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EIGENVALUE BOUNDS FOR THE CLAMPED PLATE PROBLEM OF 2?
OPERATOR

LINGZHONG ZENG, ZIYI ZHOU

ABSTRACT. The operator £ is an important extrinsic differential operator, which is elliptic of
divergence type and plays significant roles in the study of translating solitons. In this article,
we extend £77 to a more general elliptic differential operator £¢, for studying the clamped plate
problem of the bi-£¢ operator, denoted by Eg, on the complete Riemannian manifolds. By
establishing a general formula of eigenvalues for £2, we give a new estimate for the eigenvalues
of bi-£¢ operator. Some further applications of this result includes obtaining some universal
inequalities for bi-£;; operator on translators, and studying the eigenvalues on the submanifolds
of the Euclidean spaces, unit spheres, and projective spaces.

1. INTRODUCTION

Let © be a bounded domain with piecewise smooth boundary 9® on 9", where (9", g) is an
n-dimensional complete Riemannian submanifold isometrically immersed into the N-dimensional
Euclidean space RY, with smooth induced metric g. Throughout this paper, we assume that &
is a constant vector field defined on 9™ and use ()4, | - |3, div, A, V and £T to denote the
Riemannian inner product with respect to the induced metric g, norm associated with the inner
product (-, -),, divergence, Laplacian, the gradient operator on 9™ and the projective of the vector
¢ on the tangent bundle T9N", respectively. In addition, we assume that {ej,...,e,} is a local
orthonormal basis of 9™ with respect to the induced Riemannian metric g, and {e,11,...,enx}
is the corresponding local unit orthonormal normal vector fields. Assume that

1 N 1 N n
H=— Y He=— Y. (- )ea

a=n+1 a=n+1 i=1

is the mean curvature vector field, and

H=[H = %( XN: (ih%)2)1/2’

a=n+1 i=1
is the mean curvature of 9", Assume that II is a set defined as the following form:
IM=:{o:M" - RY : 0 is a isometric immersion}.
We define an elliptic differential operator on 9™ as follows
£e = A+ (£ V() = ¢ @ div(en v (), (11)

where (-, )4, stands for the standard inner product of RY. We remark that the elliptic differential
operator £¢ is a self-adjoint operator with respect to the weighted measure e{&X)o0 dy. Namely,
for any u,u € C3(D), the following Stokes’ formula holds:

—/(VU,Vﬂ>ge<§’X>-‘70dv=/(Sgﬂ)ue<5’X>-‘70dv:/(Sgu)ae<£’x>90dv. (1.2)
o o D
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Accordingly, we use | - |4, to denote the norm on RY associated with the standard inner product
(-,*)go- In particular, we assume that £ is a unit constant vector defined on a translating soliton in
the sense of the means curvature flows (5.1) and denote it by &;. For this special case, the above
differential operator will be denoted by £;7, which is introduced by Xin in [33] and of important
geometric meaning. We refer the readers to section 5 for details. Just like the other weighted
Laplacian, for example, £ operator and Witten-Laplacian, £¢ operator is also very important in
geometric analysis. Next, let us consider an eigenvalue problem of 2? operator on the bounded
domain ® C 9™ with Dirichlet boundary condition:

Szu =Tu, ind,
o (1.3)
u=22 = 0, on 09,
On
where n denotes the normal vector to the boundary 9. Let I, denote the k" eigenvalue, and
then the spectrum of the eigenvalue problem (1.3) is discrete and satisfies

O0<In ST <+ ST < -0 = +o0,

where each eigenvalue is repeated according to its multiplicity. Furthermore, we assume that
|€ |_q(J = 0, and then the £¢ operator exactly is the classical Laplacian defined on Riemannian
manifold 9™. For this case, eigenvalue problem (1.3) correspondingly becomes the following
Dirichlet problem of biharmonic operator associated with Riemannian manifold 9t":

A%y =Tu, in®,
0 (1.4)
- 0, on 09.
On
In particular, when 9" is an n-dimensional Euclidean space R", eigenvalue problem (1.4) is
called a clamped plate problem, which is used to describe vibrations of a clamped plate in elastic
mechanics. In 1956, Payne, Pélya and Weinberger [28] investigated the above eigenvalue problem
with respect to the Euclidean space and obtained a universal bound for eigenvalue problem (1.4)
as follows:

k
8(n+2)1
Pip1 =Tk < TEZD' (1.5)

In 1984, by means of improved method due to Hile and Protter in [2I], Hile and Yeh [22] obtained
the universal inequality
k /2 n2k3/2 k

;FkJrlZ_Fi ° 8(n+2)<¢

ri)fl/z, (1.6)

which generalizes universal inequality (1.5). In 1990, Hook [23] proved the inequality:

=1

/2

n+2 [ZFM }ZF”Q (1.7)

In 2006, Cheng and Yang [13] gave an affirmative answer to an interesting problem proposed by
Ashbaugh in his survey paper []. Specifically, they obtained the following universal bound of
Yang type:

1/2

Fk+1—;i [ n+2}1/2;i{ (Tpss —T0) 7 (1.8)

which is sharper than

Thpr < [1 n w} % ZFZ-. (1.9)
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We note that, in fact, inequality (1.9) is better than inequality (1.5) given by Payne, Pdlya and
Weinberger. In 2011, Wang and Xia [32] investigated the eigenvalues with higher order of bi-
harmonic operator on the complete Riemannian manifolds and proved the inequality

> thns =12 M- [+ 1)+ )

=1 %

“

1/2

(o

1

(1.10)
(Tpsr — T) (rj/ 24 CO) }1/2,

-

=1

where

1
Co = 1 ;Ielfr[ mgx (n2H2) .

For more progresses on the clamped plate eigenvalue problem of bi-harmonic operators, we refer
the reader to [LI] and references therein. We remark that Wang and Xia’s result is extended by Du
et al. [16] to the setting of bi-drifting Laplacian on the smooth metric measure spaces. Further-
more, in [I9, 20], He and Pu investigated the clamped plate problem of the drifting Laplacian in
several cases, and established some eigenvalue inequalities that are different from those obtained
previously in [I6]. In this paper, we consider the clamped plate problem (1.3) with respect to the
bi-£¢ operator Sg on the complete Riemannian manifold 9" and obtain an eigenvalue inequality.
Specially, we prove the following theorem.

Theorem 1.1. Let (9M™,g) be an n-dimensional complete Riemannian manifold isometrically
embedded into the Euclidean space RN with mean curvature H, then the eigenvalues T'; of the
clamped plate problem (1.3) of the 22 operator satisfy

ZZE (Cry1 — %{
at

(Tpp1 —T4) ((g + 1) P2 L 4G T 4 g +Cl) }1/2

-

=1

(1.11)
~ ~ 1/2
(2 +aCiryt +aCt+ ) |

-

=1

where

L. 2772 ~ o T
Clzf;I‘Ellf_[mgX(nH), Clzimgxm lgo-

Remark 1.2. We recall that, the first author established the following eigenvalue inequality [36
Theorem 1.1],

k
4
Z (Ci1 — 2 < *{
n
i=1
<4

By a similar argument as in [20, Remark 1.2], we can show that inequality (1.11) is better than
inequality (1.12) in some sense. In addition, by weighted Chebyshev inequality (see citeHLP), we
know that inequality (1.11) can deduce to upper bound of the (k + 1)-th eigenvalue via the first
k eigenvalues more quickly and directly than inequality (1.12). Here, we left the details to the
reader. Also, see [20, Remark 1.2].

1/2

M=

1 (Tt — T0)° ((g n 1) IY2 4+ 40TV 1402 + Cl) }

.
Il

(1.12)
~ 1/2
(Tt — ) (r1/2+4c /4 44?2 +cl)} ,

-

=1

As an application of Theorem 1.1, we obtain a universal bound of the eigenvalues of £2; operator
on the translating solitons (see the definition (5.2)), which occurs as Type-II singularity of the
mean curvature flow (MCF for short). In other words, we prove the following domain independent
bound.
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Theorem 1.3. Let (MM™,g) be an n-dimensional complete translating soliton isometrically em-
bedded into an N-dimensional Euclidean space RY, then eigenvalues of the clamped plate problem
(1.3) of the £2; operator satisfy

k 4 k n 1/2 1/4 n2y\y1/2
; (Tpyr —Ty) < ﬁ{ ; (Cry1 —T4) ((5 0T+ I)} -
x {Xk: (FV2 T4 12)}1/2'
=1 ' ' 4

Remark 1.4. Since inequality (1.13) does not depend on the domain D, it is a universal inequality.

2. GENERAL FORMULA AND ITS PROOF

In this section, we establish a general formula, which will play an important role in the proof
of Theorem 1.1. Toward this end, we need to prove some auxiliary lemmas.

Lemma 2.1. Let T';, i = 1,2,..., be the i-th eigenvalue of the clamped plate problem (1.3) and
u; be the orthonormal eigenfunction corresponding to T';, that is,

Egui = Fiui, mn @,

o 8ul

~ On

/ uin€<£’X>90d’U = 51']‘, Vi,j=1,2,....
D

Usg

= 07 on a@, (21)

Let us use (-,-) to denote the inner product of two vector fields. For any function ¢ € C*(D) N
C3(09), we define

O, := 2V, V (Sgul» + LepLeuy + 2L, (VY,Vu)) + Le (Uzgfd)) , (2.2)
Sij 1= / u; ®;el %00 dy, (2.3)

D
a;j = / Yuiuge'Saody. (2.4)

D

Then for each positive integer k, we have
(T = T4) aij = sij- (2.5)

Proof. From the definitions of s;; and ®;, we have

s = [ w2090V (26) + Seven + 22 (V0 V)

(2.6)
+ L (uiLet)) } (&N a0 dy,
Multiplying both sides of £Zu; = Tju; by 1u;, we obtain
¢u]£§ul = Fi¢Uin. (27)
Exchanging the order of the subscripts ¢ and j yields
wuiﬂguj = Fjwuiuj. (28)
Subtracting (2.7) from (2.8) and integrating over the bounded domain ©, we have
(Fj — Fl) A5 = / (dJUZSEUJ — ZZ)UJSEIQ) 6<£’X>90 dv. (29)
o)

A straightforward calculation yields

25 (’l/)lh) = d)ggul + 2<V1/), Vu1> + uiﬂyjj, (210)
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Furthermore, applying Stokes’ formula (1.2), (2.6), (2.9) and (2.10), we infer that

(I'j = T) ayj

- / {[uiLetp 4+ 2(Vh, Vu) | Leuj — [ujLetp + 2(Veh, V)] Leu; } efSX )90 du
D

= /@ {Uj [€¢ (uile®) + 28 ((VU, Vug))] — u; Letp Leu;
+ 2u e € X0 div ( (€:X)00 gen; w) } (€:X) 00 iy

= /@ u; [Se (uieth) + 286 (VY Vi) + LetpSeus + 2(V e, V)] e
= Sij-

The proof is complete.

Lemma 2.2. Under the same convention as Lemma 2.1, we define

tij ::/ Uj ((Vl/f,Vuﬁ + 1612251/1> e{&X)a0 dy,
9

Then, t;; is antisymmetric with respect to the subscripts, i.e., it holds
tij = —tj.

Proof. Utilizing Stokes’ formula (1.2), by the definition of ¢;;, we have
Lij +tji = / u <<V¢aVu¢> + 1%2251#> e{&X )90 dy
)

+/ u; <(V¢,Vuj> + %12)£¢> (&% a0 dy
)

[<VQZ}7 ’LL]VUZ + 'LL1V'LLJ> -+ u; UJEE’IZJ] (€,X) g0 dv

[(Vih, V (uu)) + ugu; Letp] el o0 du

(—uuj Lev + uu; Lep) e (&X)90 gy = 0.

I
@\@\@\

The proof is complete.

Lemma 2.3. We define

k k

)90 dv

G = Z (Fk+1 —1—‘1) aijtij, G/ﬂd K = Z (Fk+1 —Fi)aijsij.

ij=1 ij=1
Then we have

Lk
=3 Z Sijtiz,

4,J=1

1 k

ij=1

(2.11)

(2.12)

(2.13)

(2.14)
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Proof. By exchanging the summation order of ¢ and j in the definition of G, and noticing (2.4),
(2.11) and (2.12), one can carry out the following calculations:

k
G=" (D1 —Ty)agty + Z i) aijtis

i,j=1 i,7=1
k
Z (Tr1 — Ty) agjityi + Z Sijtij
J,e=1 g=1
. . (2.15)
Z (L1 — ) agjtiy + Z Sijlij
ji=1 ij=1
= —G+ Z Sijtija
ij=1
which implies (2.13). By the same method as in the proof of (2.13), one can infer that
k
K= [(Trs1 —Ty) + (T; =T aijs
i,j=1
k k
=Y (Trr —Ty)agsy + Y si
3,j=1 i,j=1
k k
= Z (Fk+1 - Fl) AjiSjq + Z S?j (2.16)
jri=1 i,j=1
k k
== > e —To)aysy+ Y 55
i,5=1 i,j=1
k
=K+ s
ij=1
In view of (2.15), we derive (2.14). O
Lemma 2.4. Under the same convention as in Lemma 2.1, we have
/ P ®iel&X o0 dy :/ [uf (Lev)” +4 ((V, Vi) + ui Letp (V), V) )
° ° (2.17)
- 2|V1/J|2u¢£§u,-] el&Xa0 dy,
Proof. By direct calculations, we obtain
/ Yu; @86 90 dy
o)
= [ e (uew) + 22 (V. V)
+ 2V, V (Seus)) + sfwsgui} e(&X)s0 gy (2.18)

= /@ {35 (Yui) uiLetp + 2L¢ (Yui) (Vi), V)

— 28, [e—<€vX>go div (e<fvx>so ¢uiv¢)} + wuizgzpsgui}e@vxwo dv.
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A straightforward calculation yields the following equalities:
/ Le (Pu;) ui Lerpe'& a0 dy
D
= / (wilet) + 2(V1, V) + 1 Leu;) u; Letpe &N o0 dy (2.19)
D

= / [uz2 (251/1)2 +2u; L (VY V) + wuiﬂgui}i‘,gqﬂ e&X)a0 gy,
o)

/ L (Yu;) (Vi Vug)el&So dy
)
= / (uiLeh + 2(V1p, Vi) + Leus) (Vib, Vug)elsX oo dy
D (2.20)
:/ (uisngw,wi)+2<v¢,wi>2
3

+ <Vw, Vul>¢£5ul)e(£,X>qo d’U,
and
i[e™ X0 div (e/& a0 gu; Vip) el D0 dy

5

S

/ »qul 1;/}Uz) Vib) +1/)UZ£§1/):| HOd'U
(2.21)

quz (Ve Pui + (Vg V) + us L) e/&X90 dy

Il
@\\

(Ve PuiLeu; + Y Leui (Vug, Vi) + thu; Leu; Le¢p) e/6 90 dy
Combining (2.18)-(2.21) yields

/ Yui [Le (uiLet) + 286 (Vah, V) + 2(V1), V (Leus)) + LerbLeuy] €800 dy
D

=/‘h%&wf+4«vvaﬁ+wm%wvva»—mvw%gwqe@“%w,
D
which implies (2.17). The proof is complete. O

Combining the strategies in [16, 19, 20, 31 2], and applying Lemmas 2.1, 2.2, 2.3 and 2.4, we
can establish the following general formula.

Lemma 2.5. Under the same convention of Lemma 2.1, Then for each function ¢ € C*(D) N
C3(0D) and each positive integer k, we have

K
Z(Fk+1 _Fi)/ u |V Pels Xm0 du
o

o (2.22)
<=1 [ W) -6 wdwfz/ Xso g,
i=1
where € is a positive constant,
i (¢) = (wileth + 2(Vep, Vus)g)” (2.23)
0; (1) = |V [ uiLeus. (2.24)
Proof. For each ¢ = 1,...,k, we define a function ¢; : ® — R on the bounded domain ® as

follows:

k
pi = hu; — Zaijuja (2.25)
=1
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where a;; is given by (2.1). Clearly, such functions satisfy the variation condition of eigenvalue

problem (1.3). This is to say that

0%

@i’a@ |8’}3 =0 and / u]@z qu'U—O V’L,jzl,,]{}

Therefore, the min-max principle (Rayleigh-Ritz inequality) implies that

Fk‘+1/ @?€<£1X)godv S/ @i£§¢i€<§,x>godv.
2 )
Equation (2.10) implies that

8 (Vi) = Le (PEeui + 2VY, Vui) + ui L))
= 1/)221141 + 2(Vy,V (£5uz)> + LepLeu; + 2L¢ ((V, V) + Le (u2£5¢)
=Tipu; + @,

where ®; is given by (2.2). By (2.3), (2.25), (2.26) and (2.28), we infer that
/ i€ pielt N0 dy
D
/ Vi [25 Yuy;) Zauf u]} XD 90 dy

/902[(1) + Dythu; — Za”p uj} (&X) 00 gy

j=1

/@,[@ + T (zpuz Za”uj)}e(é,mgodv

j=1

:/ (piq)i(i(E’X)gUd’U—FFiH(piHQ
)

/ e do — 3 0 / u;iel 00 dv + T i
D

j=1

/ Yu; P; e&X a0 dyy — Zamszg +T5 ||‘Pz||2

j=1

where
lioil? = | greleXnd.
)
It follows from (2.5), (2.17) (2.27) and (2.29), that
Crr =T ol < [ [uf (260)° + 4199, Vui)® + uiled (Ve Vuy)
D

k
— 2|V1/)|2u125u1] €<£’X>90 dv — Z Q;jSij-
j=1

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)
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By a direct computation, we have
—2 / o (<w,w> + “22“/’) €% 00 gy
D

k
= / [ — 277/1,-ui<V1/1, V’U,Z> — U?’(/JSg?l}] €<§’X>90 dv + 2 Z aijtij
3

Jj=1

k
= / [_ %<V (¢2) ,V (U?» - “?¢£§¢}6<6’X>90dv + QZaijtij
? = (2.31)

k
1
= [ |5t () - vees] e Xman 23 s

j=1
- /33 [uf (Ve + |VYI?) — ufpLer)] Xm0 dv + 2045t
k
= / u?|V1/J|26<5’X>90 dv +2 Z aijtij.
D =
Multiplying (2.31) by (T'x41 — TI';), we have

k
(Tpsr —T) (/@ w2 |Vap|2ete X )00 dy + 22%-15”-)

j=1

= —2(Tps1 — Fi)/ <,0i(<V1/J,Vui> n Té“’)e@,xmdv

D

k
i
=—-2Tk41 — Fi)/ @i((vw Vu;) + uited Ztijuj>e<§’x>90 dv.
D 2 j=1
Utilizing Cauchy-Schwarz inequality, one can conclude from the above equation that

k
(Try1 —T4) (/ u? |V Pel a0 do + QZaijtij)
° =t . (2.32)
1 ulﬁ 2
<e (Fk+1 — Fi)2 H(,OiHQ + g/@ <<V’L/), V’U/l> + wa - Ztijuj) 6<£’X>90 dv.
j=1

From (2.30) and (2.32), we infer that
k
(Fk+1 — Fz) (/ uf|V¢|2e<5’X>90dv + QZaijtij)
o) =
k
1 uiLeth 2

A2 s 12 o _ i€ (€,X) _ 2
< &
< e =T ol + 2 [ [ (190, + 52 ) el may ;f”]

< e(Tpsr — ) { /@ [uf(zfz/))? + 4(<w, V)2 + u Lep (Veh, Vui>) (2.33)

k
— 2|V¢|2u125ul] €<E’X>90 dv — Z ClijSij}

Jj=1

+ % [/@ (74, Vus) + #)26@’”90 dv — étfj].
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Summing over ¢ from 1 to k for (2.33), we obtain

M=

(]‘—‘]H”l - Fl) (/ 2|V'l/)|2 + ZZGU z]) >90d1)

j=1

Zf: (Tpsr — {/@ [uf (£5¢)2+4(<V1/),Vui>2—I—uiﬂgz/)(Vl/),Vui))

1

.
Il

k
— 2|Vw|2ui£5ul} €<E’X>90 dv — Z aijsij}
j=1

i[/@(ww,w uzﬁgw) (€ X0 gy — Zt}

=1

+

which implies that

M=

(Chg1 —T4) (/ uF|Vip? + 22(12] ”> X)so dy

1 j=1

o
Il

i (Cpst — /@ [uf (ge)” + 4(<w,wi>2 + uizgww,vw)

) (2.34)
— 2|V1/)|2u125u2} 6<§’X>90 dv — ¢ Z (Fk+1 — ]-—‘1) Q;jSij
g1
| uiled k
+ = Z/ (Vip, V) + — f ) (X 90 dy — thj.
€=

We can rewrite the left-hand side of (2.34) as

k k
Z (Fk+1 — Fi) (/ u?|V¢|26(57X)90 d’U + ZZaijtij)
)

=1

~.

=1
) ) (2.35)
= Z (Fk+1 — Fz)/ uf|V¢|2e<§’X>50 dv + 2 Z (Fk+1 — FZ) aijtij.

i=1 ° i,j=1

It follows from (2.13), (2.14), (2.34) and (2.35) that

-

k
(Fk+1 —Fi)/ uf|V7j;|Qe<5’X>90dv+ Z Sijtij
D

1 i,j=1

K3

k
<e Z (Prg1 —T) /@ {uf (251/1)2 +4 ((V, Vi) + w; £ (Vip, V)
i=1

k
- 2|V¢\2ui£§uz} e{&Xa0 dy — % Z s?j

4,5=1

+2 Z/ (Vib, Vi) + W) %dv—é zk:tfj.

i,j=1
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We infer from the above inequality that

k K k
€ 1
(L1 — 1) /Q uf | V| el oo do + (5 E 53 + g Sijtij + 2 E 5?;')

1 1,j=1 i,j=1 i,j=1

-

7

k
<23 (Cun =T [ [0 (0 + 4 (9. Vu)? + 0,2V, V) (2:36)
i=1

k 2
1 i
— 2|V1/1|2u¢35ui} e(&X)a0 dy 4 - Z/@ (<V¢7 V) + i i £2§¢> e(&X)a0 dy,
i=1

Noticing that

k k k k
€ 2 1 2 1 2, 42
5 Z 5% + Z Sijtij + g Z tij = 2*{_: Z |:(Esij —|—tij) +tij] >0, (237)
1,j=1 1,j=1 ,j=1 3,j=1
and
¢ 2
/ ((VdJ,Vui) + %) (&% a0 dy
0 ) (2.38)
=1 /@ (2 (£60)” + 4 (Vo Vu)? + wi L6 (Vp, V) | el av
from (2.36)-(2.38), we abtain inequality (2.22). The proof is complete. O
3. SOME EXTRINSIC FORMULAS OF CHEN-CHENG TYPE
From now on, we set the following convention on the ranges of indices:
1§Z,],,§’I’L, 1§OZ,5,7§N
Suppose that (fl, e ,f”) is an arbitrary coordinate system in a neighborhood U of P in 9M™.
Assume that x with components x® defined by z® = z¢ (fl, . ,f“), 1 < a < N, is the position

vector of P in RY. To prove our main results, the following auxiliary lemmas will play very
important roles, and their proofs can be found in [8, 1T}, 35} B6].

Lemma 3.1. For an n-dimensional submanifold M™ in the Buclidean space RY, let x = (z*,22%,...,2V)
be the position vector of a point P € M™ with x* = x*(T1,...,Tyn), 1 <a < N, where (z1,...,T,)
denotes a local coordinate system of ™. Then, we have
N
> (Va®, V%), =n, (3.1)
a=1
N
> (Va®, Vu)y(Va®, Vi), = (Vu, Vi), (3.2)
a=1

for any functions u,u € C*(9M"),

N
> (Ax®)? =nH?, (3.3)
a=1
N
Az*Vz® = 0, (3.4)
a=1
where H is the mean curvature of IM™.
From (3.1), we have
N
/ u? Z |Vma\§e<§’x>90 dv =n. (3.5)
D

a=1
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From (3.2), it is easy to check that

N
D (V2 Vuy) g = [V} (3.6)
a=1
From (3.4), we can verify that
N N
ZACL’ (Va, Vu,)g Z (Az*Vz*, Vu;)g =0, (3.7)
a=1 a=1
N
ZAz (Va*, &) g = Z (Az*Vz*,£) g, (3.8)
Straightforward calculatlonb show that
N
D (Ve )5 = 16712, (3.9)
a=1

By the Cauchy-Schwarz inequality and (3.9), we have
N

> (Va, Vi) (Via, g, < [Vuuilgle g (3.10)

a=1

Combining (3.10) with (3.7), we conclude that

N
Zﬂgza<an,VuZ Z (Ao + (V2 €)gy) (VTa, Vi) g < [Vauilgl€ g0 (3.11)
a=1 a=1

Lemma 3.2. Let (fl, e, T ) be an arbitrary coordinate system in a neighborhood U of P € IM™.

Assume that x with components x* defined by z¢ = x® (fl, e
vector of P in RY. Then

,f”), 1 < a < N, is the position

N

> (Ve85 = €T, (3.12)
a=1
where V is the gradient operator on IN™.

Lemma 3.3. Let (Tl, . ,f") be an arbitrary coordinate system in a neighborhood U of P € IMM™.
Assume that x with components x® defined by x® = x¢ (Tl, e ,f"), 1 < a < N, is the position
vector of P € RN. Then

N

D V2, V) (Va®, )y, < [Vulgle g, (3.13)

a=1

where V is the gradient operator on ™.

4. PROOF OF THEOREM 1.1

Based on the arguments from the previous section, we can establish the following lemma (see
[35] 36]).

Lemma 4.1. Let x1, 29, ...,zN be the standard coordinate functions of RN. For anyi=1,2,...k
and o =1,2,...,N, let
1 1
\I/ioc = 7/ \Iji(xa)e<£’X>godv7 el a = */ @i(xa)e@’)ﬂgody’
’ 4 Jo 7 4 /o

where the functions U; and ©; are given by (2.23) and (2.24), respectively. Then, we have

Z Vo0 < / \Vul|2 1 u2 (n2H2 + ‘§T|127o) }€<5,X>godv

1/2
e[ <uz-\€|gg>2e<f“>yodv} ,
)
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and
N

4 Z (Ui —Bia) < /53 [ — 2nu; Leu; + 4|Vui\3 + u? (n2H2 + €T 50) ]e<5’X>-‘70dv
= (4.2)

1/2
+4r)/* ( /33 uZle T2, el X e dv)
To prove Theorem 1.1, we need the following embedding theorem due to Nash [27].

Theorem 4.2. FEach complete Riemannian manifold ™ can be isometrically immersed into a
Euclidian space RN .

Proof of Theorem 1.1. Since 9™ is a complete Riemannian manifold, Nash’s embedding Theorem
4.2 implies that there exists an isometric embedding from M™ into a Euclidean space RY. Thus,
9™ can be considered as an n-dimensional complete isometrically embedded submanifold in RY.
Taking ¢ = z, in Lemma 2.5, by the definitions of \ili@ and (:)i@ in Lemma 4.1, we have

k
Z(Fk+1 —I‘Z—)/ U2 Vo2& dy
o

=1

k k
Z (Tt — / (W, () — ©; (22)] e<5’X>g0dv+iZ / Ui (20) e€N0dy  (4.3)
D 46 N D

k
= Z Fk+1 / (\Ili,a - 91', ) 5 X>go d’U + Z/ <£7 90 de.
i=1 D

By (3.1), we have
N
Z/ u?\V$a|36<§’X>90dv =n. (4.4)
a=1"9%

Using (4.4), and summing over « from 1 to N for (4.3), one has

k k N
n; (Fk+1 < Z 248 Fk+1 ) ( — + Z Z E\IJ%Q

1= 1: 1 i=1 a=1 (45)
:4gz(rk+1 [ U, o — m]*éZ(Z‘I’m)

k
=1
Next, we give the upper bounds for ¥; , and \I/i,a — 0, o. Clearly, eigenvalues are some invariants
in the sense of isometries, therefore, we can set

an

1
_ f 2H2 _
Cl ;relnmgx (n )7 Cl max\f |907

where II stands for the set of all isometric immersions from O™ into a Euclidean space. By the
divergence theorem and Cauchy-Schwarz inequality, we conclude that

/ |Vui|§e<f’x>90dv = —/ wi Leuzel&N oo dy
o D

(4.6)
1/2 1/2
R Rl
3 )
It follows from (4.2), (4.6) and (4.1) that
N
Z - <(@n+4rY? +4 (451F}/4+4512 +Cl), (4.7)

and

N
S Wi <T? + 40Ty +4C7 + O (4.8)
a=1
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Substituting (4.7) and (4.8) into (4.5), we have
k

: k
n;(FkH -I) < EZ(FkJrl -Ty) {(2n+4)pzl/2 _~_4@1} I %Z ( /2 +€1) 7

i=1 i=1
where
61 = 4011_‘}/4 =+ 4012 + .

In above inequality, taking

[Zh, (0 + 0]

6 = J— )
[k (Thrs —Ta)((2n +4)T}% +4C1)] V2
we obtain
k
nY  (Trpr —T)
i=1
k k
< Q{Z(rkﬂ —Ty) [@n+ 4% 440 } {Z ri2L o))
i=1 i=1
which is equivalent to (1.11). The proof is complete. O

Observing the proof of Theorem 1.1, one can establish the following result.

Corollary 4.3. Let (MM™,g) be an n-dimensional complete Riemannian manifold isometrically
embedded into the Euclidean space RN with mean curvature H, then eigenvalues T'; of the clamped
plate problem (1.3) of the Sg operator satisfy

k
D (Trir —T)
i=1

k
4 ~ ~ 1/2
= g{ > (Trpr =T (<§ +1)T% + 4T 4407 + / n2H2ufe<f’X>90dv)} (4.9)
i=1 o)
: 1/2 ~ l/4 ~ 1/2
X {Z (Fi +4C T " +4CF +/ n2H?u2e'&X)a0 dv) } ,
i=1 o)

where Cy is a constant given by

~ 1
€= Z m,gx |£T |90'

5. APPLICATIONS OF THEOREM 1.1

5.1. Eigenvalue inequalities on the translating solitons. In this subsectionwe discuss the
eigenvalues of £?; on the complete translating solitons. Firstly, let us consider a smooth family of
immersions X,(-) = X (-, ) : 9M" — RY with corresponding images 9 = X,;(9") such that the
mean curvature equation system [24]

iXt( ) =H;(z), xe€M",

dt
X(,0) = X(-) := Mg,

is satisfied, where H;(z) := H(z,t) is the mean curvature vector of MM} at X;(z) in RN and Iy
denotes the initial submanifold associated with the MCF (5.1). We assume that £y is a constant
vector with unit length and denote by &Y the normal projection of & onto the normal bundle of
™ in RY. A immersed submanifold X : 9" — RY is said to be a translating soliton of the MCF
(5.1), if it satisfies the system

(5.1)

H(z) = ¢ (x), v € M". (5.2)
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We remark that translating soliton is a special solutions of the MCF equations (5.1) and occurs
as Type-1I singularity of the MCF equations (5.1), which play an important role in the study of
the MCF [5]. In 2015, Xin [33] studied some basic properties of translating solitons: the volume
growth, generalized maximum principle, Gauss maps and certain functions related to the Gauss
maps. In addition, by estimating the point-wise estimates and integral estimates for |A|?, Xin
proved some rigidity theorems for translating solitons in the Euclidean space in higher codimension.
Here, |A|? denotes the squared norm of the second fundamental form. For more details, we refer the
reader to the excellent survey paper [34] and references therein. In 2016, using a new Omori-Yau
maximal principle, Chen and Qiu [I0] proved the nonexistence of spacelike translating solitons.

Suppose that & is a unit vector field satisfying (5.2). Then £¢, exactly is the £;; operator
introduced by Xin in [33] and similar to the £ operator introduced by Colding and Minicozzi in
[15]. Therefore, £ operator can be regarded as a extension of £;; operator. As an application
of Theorem 1.1, we investigate the eigenvalues of the £2; operator on the complete translating
solitons. In other words, we prove the following theorem.

Theorem 5.1 (see Theorem 1.3). Let M™ be an n-dimensional complete translating soliton iso-
metrically embedded into the Euclidean space RN with mean curvature H. Then, eigenvalues of
clamped plate problem (1.3) of the £2; operator satisfy

; 4 & n 1/2 1/4 2 1/2
;(Fkﬂ—ri)ﬁH{Z(Fkﬂ—ri)((?"'l)r +T; 4)}

o {i(l—‘l/Z—Fl—‘lM 42) }1/2.

i=1

(5.3)

Proof. Since 9™ is an n-dimensional complete translator isometrically embedded into the Eu-
clidean space RY, we have

H=¢;, (54)
and
€0 15, < I€ol2, = 1, (5.5)
which implies that
n*H? + &9 5, = n’l&[g, + 10 [5, < n* (5.6)
combining (5.4), (5.5) and (5.6) yields
L[ e g ) e < 6.1
4 @ ~ 4 '
Substituting (5.7) into (4.9), we obtain
k k
4 1/2
> (Crpr —T4) < ;{ > (T —T) ((2 + 24T Z)}
i=1 i=1
1/2
{Z( 1/2+F1/4 )} .
The proof is complete. O

5.2. Submanifolds in unit sphere and projective spaces. In this subsection, we investigate

the eigenvalues on the setting of the submanifolds in unit sphere and projective spaces. To this

end, let us recall some fundamental facts for the submanifolds on the projective spaces and refer

the reader to [7] for more information. Suppose that F is the field R of real numbers, the field

C of complex numbers or the field Q of quaternions. In what follows, we use the notations from

[35], 36]:

if F=R;

dp =dimgF =<¢2, if F=C; (5.8)
4, iftF=Q.
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Denote by FP™ the real projective space with dimension m if F = R, the complex projective
space with real dimension 2m if F = C, and the quaternionic projective space with real dimension
4m if F = Q, respectively. It is well known that the manifold FP™ carries a natural metric such
that the Hopf fibration 7 : S% (m+1)—1 « Frmtl _, FP™ i5 3 Riemannian fibration. Let

Hypsr (F) = {A € My 1 (F): A* = T4 = A}

be the vector space consisting of (m + 1) x (m + 1) Hermitian matrices with coefficients in the
field F. Now, let us endow H,,+1(F) with an inner product of the form

(A,B) = %tr(AB),

where tr(-) represents the trace for the given matrix of (m+1) x (m+ 1) type. It is clear that the
map 7 : S (m+D=1 c Fmtl 4 4 (F) given by

GF G e G
no=cc=| o Bh e
C’H'Lcio C’H’La R |<77L‘2

induces through the Hopf fibration: an isometric embedding n from FP™ into H,,1(F), where ¢ =
(Co,C1s- - vy Gm) € 8% (m+D=1 In addition, n(FP™) is a minimal submanifold of the hypersphere

S(74 /2(m+1)) of Hm1(F) with radius | /55" and center L5, where I stands for the

identity matrix. In accordance with the above notations, one can show the following lemma (see
[7, Lemma 6.3 in Chapter 4]):

Lemma 5.2. Let p : M" — FP™ be an isometric immersion, and let H and H be the mean
curvature vector fields of the immersions p and 1o p, respectively (here n is the induced isometric
embedding 1 from FP™ into H,11(F) explained above). Then

3n2 Z K (ei, eJ
i#]

2
e = i 4 2

where {e;}"_, is a local orthonormal basis of T(TM"™) and K is the sectional curvature of FP™
expressed by

L if F =R;
K (eje;) =L 1+3(e; - Jej)°, if F = C;
1+ 3(ei- Jre;)?, fF=Q,

where J is the complex structure of CP™ and J,. is the quaternionic structure of QP™.

One can infer from Lemma 5.2 that

|H|2 2(n+1), for RP™:

H? = { [H]? + 2<”+1>+n2 S 1(el Je;)? <|H\2 Ant2) for CP™;
H2 + 2050 250 50 (e Jrey)’ <|H|2 2<”+4>, for QP™.

From this equality it follows that

. 2 d
H)? < A2 + M
n

(5.9)
In (5.9), the equality holds iff 9" is a complex submanifold of CP™ (for the case CP™) while
n = 0(mod4) and 9™ is an invariant submanifold of QP™ for the case QP™). Let X : 9" —
9™ be the standard embeddings from the submanifold 9™ to ambient space 9™, where IM™
denotes the Euclidean space R™, unit sphere S™ or projective spaces FP" by the coordinate
functions, respectively. In addition, ﬂ, H and H are used to denote the mean curvature vector
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fields of the embeddings from IN™ to R™, 8™ and FP™, respectively. For convenience, we define
the nonnegative integers ¢(n) and the set II as follows:

b fo e S, P
c(n) = if@ (7’l‘2|1:~1|2 + n2) u%e(f’x)ﬂo dv, if M = S
if@ (TLQ‘HP + 2n(n + dF)) u§e<§’X>go dv, if Mm = FP™,

where
1, if F=R;
dp =dimgF = (2, if F=C; (5.10)
4, if F =Q,

and IT =: {o : M™ — FP™|o is a isometric immersion}. Then, by the same arguments as in [35,
Corollaries 6.1, 6.2, 6.3, 6.5] or [36, Corollaries 4.1, 4.2, 4.3, 4.5], and applying Corollary 4.3 and
Lemma 5.2, we can prove the following theorem.

Theorem 5.3. Let O™ be R™, S™ or FP™ and X : MM" — IM™ be an isometric immersion
with mean curvature vector fields H, H or H. For any bounded potential ¢ on IMN™, the spectrum
of £2 must satisfy

k 4
; Fgy1 — ﬁ{
<4

where C~'1 is a constant given by

1/2

(=

(Pry1 — 1) ((g + 1) /% +4C,T* 4 4C3 + C(”)) }

i=1

~ ~ 1/2
(Pil/? +AC TV a2 + c(n)) } ..

-

I
—

?

~ 1 .
Gy = Zm,gﬂf |go'

We define a constant

0, if M =R™;
c(n) = %2, if M™ = 8™,

n(n+tdr) LM m
%, if mm =FpP™.
As a consequence of Theorem 5.3, we can establish the following corollary.

Corollary 5.4. Under the hypotheses of Theorem 5.3, if the immersion are minimal, then
k
4
Z Fiy1 — *{
n
i=1
A

where 51 s a constant given by

(e =) (5 +1) T2+ + 488 +en)) }1/2

[

Il
—

7

(5.11)
- 1/2
<F1/2 +AC TV 4402 + E(n)) } ,

-

i=1

~ 1
C, = Zm@ax|§—r|go.
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