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DISCRETE STEIN-WEISS INEQUALITIES

CHUNHONG LI, TTANTIAN ZHOU

ABSTRACT. This article concerns the discrete Stein-Weiss inequalities with
finite terms and with infinite terms. Such inequalities can be used to study
the discrete Coulomb energy, nonlinear problems appearing the crystal lattice
theory and graphs in neural networks. We give the limit relations between their
best constants and between their extremal sequences. In addition, we obtained
analogous conclusions for the reversed discrete Stein-Weiss inequality.

1. INTRODUCTION

The well-known double weighted Hardy-Sobolev-Pdlya inequality states that [7]
Theorem 401]

f(z ), dx, dy
[ [ I < Kallfliomlolion (1D
for all (f,g) € L™(0,00) x L*(0,00), where Ky € (0,00) is a constant, and

l<rs<oo, 1/r+1/s>1, 1/r+1/s+(A+a+p8) =2,
1 1
Oé<1—1/’/" 6<1_1/57 04“‘6207 Oé+6>0 lf;—l—;:

Afterwards, Stein and Weiss obtained the higher dimensional results [15]
(y),dz,dy
< Kl fllor @ gl oo ey (1.2)
‘/ - |x|a|x Je[lz — g ylP (
for all (f,g) € L"(R™) x L*(R™), where K; € (0,00) is the best constant, and
l1<rs<oo, 0<A<n, 0<a+pB<n-—A\

11 A
1-1/r—=A/n<a/n<1-1/r 7+*++++5..
r

When o = 8 =0, ([1.2) is reduced to the Hardy-Littlewood-Sobolev inequality
(se [14, Theorem 1 in Chapter 5])

f(x)9(y), dz, dy
W e e e LT P

|z -

Ls(R™)» v(fv g) € LT(RH) X LS(RH)’
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where
1 1 A
l<rs<oo, 0<A<n, —-—4+-4+-—=2.
r s n
Lieb applied this inequality to give the optimal estimate of upper bound of the
Coulomb energy appearing in the Thomas-Fermi model (see [12]). Based on this

inequality, Huang, Li and Yin obtained the discrete inequality (cf. [8])

fi 9j rion s(n
) B —||j]|l < Kol fllirzolgllis @y, V(f,9) € 1(Z7) x 1°(Z2"),  (1.3)
i, JELM ik

where K, € (0,00) is the best constant, f = (f;)iczn, g = (95) ez, and

n>1, 0<A<n, min{r s} >1, 1quJréZZ
ros n
When 1/r+1/s4+ A/n > 2, they proved that K> is attainable. When n =1,
is the Hardy-Littlewood-Pdlya inequality [7}, Theorem 381]).
When we cut off f = (fi)iczy, and g = (gi)iezr, , inequality is reduced to

|fz‘|9‘|
s Wl e,

i— i
<N enigg 1©

where Ky € (0,00) is the best constant, and Z% := {i € Z";|i] < N}. Paper
[8] shows that K5 can be approximated by Ky, and also shows the convergence
relation between the extremal sequences when N — oco. In 2011, Li and Villavert
studied in the critical case of A =n =1 (cf. [11]). They obtained the upper
and the lower bounds of K. Afterwards, Cheng and Li extended those results to
the case of A =n > 2 (cf. [4]). In addition, the properties of extremal sequences
were studied. Their work shows that holds under more relaxed constraints
on r;s and . In addition, paper [I6] estimated the best constant of a discrete
inequality with special double weights.

In this article, we prove the discrete Stein-Weiss inequalities, and study the best
constant and the extremal sequences.

|9l @), Y(f9) € M(ZR) X I(Z]), (1.4)

Theorem 1.1. Letn > 1, min{r,s} >1 and 0 < X <n. If
0<a+p<n—A a/n<l-=1/r, B/n<l-1/s,

- + Z 2a
ros
we can find C € (0,00) such that
fillg; .
Z | || ]| < Cllf”l”(Z{})||g||lS(Z{,‘)’ v(f’ g> c lT(Z8’> X lS(ZOL) (15)

ol AN S
1oy T = T
Here Zy :=Z™ \ {0}.
We denote the best constant of (L.5) by L. Namely,
L= sup —a|fz‘|gj)|\ .ﬂ},
(f,9)€s i,jeZ{;,iyﬁj |Z| |Z_.]| |]|
where
S:={(f,9) € I"(Zg) x I*(Zg); [l flirzy = llg
We also have the discrete inequality with finite terms.

g = 1}
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Theorem 1.2. Let n > 1, min{r,s} > 0 and A > 0. Then there ezists C € (0,00)
such that

|fillg;]
g m < C||f||zr(zg,N)H9\|15(Zgrw)7 (1.6)
LIELS N iFT

for all (f,g) € I"(Zg n) x I*(Zg ). Here Z = {i € Z";1 < |i| < N}.
We denote the best constant of (1.6) by Ly. Thus,
fillg;l
Ly=max{ > |||'_'W 1l g = lglliezg o = 1} (17)
i,GELY i ]
The following theorem shows the convergence relation between the best con-
stants.
Theorem 1.3. Under the assumptions of Theorem we have
dim Ly =L
Next, we consider the convergence relation between the extremal sequences.
Theorem 1.4. Letn > 1, min{r,s} >1 and 0 < A <n. If0<a+p <n-—),
a/n<l—=1/r,B/n<1—-1/s, and 1/r+1/s+ (A+a+5)/n> 2, then
(i) L is attainable. Namely, we can find (f*,g*) € S such that
b= Y e
ijezg iz 1IN
(ii) Denote the extremal sequences of . by (fN,gN). Then there exists a
subsequence of (fN,glN) denoted by itself such that

Jim (£, 07) = (7, 97), in I7(Z5) x I°(Zg).

Remark 1.5. Inequality (1.5 can also be found in [3} (1.3)]. There the authors
did not provide a proof.

Remark 1.6. Compared to Theorem[I.I] Theorem[I.2]has more relaxed constraints
on r,s,a,8 and A. The reason is that the inequality only contains finite terms.
Moreover, 4,5 in the left hand side of can belong to Z% (instead of Zg y)
when « and 8 are not larger than zero.

In 2015, Dou and Zhu [5] obtained the reversed Hardy-Littlewood-Sobolev in-
equality (see also [II, @} [13])

F@)llgtw), dedy
| [ S o Kl e ) (19)

for all (f,g) € L"(R™) x L*(R™), where K3 € (0,00) is a constant, and

1 1 A
nz1, rsen/(n=A),1), A<0, —+-+>=2

Based on this inequality, [10] shows the discrete inequalities with infinite terms

Z Lidlgsl + Z |fillgsl = Kallf )s (1.9)

A
IS Ut [ =t

r Zn
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where K, € (0,00) is a constant, and

1 1 A
n>1, rsen/(n—2A),1), A<0, —+-+4+-—<2
ros n

When n = 1, [0] obtained the discrete inequalities with finite terms, and gave the
limit relation between its best constant and Ky4.

In 2018, Chen, Liu, Lu and Tao proved the reversed Stein-Weiss inequality [2
Theorem 1]

2)lgW)l, de, dy
// wlole — g = el llr e lglee@, (1.10)

for all (f,g) € L"(R™) x L*(R"™), where K5 € (0,00) is a constant, and
n>1, rse(0,1), A<0, «a€(—n(l-r)/r0],
B e (—n(l - s)/s,0], %+ é + W =2.
Now, we give the corresponding results of the discrete case.
Theorem 1.7. Let
n>1, rse(0,1), A<0, a¢c(—n(l-r)/r0,
B € (=n(1 —s)/s,0], %+ Lpatath

Then there exists C € (0,00) such that for any (f,g) € I"(Zy) x I°(Zg),

_ fillgil |£ill9;]
Z ‘]‘5 Z |a+,3 = CHleT 7y)

— alA
ot Ll ] jezn |

S

gl (111)

Theorem 1.8. Let n > 1, min{r,s} > 0 and A < 0. Then there exists C' € (0, 00)
such that for any (f,g) € I"(Z%) x I°(Z%;),

| fillg; | [fillgs| -
—_— = C”f”lr zy
2 L Jileli = 351 2 |j[+B (

1L.IEL i €LYy

(1.12)

oN)"
We denote the best constant of (1.12]) by @x. Thus,

: | fillg;l | fillg;]
QN := min g T - . 1.13
N <f,g>esuv>{ 2 il = g1 )P 2 IJIQW} (1.13)

1,JELY N iIFT JELG N

Theorem 1.9. Under the assumptions of Theorem[I1.7, we have
li =
NE;noo QN Qa

where @ is the best constant in (1.11)), that is,

i |fl||gﬂ |fJng
= inf —_— 1.14
@=pl T TP T fem ) 019

i,JELD i ezp

With the above conclusions in mind, we need to consider whether @ can be
attainable.
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Theorem 1.10. Letn > 1, r,s € (0,1), A < 0, o € ((r — 1)n/r,0] and B €
((s — 1)n/s,0] satisfy
1 1 A
Ll Afadb (1.15)
ros n

Then Q is attainable. Namely, there exists (f*,g*) € S such that

Falire |£5 11951
Q= s
2 |i]*i — 7|7 51P 2 |jleth

4,J €Ly iF] JELy

Meanwhile, the subsequences of extremal sequences (fN,g") denoted by itself in
(1.13) satisfies

dim Y gy = 1 @y, Jim g™ ez @), (1.16)

A}gn lf*—(1—en) fN||lT (zn) = hm llg* — (1 —en)g ||ls(Zn):O’ (1.17)

as long as limy_ oo ey = 0. Here fN and §™ after certain translations respectively.

2. INEQUALITIES WITH INFINITE TERMS
In this section, we prove Theorems [I.1] and [I.7]
Proof of Theorem[1.1. Assume (f;)jezn € I"(Zg) and (g;)jezp € 1°(Zf). Let

fx)=f;, 9(x)=g5, when [z—j|<1/3 for j#0,

f(x) =g(x) =0, otherwise. (2.1)

Therefore,

Sn—l
=3 [ inre=Egd S e

j1<1/3

JGZ" ]GZS'
Here S"~! C R" is the unit sphere. Similarly,
X ‘Sn 1|
||9||6Ls(]Rn) = ||9||ls z7) (2.3)

When |z —i] < 1/3, it follows that |i| — 1/3 < |z| < |i| +1/3. In addition, i € Z
implies |i| > 1. Therefore,

3 B /N R

3
< <= (2.4)
ST+1/8 S el ST-13 = 2
Similarly, j € Z§ and |y — j| < 1/3 imply
<3
<<z 2.5
PSRy (29

When |z—i| < 1/3 and |y—j| < 1/3, we have |[i—j|—2/3 < |z —y| < |i—j|+2/3.
In addition, 4 # j implies | — j| > 1. Therefore,

clz—yl

STl = 20

W =
w| ot
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Using (2.4)-(2.6), we obtain

/ / y)l|,dx, dy
n Jgn le \x—yIAIyIB

/ / fillgjl, dz, dy
Byya(i) I8y 50y 21N =y lyl?

zjeZ"
_\fillgsl |i|*]i — 4]*[4]°
>
2 D TEli= iPUE S S e =y Y @)
i,JELY iF£] 1/3(1 1/30
>Cla,f) Y _ fillgl / / i = jI* dz,dy
i,JELY iF] 2] |Zi‘7|>\|‘7|ﬁ B1/3(0) Y/ By/3(0 ‘Zi]Jrzfyl)\

n—1 . .
zc:(a,g)w)('s l) s _Hillo

—_ 4lA418°
I S i li*|i — 31|l
where

Ola ) = min{é)a*ﬁ, "6, é)“(%)ﬁ}n e =N+ ()]

Inserting (2.7)) and ( . into (| ., we obtain with % + % + w =2.

Noting [3] Lemma 2.2], we can see that (L) with 141+ W > 2 still holds. O

Proof of Theorem[1.7]. Assume (f;)jezs € I"(Zy) and (g;)jezn € 1°(Zg). We take
(f(z),9(x)) as in

f@) =15, g(x)
f(x)

Therefore, by an analogous argument to the one in (2.7), we obtain by (2.4)-(2.6)

that
0l
,dx, dy
// x| Iw—yl*IyIB

/ / |f1|‘gﬂ|A 5,dl’,dy
By 3(i) J B13(7) |$| |3j - y| |y‘

when |z — j| < 1/3 for j # 0,

9j»
g(x) = otherwise.

ZJGZ"
_aA
<oy e [
i’jGZZ)L,i#] | | |Z J| ‘j‘ Bl/3 31/3 0) |’L j +.%' y|
ool [ B
+c ] ‘.’E _y| dx,dy
jEZZg ‘j‘a+5 B1/3(O Bl/s 0 ) k)
fillg;| 1£5llg51
< C( N CA I ) jllgj )
iajé%i;ﬁ] | | |l 7‘7|)\|J|5 EZZ" |]|°‘+5

Inserting this result and . into , we obtam Wlth 1 % +
/\+a+’8 = 2. Noting [3, Lemma 2. 2] we can see that w1th Lydg /\+O‘+ﬁ <2
stlll holds. (]
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3. INEQUALITIES WITH FINITE TERMS
In this section, we prove Theorems and
Proof of Theorem[1.3 Let fo = go = 0. We write a; = |f;|, b; = |gi|, and a =
(ai)iezy » b= (bi)iezy - We set
Rf ={z=(r1,22,  ,aN);2; > 0,i=1,2,--- N},

and the multivariate function
aib»
E]_ (CL, b) = Z J

igeig iz 11010 =31l

Since
S(N) = {(a,b) : [la (2 ) = 1}
is bounded and closed in RY xRY, there exists a maximizer (a(N), b(N)) of E1(a,b)
in S(NV). We write
J1(,) = Fy(a,8) = M(lallrzg ) — 1) — Aa(Ibllzg ) — 1,

where Ay and Ay are Lagrange multipliers. Applying the theory of the constrained
extremum, both the partial derivatives of Ji(a,b) are equal to zero at (a(N),b(N)),
that is,

r(zg ) = 1Ib

[%Jl(a(N) + ta, b(N))]tZO - [%Jl(a(N), bN)+ )] =0,

for all (a,b) € RY x RY and t € R. This means

1 b(N),
o
il .~ li—=Jl*jl

JEZO’NJ?'EI

/\Qb(N)s_l _ i Z a(N)j

7 13 T Nl
il jezg w111 1]

Multiply the two equations above by a(N); and b(NN); respectively and sum for 4.
Then noting that (a(N),b(N)) € S(N) is the maximizer, we can see that \; = Ao =
Ly. Namely,

o1 b(N);
Lya(N)™' = — —
P T DI e IR
JELG N -IFt (3 1)
. 1 a(N); ’
Lyb(N)S™ 1= — —— 4
VO = 2. i — g
JELG N JFi

In view of (a(N),b(N)) € S(N), we have (a(N),b(N)) # (0,0). Therefore, from
(3.1) we can deduce by a contradiction argument that

Ly > 0. (3.2)
Without loss of generality, assume that iy € Zg y satisfies

a(N)iy = 1?“?‘%{1\]{“(]\7)%[)(]\[)1’}'
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Noting (3.2), from (3.1); we can find a positive constant Cy which only depends
on iy and N such that

1 1
L Ny—2< _—_ ——= <C 3.3
VAN SR 2 G SO &
1<|GISN,j#in

which implies

Ly <a(N); "Ch. (3.4)
In view of >, ;< y a(IN)i =1, we obtain
—1
3 1) <a(N), <1. (3.5)
1<[i[<N
Inserting this result into (3.4]), we see Ly < co. The proof is complete. O

Proof of Theorem[I.8 Let fo = go = 0. We write a; = |f;|, b; = |gi|, and a =
(ai)igzg’N, b= (bi)iEZ&N- We set
aibj ajbj
TOTTN SRS

TS VT
jeiy it el |i = g1 e

Since S(IV) is bounded and closed in RY xRY, there exists a minimizer (a(N), b(N))
of Ez(a,b) in S(N). We write

J2(a,b) = Es(a,b) = As(llallirzp ) — 1) — Aa([[b

zg ) — 1)

where A3 and A4 are Lagrange multipliers. Applying the theory of the constrained
extremum, both the partial derivatives of Ja(a,b) are equal to zero at (a(N),b(N)),
that is,

iJg(a(N), b(N) + tb)]t:o =0,

[iJQ(a(N) +ta,b(N))],_, = [dt

dt
for all (a,b) € RY x RY and ¢ € R. This means

R BN); BN,
Az =a(N); ( > ) +|i(|a+)5)’

(1% e, i =PI

Ay = b(N)l’S( 1 Z a(N); n a(N)i)

i e T o ot B
P s =3Pl Ti

Multiply two equations above by a(N)I and b(N)$ respectively and sum for . Then
noting that (a(N),b(N)) € S(N) is the maximizer, we can see that A3 = Ay = Q.
Namely,

v =o)X ),

.7a TN
i1 jens w3100 .
—s( 1 a(N);  a(N); '
Qu = b(N)1* (= e e )
jil? Z = gMgle o Jilets
JELG nJFt

Noting (a(N),b(N)) # (0,0) (because of (a(N),b(N)) € S(N)), from we can

QN > 0. (3.7)
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In addition, @y is decreasing with respect to N, and hence Qn < (1. Write
e=(1,0,...,0) € Zj y, and take

G, = b = {1, when i = e,
0, when i€ Zj y \ {e}.

Therefore, (@,b) € S(1), and hence Q; < @.b. = 1. Thus, Qx has an upper bound

Qn <1 (3.8)
Thus, holds for C = Q. O
Remark 3.1. Under assumptions - and -, we obtain

a(N); >0and b(N); >0fori=1,2,...,N,

which implies

lim a(N); = lim b(N); =0, fori=1,2,...,N. (3.9

N—o0 N—oc0

However, we show that (3.9) is not valid by Lemmas and

4. CONVERGENCE OF THE BEST CONSTANTS

In this section, we prove Theorems and

Proof of Theorem[I.3 Since S(N) C S(N +1) C S, Ly is monotonically increasing
with respect to N and

as long as the assumptions in Theorem [I.1] hold. Thus,
lim Ly exists. (4.2)
N—o0

From the definition of L, we can find a maximizing sequence (f™, g"™) € S such

that
m m
7 4 1
> L
il Ll 1] m
In view of (|1.5]), the series of the left hand side in the result above is convergent.
Therefore, we can find N,;, — oo (when m — o) such that

g 2

> % >L- = (4.3)
Tl i [l = 4[] m

On the other hand, ||f™(;r@zn) < 1 and [|g™ ;s (zz) < 1. Therefore, by (1.6) with
C = Ly and (4.1) we obtain

m m
Tl it il = j[M]
Combining with (4.3)) and letting m — oo, we can see Ly, — L when N, — oo.
In view of (4.2]), we can complete the proof. O
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Proof of Theorem[1.9 Under the assumptions of Theorem [I.7] we see easily that
Qn > Q. (4.4)

Since @y is decreasing, we know that limy_, o Qn exists.
Since @ is the best constant in ([1.11), we can find a minimizing sequence
(f™,g™) € S such that

fi g7 I lgg" 1
§,GELY iF] JETY

This implies that the series of the left hand side in the result above is convergent.
Therefore, we can find N,;, — oo (when m — o) such that

1" l1g5"| 17" llg5" | 2
2 R T 2 e <@t 49
LGELY . i JELY

On the other hand, (f™, ¢™) € S implies

||fm||znr(zgme) >1-1/m, [g" 7-@(ZgﬁNm) >1-1/m, (4.6)
as long as N, > m is sufficiently large. Therefore, noting that
fm g"
vy ) 19 le@g )

from (4.5)) and (4.6) we deduce that
£ llg5"|
On, < ) :

m

(17 ) €50

LIELE Ny AFI ™ ez, 9™ g, i1 = 3121517
[T 1™ iz o, 9™ Niszg . H131*TP
2 1 —-1/r—1/s
<(Q+—)(1-— .
<@+ 20—
Combining this with (4.4) and letting m — oo, we complete the proof. |

5. CONVERGENCE OF THE EXTREMAL SEQUENCES

In this section, we prove Theorems and
Now we provide two lemmas needed later.

Lemma 5.1. Assume that the conditions of Theorem hold. If (a,b) € (RY x
RY)NS(N) solves , we can find a positive constant o which is independent of
N, such that
oN = min{ max a;, max bi} > 0.
1<HISN D 1<]il<N
Proof. Since Ly is increasing with respect to N, Ly > L. Take e; = (1,0,...,0)
and es = (—1,0,...,0). Set

1, when ¢ = eq;

a; = .
{O, when i € Zg y \ {e1},
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and
b — 1, when i = eg;
" )0, whenie Zg n \ {e2}-
Therefore, (a,b) € S(1), and hence Ly > @, be,/|e1 — e2|. Thus, Ly has a lower
bound
Ly >27% (5.1)
We denote the maz{b;;1 < |i| < N} by n. From (3.1) we see that for any
t € (0,1),
1—t
bj
e i

Lyaj ' <n' Z

JELE n o
Taking the result above to the power of r/(r — 1) at both sides and summing for
i € Zg , we obtain

r

Lyt <nt > ( > b;_t)“l. (5.2)

ErTE e L Ll

Let p, ¢ > 0 satisfy

1,1 1.1, Ata+p
roq s p n '
By the conditions of Theorem [T.4] we know that

p>r and q>s.

For each b € 19(Zg y), define operator T' as follows

@)= Y ’

jezh w171 =M
Therefore, becomes
Ly <0 || T8l|esenzg oy with by = b ", (5.3)
From the definition of the norm and , we obtain

~ a:b. ~
ITblsonzg = sup 2 = S Wl (54
lallir zg ) =1 LIELY N F

Choosing b; = bi " and t = 1 — s/q, we have
B0,y = 10l ) = 1 (5.5)

Combining (5.1)) with (5.3)-(5.5), we obtain 2=* < Ly < n*L which implies
n > (2>\L)_1/t.

Similarly, we can obtain
max{a;;1 < |i| < N} > (2 L)~/
where t' = 1 — r/p. Thus, the proof is completed if we take
o = min{(2*L)~/*, (22 L)~ '/} 0
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Lemma 5.2. Assume that the conditions of Theorem hold. If (a,b) € (RY x
]Rf) NS(N) solves (3.6]), we can find a positive constant o which is independent of
N, such that
oN = min{ max a;, max bi} > 0.
1<il<NT1<fil<N
Proof. We define n := max{b;;1 < |i| < N}. From (3.6), we see that for each
t e (0,1),

pitt pLtt
£ 1—r< J L% )
otz 2 T PGP e
JELY n-IF0
In addition, there exists m,w > 0 satisfying
1,1 1. 1 _, Ata+tp
m s w 7T n '

such that b € [*(Z"), where b; = bl*! and t = s/w — 1. By the conditions of
Theorem [1.10| we know that r > m and s > w. Therefore,

16 g g =1 (5.6)

Multiply the above inequality by a; in both sides and sum for i € Zg . Applying
[T12) with C = Qn for a and b, and combining ([.4) with (5.6)), we obtain

pltt 1+t
azbj aibi

;Uw(zgyN) =[b

Qnn' > E — - > Q.
N Pl 1 Rl 1o V] O U Ca
1736201]\]7]7&1
Noticing (3.8)), it holds n7'Q < Qx < 1 which implies

n> Q.
Similarly, we can obtain
max{a;; 1 < |i| < N} > Ql/t/,
where ¢/ = r/m — 1. Thus, the proof is completed if we take
o =min{Q"*,Q""}. O
Proof of Theorem[I.] We denote the extremal sequences of (L.7) by (fV,gY).
Write a(N) = (a(N)i)ieZg, b(N) = (b(N)i)iezg, where
a(N); = |(£X)il, b(N)i = [(g:2¥)il, when 1 < [i] <N,
a(N); =b(N); =0, when |i] > N.
Thus,
(a(N),b(N)) €S (5.7)
N

because of (fN,gN) € S(N). By the Bolzano-Weierstrass theorem, we can find a
subsequence of (a(N),b(N)) denoted by itself such that

for any given ¢ € Z§. In addition, we also see that
(a(N);, b(N);) — (a],b]) weakly in 1"(Z§) x I°(Zg) (5.9)

when N — oo.
We write a* = (a])iezz and b* = (b} )iezn. According to Lemma (a*,b%) #
(0,0). We will verify that (a*,b*) is an extremal sequence.
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Since (fN,gl) is the extremal sequence of (1.7), (a(N),b(N)) solves (3.1]).
Therefore,

1 b(N); b(N);
IvaWi = (Y sy ML),
il = li—=jM = =g
1<|FISM,j#i [7]>M,j#i

where M > 2|i| is a large integer which is independent of N. Letting N — oo in
the result above and using Theorem and (5.8)), we obtain

1 bx b(N);
L(a*)"*l = —( Z 7j)\ + lim 7]) (5.10)
! — B . — N8

1N i P I Mmoo 22 i = 3P
Applying the Holder inequality and noting ||b(N)
have

1:(zg) = 1 (implied by (5.7)), we

> A (S o) (X () )

——777
gI>M 1> M st TP
X =1 1-1/s s(A+8)
(X (W) ) scarTEER
1> M

Here we used |i — j| > |7] — |i| > |j|/2 because of |j| > M > 2|i].
From the conditions of Theorem[I.4} a/n < 1-1/r and 1/r+1/s+(A+a+p3)/n >
2, we can see that n < s(A+ (8)/(s — 1). Therefore, the result above shows that

b(N);
> o
TSV
when M — oo. Inserting this result into (5.10)), we obtain
1 b3
L a;( r—1 == T 7‘7. 511)
(@) il Z i =351 (
JEZQ NE)
Similarly, we have
1 a’
L)'= — — (5.12)
' lil? zn: i =g
JELy jF#i
Multiplying (5.11) and (5.12) by @ and b} respectively, we see that
la™ 17 zpy = 10" 117s (zay- (5.13)

We denote [a*[|;~zp) by 7. Although Lemmashows on > o (and hence vy > 0),
it cannot be excluded that a] = 0 for some ¢ € Zg. Therefore, we claim v < 1. In
fact,

B = {(a,b) € "(Z5) x "(Zg); lallirzgy <1, |blliezgy <1}
is the weakly closed subset of I"(Z{}) x I°(Z{) since it is the convex closed subset.
Thus, from it follows (a*,b*) € B, and hence v < 1. Furthermore, we claim

v =1 (5.14)

Otherwise, 0 < v < 1. Multiplying (5.11)) by af and summing for ¢ € Z{ we obtain
a¥b*
iYj

L2 (@)= 2 G pip

=2 4, €LY i)



14 CHUNHONG LI, TTANTIAN ZHOU EJDE-2025/28

Using (1.5)) with C' = L to estimate the right hand side of the result above, and
noting ([5.13]) we obtain

Ly" < Llja™ [l zg) 1*

gy = Lyt

which implies

AT <1 (5.15)
From the conditions of Theorem|1.4] it follows that 1/r+1/s > 2—(A+a+8)/n > 1.
Thus, r — 1 —r/s = r(1 — 1/r —1/s) < 0. Therefore, (5.15) contradicts with
0 < v < 1. Namely, (5.14) is true.

Multiplying (5.11) by a}, summing for ¢ € Z{}, and using ([5.14) we see that
arb*
b= PG
LGELE i)

This shows that L is attainable and (a*,b*) is an extremal sequence. Namely, (i)

is proved.
Finally, in view of (f~,¢Y) € S(N) and (5.14), we have

. N _ . N _
j&{ggo||f; lir@zny = lla*|lir 2y I&}ggo||9* ey = 10" lis z)-

Therefore, by the Brezis-Lieb lemma [8, Lemma 4.1], from (5.8)) we can complete
the proof of (ii). O

Proof of Theorem[I.10} Step 1. Existence of limit pair. According to [8], we intro-
duce a new translation pair by using Lemma [5.2] Denote the extremal sequences

of (T13) by (£V, ") and
= max{|f}]; il < N}, gy | = max{lg”|; il <N}
We write a(N) = (a(N)i)iezp, b(N) = (b(N)i)iezy , where
a(N); = | ﬁil\, in QF,
a(N); =0, inZ"\ Qy,
and
b(N)Z = |Q£YH'2|, in Q?\h
b(N); =0, inZ"\Q%.

Here QK = {i +ix;|i| < N} (k = 1,2). According to Lemma [5.2} for each N it
holds

a(N)o 2 ag, b(N)O Z g. (516)
Since (fV,g") € S(N), it follows that
(a(N),b(N)) €S. (5.17)

By the Bolzano-Weierstrass theorem, we can find a subsequence of (a(N),b(N))
denoted by itself such that for each 4,

1\}51100 a(N); = aj, A}E}noo b(N); =b;. (5.18)

We write a* = (a})iez» and b* = (b} )iczn. When af > 0, (5.18)) implies a(N); —

af/2 > 0 for large N. When a} = 0, this result still holds. Thus, using the reversed
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Minkowski inequality [7, Theorem 166] to a(N) = [a(N) — a*/2] + a*/2, by
we obtain
1= [[a(N)|lir@zny 2 [a(N) = a*/2/lirzn) + @™ ir 2y /2 2 || |ir (2 /2,
which implies
a* €l (Z§). (5.19)
Similarly, we have
b* € I°(Zg). (5.20)

According to Lemma (a*,b*) # (0,0). We will verify that limit pair (a*,b*) is
an extremal sequence of ([1.14]).

Step 2. Equations satisﬁed by limit pair. Since (fV,g") is the extremal sequence

of (L.13), from (3.6) it follows that (a(N),b(NN)) satisfies
1 b(N)jtj b(N)iyi
_ 1—r J+j2 +i2
QN*a(N)i-l-il(Ma E —— g T |i|a+’8 )a

ERPYHYC
jezhmpi 11310
_ 1 a(N)jt, a(N)its
Qn = b(N)}_HSQ (W Z |i (_ j)i‘J|rj]|lo‘ + (|i|0‘)‘:';“ )
JELY i
The first equation in (5.21)) shows that
1 b(N)j+j b(N)j+j b(N )iy
Qv = a(N)ih = e g Do B )
il Z L li=dPale Z di—gMale i
1<|j|I<U,#i l31>U,j#i

where U > 0 is a large integer which is independent of N. Letting N — oo in the
result above and using ((1.9) and (5.18)), we obtain
b*

1 +
Q _ (CL* ) )1—7‘.7( J+J2
s ile 2 i = 317517

1<|jI<U,#i

(5.21)

(5.22)
. B(N)jes,  bis
+ lim Sy St )
oo Z i =gMale e
l7|>U,j#1
In addition, from the second equation in (5.21)) it follows that
Qn > b(N)575,a(N)old| =717 + i ||~
for |j| > 0. Combining this with (3.8) and (5.16)), for large |j|, we have
. = 2AEB
b(N); < Clo,in)lj] =T (5.23)

Thus, we obtain that for each i,
>
ol 9' |J| i>U

From the conditions in Theorem [[.I0} A < 0, 8 € ((s — 1)n/s,0] and s € (0,1), we
have n — % < A+ B, which indicates that

—(H8) < CU”*M (A+8)

0, asU — oc.
%:Ul *JW]W



16 CHUNHONG LI, TTANTIAN ZHOU EJDE-2025/28

Inserting the above result into ([5.22)) yields
1 b, . b, .
— (* 1—r_ = J+i2 i+io
Q = (ajyi,) W( > TR T ) (5.24)
sezgari M

Similarly, we have

« yl-s L Ajyj i
Q=) pa( X e ) (5.25)

s =P e

Multiplying (5.24) by (aj; )" and (5.25) by (b}, ,,)° respectively and then summing
for i € Zj, we see that

”CL*WF(Z{;) = ||b*||iss(zg)~ (5.26)

Step 3. Define v := |la*

1 (Zp)- We claim that

v =1 (5.27)
In fact, multiplying (5.24) by (aj,; )" and then summing for i € Zg, we see that

. T Oy iy Ot o Bt iy ity
P DL DI iy TP i

i€z 1,JELT j i i€Zn

Applying (L.11)) with C' = @, from the result above and (5.26)), we have
Q" = Qlla™ i@z 10" [lzy = Qy' e,

which implies "(1=1/7=1/5) > 1, Noting that r,s € (0,1), we have 1—1/r—1/s < 0.
This means

v < 1. (5.28)
According to (5.18), when |i| = 1, there exists N7 > 0 for any € > 0 such that
a; > (1 —¢)a(t);, foreacht> Nj. (5.29)

When |i| = 2, for this ¢, there exists No > Nj such that
a; > (1 —¢)a(t);, foreacht > Na.
Combining this with (5.29), for |i| < 2, we obtain that
a; > (1 —¢)a(t);, foreacht > No.
By induction, for |i| < m, there exists N, > N,,,_1 such that
a; > (1 —¢)a(t);, foreacht> N,y,.
Namely,
0t = (1= 2)a(No)i, (5.30)
which implies (1 — €)a(Ny,); —a; — 0~ for each |i[ < m as m — oco. Therefore,
we can find ¢ > 0 satisfying Ha(t)le(Zg,t_) = 1 such that a(N;); > a(t); for |i| <.
In view of , applying the reversed Minkowski inequality to a* = [a* — (1 —
g)a(Ny)] + (1 — e)a(N;), by we obtain
Y= ||a*le(zg)
> [la® = (1 = &)a(Npllir(zg) + (1 = &) l|a(Np) i zg) (5.31)
> (1 &)@l ) = 1- <.
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Letting ¢ — 0, we can see v > 1. Combining this result with (5.28)), we immediately

obtain (|5.27)).
Step 4. Complete the proof. Multiply both sides of (5.24) by (aj,;, )" and sum for
i € Z§. Then applying (5.27) and (5.26)), we derive that

o= Y el g Geanlivs
Sl _ M4 (B otB
@j€ZSJ¢j|Z| [i= 3Pl JELY !

This shows that @ is attainable and (a*, b*) is an extremal sequence. Here a} =
ai,; and by = b7, . At the same time, noticing (5.17) and (5.27)), we have

Jim (la(N) e zg) = lla™ [z
Similarly, we have
(V) e zg) = 16l z)-

Namely, (1.16]) is proved. According to (5.31) and (|1.16|), we obtain (1.17]). This

completes the proof of Theorem [1.10 O
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