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ASYMPTOTIC PROFILE OF LEAST ENERGY SOLUTIONS TO
THE NONLINEAR SCHRODINGER-BOPP-PODOLSKY SYSTEM

GUSTAVO DE PAULA RAMOS

ABSTRACT. We consider the nonlinear Schrédinger-Bopp-Podolsky system in
R3:
—Av+ v+ ¢v = vfp|P72,
B2A%2¢p — Ap = 4mv?,
where 8 > 0 and 3 < p < 6; the unknowns being v and ¢: R® — R. We prove
that, as § — 0 and up to translations and subsequences, the least energy

solutions of the above converge to a least energy solution to the nonlinear
Schrédinger-Poisson system in R3:

—Av+ v+ ¢v = v[p|P2,
—A¢ = 4mv2.

1. INTRODUCTION

We are interested in the asymptotic profile of solutions to the nonlinear Schrédinger-

Bopp-Podolsky (SBP) system in R3 as 8 — 07:
—Av+ v+ ¢v = v|v[P2, 1
BN — Ap = 4mv?, (-0

where 3 < p < 6 and we want to solve for v, ¢: R® — R.

The nonlinear SBP system was introduced in the mathematical literature a few
years ago by d’Avenia & Siciliano in [5], where they established existence/non-
existence results of solutions to the following system in R? in function of the pa-
rameters p and ¢ € R:

—Av + wv + ¢ v = v|v|P73,

BEA%H — A = 4m0?,
where 3, w > 0. As for the physical meaning of this system. If v, ¢: R — R solve
(1.2), then v describes the spatial profile of a standing wave

P(z,t) = e“o(x)

(1.2)
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that solves the system obtained by the minimal coupling of the Nonlinear Schrédinger
equation with the Bopp-Podolsky electromagnetic theory and ¢ denotes the ensu-

ing electric potential (for more details, see [B, Section 2]). Since then, there has

been an increasing number of studies about systems related to . For instance,

[3, 2], 10l 111 15 2T], 25] addressed the existence of least energy solutions; [7, 12} [13]

considered the mass-constrained problem; [ [9] 17, 23] 22] obtained sign-changing

solutions; and [4, [6] considered semiclassical states.

As for the asymptotic behavior as § — 0, it is already known that solutions
to a number of problems related to converge to solutions of the respective
system obtained by formally considering 8 = 0. For instance, [5, Theorem 1.3]
proved such a result for radial solutions; [7, Theorem D] extended this conclusion
for least energy solutions to the mass-constrained system for 2 < p < 14/5 and
a sufficiently small mass p (notice that these solutions are also radial due to [7]
Theorem C]); [20, Theorem 1.3] showed that solutions to the associated eigenvalue
problem in a bounded smooth domain also have such an asymptotic profile and,
more recently, [4, Theorem 1.7] verified such a behavior for the critical nonlinear
SBP system in the semiclassical regime under the effect of an external effective
potential V: R — [0, oo which vanishes at a point xy € R3.

Before explaining our contribution, let us introduce the necessary variational
framework. The function Kg: R?\ {0} —]0,1/3[ defined as

1

Kg(x) = W(l — e~ l=l/8)

is a fundamental solution to (47)~!(82A% — A), so u? x K solves
BEA%p — Ag = du?

in the sense of distributions. As such, we are lead to consider the nonlinear SBP
equation in R3:
—Av + v+ (v Kg)v = vfv[P~2 (1.3)

We say that v is a least energy solution to (L.3)) when it solves the minimization
problem

Zs(u) = inf{Zg(v) : v € H' \ {0} and Ij(v) =0}; we H',

where the energy functional Zg: H* — R is defined as

1 1 1
To(w) = Slvlla + 5 /(U2 + Kg)(z)o(w)*dz — Z;IIUIIZZP-

For a proof that Zg is a well-defined functional of class C'! and a rigorous discussion
about the relationship between (L.1)) and (1.3]), we refer the reader to [B, Section
3.2].

Given z € R?\ {0}, Kg(x) — 1/|z| as B — 0, so the formal limit equation
obtained from (1.3)) is the nonlinear Schrédinger-Poisson equation

—Av+ov+ (Vx| [T =o|P2 (1.4)

We similarly introduce a notion of least energy solution to (1.4)) by considering the
energy functional Zo: H' — R given by

1 1 v(z)?v(y)? 1
Zo(v) = 5”“”?&11 + 1 // dedy - 5||”||1£p~



EJDE-2025/29 ASYMPTOTIC PROFILE OF LEAST ENERGY SOLUTIONS 3

In [2, Theorem 1.3], Chen, Li, Riadulescu & Tang proved that admits
least energy solutions, while it follows from Azzollini & Pomponio’s [1] that
also admits least energy solutions. In this context, our main result is that, up to
translations and subsequences, least energy solutions to converge to a least
energy solution to as f — 0 when 3 < p <6.

Theorem 1.1. Suppose that 3 < p < 6 and given § > 0, vg denotes a least energy
solution to (L.3). Then given a sequence {By,}nen CJO,00[ such that B, — 0 as
n — oo, there exists {&, tnen C R3 such that, up to subsequence, {vg, (- + &) }nen
converges in H' to a least energy solution to .

The theorem is proved by arguing as in Liu & Moroz’ [16], where they character-
ized the asymptotic profile of least energy solutions to the following Schrodinger-
Poisson equation in R® as A — oo:

A
—Av+v4+ =] Do = p=2
v+ (A R e ] 0] L

where 3 < p < 6. Let us summarize the strategy of the proof. It is already known
that when 3 < p < 6, least energy solutions to (1.3 and are minimizers of
the respective energy functionals in the associated Nehari-Pohozaev manifolds (see
[2] for the SBP system and [T}, 19] for the Schrodinger-Poisson system). As such,
the core of the proof consists in comparing the least energy level achieved on these
manifolds as 5 — 0.

Let us finish the introduction with a comment on the organization of the paper.
In Section [2] (i) we recap relevant results present in the literature; (ii) we precisely
define the Nehari-Pohozaev manifold and (iii) we recall its properties which we will
use. Finally, we prove Theorem [I.1] in Section [3]

Notation. Unless denoted otherwise, functional spaces contain real-valued func-
tions defined a.e. in R3. Likewise, we integrate over R? whenever the domain of
integration is omitted. We define D2 as the Hilbert space obtained as completion
of C2° with respect to the inner product (u,v)pr2 := [Vu(z) - Vo(z)dz. In the
following sections, we always consider a fixed p €]3,6][.

2. PRELIMINARIES

We begin by recalling the following Brézis-Lieb-type splitting property (see [24]
Lemma 2.2 (i)] or [I8, Proposition 4.7]).

Lemma 2.1. If w, — 0y in H' and w, — Ty a.e. as n — oo, then

i

// ol UO dxdy
n—00 |1: —

The Pohozaev-type 1dent1t1es in the sequence were proved in [5, Appendix A.3]
and [19, Theorem 2.2].

Proposition 2.2. (1) Ifv e H' is a weak solution to (1.3)), then
1 3 5
plelles + Slole + 5 [ Kate = wui)otw)dody
/A
+ = e~ 12=v/By(2)0(y)?dady — = ||v|%, = 0.
- (@u(y)Pdady - 2ol
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(2) Ifv e H' is a weak solution to (1.4)), then
1 3 5 v(z)?v(y)? 3
glolbne + 3ol + [ 222 daay - ol o
Let Pg: H' — R be defined as
3 1 3
Pa() = Jlollns + 5lllfe + § [ Kot = wyota)olw)dudy+

(=55 [[ P uruwrndy) - 22,

To motivate the definition of Pg, notice that every critical point of Zs is an element
of the Nehari-Pohozaev manifold

Py = {ve H'\{0}: Ps(v) =0}
Indeed: if Zj(v) = 0, then both the Nehari identity

ol + / (02 % Kg) ()o()de — [o][2, = 0

and the PohoZaev-type identity hold, so Pg(v) = 0.

On the one hand, it seems to be unknown whether &g is a natural constraint of
Zs in the sense that if v is a critical point of Zg|z,, then Zj(v) = 0. On the other
hand, under more general assumptions, Chen, Li, Radulescu & Tang proved in [2]
Lemma 3.14] that if v solves the minimization problem

Iﬁ(v) =mg = uélgﬂlﬁ(u); RS @g,

then v is a least energy solution to . Moreover, it follows from [2, Corollary
1.6] that mg is actually achieved and mg > 0. As such, we will henceforth let vg
denote any least energy solution to .

Suppose that v € H'\ {0}. There exists a unique 7 > 0 such that 72v(7-) € P,
which is obtained as the unique critical point of the mapping

10, 00[3 t = Ig(t*v(t-))

43 2p—3

3 t t
= 5 lolbra + 3llvlze + / (0% % K1) (w)o(a)*da —

Furthermore, Pg(t?v(t-)) > 0 for 0 < t < 7 and Pg(t?v(t:)) <0 for t > 7.
We let Py: H' — R be given by

3 12 1, 9 3 // v(z)?v(y)? 2p — 3
= - — — 7d d _ p
Poto) = 3ol + 3ol + 3 [ 2Py - 2= 2ol

[vl1Zs-

and we analogously define %), mg. As before, we can associate each v € H* \ {0}
to a unique 7 > 0 such that 72v(7-) € Zy. It follows from Azzollini & Pomponio’s
[1 Theorem 1.1] that mo > 0 and has a least energy solution obtained as a
minimizer of Zy| g, , so we will henceforth let vy denote any of these solutions. Let
us recall a couple of properties of Z; that follow directly from [I, Lemma 2.3] and
which will be important for us.

Lemma 2.3. (1) The Nehari-PohoZaev manifold Py is a natural constraint of
Zo.
(2) infvegbo ||U||Lp > 0.
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We will also use the fact that minimizing sequences of Zy| 4, induce a sequence
of measures which falls on the compactness case in P.—L. Lions’ [I4, Lemma I.1].

Lemma 2.4 ([I, Lemma 2.6]). Suppose that {un}nen s a minimizing sequence of
To|lw, and given n € N, u, denotes the measure which takes each Lebesgue-mea-
surable set Q to

@)1= [ 2V @F + =)

2p—3
pP— 2 / un(x)zun(y)z
+ dydz.
2(2p — 3) o=yl Y

It follows that there exists {&, nen C R3 for which we can associate each § > 0
with an rs > 0 such that ., (Bré (fn)) > mgy— 0 for everyn € N.

3. ASYMPTOTIC PROFILE OF LEAST ENERCGY SOLUTIONS TO (|1.3)

Let us develop the preliminary results needed to prove the theorem. We begin
by obtaining an upper bound for limsupg_,, mg.

Lemma 3.1. The following inequality is satisfied: limsupgz_,omg < my.

Proof. From vy € &, it follows that

// |3;‘—y| > el By ()2 v (y)*dady < 0.

As such, there exists a unique ¢z €]0, 1] such that fzvo (tg:) € P, ie.,

3-3 1_ 3-3
5?5ﬁ||1)0||2D1,2 + itﬁHUoH%z + Ztﬁ // ’Cgﬂﬂ(x — y)ﬂo(x)QvO(y)dedy

2
i _
_ B // e 7= ul/ FB) o ()20 (y) 2 dady

2p 3 2p 3
= l[voll7»
p
It follows from the inclusion vy € ,@0 that
*( p )lvollZ= + 5 // tﬁﬁ) e~ 121/ 58 g () 2up () 2dardy
2p — 3 (3.1)

2p—6
= (1=75"")llvoll7s
Let us show that
3 1 =
_ 2 4= e lm—ul/(Es8 2 2dzd ) 9
J] G ) (@ Puo(yfdedy —3 0. (32)

It suffices to prove that if 0 < 8, — 0 as n — oo, then, up to subsequence,

3 1 el /(F
] G+ e e )Py o

n—oo

As lim,,_,o0 g, B, = 0, then, up to subsequence, (¢g,n)nen is decreasing, so the
limit follows from the Monotone Convergence Theorem.
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We claim that limg_,ot3 = 1. By contradiction, suppose that 0 < 3, — 0 as
n — oo and a := liminf,,_, g, < 1. In view of (3.1)) and (3.2)), it follows that
1 1 2p—3 . —2p—6
0> 5 (1= g lollfs = === (1~ tmsup ™) 1, >0,
which is absurd, hence the result follows.
In view of (3.2), the limit ¢g — 1 as § — 0 implies

mg < I[g (%Z’Uo (Eﬁ))

=3 2
= 2p—3 HUOHDlz—l—mtﬁ”vOH%z
p—3 ) ,
i m% (v * K, 5) (x)vo(x)*dz

72
=+ W// le= yl/(tﬁﬁ)vo( ) vo(y ) dzdy —>IO(UO) Mo,
and the lemma is proved. (I

We can use the previous lemma to control the H!-norm of least energy solutions
to (1.3)) for sufficiently small 3.

Lemma 3.2. limsupg_,q [|vg|la < co.

Proof. As vg € Y, we obtain

mg :Iﬁ(vﬁ)
p—
=2 3|| vl e + o—= 2 IIUBHL2

2p 3) //’C“* y)vs () vs(y)*dady

e—lz—yl/B ) 2
somg > (p—3)|lvsl|3:/(2p — 3) and the result follows from Lemma O

The following estimate will also be useful for our computations.

Lemma 3.3. Given w € L*, it holds that

J] (24 e e Puy)dady < 20m6% .

eyl

It follows that if {wﬁ}5>0 C H' is such that limsupg_,q |lwg| g < oo, then
—lz=yl/Byy . (2)2 2dzd 0.

Proof. Tt follows from Hélder’s Inequality that

] G+ e e Pty sy
g o) e
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An application of Young’s Inequality shows that

(/(/(miy‘ + ) —lz—yl/B w(x )2d$)2dy)1/2
< il [ (5 + )/ e,

=207 32

hence the result follows. O

Let us show that the family of Nehari-Pohozaev manifolds (#g)g> is bounded
away from zero in LP.

Lemma 3.4. infgsof{||v||zr : v € Pg} > 0.

P7 00’. V\/e Claim tha‘
i f H1 : S «@ > “. :;.3
l>l {”UH v 8} ( )

Indeed, the elementary inequality re™" < 1 — e~ " for every r > 0 implies

1 2p—3
0="Pg(v) = §IIU\I§11 - 107, (3.4)

and thus (2p—3)c||v||%; 72/p > 1/2, where ¢ > 0 denotes the constant of the Sobolev
embedding H! — LP.
In this situation, the lemma follows from and . O

The inclusion vg € Y3 implies

// |x—y| ) Tl By (2)20s(y) *dady > 0,

so there exists a unique tg > 1 such that t%vﬁ(t5~) € Py, i.e.,

3.3 2 1 2 3.3 Uﬁ(m)QUB(y)Q
Stsllvalpre + Stallvslizs + ts dedy
2p—3

2p—3
tg" " llvsllze

Our last preliminary result shows that t3 —+ 1 as 8 — 0.
Lemma 3.5. tg — 1 and Zo(t3vs(ts)) — mo as B — 0.

Proof. Let us prove that t3 — 1 as 8 — 0. We only have to show that limsupg_,o s <
1. By contradiction, suppose that limsupg_,ots > 1. In particular, we can fix
{Bn}nen CJ0,00[ such that 3, — 0 as n — oo and « := liminf, ,otg, > 1. It
follows from and from the fact that vg, € ¥, that

1,1
> (tg )||v5n||%2

2p3

2p—6
= (5, " — 1)Hv5n||ip-
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In view of Lemmas [3.2H3-4]

1,1 .

0> i(ﬁ — 1)(117ILHHSOICI)P ||Uﬂn||2L2)

2p—3
p

which is absurd, hence the result follows.
Now, we want to show that Zg (t%vﬁ(tg-)) — mg as 8 — 0. We have

> 2p—6 _ CN P
> (@ 1) (liminf [|vg, [[7,) > 0,

mo < IO (t%’U/@ (tﬁ))

p— p—2
=2 tﬁ””ﬁ”Dl 2+ R tﬁllvﬁHLz

b3 [ uslePuny)?
2(2p —3f@/ oy

+

p—2
=t3mg + —— (t t3)||val22
BgMmg 2p B —tp)llvgllL

//6 O (e
vg(x)“vg(y) drdy
% 3 =y P

In —|z—y|/B 2 2
— mtﬁ //e |lz=yl/ vg(z)“vg(y) dady.
Because limg_,o tg = 1, the result follows from Lemmas O

Even though this limit will not be explicitly used to prove the theorem, we
remark that Lemma implies mg — mg as 8 — 0 because Zg(vg) = mg by
definition. Let us finally prove the theorem.

Proof of Theorem[I.1 From Lemma {un = t3 vp,(ts, ") }nen is a minimiz-
ing sequence of Zp| w,. Let u, denote the measure defined in Lemma and let
{&,}nen C R? be furnished by the same lemma. It follows from Lemmas and
that {wy, = up (- —&n) bnen is bounded in H', so there exists Ty € H'! such that,
up to subsequence, w, — Ty in H' as n — oco. Due to the Kondrakov Theorem,
we can suppose further that w,, — 7y a.e. as n — oo.

Now, we argue as in [I, Proof of Theorem 1.1] to prove that

lwn, — Tol| La 50 for every q € [2,6][. (3.6)
n—oo

By Lemma HwTLHHl(]}@\B (0)

0. From the Kondrakov Theorem and the fact that || - ||z is weakly lower-
semicontinuous, we obtain

) < § for every n € N. Consider a fixed § >

l[wn = VollLa < lwn = VollLa(B.,(0) + [wn — Vol|Lare\ B, (0))
<6+ C(Jluwal
<34

) + |70l (3.7)

H' (R3\ B, ( H' (R3\B,, (0)))

for sufficiently large n € N, where C' > 0 denotes the constant of the Sobolev
embedding H' <+ L9. The result then follows from the fact that given § > 0, there
exists ns € N such that (3.7) holds for n > ns.
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We claim that
p—3 p—2 p—3 p—2
I v —=lPollZ:.  (3.8)

2p -3 2p—3 2p—3 2p—3
Indeed, in view of (3.6) and Lemma we deduce that ||Ug||z» > 0, so Ty # 0.
Considering (3.6), Lemmas and the fact that || - ||p1.2 is weakly lower-
semicontinuous, we obtain Py(vg) < liminf, o Po(wy) = 0. As vy # 0, we deduce
that there exists a unique tq € [0, 1] such that t3v(to-) € P5. We obtain

mo < Zo (t§00(to"))

P—3 5, 2 P—2 9 p—2 3/”0(50)2”0(9)2

= t —t t dyd
Bl + 2 tlmls + 5t [ gy
p—

wnllbio + oo fwnll3s ——> o [ollns +

3 2 P—2, 2 p—2 /UO(JJ)QUO(Q)Q
< — dyd
< Zo(wn) + 0n(1)
for sufficiently large n € N and the result follows by taking the limit n — co.

In view of (3.6) and (3.8]), we obtain ||w, — Tp||gr — 0 as n — o0, so Ty €
and Zy(vg) = myo. Finally, the fact that Z{(7) = 0 is a corollary of Lemma O

3.1. Notes. This article is posted at https://arxiv.org/abs/2407.19141 before its
publication.
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