(∥u0∥L∞(Ω)) is the same as Lemma 3.3. In view of the
extensibility criterion (2.1), we thus infer that Tmax = ∞, i.e., the solution (u, v, w)
is global in time. Moreover, again based on Lemma 3.3, we can deduce that (3.26)
holds. This completes the proof. □

4. Asymptotic behavior

In this section, we address the large time behavior of solution obtained above for
system (1.1), (1.6), (1.7) with χα = ξγ and some appropriately small for ∥u0∥L∞(Ω).
The crucial idea of the proof of large time behavior of solution for system (1.1),
(1.6), (1.7) is to show a Lyapunov functional for system (1.1), (1.6), (1.7) under
suitably small for ∥u0∥L∞(Ω). By means of an analysis of the corresponding energy
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inequality, we can first establish the mere convergence of (u, v, w) to system (1.1),
(1.6), (1.7) in L2(Ω) (see Corollary 4.29 and 4.3). We can thereupon make use of
Lp estimate for the second and third equations of (1.1) and Lp-Lq estimates asso-
ciated with the heat semigroup to show on the basis of additional higher regularity
properties (Lemmas 4.4 and 4.5) that this convergence actually takes place at an
exponential rate (Lemma 4.6).

To implement our approach, we denote

U(x, t) := u(x, t)− ū0,

S(x, t) := s(x, t)− (χ
α

β
− ξ

γ

δ
)ū0,

V (x, t) := v(x, t)− α

β
ū0

(4.1)

for all x ∈ Ω and t > 0. Then we obtain from (4.1) and (2.4) that a triple (U, S, V )
satisfies

Ut = ∆U −∇ · (U∇S), x ∈ Ω, t > 0,

0 = ∆S − δS + χ(δ − β)V, x ∈ Ω, t > 0,

0 = ∆V − βV + αU, x ∈ Ω, t > 0,

∂U

∂ν
=

∂S

∂ν
=

∂V

∂ν
= 0, x ∈ ∂Ω, t > 0,

U(x, 0) = u0(x)− ū0.

(4.2)

Having dealt with issues of boundedness so far, in the following, we next turn
our attention to the claimed asymptotic behavior of solutions in (1.1). And we will
show that in the large time limit, the classical global solution of (1.1) converges to
(ū0,

α
β ū0,

γ
δ ū0) exponentially if ∥u0∥L∞(Ω) is smaller. To this end, as a preparation

for the proof of Theorem 1.3, let us refine the argument from Proposition 3.4 to
derive the following energy functional, which plays a crucial role in obtaining large
time behavior of global solutions to system (1.1), (1.6), (1.7).

Lemma 4.1. Suppose that

λ∗Υ(∥u0∥L1(Ω)) < 2
√

CN , (4.3)

where CN is the best Poincaré constant. Then there exists B > 0

B

2

d

dt
∥u(·, t)− ū0∥2L2(Ω) +

(BCN

2
− 1

4

) ∫
Ω

|u− ū|2

+
(
1−

Bλ2
∗Υ

2(∥u0∥L∞(Ω))

2

) ∫
Ω

|∇v|2 ≤ 0 for all t > 0,

(4.4)

where

ū0 =
1

|Ω|

∫
Ω

u0. (4.5)
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Proof. Firstly, we use the first equation in (4.2), Theorem 1.1, and the Young
inequality to compute

1

2

d

dt
∥u(·, t)− ū∥2L2(Ω)

=

∫
Ω

(u− ū)[∆u−∇ · (u∇S)]

≤ −
∫
Ω

|∇u|2 +
∫
Ω

|u∥∇u∥∇S|

≤ −1

2

∫
Ω

|∇u|2 + 1

2

∫
Ω

u2|∇S|2

≤ −1

2

∫
Ω

|∇u|2 +
supt>0 ∥u(·, t)∥2L∞(Ω)

2

∫
Ω

|∇S|2

≤ −1

2

∫
Ω

|∇u|2 +
λ2
∗Υ

2(∥u0∥L∞(Ω))

2

∫
Ω

|∇S|2 for all t > 0,

(4.6)

where

ū =
1

|Ω|

∫
Ω

u. (4.7)

Here λ∗ and ϱ(∥u0∥L∞(Ω)) are the same as in Proposition 3.4. We note from the
Poincaré inequality that there is CN > 0 such that

∥φ− 1

|Ω|

∫
Ω

φ∥2L2(Ω) ≤ CN

∫
Ω

|∇φ|2 for all φ ∈ W 1,2(Ω). (4.8)

This combined with (4.6) yields

1

2

d

dt
∥u(·, t)− ū0∥2L2(Ω)

≤ −CN

2

∫
Ω

|u− ū0|2 +
λ2
∗Υ

2(∥u0∥L∞(Ω))

2

∫
Ω

|∇S|2
(4.9)

for all t > 0. Next, by the testing procedure, we may derive from the Young
inequality that

0 =

∫
Ω

S[∆S − δS + χ(δ − β)V ]

≤ −δ

∫
Ω

|∇S|2 + χ2(δ − β)2

4δ

∫
Ω

V 2 for all t > 0

(4.10)

and

0 =

∫
Ω

V [∆V − βV + αU ]

≤ −
∫
Ω

|∇V |2 − β

2

∫
Ω

V 2 +
α2

2β

∫
Ω

(u− ū0)
2 for all t > 0,

(4.11)

where we have used that ∂S
∂ν = ∂V

∂ν = 0, x ∈ ∂Ω, t > 0.
In view of (4.3), we can choose B > 0 such that

A−B
λ2
∗Υ

2(∥u0∥L∞(Ω))

2
> 0, (4.12)

B

2
CN − α2

2β
> 0, (4.13)
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β

2
− χ2(δ − β)2A

4δ
> 0. (4.14)

Collecting (4.9)–(4.14), we infer that

B

2

d

dt
∥u(·, t)− ū0∥2L2(Ω) + (

BCN

2
− α2

2β
)

∫
Ω

|u− ū0|2 +
∫
Ω

|∇V |2

+ (A−
Bλ2

∗Υ
2(∥u0∥L∞(Ω))

2
)

∫
Ω

|∇S|2 + (
β

2
− χ2(δ − β)2A

4δ
)

∫
Ω

V 2

≤ 0 for all t > 0,

(4.15)

which completes the proof. □

The above Lemma entails exponential convergence for u(·, t) − ū0 at least with
respect to the norm in L2(Ω).

Corollary 4.2. Under the assumptions of Lemma 4.1, for each t > 0, there exists
ρ1,∗ > 0 such that

∥u(·, t)− ū0∥2L2(Ω) ≤ e−ρ1,∗t[∥u0(·, t)− ū0∥2L2(Ω)], (4.16)

and there exists C∗,1 > 0 such that∫ ∞

0

∫
Ω

|∇V |2 +
∫ ∞

0

∫
Ω

|∇S|2 +
∫ ∞

0

∫
Ω

V 2 ≤ C∗,1, (4.17)

where ū0 is given by (4.5).

Proof. Let y(t) = B
2

d
dt∥u(·, t)− ū0∥2L2(Ω). Then by (4.4), one can conclude that

y(t) + (CN − α2

Bβ
)y(t) ≤ 0,

so that, integrating the above inequality and (4.4) in time, we can obtain (1.9) and
(4.17) by using (4.6). □

As a application the above Lemma, we can derive the following stabilization
property of V,∇V as well as S and ∇S which will be used in Lemma 4.6 below.

Lemma 4.3. Under the assumptions of Lemma 4.1, for each t > 0, there exists
ρ2,∗ > 0 such that

∥∇V (·, t)∥2L2(Ω) + ∥V (·, t)∥2L2(Ω) ≤ e−ρ2,∗t∥u0(·, t)− ū0∥2L2(Ω), (4.18)

∥∇S(·, t)∥2L2(Ω) + ∥S(·, t)∥2L2(Ω) ≤ e−ρ2,∗t∥u0(·, t)− ū0∥2L2(Ω), (4.19)

where ū0 is given by (4.5).

Proof. First, in view of the testing procedure, we derive from the Young inequality
that

0 =

∫
Ω

S[∆S − δS + χ(δ − β)V ]

≤ −
∫
Ω

|∇S|2 − δ

2

∫
Ω

S2 +
χ2(δ − β)2

2δ

∫
Ω

V 2 for all t > 0

(4.20)
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and

0 =

∫
Ω

V [∆V − βV + αU ]

≤ −
∫
Ω

|∇V |2 − β

2

∫
Ω

V 2 +
α2

2β

∫
Ω

U2 for all t > 0,

(4.21)

which together with (1.9) implies that∫
Ω

|∇V |2 + β

2

∫
Ω

V 2 ≤ α2

2β

∫
Ω

U2

≤ α2

2β
e−ρ1,∗t∥u0(·, t)− ū0∥2L2(Ω) for all t > 0,

(4.22)

and therefore,∫
Ω

|∇S|2 + δ

2

∫
Ω

S2

≤ χ2(δ − β)2

2δ

∫
Ω

V 2

≤ χ2(δ − β)2

2δ

α2

β2
e−ρ1,∗t∥u0(·, t)− ū0∥2L2(Ω) for all t > 0,

(4.23)

where ρ1,∗ and ū0 are given by (1.9) and (4.5), respectively. Hence, (1.10) and
(4.19) holds by some basic analysis. □

Having found uniform bounds on u, v and w in the previous Proposition 3.4, also
v and w share this regularity and these bounds.

Lemma 4.4. Let N ≤ 4. Then for any p > 2, there exists a positive constant C∗,2
such that

∥v(·, t)∥W 2,p(Ω̄) + ∥w(·, t)∥W 2,p(Ω̄) ≤ C∗,2 for all t > 0. (4.24)

Proof. Applying the Lp estimate for the second and third equations of (1.1), we
derive from Proposition 3.4 that there exist positive constants κ∗∗∗,1, κ̃∗∗∗,1 as well
as κ∗∗∗,2, κ̃∗∗∗,2 independent of u0 such that

∥v(·, t)∥pW 2,p(Ω) ≤ κ∗∗∗,1∥αu(·, t)∥pLp(Ω)

≤ κ∗∗∗,2Υ(∥u0∥L∞(Ω)) for all t > 0
(4.25)

and
∥w(·, t)∥pW 2,p(Ω) ≤ κ̃∗∗∗,1∥γu(·, t)∥pLp(Ω)

≤ κ̃∗∗∗,2Υ(∥u0∥L∞(Ω)) for all t > 0.
(4.26)

□

To prepare our arguments concerning the large time behavior of solutions, we
still need the following regularity estimates for u.

Lemma 4.5. Assume that the conditions in Theorem 1.3 are satisfied. Then there
exists a positive constant C∗,3 such that

∥u(·, t)∥W 1,∞(Ω) ≤ C∗,3 for all t > 0. (4.27)
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Proof. Based on the regularity of u and v, one can readily obtain constants κ∗∗∗∗,1 >
0 such that

∥v(·, t)∥W 2,p(Ω) + ∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W 1,∞(Ω) ≤ κ∗∗∗∗,1 for all t > 0. (4.28)

Next, we can rewrite the first equation of (1.1) as

ut −∆u = a(u, v), (4.29)

where

a(x, t) = a(u(x, t), v(x, t), w(x, t))

= −χ∇ · (u∇v) + ξ∇ · (u∇w)

= −χ∇u · ∇v − χu∆v + ξ∇u · ∇v + ξu∆w.

To prove the boundedness of ∥∇u(·, t)∥L∞(Ω) on t > 0, by Duhamel’s principle, we
see that the solution of (4.29) can be expressed as

u(·, t) = e−t∆u0 +

∫ t

0

e−t∆a(·, τ) dτ for all t > 0.

Next, for any T ∈ (0,∞), we let M(T ) := supt∈(0,T ) ∥∇u(·, t)∥L∞(Ω). By (4.28),
there exists κ∗∗∗∗,4 > 0 such that

∥a(·, t)∥L2N (Ω) ≤ ∥ − χ∇u · ∇v − χu∆v + ξ∇u · ∇v + ξu∆w∥L2N (Ω)

≤ κ∗∗∗∗,4(∥∇u(·, t)∥L2N (Ω) + 1) for all t > 0.
(4.30)

Hence, in view of Lp-Lq estimates associated with the heat semigroup as well as
(4.30), we derive that there exist positive constants λ, κ∗∗∗∗,5, κ∗∗∗∗,6, κ∗∗∗∗,7,
κ∗∗∗∗,8, and κ∗∗∗∗,9 such that

∥u(·, t)∥W 1,∞(Ω)

≤ κ∗∗∗∗,5∥∇e−t∆u0(x) +∇
∫ t

0

e−t∆a(x, τ)dτ∥L∞(Ω)

≤ κ∗∗∗∗,6e
−λt∥u0∥L∞(Ω)

+ κ∗∗∗∗,6

∫ t

0

[1 + (t− s)−
1
2−

N
2 ( 1

2N − 1
∞ )]e−λ(t−s)∥a(·, s)∥L2N (Ω)ds

≤ κ∗∗∗∗,8 + κ∗∗∗∗,7

∫ t

0

[1 + (t− s)−
3
4 ]e−λ(t−s)(∥∇u(·, s)∥L2N (Ω) + 1)ds

≤ κ∗∗∗∗,9 + κ∗∗∗∗,7

∫ t

0

[1 + (t− s)−
3
4 ]e−λ(t−s)∥∇u(·, s)∥L2N (Ω)ds

(4.31)

for all t ∈ (0, T ). Here, according to the Gagliardo-Nirenberg inequality (see Lemma
2.2), the boundedness of u in Ω × (0,∞) (see (3.22)), and the definition of M(T )
we can find κ∗∗∗∗,10 > 0 and κ∗∗∗∗,11 > 0 satisfying

∥∇u(·, t)∥L2N (Ω)

≤ κ∗∗∗∗,10∥∇u(·, t)∥1/2L∞(Ω)∥u(·, t)∥
1/2
L∞(Ω)

≤ κ∗∗∗∗,11(M
1/2(T ) + 1) for all t ∈ (0, T ).

(4.32)

From (4.31), we obtain a positive constant κ∗∗∗∗,12 such that

M(T ) ≤ κ∗∗∗∗,12 + κ∗∗∗∗,12M
1/2(T ) for all T ∈ (0,∞), (4.33)
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which in view of an elementary argument entails that for some κ∗∗∗∗,13 such that

∥∇u(·, t)∥L∞(Ω) ≤ κ∗∗∗∗,13 for all t ∈ (0,∞), (4.34)

and thereby proves (4.27) by using (4.28). □

An immediate consequence of Corollary 4.2 and Lemmas 4.3 and 4.5, and Propo-
sition 3.4 is that both u, v and w decay exponentially with respect to the norm in
L∞(Ω).

Lemma 4.6. Assume the hypothesis of Theorem 1.1 holds. Then one can find
γ > 0 and C > 0 such that the global classical solution (u, v, w) of (1.1) satisfies

∥u(·, t)− ū0∥L∞(Ω) ≤ Ce−γt, for all t > 0, (4.35)

∥v(·, t)− α

β
ū0∥L∞(Ω) ≤ Ce−γt, for all t > 0, (4.36)

∥w(·, t)− γ

δ
ū0∥L∞(Ω) ≤ Ce−γt, for all t > 0, (4.37)

where ū0 = 1
|Ω|

∫
Ω
u0.

Proof. We apply Corollary 4.2 and Lemmas 4.3 to find positive constants C1 and
γ1 such that

∥u(·, t)− ū0∥L2(Ω) ≤ C1e
−γ1t, for all t > 0, (4.38)

∥v(·, t)− α

β
ū0∥L2(Ω) ≤ C1e

−γ1t, for all t > 0, (4.39)

∥w(·, t)− γ

δ
ū0∥L2(Ω) ≤ C1e

−γ1t, for all t > 0. (4.40)

Here we can use Proposition 3.4 and Lemma 4.5 to find C2 > 0 satisfying

∥u(·, t)−ū0∥W 1,∞(Ω)+∥v(·, t)−α

β
ū0∥W 1,∞(Ω)+∥w(·, t)− γ

δ
ū0∥W 1,∞(Ω) ≤ C2 (4.41)

for all t > 0. Since an interpolation by the Gagliardo–Nirenberg inequality provides
C3 > 0, C4 > 0, and C5 > 0 such that

∥u(·, t)− ū0∥L∞(Ω)

≤ C3(∥u(·, t)− ū0∥
N

N+2

W 1,∞(Ω)∥u(·, t)− ū0∥
2

N+2

L2(Ω) + ∥u(·, t)− ū0∥L2(Ω))

≤ C4∥u(·, t)− ū0∥1/2L2(Ω)

≤ C5e
−γt for all t > 0,

(4.42)

where γ = γ1

2 .
Likewise, (4.36) and (4.37) can be obtained by combining the exponential con-

vergence statement for v and w in Lemma 4.3 with the uniform higher order bound
asserted by Lemma 3.3. □
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